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Abstract

The aim of the present paper is to propose a rational model of decision-making for

lotteries. The key element of the theory is the use of cognitive processes. The

maximization of the degree of confidence associated with each judgment involves

different processes. Our contribution explains some major violations of the expected-

utility theory for decisions on lotteries.

Key words: Cognitive process, lottery, paradox, bounded rationality, preference reversal,

common ratio.
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Résumé

Le but de cette recherche est de proposer un modèle rationnel de prise de décision sur les

loteries. L’élément clé de la théorie est l’utilisation d’un processus cognitif. La

maximisation du degré de confiance associé à chaque jugement implique différents

processus. Notre contribution explique quelques défaillances importantes de la théorie de

l’espérance d’utilité sur les choix de loterie.

Mots clés : Processus cognitif, loterie, paradoxe, rationalité limitée, renversement des

préférences, ratio commun.
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INTRODUCTION

Two important facts related to decision-making under risk are the following: First, there

exist many cognitive anomalies that may be consistent with rationality at some level of

abstraction, such as asymmetry, certainty, ... (see McFadden, 1999, for a complete list ).

Preference reversal and other paradoxes, (Machina, 1987, Camerer, 1992) belong to this

family of cognitive anomalies. Second, we may observe from different tests many

restructuring operations (grouping by similarity, cancellation, framing ...) (Ranyard,

1995).

The aim of this article is to propose a decision model that explains how and why rational

individuals who behave optimally use these different restructuring operations to make

decisions that are coherent with test results for lotteries. Many results of these tests can be

interpreted as cognitive anomalies.

  

The intuition behind the model is that the judgment between two elements is never perfect

and depends on the likeness between the elements. Since the individual have limited

computational ability, as in Payne et al. (1993) for example, he tries to maximize his

understanding of the problem which leads him to use the most appropriate cognitive

process.

The basic concept of the proposed theory is that lottery elements have qualities. This idea

is not new. For example Kahneman and Tversky (1979) frame outcomes as gains and

losses. They consider that a loss looms larger than the corresponding gain and that there

exists a difference between negative and positive qualities for the monetary amounts.

Prelec (1998) mentions the qualitative character given by the transition from impossibility

(p  = 0) to possibility or risk (p  � ]0,1[), while Kahneman and Tversky (1979) make ai i
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similar remark when considering the difference between certainty (p  = 1) and risk. In thisi

paper, we will consider that the  probabilities p  = 0 or 1 are qualitatively different fromi

the probabilities p  � ]0,1[. Some of the qualities discussed are already mentioned in thei

above contributions. Others are defined and introduced in Section 1.

We will consider the concept of quality as in the above-mentioned articles but also in

another way not found in the literature. We can condense all facts about processes into

one simple principle: the existence of a degree of confidence in the judgment. When the

elements are very different, the judgment is difficult to make and then the degree of

confidence is weak. For example, if an individual compares a positive monetary amount

x  to a negative one -x , the degree of confidence of this judgment is weaker than the one1 2

that considers two positive monetary amounts x  and x . Hence, an agent who wants to1 2

maximize the degree of confidence will compare elements that are the most similar. This

maximization involves the use of different processes. Other processes proposed in this

paper are presented in examples 2.1, 2.2, and 2.3 below. 

Consequently, the concept of qualities helps the process in two different ways. First, the

maximization of the degree of confidence settles the process and, second, the qualities are

taken explicitl y into account in the judgment. This procedure will involve changes in the

qualities considered for the probabilities and will be able to explain the existence of

common ratio and preference reversal paradoxes.

The main goal of this article is to explore an approach where rational processes are taken

into account explicitl y. In Section 1, we propose a definition of lottery qualities and build

up a simple model which is, however, sufficient to illustrate how the principles work. Our

major contribution is in Section 2 where we propose a way to obtain maximal rational

processes. In Section 3, we apply the model to explain five basic tests that correspond to
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the two above-mentioned paradoxes: Three lottery choices and two pricing decisions for

lotteries where the prices are “judged-certainty-equivalents” (JCE).

1.  BASIC CONCEPTS

1.1  Definitions

We employ the notation {a,b} to define a set and the notation (a,b) to define an ordered

pair. A monetary amount that has values in [0,�[ is denoted x  and x  � X. A probabilityi i

that has values in [0,1] is denoted p and p � P.  We limit the analysis to two-pointi i

lotteries having a positive monetary amount x  with probability p  � ]0,1[ and 0 withi i

probability 1-p . So a non-degenerate lottery is written (p ,x ).  i i i

The sets P and X represent different qualities of lotteries. These sets could be split into

more refined sets associated with more refined qualities. 

