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Pricing of Automobile Insurance Under
Asymmetric Information: a Study on Panel Data

Abstract

This article proposes to highlight the informational content of the French bonus-malus scheme
used in a posteriori pricing and to verify whether the automobile insurance pricing scheme is
efficient in eliminating all residual asymmetric information in the risk categories constructed by
insurers. The article expands the asymmetric information test developed by Dionne, Gouriéroux,
and Vanasse (2001) to panel data. The data are from the Parc Automobile Sofres in France. An
incomplete panel composed of 11,506 individuals was constructed over a three-year period
(1995–1997). We show that the variables used by insurers in pricing automobile insurance in
France efficiently account for asymmetric information. Moreover, the bonus-malus variable turns
out to be significant in explaining both the individual distribution of accidents and the type of
insurance coverage chosen. However, its absence does not affect the conclusion about the
presence of residual asymmetric information.

Keywords: Asymmetric information, automobile insurance, bonus-malus, risk classification,
panel data, state dependence, unobserved heterogeneity, random-effects probit,
negative binomial distribution, road safety.

JEL Numbers: D80, G22, C23, L51.

Résumé

Cet article propose d’étudier la valeur informationnelle du bonus-malus français utilisé dans la
tarification a posteriori de l’assurance automobile et de vérifier comment la tarification est
efficace pour éliminer toute forme d’asymétrie d’information résiduelle dans les classes de risque
créées par les assureurs. L’article étend le test d’asymétrie d’information développé par Dionne,
Gouriéroux et Vanasse (2001) à des données de panel. Les données proviennent du “Parc
Automobile” Sofres en France. Un panel incomplet de 11 506 individus a été construit sur la
période 1995-1997. Nous montrons que les variables utilisées par les assureurs sont efficaces
pour éliminer l’asymétrie d’information résiduelle. De plus, la variable bonus-malus est
significative pour expliquer les taux d’accidents et les choix de couverture d’assurance. Par
contre, elle n’est pas nécessaire pour conclure sur l’absence ou non d’asymétrie d’information
résiduelle dans les portefeuilles des assureurs.

Mots clés: information asymétrique, assurance automobile, bonus-malus, classification des
risques, données de panel, dépendance d’état, hétérogénéité inobservée, probit à
effets aléatoires, distribution binomiale négative, sécurité routière.

Classification JEL : D80, G22, C23, L51.
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Introduction

In France, automobile insurance pricing is based on two elements. The first is a so-called a priori

pricing system which consists in constructing classes of homogenous risks based on the

characteristics of policy-holders. The second is an a posteriori pricing mechanism called bonus-

malus, where past accidents are used to fix the premium in the next period. The purpose of the

latter is to modulate individual premiums in terms of past accidents and thus correct the

imperfections inherent in a priori pricing. The bonus-malus is also used to offer incentives for safe

driving. Application of the bonus-malus scheme was compulsory in France during the period of our

analysis.

There is full commitment by the insurance industry on the application of the bonus-malus

scheme. This commitment is enforced by a law. This implies that each insurer must apply the

same formula for premiums for the same kinds of driving history according to ex-ante rules that

cannot be renegotiated. The European Commission is against such regulation but has not

considered the value of information related to the application of the bonus-malus scheme in

France. It is well known that a bonus-malus scheme can be complement to ex-ante risk

classification for taking into account of both moral hazard and adverse selection (Dionne, 2002).

So it is important to study the informational content of this bonus-malus scheme.

We expand the Dionne, Gouriéroux, Vanasse (DGV, 2001) asymmetric information test to take

into account of panel data modeling. This obviously entails adapting the DGV test to this type of

data which reflects the dynamic nature of the decisions and behaviors of drivers. What we want

to know in particular is whether the French a posteriori (or bonus-malus) pricing system can

effectively take individual risks into account. Special attention will thus be paid to the

informational content of the bonus-malus, which is supposed to contain the full history of each

driver’s accident profile. We want to see whether the bonus-malus brings any additional

information to bear in explaining drivers’ choice of insurance coverage as it relates to the record

of accidents observed during the period over which the panel is constructed and to the estimates

of accidents predicted for each of the periods.
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Our analysis is based on an incomplete panel which changes composition as drivers enter and

leave the panel during the 1995–1997 period. Our database contains 16,399 observations,

corresponding to 11,506 vehicles-drivers.

The article is organized in six parts. In the first part, we present the methodology of the DGV test

(2001). In the second, we give the characteristics of the French automobile insurance market. The

third to fifth parts present, respectively, our objectives, the database, and the asymmetric

information test for longitudinal or panel data. The sixth part analyses the results of our various

regressions. Finally, our conclusion reviews the main findings and their implications.

