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Abstract

The aim of thgresentpaper is topropose a rational model of decision-magdgiior
lotteries. The kg element of the thegiis the use of agnitive processes. The
maximization of the dgree of confidence associated with egaigment involves
differentprocesses. Our contribution@ains some mjar violations of the epected-

utility theow for decisions on lotteries.

Key words Cognitive process, lotter, paradox, bounded rationalitpreference reversal,
common ratio.
JEL Classification D80.

Résumé

Le but de cette recherche estpideposer un modele rationnel gase de décision sur les
loteries. L’élément clé de la théorie est l'utilisation djwacessus agnitif. La
maximisation du dgré de confiance associé a ghajugement inplique différents
processus. Notre contribution@que quelques défaillances iportantes de la théorie de

I'espérance d'utilité sur les choix de loterie.

Mots clés Processus gmitif, loterie, paradoxe, rationalité limitée, renversement des
préférences, ratio commun.
Classification JEL: D80.



INTRODUCTION

Two important facts related to decision-magimnder risk are the followm First, there
exist many cognitive anomalies that nyabe consistent with rationafiat some level of
abstraction, such asyasmetry, certainy, ... (see McFadden, 1999, for a qoete list ).
Preference reversal and otlparadoxes, (Machina, 1987, Camerer, 1992) lgetorthis
family of cognitive anomalies. Second, we ynabserve from different tests man
restructuriig operations grouping by similarity, cancellation, framig...) (Raryard,
1995).

The aim of this article is tpropose a decision model thatptsins how and wy rational
individuals who behavepbimally use these different restructugioperations to make
decisions that are coherent with test results for lotteriesy Mesults of these tests can be

interpreted as ognitive anomalies.

The intuition behind the model is that fluelgment between two elements is neperfect
and deends on the likeness between the elements. Since the individual have limited
computational abiliy, as in Pgne et al. (1993) for exgpte, he tries to maximize his
understandig of theproblem which leads him to use the mgsprapriate canitive

process.

The basic cong# of theproposed theor is that lottey elements havgualities. This idea
is not new. For exapte Kahneman and TvergK1979) frame outcomes gains and
losses. The consider that a loss loomsdar than the corr@ending gain and that there
exists a difference betweengagive andoositive qualities for the monetgramounts.
Prelec (1998) mentions tlygalitative charactegiven by the transition from irpossibility
(p; = 0) topossibility or risk @ € 10,1[), while Kahneman and Tvenrsk1979) make a
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similar remark when considegrihe difference between certair(p, = 1) and risk. In this
paper, we will consider that th@robabilitiesp, = 0 or 1 areualitatively different from
theprobabilitiesp, € ]0,1[. Some of theualities discussed are alrgamentioned in the

above contributions. Others are defined and introduced in Section 1.

We will consider the conpet of quality as in the above-mentioned articles but also in
another wg not found in the literature. We can condense all facts aglsooesses into

one sinple principle: the existence of a geee of confidence in theidgment. When the
elements are vgdifferent, thgudgment is difficult to make and then thegdee of
confidence is weak. For exgia, if an individual corpares gositive monetar amount

X, to a ngative one -x , the dgee of confidence of thisidgment is weaker than the one
that considers twpositive monetar amounts x and,x . Hence, ageat who wants to
maximize the dgree of confidence will copare elements that are the most similar. This
maximization involves the use of differgmbcesses. Othgrrocessegroposed in this

paper arepresented in exaptes 2.1, 2.2, and 2.3 below.

Conseguently, the concpt of qualities hebs theprocess in two different wea. First, the
maximization of the dgree of confidence settles thecess and, second, thealities are
taken explicitly into account in theudgment. Thisprocedure will involve chages in the
gualities considered for th@obabilities and will be able to pbain the existence of

common ratio angreference reversaharadoxes.

The maingoal of this article is to gtore an @proach where rationgdrocesses are taken
into account eplicitly. In Section 1, w@ropose a definition of lottgrqualities and build

up a sinple model which is, however, sufficient to illustrate how phaciples work. Our

mgor contribution is in Section 2 where \Wwpose a wyg to obtain maximal rational

processes. In Section 3, weply the model to eplain five basic tests that corpesd to
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the two above-mentiongmhradoxes: Three lottgchoices and twericing decisions for

lotteries where therices are judged-certaing-equivalents” (JCE).

1. BASIC CONCEPTS

1.1 Definitions

We enploy the notation {a,b} to define a set and the notation (a,b) to define an ordered
pair. A monetay amount that has values in4{js denoted x and x X. A probability

that has values in [0,1] is denotgcandp € P. We limit the angbis to twopoint

lotteries havig apositive monetar amount x withprobability p, € ]0,1[ and 0 with

probability 1,. So a non-dgenerate lotteris written ©,,x).