As in the literature (Kahneman and Tversky, 1979, Prelec, 1998), we assume that the set

P is split into a set S composed of elements with the “surety” quality and a set R

comprising elements with the “risk” quality, so we define a refinement (or partition) of P

as �  = {S,R}. The elements p � {0,1} have the “surety” quality and the elements p �P i i

]0,1[ have the “risk” quality. We also add two other qualities by splitting the set R into

two parts so we can define �  = {W,L}, where the elements of W have the “winning”R

quality and the elements of L have the “losing” quality. So the elements p  � ]0,p'[ havei

the “losing” quality and the elements p  � [p',1[ have the “winning” quality.  Kagel et al.i

(1990), in a test on the common-ratio paradox, obtain that, for lotteries with probabilities

lower than .2, the lottery with the smaller probability is chosen. So the probability frontier

between sets L and W should be greater than .2. If we now consider the pricing decision

as in Tversky and Kahneman (1992), this frontier point has to be the fixed point with a
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value of about .35. This fixed point can represent our p', but any value higher than .2 and

lower than .5 is acceptable according to different tests. The parameter � in the function

w(p) =  (Prelec, 1998) permits the existence of different p'. Figure I illustrates

the above refinements of sets P and R: 

For example, the probability .8 � W � R � P; moreover 1 � S � P. We do not define any

refinement for X since we want to concentrate our analysis of the individual’s choice on

his probability judgments.  Thus, for our purpose, we have a collection of sets � =1

{P,X,S,R,W,L} and we denote, for example, P � � to identify P as an element of �. We

will use Q  and Q  to denote elements of � and Q ×Q  for an ordered pair. j � � j

1.2  Model

1.2.1  Lottery choice

By using the definition of p' we assume that there  exist three possible tests for lottery

choices (p ,x ) vs (p ,x ) where p ,p  � ]0,1[ and x ,x  > 0. The first one is where the two1 1 2 2 1 2 1 2



C p1,x1,p2,x2 � �Q�×Qj
�p �x/2 � �x �p/2.

�Q�×Qj
� �W×W p1,p2 � p �, �Q�×Qj

� �L×L p1,p2 < p �

�Q�×Qj
� �W×L if p1 � p � > p2. C p1,x1,p2,x2

�Q�×Qj
� 1,

p1�p2 x1�x2 /2 � x1�x2 p1�p2 /2 � p1x1 � p2x2 .

5

probabilities are high: p ,p  � p'. The second one is where the two probabilities are low:1 2

p ,p  < p'. A third test is for a lottery where one probability is high (p  � p') and the other1 2 1

one is low (p  < p'). An evaluation function that takes these three cases into account is2

represented by the next equation where p -p  = �p , p +p  = �p, x -x  = �x, x +x  = �x1 2 1 2 1 2 1 2

and �Q
�
× Qj is a weighting parameter that measures the perceived difference between the

probabilities p  and p :1 2

(1)

Consequently,  if  if and

can be interpreted as a measure of

the perceived difference between the two lotteries. 

Observe that when  equation (1) is equivalent to:

  

For p � ]0,1[, Rule 6 in MacCrimmon and Larsson (1979) states: "when one alternative

provides an almost sure chance of obtaining a very desirable consequence, select it, even

if it entails passing up a larger amount having a lower probability. When, however, the

chances of winning are small and close together, take the option that provides the larger

payoff." Consequently, this rule suggests that �  > 1 for high probabilities: p  � p'; andW×W i

�  < 1 for small probabilities p < p'. It is natural to think that the “winning” quality willL×L i
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be preferred to the “losing” quality for most people, so  �  > 1. Since for the judgmentW×L

of monetary amounts there is no difference between qualities, this is equivalent to the

idea of Slovic and Lichtenstein (1983) who consider that choices among pairs of gambles

appear to be influenced primarily by probabilities of winning and losing rather than by

dollar amounts in the paradox-preference reversal.

We observe that equation (1) implies the judgment of both probabilities together

 and both monetary amounts together  (�x). This seems to be a natural way

of judging elements p  and x . Rubinstein (1988) and Leland (1994) examine thisi i

procedure. Moreover, some tests with verbal reports seem to confirm this procedure. An

example of a verbal report from a subject is the following (Ranyard 1995): "There's more

chance of winning a smaller amount..." It indicates clearly that the subject compares the

two probabilities together. The model we propose in this paper shows that this rational

procedure is optimal for lottery choices. Let us consider two numerical examples of

equation (1).

Example 1.1

A test that corresponds to the comparison of two lotteries in the preference

reversal paradox found in Tversky et al. (1990) is (.97,4) vs (.31,16) where

83% of the subjects choose (.97,4). This result can be obtained by using

equation (1):

 

�p = .66, �x = -12, �x/2 = 10 and  �p/2 = .64;

So C(.97,4,.31,16) = �  (.66) 10 + (-12) .64;W×L

C(.97,4,.31,16) = �  6.6 - 7.68.W×L
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When �  � 1.164, that is when the quality of W is preferred to the qualityW×L

of L, the first lottery is chosen. Note that when the qualities play no role

(�  = 1), C(.97,4,.31,16) = -1.08 and represents the difference p x  - p x .W×L 1 1 2 2

So the second lottery is chosen.