1. Methodology

The residual asymmetric information test is based on the notion of conditional independence.

The endogenous variable is denoted as Y , the exogenous k variables as X and the p variables for

the decisions of individuals (here drivers) as Z. In our case, X may contain the driver’s age and

sex and the characteristics of the vehicle. Y may be the number of accidents or traffic violations

the policyholder has been involved in over the year and Z may be the deductible or insurance

coverage (third-party or all-risk insurance) chosen when the policy was taken out.

There is, by definition, conditional independence when the probability distribution of Y, as

conditionally determined by both the vector X of explanatory variables and the vector Z of

decisional variables, coincides with the probability of Y distribution as determined solely by the

vector X of explanatory variables and vice versa. This would mean that, given X, knowledge of

the Z variables will add no information to the knowledge of Y. Formally, this translates into the

following relations:

( ) ( )XYfZXYf =,

which is equivalent to

( ) ( )XZfYXZf =,
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where ( )⋅⋅f  is a conditional density function.

Dionne, Gouriéroux and Vanasse (1998, 2001) proposed a methodology based on the above

relationships to test for asymmetric information in the portfolio of a private insurer while Dionne

and Gagné (2002) proposed a method, based on the same relationships, to separate moral hazard

from adverse selection.

To accomplish this task, Dionne, Gouriéroux and Vanasse estimated two equations: the first uses

a negative binomial model to estimate the expected number of accidents, whereas the second

uses a probit model to estimate the choice of deductible. The second equation introduces the

concept of conditional dependence to show that, frequently, the presence of asymmetric

information is not rejected when the non-linearity of insurance pricing is not taken into account.

For the authors, the “right” test is the one which would use, as explanatory variable for the

deductible choice, simultaneously the expected number of accidents (determined based on

modeling the conditional distribution of accidents, thus on explanatory variables) and the actual

number of accidents. This produces results revealing that the actual number of accidents is of no

significance, thus allowing the authors to reject the presence of asymmetric information. In point

of fact, the actual number of accidents is not significant in the portfolio of the studied insurer,

meaning that, when properly classified, the policy-holder will not be better informed about his

type of risk than the insurer. The fact that the “estimated expected number of accidents” variable

is significant indicates that the econometric modeling still contains non-linearities. In a last step,

Dionne, Gouriéroux, and Vanasse show that it is possible to render this variable non-significant

by adding interactions between the risk-classification variables (see Chiappori and Salanié (2000)

for an equivalent test and Finkelstein and Poterba (2000) for a test on the presence of adverse

selection).

In our case, we had no variable for the choice of deductible in our database for 1995, 1996, and

1997. However, choice of type of insurance coverage can be a substitute for this variable

(Chiappori and Salanié, 1997, 2002).
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2. The French automobile insurance market

Several statements can be made based on observation of the French automobile insurance

market:1

• There is no clause in insurance contracts obliging policy-holders to stay with the same

insurance company once the contractual period is over. So, only semi-commitment is

possible in this market, as for many insurance markets. (On the notion of semi-

commitment, see Dionne and Doherty, 1994, and Hendel and Lizzeri, 2000).

• If the accident is the driver’s fault, this is public information insofar as rival companies

will be informed of the fact. This information is given in the report that the subscriber

must provide when purchasing a new insurance contract. Moreover, there is full

commitment by the industry on the application of the bonus-malus scheme.

• Information (type of coverage and premium paid) about any previous contracts purchased

is usually public.

• Exclusivity of contract purchases (only one insurer).

• Low-risk clients subsidize high-risk clients: the most often cited perverse effect generated

by the French bonus-malus system is the artificial inflation of insurance premiums for

some risk classes. This inflation is more specifically a concern for young drivers.

These observations tend towards of any commitment on the policyholder’s part and imply public

information between insurers on contract parameters, two ingredients which characterize the

form of a long-term contracting (Dionne, Doherty and Fombaron, 2000).