The sets P and X peesent differengualities of lotteries. These sets could pk eto

more refined sets associated with more refipealities.

As in the literature (Kahneman and Tversk979, Prelec, 1998), we assume that the set
P is lit into a set S coposed of elements with the “suyétquality and a set R
conprising elements with the “risktjuality, so we define a refinement (oertition) of P
asR, = {S,R}. The elementp, € {0,1} have the “suret’ quality and the elemen{s
10,1[ have the “risk’quality. We also add two othegualities ly splitting the set R into
two parts so we can defirg; = {W,L}, where the elements of W have the “wingin
guality and the elements of L have the “lagimguality. So the elements € ]0,p[ have
the “losing” quality and the elements € [p',1[ have the “winnig” quality. Kagel et al.
(1990), in a test on the common-rgteradox, obtain that, for lotteries wiphobabilities
lower than .2, the lottgrwith the smalleprobability is chosen. So tharobability frontier
between sets L and W shoulddpeater than .2. If we now consider thrécing decision

as in Tversig and Kahneman (1992), this frontaint has to be the fixgobint with a
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value of about .35. This fixgabint can r@resent oup', but ary value hgher than .2 and

lower than .5 is ac@table accordig to different tests. Thparamete@ in the function

w(p) = e P(CInpy (Prelec, 1998permits the existence of differept Figure I illustrates

the above refinements of sets P and R:

Figure I: Refinements of sets P and R

For exanple, theprobability .8 W < R < P; moreover £ Sc P. We do not define &n
refinement for X since we want to concentrate ouryaislof the individual's choice on
his probability judgmentst Thus, for oypurpose, we have a collection of séts
{P,X,S,R,W,L} and we denote, for exaute, P< I" to identify P as an element & We
will use Q and Q to denote elementd'aind Q xQ for an orderguhir.

1.2 Model
1.2.1 Lottery choice

By using the definition ofp' we assume that there exist thpessible tests for lottgr

choices p,x,) vs (X, wherep,p,e ]0,1] and x,% > 0. The first one is where the two
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probabilities are tgh: p,,p, > p'. The second one is where the fvobabilities are low:
PP, <p'. A third test is for a lottgrwhere ongrobability is high (p, > p') and the other
one is low p, < p'). An evaluation function that takes these three cases into account is

represented Y the next quation wherg,-p, = Ap, p+p, = Zp, X-X, = AX, X X ,= XX
and%px q is a weghting parameter that measures fherceived difference between the
probabilitiesp, andp.:

C(pl,xl,pz,xz) = Ggxg Ap Xx/2 + Ax YXp/2. (1)

Conseuentl, Aoxq = wxw if p.p, > p/, Aoxq = CLxL if p,p, <p’ and

vV

Aoxq = Cwxl if p, > p’ > p, C(pl,xl,pz,xz) can be intggreted as a measure of

the perceived difference between the two lotteries.

Observe that whena

oxo = 1, 0eation (1) is quivalent to:
(A

(pl—pz)(X1+X2)/2 * (Xl—Xz)(p1+p2)/2 = PXy T PXs

Forp € ]0,1], Rule 6 in MacCrimmon and Larsson (1979) states: "when one alternative
provides an almost sure chance of obtararvey desirable conggience, select it, even

if it entailspassimg up a lager amount havig a lowerprobability. When, however, the
chances of winnigare small and closedether, take themion thatprovides the lager
payoff." Conseuentl, this rule sggests that,,,, > 1 for hgh probabilities:p, > p'; and

o, <1 for smallprobabilitiesp <p'. It is natural to think that the “winngfi quality will
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bepreferred to the “losig’ quality for mostpeqole, so «,, > 1. Since for thgudgment
of monetay amounts there is no difference betweggalities, this is quivalent to the
idea of Slovic and Lichtenstein (1983) who consider that choicesgapais ofgambles
appear to be influenceprimarily by probabilities of winniig and losig rather than

dollar amounts in thparadoxpreference reversal.

We observe thatgeation (1) inplies thejudgment of bothprobabilities t@ether

(ochij Ap) and both monetgramounts tgether (x). This seems to be a naturalywa
of judging element$p, and x. Rubinstein (1988) and Leland (1994) examine this
procedure. Moreover, some tests with verbpbres seem to confirm thigrocedure. An
exanple of a verbal rport from a sufect is the followig (Raryard 1995): "There's more
chance of winnig a smaller amount..." It indicates clgatiat the suject conpares the
two probabilities tgether. The model wpropose in thigpaper shows that this rational
procedure is ptimal for lottely choices. Let us consider two numerical epka® of

equation (1).