Example 1.2

Problems 7 and 8 in Kahneman and Tversky (1979) are examples of

common ratio. In Problem 7, 86% of the subjects choose the lottery

(.90,3000) when it is compared to (.45,6000). For this case equation (1) can

be written as:

C(.9,3000,.45,6000) =  �  .45 (4500) - .675 (3000)W×W

=  �  2025 - 2025W×W

and  �  > 1 explains the result. In Problem 8, 73% of the subjects chooseW×W

the lottery (.001,6000) when it is compared to (.002,3000):

C(.002,3000,.001,6000)  =  �  4.5 - 4.5 L×L

and  �  < 1  explains this result. Both correspond to Rule 6 in MacCrimonL×L

and Larsson (1979).

1.2.2  Pricing

The preference-reversal paradox shows that the result of the comparison of two lotteries

differs from that of their pricing using “judged-certainty-equivalent” (JCE). So when the

individual must reveal his JCE, the model must be different to that in section 1.2.1. Note

that the JCE is different from the “choice-certainty-equivalent”. See Luce (2000) for a

recent detailed comparison of the two concepts. 



P p1,x1 � Bk � �S×R p1�Bk × 0 � x1� 0

Bk � B2 Bk � B1
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In this paper we assume that the individual will judge the p and x values with the

boundary associated with each set. The boundaries B  for p are B  = 0 and B  = 1 and thek 1 2

boundary for x is 0. So the JCE value for pricing is: 

(2)

where  when p � p', and  when p < p' and p' is the same as fori i

equation (1) .2

Note the symmetry between the expressions in the square brackets of (2). It indicates that

p  and x  are judged in the same manner, in the sense that the value is first compared withi i

the boundary and then added to this boundary. The parameter �  > 1 weights theS×R

qualitative difference between S (surety) and R (risk). If qualities play no role (�  = 1),S×R

equation (2) is equal to px . Notice that the probabilities p are evaluated either with thei i i

boundary 0 or the boundary 1, depending on whether p  is below or above the probabilityi

frontier p'. It is natural that a rational individual would use the same probability frontier

for the comparison and pricing of lotteries. Let us now consider a pricing example.

Example 1.3

Birnbaum et al. (1992) obtain a  JCE of about 70 dollars for (.95,96) . From

equation 2 we have

P(.95,96) =  (1-�  .05) 96S×R

=  96 - 4.8 � .S×R

For �  � 5.4 we obtain P(.95,96) � 70. This result shows that theS×R

perceived difference between the elements of S and R proportional to �S×R

is much greater than the perceived difference between the elements W and

L proportional to �  as in Example 1.1.W×L
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Some finer details must be discussed concerning the models. For the JCE, (equation 2),

we can also consider a parameter �Q
�
×Qj

 � �  that is proportional to the distance from theS×R

boundary and measured by [1+(p'-p)] for p < p' and [1-(p'-p)] for p � p'. This case yields a

regressive inverse S-shaped w(p) function as in Prelec (1998) . So P(p ,x ) = w(p)x . It3
1 1 i i

should be noted that for the pricing of lotteries, the  probability weighting function can be

represented by a function with one argument even if it is derived from the judgment of the

probability with a boundary. However the need for a function with two arguments appears

clearly in equation (1) where the judgment of  p  � W differs when p  � W (�1 2 Q
�
× Qj

  =

� ) or p  � L (�W×W 2 Q
�
×Qj W×L  = � ). (See Alarie and Dionne, 2001, for details.)

For equation (1) the value of the parameter �  could be proportional to the differenceW×L

between the probabilities. This approach is equivalent to splitting the set of probabilities

into an infinite number of qualities. Another plausible approach is to divide the set of

probabilities into three sets: low, medium, and high. These specifications do not affect the

usefulness for equations (1) and (2) for our purpose.

1.2.3  Three Questions

Although the contributions of MacCrimon and Larsson (1979), Slovic and Lichtenstein

(1983), Tversky and Kahneman (1979), Prelec (1998) and Leland (1994) seem to explain

well the individual’s choice of lotteries (p ,x ), three questions remain unanswered. First,i i

why does the individual judge the two probabilities together and the two monetary

amounts together? We will show that this is an optimal process.

A second question is: Why and how does the individual choose the qualities to be

considered? For example, when he has to decide between two lotteries (.8, x ) and (.9, x )1 2
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where .8 � W � R � P and .9 � W � R � P then he must choose which pair of qualities

(W×W,W×R,W×P,R×W,...) matters. We will also show that this decision is a step in an

optimal process.