But the existence of the Reduction-Increase clause (as the bonus-malus is officially designated in

France)2, the only one sanctioned by law, advocates for full commitment on the part of the

                                                
1 See, for example, Richaudeau (1998) and Fombaron (2002) for a detailed description of the automobile insurance
market in France and Pinquet (1999) for an analysis of the bonus-malus.
2 In France, according to the regulations in force (Article A 121-1 - Automobile insurance - Reduction-Increase
clause of the French Insurance Code and its appendix), the premium charged the policy holder is necessarily
determined by multiplying the amount of the actuarial premium by a so-called “reduction-increase coefficient.” The
base coefficient is 1. After each year of insurance without accident, the coefficient used is that of the preceding
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industry. It is as if there were a dynamic agreement between the policyholder and the insurance

industry. The insurers make a commitment regarding the future evolution of premiums since the

a posteriori pricing formula is known at the inception of the contractual relationship and is

legislatively regulated to remain stable (cf. G Rosenwald, 2000; Dionne, 2002). This

commitment regarding the bonus-malus has two advantages. On the one hand, it puts some teeth

in the threat of sanctions against drivers who have accidents. On the other hand, the “carrot” of

reduced premiums in the next period promised to accident-free drivers is an incentive to the

practice of preventive driving.3

Theoretical studies have shown that, if there is no form of commitment on the part of the insurer,

the bonus-malus will offer no incentive whatsoever (Dionne et al., 2000). Similarly, if a

particular insurer benefits from an informational edge in the form of private data on his client’s

accidents, this will eliminate any benefits from the bonus-malus, because insureds will choose

another insurer when the malus will increase (Kunreuther and Pauly, 1985; Fombaron, 1997).

Consequently, we conclude that there is a commitment, in France, regarding the bonus-malus on

the industry’s side and that there is no form of commitment on the other pricing elements,

particularly when a policyholder leaves his insurance company for another (strong competition).

3. Objectives

The purpose of this paper is to answer the following questions:

(i) Will the conclusions derived from tests conducted using cross-sectional data on the

optimality of automobile insurance pricing in France (Richaudeau, 1999; Chiappori and

Salanié, 2000) retain their validity with modeling on longitudinal data?

                                                                                                                                                            
contract period minus 5%. Each accident occurring in the insurance year increases the coefficient by 25%. The
clause also stipulates that there is no increase for the first accident occurring after a period of at least three years
during which the reduction-increase coefficient was equal to 0.50.
3 See P. Picard (2000) for an analysis of the deregulation of insurance markets in Europe.
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(ii) What explanatory power do variables such as bonus-malus and mileage have in the

dynamic model for insurance coverage?

(iii) Is the bonus-malus variable necessary for the test of residual asymmetric information in

risk classes?

These three questions lead us to the following econometric problems:

• What is the best specification for the insurance coverage model when dealing with panel

data: fixed or random effects?

• What is the best combination of explanatory variables for explaining individual risk if

longitudinal data are used to account for the dynamics?

• What form must the asymmetric information test take when using panel data?

The answer to the first problem led to a random-effects specification of the insurance coverage

based on panel data integrating bonus-malus, exposure to risk and risk classification variables as

the main explanatory variables (see Pinquet, 2000 and Dahchour and Lassarre, 2001 on panel

analysis of accidents distribution). For the next three, we propose the following econometric

hypotheses:

• As for the cross-sectional data, adequate risk classification should suffice to account for

individual risks in a dynamic modeling of the choice of insurance coverage.

• Bonus-malus should affect the choice of insurance coverage. The bonus-malus can be

expected to correlate negatively with the purchase of all-risk insurance coverage.

• The bonus-malus coefficient should also be a predictor of a driver’s risk of having an

accident.

• However, it is not clear that the bonus-malus variable will be a necessary ingredient to test

for the presence of asymmetrical information.

4. Panel data



9

Individual panel data or longitudinal data have several advantages over aggregate data:4

elimination of any bias linked to aggregation and hence more clearly defined estimators; more

accurate measurement of certain variables, explicit measure of individual heterogeneity allowing

the researcher to go beyond the notion of representative agent towards the search for better

econometric modeling capable of encompassing it. In the specific case of the automobile

insurance data with which we are here concerned, the longitudinal approach can also highlight

changes in drivers’ behavior and characteristics (choice of insurance coverage, for example) from

one period to the next, following the occurrence of a traffic accident. These changes may be

qualified as endogenous since they are linked to the driver himself. Analysis based on this type of

data thus makes it possible to account for the advantages linked to these changes to capture the

dynamic effect of the accident event and thus compensate for the flaw inherent in considering

these data as cross-sectional data. However, changes in a driver’s behavior may be motivated by

reasons other than involvement in an accident. Other short- or long-term influences on the

behavior of drivers may include: change in legislation concerning the traffic code; modification

of automobile-insurance-pricing policies either by insurance companies or by regulatory

authorities (for example, modification of the standard clause related to bonus-malus); launch of

an accident prevention campaign; or modifications in the road network. These would thus be

exogenous influences since they are linked to external events. So it is very difficult to distinguish

that share in the modification of a driver’s risk status which can be attributed to a change in

behavior following an accident from that linked to other external influences. If we look at the

period covered by our panel (1995–1997), there was, to our knowledge, no event of the types

cited above, at least none linked to the first three types mentioned.