Exanple 1.1
A test that corrg®nds to the coparison of two lotteries in thgreference

reversalparadox found in Tvergket al. (1990) is (.97,4) vs (.31,16) where
83% of the sujects choose (.97,4). This result can be obtaiyadsig
equation (1):

Ap = .66,Ax =-12,2x/2 = 10 andXp/2 = .64;
So C(.97,4,.31,16) =, (.66) 10 + (-12) .64,
C(.97,4,.31,16) =, 6.6 - 7.68.



Whenao,,,, > 1.164, that is when thguality of W is preferred to theuality
of L, the first lottey is chosen. Note that when thealitiesplay no role
(o = 1), C(.97,4,.31,16) = -1.08 andpresents the differenggx, - pX,

So the second lottelis chosen.

Exanple 1.2
Problems 7 and 8 in Kahneman and Tver@©79) are exaples of

common ratio. In Problem 7, 86% of the gdis choose the loter
(.90,3000) when it is copared to (.45,6000). For this casgation (1) can
be written as:

C(.9,3000,.45,6000) =y -45 (4500) - .675 (3000)

= Oy 2025 - 2025

and a, > 1 eyplains the result. In Problem 8, 73% of thejsagks choose
the lottey (.001,6000) when it is copmared to (.002,3000):

C(.002,3000,.001,6000) =,,, 4.5-4.5
and «,,, <1 eylains this result. Both corrpsnd to Rule 6 in MacCrimon
and Larsson (1979).

1.2.2 Pricing

Thepreference-reversg@aradox shows that the result of the gamison of two lotteries
differs from that of theipricing using “judged-certaing-equivalent” (JCE). So when the
individual must reveal his JCE, the model must be different to that in section 1.2.1. Note
that the JCE is different from the “choice-certgieguivalent”. See Luce (2000) for a

recent detailed coparison of the two congss.



In this paper we assume that the individual wildge thep and x values with the
bounday associated with each set. The boundaries Bbdoe B =0and B =1 and the

bounday for x is 0. So the JCE value fpricing is:
PPux,) = [Bic+ asp(Pi-By)| X [0 + (x,-0) @)

where B, = B, whem, > p',and B, = B, whemp <p'andp'is the same as for

equation (15 .

Note the gmmetry between the gxessions in thegeare brackets of (2). It indicates that
p; and x argudged in the same manner, in the sense that the value is firpaceawith
the boundar and then added to this bounglaFheparametew,; > 1 weghts the
gualitative difference between S (synedind R (risk). Ifqualitiesplay no role g,z = 1),
equation (2) is gual top,x,. Notice that therobabilitiesp are evaluated either with the
bounday O or the boundarl, dgendirg on whethep, is below or above thgrobability
frontierp'. It is natural that a rational individual would use the sprabability frontier

for the conparison andgricing of lotteries. Let us now considepacing exanple.

Exanple 1.3
Birnbaum et al. (1992) obtain a JCE of about 70 dollars for (.95,96) . From

eguation 2 we have
P(.95,96) = (lets,r -05) 96
= 96 - 4.805,x
For gk = 5.4 we obtain P(.95,96) 70. This result shows that the
perceived difference between the elements of S apportional toog,
Is muchgreater than thperceived difference between the elements W and

L proportional toa,,,, as in Exarmple 1.1.
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Some finer details must be discussed concgrtiie models. For the JCE g(&ation 2),

we can also considemarameter.,q # s« that isproportional to the distance from the
bounday and measuredylj1+(p'-p)] for p <p' and [1-0'-p)] for p > p'. This casgields a
regressive inverse S-spad w) function as in Prelec (1998) . SqoRK,) = w(p)x;. It
should be noted that for tipeicing of lotteries, theprobability weighting function can be
represented Y a function with one gument even if it is derived from thedgment of the
probability with a boundar. However the need for a function with tw@aments ppears
clearly in equation (1) where thpidgment of p, € W differs whermp, e W (ocQﬂx 9 =

Cyxw) OFP, € L (ocQﬂij = oy )- (See Alarie and Dionne, 2001, for details.)

For equation (1) the value of thearametew,,,, could beproportional to the difference
between the@robabilities. This pproach is guivalent to glitting the set oprobabilities
into an infinite number ofualities. Anotheplausible @proach is to divide the set of
probabilities into three sets: low, medium, anghhiThese gecifications do not affect the

usefulness foraguations (1) and (2) for oyourpose.
1.2.3 Three Questions

Although the contributions of MacCrimon and Larsson (1979), Slovic and Lichtenstein
(1983), Tversk and Kahneman (1979), Prelec (1998) and Leland (1994) seerplamex
well the individual’s choice of lotterieg,(x), threequestions remain unanswered. First,
why does the individugludge the twoprobabilities tgether and the two moneyar

amounts tgether? We will show that this is aptomal process.