The third question is related to the preference-reversal paradox in which subjects provide

both “judged-certainty-equivalents” for lotteries and choices between pairs of them. For

many subjects, lottery pairs exist for which the order established by the “judged-certainty-

equivalents” is opposite to that of the lottery choice (Bostic et al., 1990). Consequently,

the paradox implies that the process used to obtain the “judged-certainty-equivalent” is

different from the one used in the lottery choice. Note also that, for the type of lotteries

used in this paper, the paradox exists for the “choice-certainty-equivalent” (Alarie and

Dionne, 2001).

Moreover, in the lottery choice, the subject could obtain the “judged-certainty-equivalent”

of each lottery and then compare them. But the test results (Bostic et al., 1990, Tversky et

al., 1990) imply that he does not use this process. In conclusion, the process for lottery

choices is preferred to the one that yields the “judged-certainty-equivalents”. We must

then explain why subjects have preferences as regards processes. This is equivalent to

answering the following question: Why doesn’t the agent price the lotteries when making

his lottery choice? We will show that is not an optimal process. 

2.  A RATIONAL THEORY

2.1  Judgment function  

In the preceding section we introduced two equations representing different judgments of

lottery elements based on their respective qualities. For example, for the judgments of two



C p1,x1,p2,x2 � JP×X JQ�×Qj
p1,p2 , JX×X x1,x2

P p1,x1 � JP×X JS×R Bk,pi , JX×X x1,0
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probabilities, the parameter �Q
�
× Qj

 in equation (1) has different values for probabilities

belonging to different sets (W,L,S,R). In the same manner, the judgment of x  uses the seti

X×X, since x  belongs to only one possible set. i

A general definition of these judgments where �  and �  can represent either a monetaryj �

amount, a probability or the result of a judgment is the following:

DEFINITION 1: Let Q ×Q  � �×�. Let �  , �  be two elements to be judged. For each� j � j

pair Q ×Q  corresponds a judgment function J� j Q
�
× Qj � j (�  ,� ): R ×R  �1 1

R .1

With the notation of Definition 1, equation (1) becomes:

(1')

For example for p ,p  < p' where the decision-maker uses �  in equation 1, J1 2 L×L Q
�
× Qj 1 2(p ,p )

= J (p ,p ). So equation (1) is simply the sum of the value of the judgment of the two pL×L 1 2 i

weighted by �p/2 and the value of the judgment of the two x  weighted by �x/2.i

Consequently, equation (1) represents a process having three basic judgments. From now

on, the discussion will relate to the general form (1') which emphasizes that the model to

be developed focuses on the qualities associated with each judgment and not on a

particular function such as equation (1). However, this particular form can be useful for

empirical tests. A similar exercise can be made for equation (2). So we obtain:

(2')
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where the judgment of a probability with the boundaries is represented by J (0,p ) whenS×R 1

p < p' or by J (1,p) otherwise. Finally if JS×R i Q
�
× Qj � j n n n(� ,� ) = � , then �  belongs to the set Q  =

Q  	 Q  and to less refined qualities Q  such that Q  � Q . For example, the judgment of� j m n m

two x  belongs to X 	 X = X. Another example with less refined qualities (R, P)i

concerning the judgment of two probabilities is J (p ,p ) where the result belongs to WW×L 1 2

	 L = R�P.

2.2  Axioms

The three following axioms will be useful for the elimination of judgments that cannot

correspond to the different tests in the literature. 

(A1) If JQ
�
 × Qj � j � � j j(�  ,�  ) exists then �  � Q  and �  � Q.

This first axiom means that if the agent is able to make a judgment then the element ��

belongs to the set Q  and �  belongs to the set Q  . For example, this axiom eliminates the� j j

case where an individual tries to judge the probabilities .1 < p' and .8 � p' together with

the quality of W×W. This makes no sense because .1 does not belong to W. So the

individual cannot feel he has a winning lottery while he is judging .1. The second axiom

is for situations where individuals consider refinements of sets .4

(A2) Let �  be an element of {� ,� ,} and Q  � �  or Q  � � . If  Jn P R � n j n Q
�
 × Qj � j (�  ,� ) exists

then Q  , Q  � � . � j n

The judgment function considers only one refinement and then limits the number of

possible comparisons. For example suppose a situation where the probability p =1 � S1

and the probability p =.8 � W � R. If the individual tries to judge them by considering the2
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qualities of S and W, this type of judgment is not possible in our model because the

qualities come from two refinements �  = {R,S} and �  = {W,L}. In this example, theP R

individual is able to consider the difference between the quality of R and the quality of S

but he is  not able to consider the quality of W and that of S together. 