During construction of the panel, we were faced with three problems which caused the loss of a

great deal of information and eliminated observations at various steps:

(i) Entries to and exits from the panel: about a third of the Sofres panel turns over each year.

These entries and exits are attributable to the following constraints:

• Sofres’ concern to fairly represent the French population;

                                                
4 See, for example, Diggle, Liang, and Zeger (1994) and Mátyàs and Sevestre (1999).



10

• elimination of households having refused to answer previous surveys;

• change of residence, death…

(ii) With each survey, observations were eliminated because questions crucial to our analysis

went unanswered: for example, questions concerning the bonus-malus and the type of

insurance coverage chosen, to mention only the most important.

(iii) When cross-matching to construct the panel, the main difficulty was a lack of any key or

tracer allowing us to “follow” a vehicle from one period to the next. The only tracer

available and informatively linked to all the observations had to do not with the vehicle

but with the household; but a household can own several cars. This is the reason why we

started looking for a better combination of criteria (or variables) which would allow us to

recuperate the largest number of vehicles possible from one survey to the next. The ideal

would have been to combine the household and the vehicle model tracers to cross-check

but, unfortunately, the latter is missing for a lot of vehicles. Thus, after several attempts

using the household tracer and various other criteria (year of vehicle, the first four digits

of the license number, year driver’s license, category of vehicle, buying power, price

category), we opted for the combination identifying the household and the first four digits

of the license number. This is the pair of criteria which allowed us to construct the most

reliable panel in terms of quality the cross-matching.

Our final sample of data is thus a three-period panel (1995–1997). The panel is incomplete; in

the sense that the same individual-vehicle is not necessarily present in each period. It is

composed of 16,399 observations corresponding to 11,506 individuals-vehicles. The resulting

balanced panel contains 1,106 individuals-vehicles: about 10% of the incomplete panel.

The information available in the database is composed of three elements. The first concerns

information on driver characteristics (sex, age, number of accidents…). The second covers the

vehicles (year, group, …). The third and most important element for the problem we are studying

relates to insurance contracts. Unfortunately, this informational element is very limited,

containing nothing about insurance premiums or deductibles, let alone anything about switching
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insurers from year to year. It provides, however, the bonus-malus coefficient and the type of

insurance coverage.

If we look at the evolution of the average bonus-malus and the average frequency of accidents in

terms of the age of the principal driver, we notice from Figure 1 that both variables show the

same trend, though the accident rate seems less volatile. This is however a sign that the bonus-

malus is tightly indexed to past accidents and that it probably contains the same information as

that provided by accidents. It should be noted that only accidents over the three years covered by

the panel (1995, 1996, and 1997) are of concern here, whereas the bonus-malus coefficient is

supposed to contain the whole history of accidents.

Figure 1: Evolution of average bonus-malus  and of accident rate, by age
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A second graph represents the evolution of both the average accident rate and the average bonus-

malus according to age brackets and choice of insurance coverage (all-risk or third-party

insurance) (Figure 2). We note that even if drivers having chosen all-risk insurance do, on

average, have more accidents than drivers with third-party insurance, the former still show a

lower average bonus-malus coefficient. The same pattern is noted when observing the evolution

of these two variables over the period studied (1995-1996-1997) (Figure 3). We were rather

expecting the two curves to have levels of the same order.
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Figure 2: Evolution of observed accident rate and bonus-malus  by age bracket
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Figure 3: Evolution of accident rate and bonus-malus over the period,
according to type of insurance coverage
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5. Test equations

As already pointed out in the introduction, our objective is to expand the DGV test for residual

asymmetric information (or optimality of insurance pricing) in order to treat individual, temporal

data (or panel data) while also taking the bonus-malus into account. In other words, we want to
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find out whether or not insurers can carry out effective risk classification relying on policy-

holders’ characteristics and on experience-based pricing.

The test proposed here is based on a two-step estimation. The first concerns predictions of the

expected number of accidents during each period, whereas the second deals with the choice

between all-risk and third-party insurance coverage, to verify whether this choice is explained by

private information. In the second step, we incorporate into the list of explanatory variables the

“expected number of accidents” of each year obtained with the first estimation. This type of

estimation is known to produce convergent estimators in the second step (Murphy and Topel,

1985; Greene, 2000).

There are thus two equations to estimate: The first is designed to estimate, in each period, the

individual risk as conditioned by the explanatory variables, thus producing the accident forecast.