A secondguestion is: Wl and how does the individual choose doealities to be

considered? For exaite, when he has to decide between two lotteries {.8, x ) and, (.9, x )
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where .8 W< Rc P and . W < R c P then he must choose whigir of qualities
(WxW,WxR,WxP,RxW,...) matters. We will also show that this decision igarstmn

optimal process.

The thirdquestion is related to th@eference-reversglaradox in which sylectsprovide
both “judged-certaing-equivalents” for lotteries and choices betwemirs of them. For
mary subects, lottey pairs exist for which the order establishedtbe ‘judged-certaing-
equivalents” is @posite to that of the lottgrchoice (Bostic et al., 1990). Comsently,
theparadox inplies that theprocess used to obtain thgitiged-certaing-equivalent” is
different from the one used in the loftexhoice. Note also that, for thgoe of lotteries
used in thigaper, theparadox exists for the “choice-certairgquivalent” (Alarie and
Dionne, 2001).

Moreover, in the lottgrchoice, the syect could obtain thejtidged-certaing-equivalent”
of each lottey and then compare them. But the test results (Bostic et al., 1990, Tyask
al., 1990) inply that he does not use tipocess. In conclusion, theocess for lotter
choices igreferred to the one thgields the fudged-certaing-equivalents”. We must
then exylain why suljects havereferences as gardsprocesses. This igjaivalent to
answerirg the following question: Wiy doesn’t the gentprice the lotteries when malgn

his lottely choice? We will show that is not aptonal process.

2. ARATIONAL THEORY

2.1 Judgment function

In theprecedimg section we introduced twajeations reresentirgy differentjudgments of

lottery elements based on their pestivequalities. For exaiple, for thejudgments of two
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probabilities, theparametelocQﬂxQJ in equation (1) has different values fprobabilities
belorging to different sets (W,L,S,R). In the same mannerjublgment of x uses the set

XxX, since x belogs to ony onepossible set.

A general definition of thes@idgments wherd, and6, can r@resent either a monear

amount, grobability or the result of gudgment is the followig:

DEFINITION 1.  LetQxQ e IX[I’ Let6,, 6 be two elements to be judged. For each
pair Q,xQ; corresponds a judgment functiqgng(@ a): R!xR! -
R.

With the notation of Definition 1,gquation (1) becomes:

C (pr X5 P Xz) = Joux (‘]Qﬂij (pl’ pz)’ Jexx (Xl’ %X )) (1)

For exanple for p,,p, < p' where the decision-maker uses, in equation 1, éﬂx Qj(pl,pz)
=J.. (.p,)- So @uation (1) is simply the sum of the value of thedgment of the twa,
weighted ly 2p/2 and the value of thedgment of the two x wehted ly Xx/2.
Conseguently, equation (1) reresents @rocess havig three basigudgments. From now
on, the discussion will relate to tigeneral form (1') which ephasizes that the model to
be develped focuses on thgualities associated with eapdgment and not on a
particular function such agjeation (1). However, thigarticular form can be useful for

empirical tests. A similar exercise can be made fpragion (2). So we obtain:

P(pl,Xl) - JPXX(JSXR(Bk’pi)’ Jexx (X1,0)> (2
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where thgudgment of gprobability with the boundaries is peesented ¥ J.x(0p,) when

p <p' or by k.x(1p) otherwise. Finayl if Jox Qj(e@,ej) =0,, thenO, belorgs to the set Q
Q, u Q and to less refineglalities Q, such that (r Q,,. For examle, thejudgment of
two x belomgs to Xu X = X. Another exarple with less refinedjualities (R, P)
concerniig thejudgment of twoprobabilities is J,, #,,p,) where the result belgs to W
ulL=RcP.

2.2 Axioms

The three followig axioms will be useful for the elimination pfdgments that cannot

correpond to the different tests in the literature.
(A1) If JQ/X Qj(@ ,0 ) exists therd, € Q, andg € Q.

This first axiom means that if thgent is able to makejadgment then the elemefit
belorgs to the set Q an@| belorgs to the set Q . For exae, this axiom eliminates the
case where an individual triesjtadge theprobabilities .1 ' and .8> p' together with
thequality of WxW. This makes no sense because .1 does notgaeldd. So the
individual cannot feel he has a wingilottery while he isudging .1. The second axiom

is for situations where individuals consider refinements of sets .

(A2) Let J, be an element of¥,, 5} and Q € I, or Q € &, If JQ/ij(ﬁ/ ,0) exists
then Q , Qe ..