The last axiom is about judgments with boundaries. If we have already judged two p, fori

example p =.6 and p =.8, then the perceived difference .2 �1 2 Q
�
× Qj cannot be judged with

the boundaries 1 or 0. This axiom prevents an infinite number of judgments with the

boundaries.

(A3) Let �  = Jn Q
� × Qj � j Q n k n(�  ,�  ), then J

� ×Qj
(� ,B  ) does not exist � B .

2.3 Degree of confidence

When an individual compares two lotteries (p ,x ) and (p ,x ) he has to decide which pair1 1 2 2

of elements will be judged. For example p  can be judged in a first instance with x , x  or1 1 2

p . The individual also has to decide on which qualities the four elements will be judged2

(for example, two p can be judged by considering the qualities of R×S or W×L or W×W). i

A way to explain this ranking of judgments is to consider that an agent has limited

computational abilities (bounded rationality). When the elements are very different, the

judgment is more difficult to make and the degree of confidence associated with this

judgment is weaker. For example, the judgment of two probabilities in W is better (higher

degree of confidence) than that of a probability in W and a probability in L. These two

judgments are better than the one with the qualities of R and S (see fig. 1). This way of

comparing judgments involves, among other things, the fact that better judgments are

associated with more refined qualities. The notion of degree of confidence is close to the
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definition of accuracy (Payne et al., 1993) applied, however, to the whole process rather

than to each judgment, as in this paper.

DEFINITION 2: Let Q ×Q  � � × �. For each Q ×Q  corresponds a degree of� j � j

confidence �Q
� ×Qj

 � [0,1].

From the previous analysis of quality pairs, we derive the following relationships where

more refined qualities (see fig. 1) are associated with higher degrees of confidence. For

judgment of probabilities

(R1) �  = �  > �  > �  = �  > �  > � .W×W L×L W×L R×R S×S S×R P×P

Let us now consider the monetary amounts in X. We have only one degree of confidence

(� ) associated with any pair (x ,x ), since for the monetary amounts we do not refineX×X 1 2

set X.  For the judgment of one element of P and one element of X, (since the elements

differ more than the ones considered by a judgment of two p or a judgment of two x ), wei i

propose the following relationships between the degrees of confidence:

(R2) � , �  > � .P×P X×X P×X

R2 is close to Payne et al. (1993) who consider that the product of a probability and a

monetary amount is more complex than the difference between two monetary amounts,

for example. Definition 3 shows how the degrees of confidence are used to obtain a

maximal judgment.
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DEFINITION 3: Let A = {JQ1× Q2 1 2 Q 3 4 Q � j Q(� ,� ), J
3×Q4

(� ,� ), ...,  J
�
 × Qj 

(� ,� ), ..., J
L× QJ

L J Q(� ,� )} be a set of judgments. A judgment J
n×Qm n m (� ,� ) is maximal for

A if and only if �Qn×Qm  Q � �
� ×Qj

  for all �, j.

Axioms A1, A2, A3 and Relations R1 and R2 permit the use of the right quality at the

right moment, which is the natural way to think about lotteries, as in Kahneman and

Tversky (1979) or Prelec (1998) for S×R, Slovic and Lichtenstein (1983) for W×L, and

rule 6 in MacCrimmon and Larsson (1979) for W×W and L×L. These three approaches

are known to solve respectively the pricing of lotteries, the lottery choice in preference

reversal, and the common-ratio paradox. Let us consider two examples that make use of

axioms A1, A2, A3 and relations R1, R2.

Example 2.1

Let us consider the two lotteries of Example 1: (.97,4) and (.31,16). The

judgment of .97 (> p') with .31 (< p')  is not possible on W×W by A1 since

.31 
 W and then the maximal degree of confidence for .97 and .31 is

obtained with the qualities of W×L by A1, A2, and R1. 

Example 2.2

For the “judge-certainty-equivalent” of the lottery (.97,4) since both 0, 1 � S

� P, the judgment of .97 � W � R � P with either the boundary 0 or the

boundary 1 is possible on W×S, W×P, R×P, P×S and R×S or P×P by A1.

The first four cases are eliminated by A2 and R×S is maximal by Relation

R1 where �  > � . By analogy, �  is also maximal for the probabilityR×S P×P R×S

.31 of the lottery (.31,16) in Example 2.1.
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To obtain a maximal process, an agent first chooses one maximal judgment available

among all possible judgments of one or two elements and repeats this procedure for the

new set and so on.   For example, if an individual compares two lotteries (p ,x ) and5
1 1

(p ,x ), he considers four elements. If the first judgment is with the first two elements, lets2 2

say x  and x , the result J(x ,x ) becomes itself an element for the next step. The1 2 1 2

individual must again make a maximal choice among the new set of three elements p , p1 2

and J(x ,x ). The next definition shows how to obtain a maximal process. Note that axiom1 2