In our case, the appropriate tool for this is the negative binomial model. The second equation

integrates the information derived from the first equation into its regression components in order

to estimate the choice of insurance coverage (all-risk vs third-party insurance). The two equations

will allow us to test whether or not the bonus-malus is effective through its informational

content. We want to see if the bonus-malus adds any information to the knowledge of risks over

and above that derived from the estimation of the second equation. Finally, we want to test if the

bonus-malus affects the conclusion on the presence of residual asymmetrical information.

Equation 1: Expected number of accidents: the negative binomial model

We assume that the number of accidents Yi in which an individual i is involved in a given period

will follow a negative binomial law:

( )
( ) α+−

−

βα+

βα
+ΓαΓ

+αΓ
=βα

iY

i

iY

i

i

i
ii

X

X

Y

Y
XYP

exp(1

exp(

)1()(

)(
),,(

1

1

where (.)Γ  is the gamma function such that ( ) tz etz −−=Γ 1  for 0>z , X is the vector of

explanatory risk-of-accident variables (age, sex,…), β  is the vector (of appropriate size) of the

parameters to be estimated, α  is the model’s overdispersion parameter.
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The estimation of β  will allow us to obtain the expected number of accidents for 1995, 1996,

and 1997. We note E(nbacc95), E(nbacc96), E(nbacc97), respectively the accidents predicted by

the three models estimated for 1995, 1996, and 1997. When the longitudinal data are considered,

they form an explanatory variable over time, noted E(NBACC), which will be introduced into the

second equation. (See Table 7 in the appendix for the results of the negative binomial model over

1995-1997). Note that the bonus-malus variable has a positive coefficient which means that bad

drivers (high bonus-malus) have more accidents.

Equation 2: Choice of insurance coverage: all-risk vs third-party insurance: the probit

panel model

• Specification

The “choice of insurance coverage” variable is binary: it is valued 1 if the policy holder chooses

all-risk insurance and 0 if he opts for third-party insurance. All-risk insurance represents more

coverage so it should be chosen by the high-risk individuals according to the Rothschild-Stiglitz

(1976) model. Letting Ẑ  stand for the latent variable related to the utility associated with the

choice of all-risk insurance over third-party insurance, Z for the binary variable of the choice of

type of insurance coverage, and X the variables explaining this choice, we may write:

ititit bXZ ε+=ˆ , Ni ,,1 �=  and iTt ,,1�= ,
with

0ˆi0

0ˆi1

≤+==

>+==

itititit

itititit

bXZfZ

bXZfZ

ε

ε

where b is the vector of the appropriately sized parameters to be estimated and itε  the error term.

If we assume that the latter follow a normal law, we end up with a traditional binomial probit

model. Moreover, if we check the hypothesis that the errors are not correlated in time for the

same individual (i.e., ( ) 0, =isitCorr εε ), then the panel modeling techniques need not be used.

However, whenever this hypothesis no longer applies (i.e., ( ) 0, ≠isitCorr εε ) the panel methods

must be taken into account. Two types of specification exist for panel data: random-effects
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specification and fixed-effects specification. The first assumes that specific individual effects are

certain and vary with time, whereas the second assumes that these effects are “drawn” once for

all and, for any given individual, will recur identically over time.

Just as when modeling accident rates on longitudinal data, the random-effects model is

intuitively preferred for modeling choice of insurance coverage, particularly when the data set

contain a large number of individuals. The random-effects probit model has undergone a number

of developments (Heckman, 1981; Butler and Moffit, 1982; Guilkey and Murphy, 1993; Hsiao,

1996; …).

Thus, when there are individual specific effects denoted iu  (considered random) and if errors are

denoted as itv , the preceding model becomes:

itiitit vubXZ ++=ˆ , for Ni ,,1 �=  et iTt ,,1�= .

Let

itiit vu +=ε ,

with























10

0
,0~

2
u

it

i N
v

u σ
.

This assumes that errors terms itε  are independent from one individual to the next. However, it

shall be assumed that they are normal and correlated over time for the same individual owing to

the influence of iu , so that variance itε  is written:

( ) ( ) 222 1 uuvitiit vuVV σσσε +=+=+=
and

( ) ( ) storfvuvucorrCorr
u

u
isiitiisit ≠

σ+
σ

=ρ=++=εε ,
1

;,
2

2

.

Interpretation of the ρ  correlation coefficient is direct and consists in saying that it measures the

part of the variance arising from the individual effect in the error’s total variance. This hypothesis
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of temporal equicorrelation of the individual effects iu , will prove to be crucial in the estimation

of the model.