Thejudgment function considers gnbne refinement and then limits the number of
possible comarisons. For exaphte syppose a situation where tipeobability p,=1 € S

and theprobability p,=.8 ¢ W c R. If the individual tries tpudge them ly consideriig the
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gualities of S and W, thigpe ofjudgment is nofpossible in our model because the
gualities come from two refinements, = {R,S} and% , = {W,L}. In this exanple, the
individual is able to consider the difference betweergtiaity of R and theyuality of S
but he is not able to consider tipeality of W and that of S wether.

The last axiom is aboytidgments with boundaries. If we have alrgqddged twop;, for
exanple p,=.6 andp,=.8, then theperceived difference .QprQJ cannot bgudged with
the boundaries 1 or 0. This axigmrevents an infinite number gidgments with the

boundaries.
(A3) Letg, = JQ/ij(@ .0 ), then g/ij(é’n B, ) does not exist'B,,
2.3 Degree of confidence

When an individual copares two lotterieg(,x,) and f,,x,) he has to decide whigair
of elements will bgudged. For examle p, can bgudged in a first instance with;x ,x or
p,. The individual also has to decide on whiglalities the four elements will hadged
(for exanple, twop, can bgudged by consideriig thequalities of RxS or WxL or WxW).
A way to explain this rankimg of judgments is to consider that ageat has limited
conmputational abilities (bounded rationalit When the elements are yatifferent, the
judgment is more difficult to make and thegdee of confidence associated with this
judgment is weaker. For exate, thejudgment of twoprobabilities in W is better (gher
degree of confidence) than that opeobability in W and gorobability in L. These two
judgments are better than the one withdhalities of R and S (segfil). This wg of
comparing judgments involves, ama@wother thimgs, the fact that bett¢gudgments are

associated with more refinggalities. The notion of dgee of confidence is close to the
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definition of accurag (Payne et al., 1993)@plied, however, to the wholgrocess rather

than to eacludgment, as in thipaper.

DEFINITION 2: Let Q xQ € I'x I For each Q xQ corresponds a degree of

confidencerQ/ij €1[0,1].

From theprevious anajlsis ofquality pairs, we derive the followmprelationshps where
more refinedqualities (see §. 1) are associated withghier dgrees of confidence. For

judgment ofprobabilities
(R1)  Twxw = Tixt > Twxl > Trxr = Tsxs™ Tsxr™ T pp

Let us now consider the monetamounts in X. We have gnbne dgree of confidence
(Tyxx) associated with gnpair (X ,% ), since for the monetaamounts we do not refine

set X. For thgudgment of one element of P and one element of X, (since the elements
differ more than the ones considergdadyudgment of twop, or ajudgment of two x ), we

propose the followig relationshps between the deees of confidence:

(R2)  Thup Txxx™ Toxx

R2 is close to Bane et al. (1993) who consider that fiteduct of gprobability and a
monetay amount is more coptex than the difference between two mongtmounts,

for exanple. Definition 3 shows how the dgeses of confidence are used to obtain a

maximaljudgment.
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DEFINITION 3: Let A = {J, Qz(491,492), JQBxQ4(6’36’4), ‘]QﬂQ,- (6,.6), ... &« Q
(6.,6,)} be a set of judgments. A judgmegntxgm(ﬁn,ﬁm) is maximal for

Aifand only ifzg .o 2 7o, for all 7, j.

Axioms Al, A2, A3 and Relations R1 and B&mit the use of thegiht quality at the

right moment, which is the natural y#o think about lotteries, as in Kahneman and
Tversky (1979) or Prelec (1998) for SxR, Slovic and Lichtenstein (1983) for WxL, and
rule 6 in MacCrimmon and Larsson (1979) for WxW and LxL. These tim@eaches

are known to solve rpsctively thepricing of lotteries, the lottgrchoice inpreference
reversal, and the common-raparadox. Let us consider two exples that make use of
axioms Al, A2, A3 and relations R1, R2.

Exanple 2.1
Let us consider the two lotteries of Exalm1: (.97,4) and (.31,16). The

judgment of .97 (>p') with .31 (<p') is notpossible on WxW ¥ Al since
.31 ¢ W and then the maximal geee of confidence for .97 and .31 is
obtained with theualities of WxL ly A1, A2, and R1.