A3 allows only the basic elements p  and x  to be judged with the boundaries.i i

DEFINITION 4: Let �  = {p ,x , p ,x ...p ,x } and B = {� ...� } a set of boundaries. Let0 1 1 2 2 I/2 I/2 1 M 

�  = J (� ,� ) such that � ,�  � �  � B.  Let �  = �  � {� } � {� ,n+I n j k j k n-1 n n-1 n+I p

p = j,k such that �  � � }. Define also 	(� ) as the set of all possiblep n-1 n

judgments (satisfying A1, A2 and A3) of either two elements of �  orn

possible judgments of one element of �  with one boundary. A maximaln

process is a series of maximal judgments J , ..., J   that ends when there1 N

remains only one element left in � , such that:N

J  is a maximal element of 	(� )  1 0 

J  is a maximal element of 	(� )2 1 

          "

J   is a maximal element of 	(� ),  n n-1 

 " 

"

J   is a maximal element of 	(� ).N N-1 

Then a maximal process consists in choosing at each step a maximal judgment among the

judgments considering elements that have not already been judged. 
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Example 2.3

If an individual compares two lotteries (.97,4) and (.31,16), there are four

elements (I=4) in the set 	  = {.97, 4, .31, 16}.0

If the maximal judgment J  in the first step of the maximal process is the1

one with 4 and 16, and if J (4,16) = � ,  we have the new set of three1 5

elements {.97, .31, � } = 	 . Then in a second step the individual must5 1

choose again a maximal judgment among the new set �(	 ).1

 

If the maximal judgment is J (.97,.31) = � , he must choose a maximal2 6

judgment J  in the set �(	 ). Consequently, there remains only two3 2

elements �  and �  to be judged and if the ending maximal judgment is5 6

J (� ,� ), then the maximal process can be summarized by J (J (4,16),3 5 6 3 1

J (.97,.31)).2

 

 

We have seen that a maximal process is a series of maximal judgments where the number

of possible judgments are limited by the axioms A1, A2, and A3. The ranking of the �Q
�
×Qj

is done with the help of the relations R1 and R2.

3.  RESULTS

In this section we explain the three cases of comparison and the two cases of pricing of

two paradoxes. For each one we show that the maximal process is represented by

equations 1' or 2'.



18

3.1  Common Ratio

The first paradox we solve is Common Ratio where the preference between two lotteries

with high probabilities of gain p  � p', (i = 1,2) switches when we multiply thei

probabilities by K such that 0<K<1 where K is sufficiently small to obtain that the

resulting lotteries now have low probabilities of gain Kp < p', (i = 1,2) and the amountsi

remain constant (MacCrimon and Larsson, 1979; Hagen, 1979; Kagel et al., 1990) . The6

first result is for the choice between two lotteries with high probabilities.

   

RESULT 3.1.1: Let (p ,x ) be compared to (p ,x ) where p  � W 
 R 
 P, x  � X, i = 1,2,1 1 2 2 i i

then the process J  (J (p ,p ), J  (x ,x )) is maximal.P×X W×W 1 2 X×X 1 2 

Proof: See Appendix.

The second result is for the case where the two probabilities in Result 3.1.1 are multiplied

by a constant K.

RESULT 3.1.2: Let (Kp ,x ) be compared to (Kp ,x ) where Kp  � L 
 R 
 P, x  � X, i =1 1 2 2 i i

1,2, then the process J (J (Kp ,Kp ), J (x ,x )) is maximal.P×X L×L 1 2 X×X 1 2

Proof: See Appendix.

These results imply that the elements are first grouped by similarity and then the two

probabilities are judged together. The proofs show that equation 1' corresponds to the

maximal process of results 3.1.1 and 3.1.2. If the two p are on L rather than on W, byi

symmetry the individual judges them by considering the quality of L. The proofs also
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show that all other judgments than J (p ,p ) and J (p ,p ) are dominated. For exampleW×W 1 2 L×L 1 2

the judgment with R×R and P×P are possible but dominated. 

Consequently, the common-ratio paradox is solved because the agent judges the p byi

considering the set W×W and the weight �  > 1 of equation (1') in a first step and byW×W

considering L×L in a second step where �  < 1. Consequently, if the two lotteries haveL×L

the same expected value, the individual will necessarily change his ranking. In other

words as in Rule 6 in MacCrimon and Larsson (1979) the individual weights the relative

importance of probabilities versus monetary amounts depending on the fact that the p arei

higher or lower than p'. Example 1.2 illustrates this result.  

3.2  Preference Reversal 

The study of the preference-reversal paradox has to be decomposed in two parts because

it involves both comparison and pricing of lotteries. We start with the comparison of

lotteries.

3.2.1  Comparison of lotteries  

Comparison of lotteries in the preference-reversal paradox indicates that most subjects

choose the lottery with a high probability of gain when it is compared to a lottery with a

low probability of gain (Tversky et al., 1990). The next result gives the maximal process

for this case. 