Thus, our random-effects probit model for choice of insurance coverage is written as:

( )















−
=≠

+
==

=

≤++==

>++==

)
1

or (f,
1

,

aw

0ˆi0

0ˆi1

2
2

2

*

ñ

ñ
storñCorr

nd
b

bith

vubXZfZ

vubXZfZ

u

u

u
isit

u

itiititit

itiitiit

σ
σ

σ
εε

σ

• Estimation of the model

To avoid using two separate terms corresponding to 1=itZ  and to 0=itZ , let 12 −= itit Zr .

We then have:

( )∫
∞−

Φ==
bXr

ititititit

itit

bXrdZP εεφ )()( .

The probability log related to individual i is obtained in the following manner:

( )[ ]∑
=

=
N

i
iTii ZZPbL

1
1 ,log)( �

with

( )∫ ∫
∞− ∞−

=
bXr bXr

iTitiTitiTi

ii iiTiiT

ii
ddZZP

11

,,),( 1 εεεεφ ���� .

Integration with the combined density is not practical, perhaps even impossible. However, a

specification of the model in terms of random effects allows us to simplify the above notation.

(if all-risk insurance is chosen)

(if third-party insurance is chosen)
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Indeed, it is possible to make iu  conditional in the expression of combined density

( )iiTit u
i
,,, εεφ �  since

( ) ( ) ( )iiiTitiiTit uuu
ii

φεεφεεφ ,,,,, �� = .

Then,

( ) ( ) ( ) iiiiTitiTit duuu
ii

φεεφεεφ ∫
+∞

∞−
= ,,,, ��

and depending on iu , the itε  become independent so that we can write:

( ) ( ) ( ) ii

T

t
iitiTit duuu

i

i
φεφεεφ ∫ ∏

∞+

∞−
=

=
1

,,� .

By introducing the change in variable 
2
i

i
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This expression belongs to the type ( ) ( )zgz∫
+∞

∞−
− 2exp  which integrates numerically.

Butler and Moffit [1982] proposed an evaluation of this integral using the Gaussian quadrature

method based on Hermitian integration (on this subject, see Greene, 2000, for example):
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This evaluation consists in looking for a value approximating integral iL , starting from the sum

of the g function weighted by jw  in J evaluation points. The weighting coefficients
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corresponding to the number of evaluation points are provided in Abramovitz and Stegun (1985)

for example.

In their application, Butler and Moffit show the relatively reduced stability of estimators with a

number of evaluation points equal to five. In our case, it turns out that nine evaluation points give

results very similar to those obtained with the LIMDEP software. However, certain estimations

may require up to twenty evaluation points to stabilize the results.

• Taking into account the problem of state dependence versus unobserved

heterogeneity

Some authors (Feller, 1943; Heckman, 1981a and b; Pinquet, 2000; Honoré and Kyriazidou,

2000; …) have looked at the question of identifying the nature of the individual heterogeneity

characterizing longitudinal data whose key variable is discrete.

Heckman (1981a) provides a very instructive explanatory example for situations where an

individual having been involved in a past event will have a greater chance of encountering the

same event in the future than an individual who never experienced such an event. In other words,

in a case involving the choice of a product such as automobile insurance coverage, an individual

having made this choice in the past will tend to make the same choice in the future, a possibility

not open to individuals having never made such a choice.

In statistics, this phenomenon is called state dependence. Heckman considers that state

dependence arises when there is a non-uniform distribution of the dates on which the

phenomenon studied occurs. He provides two explanations for this phenomenon: true state

dependence and spurious state dependence. The first explanation suggests that a lag (or lags) on

the dependent variable must enter the list of explanatory variables for the model one is

attempting to estimate. As for the second explanation (i.e. spurious state dependence), it veers

towards explanation of the temporal correlation of the residuals generated by an unobserved

heterogeneity owing to a permanent, unobserved individual effect.
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In our case, choice of insurance coverage may be constant over a given period of time. This is

effectively the case in our sample of data: from wave to wave of the survey on the insurance-

choice variable, there are few changes of state (only 10% of policy-holders switched from all-risk

insurance to third-party insurance between 1995 and 1997). This points to true state dependence.

However, a serial correlation of the residuals estimation of the random-effects probit model for

insurance choices should not be excluded. In this case, it is difficult to come to any conclusion

about the nature of the underlying dynamics. Temporal serial correlation of the residuals may, in

effect, be caused by some phenomenon other than state dependence: heteroscedasticity or

unobserved heterogeneity, for example.

6. Analysis of the results

We first estimated the random-effects probit model for choice of insurance coverage, using only

one explanatory variable: the one related to total number of accidents occurring in 1995, 1996,

and 1997. The results of this estimation show that the “total number of accidents” variable has a

positive and largely significant coefficient (Table 1).