Exanple 2.2
For the judge-certainy-equivalent” of the lottey (.97,4) since both 0,4 S

< P, thggudgment of .97¢ W < R < P with either the boundad or the
bounday 1 ispossible on WxS, WxP, RxP, PxS and RxS or PkRh
The first four cases are eliminateg A2 and RxS is maximalybRelation
R1 wherertg,s> Tp.pe By anal@y, t z.4s also maximal for thprobability
.31 of the lottey (.31,16) in Exarple 2.1.
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To obtain a maximgbrocess, angent first chooses one maximabigment available
amory all possiblejudgments of one or two elements angaats thigrocedure for the
new set and so on. For exple if an individual corpares two lotteriesp(,x,) and

(p»X,), he considers four elements. If the fjtedgment is with the first two elements, lets
s&y X, and % , the result J(x ,x ) becomes itself an element for the npxTste

individual must gain make a maximal choice angptine new set of three elemepisp,
and J(X ,% ). The next definition shows how to obtain a maxpmaadess. Note that axiom

A3 allows ony the basic elemenfs and x to bgudged with the boundaries.

DEFINITION 4: Let &), = {p,Xy, P2.%---Q2 %> } @nd B =4...6,4} a set of boundaries. Let
0., = J,(6,6) such thatg, 6, € ,, uB. Let@,= 6, ,0{0,..} -{06,
p = j,k such that), € &, ,}. Define alsop(®,) as the set of all possible
judgments (satisfying A1, A2 and A3) of either two elemerdls af
possible judgments of one elemen&ovith one boundary. A maximal
process is a series of maximal judgments J .., J that ends when there
remains only one element left@h, such that:
J; is a maximal element g &,)
J, is a maximal element g{ &,)
J, is a maximal element p{ &, ,),

Jy is a maximal element p{ &, ).

Then a maximagprocess consists in choogiat each sf{ga maximajudgment amog the

judgments considermelements that have not alrgdokeenudged.
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Exanple 2.3
If an individual conpares two lotteries (.97,4) and (.31,16), there are four

elements (I=4) in the sé, = {.97, 4, .31, 16}.

If the maximaljudgment J in the first speof the maximaprocess is the
one with 4 and 16, and if J (4,160, we have the new set of three
elements {.97, .31} = ©,. Then in a second ste¢he individual must

choose gain a maximajudgment amog the new sep(0,).

If the maximaljudgment is J (.97,.31) 8, he must choose a maximal
judgment J in the se#(®,). Consguentl, there remains onltwo
elementd. andb, to bejudged and if the endgnmaximaljudgment is
L0509, then the maximgirocess can be summarizeg J(J (4,16),

3,(.97,.31)).

We have seen that a maxinpabcess is a series of maximpatigments where the number
of possiblejudgments are limitedyothe axioms Al, A2, and A3. The rangiof therchQj

is done with the helof the relations R1 and R2.

3. RESULTS
In this section we gtain the three cases of cparison and the two casesmicing of

two paradoxes. For each one we show that the mayproakss is naresented ¥

equations 1' or 2.
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3.1 Common Ratio

The firstparadox we solve is Common Ratio whereleference between two lotteries
with high probabilities ofgainp, > p', (i = 1,2) switches when we mudly the
probabilities ly K such that 0<K<1 where K is sufficieptmall to obtain that the
resultirg lotteries now have lowrobabilities ofgain Kp, <p', (i = 1,2) and the amounts
remain constant (MacCrimon and Larsson, 1979eda1979; Kgel et al., 1990) . The

first result is for the choice between two lotteries withhprobabilities.

RESULT 3.1.11 et (p ,% ) be compared to {p,,x ) whereW cRc P, e X, 1=1,2,
then the process. . v {P2P Ixak  1(%,X )) is maximal.

Proof: See Apendix.

The second result is for the case where thepiwbabilities in Result 3.1.1 are mylied

by a constant K.

RESULT 3.1.21 et (Kp,,x ) be compared to (Kp,,x ) where,Kj cR<P, x e X, i =
1,2, then the process,d 3 (Kp .Kp bod 1 (X ,X)) is maximal.

Proof: See Apendix.

These results iply that the elements are firgtouped by similarity and then the two
probabilities argudged taether. Theproofs show thatguation 1' corrggonds to the
maximalprocess of results 3.1.1 and 3.1.2. If the tyvare on L rather than on Wy b

symmety the individualjudges them # consideriig thequality of L. Theproofs also

18



show that all othejudgments than,L, pe.p,) and J,, p.,p,) are dominated. For exate
thejudgment with RxR and PxP apessible but dominated.

Conseguently, the common-ratiparadox is solved because tlgeatjudges thep, by
considerirg the set WxW and the wght o, > 1 of equation (1') in a first sggand ly
considerig LXL in a second sfewhereq,,, < 1. Consgquentl, if the two lotteries have
the same epected value, the individual will necessgarcharge his rankig. In other
words as in Rule 6 in MacCrimon and Larsson (1979) the individughigetihe relative
importance ofprobabilities versus monetaamounts dgendirg on the fact that thp, are

higher or lower thamp'. Exanple 1.2 illustrates this result.