RESULT 3.2:  Let (p ,x ) be compared to (p ,x ) where p  � W 
 R 
 P, p  � L 
 R 
 P,1 1 2 2 1 2

x ,x  � X , then the process J (J  (p ,p ), J (x ,x )) is maximal.1 2 P×X W×L 1 2 X×X 1 2 
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Proof: See Appendix.

Consequently, if p x  = p x , the individual will choose the lottery (p ,x ). Again this1 1 2 2 1 1

result corresponds to equation (1'). One can note, however, that the pricing of each lottery

(equation 2') is dominated by the comparison (�  < � ). The above result shows clearlyS×R w×L

that more weight is allowed to the judgment of probabilities than to monetary amounts as

suggested by Slovic and Lichtenstein (1983). In our model this is due to the fact that the

three different probabilities come from two different sets W and L. Example 1.1

illustrates this result. The cognitive process differs only in the two sets of judgments of

the probabilities W×L, W×W, or L×L for the first three results above.

We now move to the pricing of lotteries. In the next result for the “judged-certainty-

equivalent” there will be a bigger difference in the judgment process, because the

individual uses the boundaries when judging the elements p  and x .i i

3.2.2 “Judged-certainty-equivalent”

Here, the principal feature is that the lottery with a high probability of gain is

underestimated when it is priced, and the lottery with a low probability of gain is

overestimated (Birnbaum et al., 1992). The next result shows how these estimations come

from a rational judgment of lotteries.  

RESULT 3.3: Let (p ,x ) be a lottery to be judged, then J  (J (B ,p ), J (0,x )) is1 1 P×X S×R k 1 X×X 1 

maximal to obtain the “judged-certainty-equivalent” of the lottery.

Proof: See Appendix.
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Example 1.3 illustrates this result. The process in 3.3 is highly different to the one in 3.2.

Here we find that both the overestimation and the underestimation depend on the

difference between the two qualities “surety” and “risk”.

Moreover if we combine results 3.2 and 3.3 we solve completely the preference-reversal

paradox. Consequently, this paradox is explained by the use of different frames, S and R

for pricing and W and L for comparison.

4. CONCLUSION

The major conclusion of this article is that it is possible to develop a choice theory that

explains the test results with the use of different restructuring operations (framing,

grouping by similarity). These processes are optimal for a rational individual who has

limited computational ability, which would be the most plausible characteristic for all

individuals.

The two important characteristics of the model are that qualities are taken into account

explicitl y in the judgment function, and that the maximization of the degree of confidence

implies the use of different processes. For the three results we find that the theory predicts

that the sets considered for the judgment of probabilities are S×R for Result 3.3 (pricing

of lotteries in preference reversal), W×L for Result 3.2 (comparison of lotteries in

preference reversal) and W×W or L×L for Result 3.1 (common ratio). These variations

explain the different results of each paradox. Of course there are alternative ways of using

these two characteristics (degree of confidence, quality) and further investigations may be

needed to find the best one (see footnotes). 
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One straight extension would be the introduction of the positive and negative qualities for

monetary amounts proposed by Kahneman and Tversky (1979). The model may also be

useful to explain the cases where x ,x  > 0 for lotteries (p ,x ;p ,x ). The use of the1 2 1 1 2 2

segregation concept (Kahneman and Tversky, 1979) suggests that the first movement

from 0 to x  has the “surety” quality whereas the second movement from x  to x  has the1 1 2

“risk” quality. This way of proceeding may explain the choice and the pricing of these

lotteries (Mellers et al., 1992, Birnbaum and Sutton, 1992).
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FOOTNOTES

1. We assume that the utility function is linear with respect to x  because the shape of thei

utility function is not important in solving the paradoxes in this paper. However, for

paradoxes that involve large monetary amounts such as the St-Petersburgh paradox, it is

evident that the concavity of u(x) plays a fundamental role.

2. The link between equations (1) and (2) is the following: The value of a lottery L  noted1

(p ,x ) that takes into account a lottery L  noted (p ,x ) can be represented by V(L /L ) =1 1 3 3 3 1 3

(p +(p -p ))�(x +(x -x )). If L  is defined by using the boundaries B  for probabilities and3 1 3 3 1 3 3 k

0 for monetary amounts, we obtain equation 2. If L  = (p +p /2,x +x /2) and if the3 1 2 1 2

comparison between L  and L  is represented by V(L /L ) - V(L /L ), we obtain equation1 2 1 3 2 3

(1).

3. For p<p' we have in equation (2), w(p) = p+p'p-p  = 0 when p=0, w
(p) = 1+p'-2p > 02

and w�(p) = -2 < 0. For p � p' we have w(p) = -pp'+p +p' = 1 when p=1, w
(p) = -p'+2p >2

0, and w�(p) = 2 > 0.