Table 1:  Random-effects probit model (incomplete panel)
Variable explained: Choice of insurance coverage

(all-risk vs third-party insurance)

Variable coefficient standard deviation T-stat P value

Constant 0.6606 0.0203 32.4820  < 0.0000

NBACC 0.1684 0.0284 5.9202  < 0.0000

Rho 0.4844 0.0205 23.6234  < 0.0000

Log-likelihood -9,850.95

Number of observations 16,399

Number of individuals 11,506

In a second step, we introduced into the vector of the explanatory values related to the expected

number of accidents: E(NBACC)  derived from the negative binomial model estimated cross-
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sectionally for 1995, 1996, and 1997. We have introduced also the time (t) variable to take into

account the trend effect. That gave us the following estimations (Table 2):

Table 2:  Random-effects probit model (with E(NBACC))
Variable explained: Choice of insurance coverage

(all-risk vs third-party insurance)

Variable coefficient Standard-deviation T-stat P_value

Constant 1.1227 0.1368 8.2050 < 0.0000

NBACC 0.0793 0.0712 1.1130 0.2658

E(NBACC) 8.3124 0.3390 24.5230 < 0.0000

t -0.1345 0.0410 -3.2760 0.0011

Rho 0.9644 0.0027 359.8860 < 0.0000

Log-likelihood -8,137.47

Number of observations 16,399

Number of individuals 11,506

The number of accidents does not vary significantly from zero whereas the predictive variable for

the number of accidents is largely significant. This means that there is no residual asymmetric

information in the data. The time variable has a negative and significant coefficient, indicating,

for the period, a downward trend in the choice of all-risk coverage as compared to third-party

insurance coverage. We now want to know which variables may be used to approximate the

expected number of accidents effect.

In a third step, we redid the regression by introducing the bonus-malus variable into the list of

explanatory variables. As we saw in Table 7, the bonus-malus variable is positively significant in

explaining the number of accidents. However, it may happen that the bonus-malus is strongly

correlated with the expected number of accidents for the reference period. In our case, the

coefficient of correlation between these two variable is 0.05, which is very weak.

The bonus-malus variable is continuous in the original database and it is distributed from 0.5 to

3.5 with a value equal to 1 meaning that the driver has neither a bonus nor a malus. Hence, to
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capture its effect on the insurance coverage choice, we have constructed three classes of this

variable5. The first one is BMINF1, for a bonus-malus less than 1 (i.e., to have a bonus). The

second category is BMEGAL1, for a bonus-malus equal to 1 (i.e., neither bonus nor malus). The

third category is BMSUP1, for a bonus-malus greater than 1 (i.e., to have a malus). The

BMEGAL1 is used as the of reference category in the following regressions.

Table 3:  Random-effects probit model (with bonus-malus)
Variable explained: Choice of insurance coverage

(all-risk vs third-party insurance)

Variable Coefficient standard deviation T-stat P_value

Constant 21.5614 3.2405 6.6537 < 0.0000

NBACC 0.0319 0.0592 0.5385 0.5902

E(NBACC) 7.2057 0.2893 24.9064 < 0.0000

BMINF1 2.5153 0.2246 11.1972 < 0.0000

BMSUP1 0.1594 0.3067 0.5199 0.6031

t -0.2493 0.0339 -7.3605 < 0.0000

Rho 0.8916 0.0050 179.4467 < 0.0000

Log-likelihood -8,175.75

Number of observations 16,399

Number of individuals 11,506

The results of the regression confirm our prediction: the bonus category has a positive and

significant parameter (Table 3): good risks choose all-risk coverage because the price is lower for

them. Also, following introduction of the bonus-malus variable, the expected number of

accidents variable remains very significant. This result shows that the bonus-malus variable,

though significant for one category in the regression, does not add any more information about

risks than do predictions of accidents E(NBACC). In other words, just as with a priori pricing,

                                                
5 Note however that the bonus-malus variable is continuous in the accident distribution estimations (Table 7). We
did also consider a continuous bonus-malus variable in the choice of insurance equations. The conclusions are the
same. Results are available from the authors.
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the addition of a posteriori pricing has not succeeded in capturing the individual observable risk

represented by the expected number of accidents.

This may perhaps be explained by the fact that recent risk has a determining influence on the

decisions policyholders make in their choice of insurance coverage. In what happens, the choice

of all-risk insurance would seem to result from a driver’s adjusting to the risk he poses during the

period.

In a fourth step, with a view to eliminating the significant sign of the “accident prediction”

variable, we added explanatory variables including mileage (exposure-to-risk variable) along

with other classification variables used by insurers in the regression component. That led to the

estimations contained in Table 4.