3.2 Preference Reversal

The stug of thepreference-reversalaradox has to be decposed in twgoarts because
it involves both corparison andricing of lotteries. We start with the cquarison of
lotteries.

3.2.1 Comparison of lotteries

Comparison of lotteries in thpreference-reversglaradox indicates that most $etis
choose the lottgrwith a hgh probability of gain when it is conpared to a lottgr with a
low probability of gain (Tversly et al., 1990). The next resgives the maximaprocess

for this case.

RESULT 3.2: Let (p ,% ) be compared to{p,,x ) wheresp cR < P, p,e L cRc P,
X, % € X, then the process.d s 1(Po:P Jd  1(%,X )) IS maximal.
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Proof: See Apendix.

Conseguently, if p,;x; = pxx, the individual will choose the lotte(p ,x ). Again this

result corregonds to guation (1'). One can note, however, thatgheing of each lottey
(equation 2') is dominatedylthe conparison ¢s.r < T,x). 1he above result shows clearl
that more waght is allowed to theudgment ofprobabilities than to monetaamounts as
suwggested § Slovic and Lichtenstein (1983). In our model this is due to the fact that the
three differenprobabilities come from two different sets W and L. Epéeni.1

illustrates this result. The gnitive process differs oglin the two sets gludgments of

the probabilities WxL, WxW, or LxL for the first three results above.

We now move to thericing of lotteries. In the next result for thpitiged-certaing-

equivalent” there will be a lgiger difference in thegudgmentprocess, because the

individual uses the boundaries wheging the elementg, and x.

3.2.2 “Judged-certainty-equivaleht

Here, theprincipal feature is that the lottewith a hgh probability of gain is

underestimated when it giced, and the lottgrwith a lowprobability of gain is

overestimated (Birnbaum et al., 1992). The next result shows how these estimations come

from a rationajudgment of lotteries.

RESULT 3.3:Let (p ,x ) be a lottery to be judged, then,J s.&J « (B .PRxd {0,x))Iis

maximal to obtain the “judged-certainty-equivalent” of the lottery.

Proof: See Apendix.
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Exanple 1.3 illustrates this result. Tipeocess in 3.3 is ghly different to the one in 3.2.
Here we find that both the overestimation and the underestimapenden the

difference between the twyualities “surey” and “risk”.

Moreover if we combine results 3.2 and 3.3 we solveptetely thepreference-reversal
paradox. Consguentl, thisparadox is eglained ly the use of different frames, S and R

for pricing and W and L for cogarison.

4. CONCLUSION

The maor conclusion of this article is that itpessible to develma choice thegrthat
explains the test results with the use of different restruguojperations (framig,
grouping by similarity). Theseprocesses aregptimal for a rational individual who has
limited conputational abiliy, which would be the mogtausible characteristic for all

individuals.

The two inportant characteristics of the model are tipatlities are taken into account
explicitly in thejudgment function, and that the maximization of thgrde of confidence
implies the use of differengrocesses. For the three results we find that thetheedicts
that the sets considered for flaegment ofprobabilities are SxR for Result 3 griCing

of lotteries inpreference reversal), WxL for Result 3.2 (quanson of lotteries in
preference reversal) and WxW or LxL for Result 3.1 (common ratio). These variations
explain the different results of eagaradox. Of course there are alternativeysvaf usimgy
these two characteristics @ee of confidenceguality) and further invesgiations mg be

needed to find the best one (see footnotes).

21



One straght extension would be the introduction of fhesitive and ngative qualities for
monetay amountproposed ly Kahneman and TvergK1979). The model nyaalso be
useful to eplain the cases wherg x,,x > 0O for lotteripgX;;p,X ). The use of the
sayregation concpt (Kahneman and Tvergk1979) sggests that the first movement

from O to x has the “surgt quality whereas the second movement from x ,to x has the
“risk” quality. This wgy of proceedilg may explain the choice and thgicing of these
lotteries (Mellers et al., 1992, Birnbaum and Sutton, 1992).
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FOOTNOTES

1. We assume that the utylitunction is linear with rggect to x because the giaof the
utility function is not inportant in solvilg theparadoxes in thipaper. However, for
paradoxes that involve Ige monetay amounts such as the St-Peterghyoaradox, it is

evident that the concayibf u(x) plays a fundamental role.