4. For our purpose we need only three axioms. However it is clear that other axioms will

be necessary to directly eliminate comparisons that make no sense, such as the

comparison between p  and x .1 2

5.We can split the set into two sets, and again split each set into two other sets and so on.

This way seems better to represent the grouping by similarity defined by Ranyard (1995),

but for the cases in this paper the results are the same with both methods and the one we

use is the simplest.
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6. In the way we have defined the two qualities W and L, the common-ratio paradox is

applied to two probabilities in W in a first step and then to two probabilities in L.

Consequently, we do not cover the whole class of possible comparisons as the concept of

subproportionality would permit. However, the other case that implies comparisons of

probabilities in both W and L such as (.9, x ) vs (.1, x ) and (.9K, x ) vs (.1K, x ) with1 2 1 2

K<1 is considered later.
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APPENDIX

Proof of 3.1.1: By Definition 4 we choose the judgment that has a maximal �.  Let us first

consider that � of J (p ,p ) � � of JW×W 1 2 Q
�
× Qj 1 2 � j Q(x ,x ) �Q ,Q .  J

�
× Qj 1 2(p ,p ) can be done with the

qualities of P,R,W by A1 and P×P, R×R, W×W are the three possible sets by A2. W×W is

maximal by R1.  The � maximal for JQ
�
× Qj 1 1 Q 1 2 Q(p ,x ), J

�
×Qj 2 2 Q(p ,x ), J

�
× Qj

(p ,x ) and J
�
×Qj 2 1(p ,x )

is obtained with the set P×X by A1 and A2. These judgments are dominated by

J (p ,p ) by R1 and R2. The judgments of one variable p , p , x  or x , where theW×W 1 2 1 2 1 2

boundaries of p  are 0 and 1 and the boundary of x  is 0 show that �  is maximal for thei i X×X

judgments of x  and �  is maximal for p  by R1, A1, A2.  J (p ,p ) is maximal when iti S×R i W×W 1 2

is compared with these judgments by R1 and the hypothesis that � of J (p ,p ) � � ofW×W 1 2

JQ
�
× Qj 1 2(x ,x ).

We now have by Definition 4 a new set of three elements {x , x , J (p ,p )} and we1 2 W×W 1 2

choose the judgment with the maximal �. �  is maximal for the judgment JX×X Q
�
×Qj 1 2(x ,x ) by

A1. The maximal degree of confidence of JQ
�
×Qj i W×W 1 2 P×X(x , J (p ,p )) is �  by A1 and A2 and

it is dominated by �  by R2. J (p ,p ) cannot be judged with a boundary by A3. ForX×X W×W 1 2

the judgment of x  or x  alone, J (x ,x ) is maximal because there is no refinement for1 2 X×X 1 2

X.  If we now assume � of J (p ,p ) < � of JW×W 1 2 Q
�
×Qj 1 2(x ,x ) we obtain the same result. 

Up to now we have two elements J (p ,p ) and J (x ,x ). The only possible judgmentW×W 1 2 X×X 1 2

of these two elements is on P×X by A1, A2, and A3.

�

Proof of 3.1.2: As in the result 3.1.1, we have J (JP×X Q
�
×Qj 1 2 X×X 1 2(Kp ,Kp ), J (x ,x )), but here

the judgment (JQ
�
×Qj 1 2(Kp ,Kp ) with the qualities of W×W is impossible by A1, so L×L is

maximal by R1, A1, and A2. �
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Proof of 3.2: As in the result 3.1.1 we have J (JP×X Q
�
×Qj 1 2 X×X 1 2(p ,p ), J (x ,x )) but here the

judgment JQ
�
×Qj 1 2(p ,p ) with the quality of W×W is impossible by A1 so W×L is maximal

by R1, A1, and A2.

�

Proof of 3.3: By Definition 4 we choose the judgment that has the maximal �. Let � of

J (x ,0) > � of J (B ,p ). The maximal � for the judgment of x  and 0 is �  by A1 andX×X 1 S×R k 1 1 X×X

it is larger than the � associated with the judgment  JQ
�
×Qj 1 1(p ,x ) by A1, A2, and R2. Any

of the two judgment functions of p  and B  considers the qualities of R and S by A1, A2,1 k

and R1 and this judgment is maximal for the set {p , J (x ,0)}. If � of J (x ,0) � � of1 2 1 X×X 1

J (B ,p ) we obtain the same result.S×R k 1

For {J (B ,p ),J (x ,0)} the judgments of one of these two elements with boundariesS×R k 1 X×X 1

do not exist by A3. J (J (B ,p ),J (x ,0)) is the maximal judgment by A1 and R2.P×X S×R k 1 X×X 1

�
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