2. The link betweengeiations (1) and (2) is the followgnThe value of a lottgrL, noted
(py,x,) that takes into account a loftdr, noted p,x ) can be rpresented p V(L [L } =
(Ps+(P~p3)- (X5 (X ~x9). If L ;is defined ly using the boundaries B fgrobabilities and
0 for monetay amounts, we obtaimgation 2. If Ly = p,+pJ/2,x,+X,/2) and if the
conmparison between L and,L ispeesented V(L /L ) - V(L AL ), we obtain euation
(1).

3. Forp<p' we have in guation (2), wp) = p+p'p-p> = 0 whenp=0, w'(p) = 1+p-2p >0
and w'(p) = -2 < 0. Fomp > p' we have wf) = -pp+p*+p' = 1 whernp=1, w(p) = p'+2p >
0,and wW(p)=2>0.

4. For ourpurpose we need onlthree axioms. However it is clear that other axioms will
be necessgrto directly eliminate comparisons that make no sense, such as the

comparison betweep, and x .

5.We can glit the set into two sets, andain Plit each set into two other sets and so on.
This way seems better to peesent thegrouping by similarity defined ly Raryard (1995),
but for the cases in thpaper the results are the same with both methods and the one we

use is the siplest.
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6. In the wg we have defined the twgualities W and L, the common-rafaradox is
applied to twoprobabilities in W in a first sggand then to tw@robabilities in L.
Conseguently, we do not cover the whole classpofsible comarisons as the congateof
sulproportionality would permit. However, the other case thaplias conparisons of
probabilities in both W and L such as (.9, x ) vs (,, x) and (.9K, x ) vs (.1K, x ) with

K<1 is considered later.
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APPENDIX

Proof of 3.1.1: B Definition 4 we choose thedgment that has a maximal Let us first
consider that of J,,, (,p,) > t of JQﬂx Qj(xl,xz) vQ,Q. ‘]éox Qj(pl,pz) can be done with the
gualities of P,R,W % Al and PxP, RxR, WxW are the thigessible setsypA2. WxW is
maximal ty R1. Thet maximal for gprj(pl,xl), JQQij(pz,xz), ‘]an QJ(pl,xz) and \]Qij(pz,xl)

Is obtained with the set PxX/IA1 and A2. Thesgudgments are dominated/b

Jvw (P1,P2) by R1 and R2. Thaudgments of one variableg, p,, X, or x,, where the
boundaries op, are 0 and 1 and the boungaf x is O show that,,, is maximal for the
judgments of x andg,g is maximal forp, by R1, Al, A2. J,.w 0P, IS maximal when it
Is conpared with thesgudgments ly R1 and the ypothesis that of J,.,, (0.,p,) > t of

‘Jan 9 (X1,%5)-

We now have ¥ Definition 4 a new set of three elements {%, Xy P2} and we
choose theudgment with the maximat. Ty, is maximal for thgudgment gﬂij(xl,xz) by

Al. The maximal dgree of confidence of%JKQj(xi, Jvxw ©1:P2)) 1S Trux DY Al and A2 and

it is dominated ¥ 1., by R2. J,.w 0.,P,) cannot bgeudged with a boundarby A3. For
thejudgment of x or x alone,Jy (X ,;x ) is maximal because there is no refinement for

X. If we now assume of J,. (,p,) <t of JQﬁij(xl,xz) we obtain the same result.

Up to now we have two elementg.J p..p,) and J.« (X ,% ). The oglpossiblejudgment
of these two elements is on Px} A1, A2, and A3.
O

Proof of 3.1.2: As in the result 3.1.1, we hayg J QQx(gl_J]Kpl,sz), Jox (%,%)), but here
thejudgment (gﬂij(Kpl,sz) with thequalities of WxW is inpossible ly A1, so LxL is
maximal ly R1, A1, and A2. ]
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Proof of 3.2: As in the result 3.1.1 we hayg(JQox&jIpl,pz), Jix (% ,%)) but here the
judgment gﬁij(pl,pz) with thequality of WxW is inpossible ly A1 so WXL is maximal
by R1, Al, and A2.

O

Proof of 3.3: B Definition 4 we choose thedgment that has the maximalLet t of
Jx (4,0) >1 of L,z (B, p,). The maximak for thejudgment of x, and 0 is ., by Al and
it is larger than ther associated with th@idgment gﬂij(pl,xl) by Al, A2, and R2. An
of the twojudgment functions op, and B considers thgualities of R and SybAl, A2,
and R1 and thipudgment is maximal for the sep{, J,(x;,0)}. If t of J,, (% ,0)< t of

Js«r(Bi ) We obtain the same result.
For {Js,r(BP 1), Jxxx (X1,0)} thejudgments of one of these two elements with boundaries

do not exist B A3. L,y (s (BP ), xxx(X1,0)) is the maximgldgment ly A1 and R2.
[]
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