Table 4:  Random-effects probit model (with classification variables)
Variable explained: Choice of insurance coverage

(all-risk vs third-party insurance)

Variable coefficients standard deviation T-stat P value

Constant -1.4694 0.3055 -4.8094 0.0000

NBACC 0.0945 0.0610 1.5475 0.1218

E(NBACC) 4.6416 0.3958 11.7256 0.0000

BMNF1 1.7472 0.2855 6.1191 0.0000

BMSUP1 -0.1369 0.3694 -0.3707 0.7109

KMU5 -0.5425 0.1085 -4.9988 0.0000

KM1015 0.6796 0.0893 7.6086 0.0000

KM1520 1.0791 0.1029 10.4905 0.0000

KM2030 0.9725 0.1197 8.1272 0.0000

KMO30 0.7731 0.1711 4.5190 0.0000

FARMER 0.0983 0.2623 0.3748 0.7078

ARTISAN -1.3410 0.2114 -6.3432 0.0000

MANAGER -0.5702 0.1651 -3.4530 0.0006

PROF 0.6478 0.2732 2.3715 0.0177

INTPROF -0.5156 0.1218 -4.2338 0.0000

TEACHER 0.4611 0.2155 2.1401 0.0324

EMPLOYEE -0.8362 0.1168 -7.1586 0.0000

WORKER -1.5529 0.1286 -12.0778 0.0000
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STUDENT -0.9307 0.2116 -4.3991 0.0000

OTHPROF -1.1930 0.1389 -8.5912 0.0000

AV0 4.3033 0.2171 19.8258 0.0000

AV12 3.0577 0.1153 26.5108 0.0000

AV69 -0.6897 0.0716 -9.6331 0.0000

AV10+ 0.8472 0.0604 14.0259 0.0000

C2 -1.6095 0.1587 -10.1434 0.0000

C3 -1.3960 0.2323 -6.0090 0.0000

C4 -1.1864 0.3211 -3.6944 0.0002

C5 -2.6494 0.4227 -6.2676 0.0000

C2*A1820 -1.4746 3.3290 -0.4430 0.6578

C2*A2534 0.6128 0.2004 3.0577 0.0022

C2*A3544 1.2862 0.2156 5.9661 0.0000

C2*A4554 1.1906 0.3014 3.9507 0.0001

C2*A5564 1.1288 0.6287 1.7956 0.0726

C3*A1820 0.7957 1.5269 0.5211 0.6023

C3*A2534 0.3001 0.2712 1.1066 0.2685

C3*A3544 1.5788 0.2797 5.6450 0.0000

C3*A4554 1.9362 0.2898 6.6805 0.0000

C3*A5564 2.0453 0.3247 6.2989 0.0000

C3*A65+ 1.7154 0.6269 2.7363 0.0062

C4*A1820 1.3466 1.6690 0.8069 0.4198

C4*A2534 0.5833 0.3758 1.5522 0.1207

C4*A3544 1.1714 0.3843 3.0485 0.0023

C4*A4554 1.7060 0.3882 4.3946 0.0000

C4*A5564 1.3974 0.4513 3.0966 0.0020

C4*A65+ 3.0474 1.1782 2.5865 0.0097

C5*A1820 1.2707 0.5792 2.1940 0.0283

C5*A2534 -0.2026 0.7671 -0.2641 0.7917

C5*A3544 -0.0519 1.8917 -0.0275 0.9781

C5*A4554 2.9153 1.4861 1.9618 0.0498

RHO 0.8820 0.0062 142.9556 0.0000

Log-likelihood -6728.06

Number of observations 16,399

Number of individuals 11,506



24

These new variables are the most significant in explaining the choice of all-risk insurance

coverage, thus indicating that the choice of all-risk insurance is more sensitive to the condition of

the vehicle and the mobility of the drivers.

The “expected number of accidents” variable remains significant despite the introduction of

classification variables as well as age of vehicle and mileage (exposure-to-risk variable). This

may be interpreted in two ways. The first hinges on comparison with the cross-sectional

modeling: perhaps there are still non-linearities linked to insurance pricing which have not been

accounted for and so these non-linearities must be eliminated by finding the right cross-matches

between the explanatory variables and the classification variables. The second is connected with

the hypothesis that there may exist a state dependence or some unobserved heterogeneity in the

phenomena modeled. Since the residuals in our estimated models are serially correlated, we can

draw no conclusion concerning the nature of the dynamics governing the choice of insurance

coverage.6

So, we dated explanatory valuables which do not “move” with time (such as the SPC for

example) and re-estimated the model. The results (Table 5) show that the expected number of

accidents has become non-significant, whereas the bonus-malus categories remain significantly

different than zero. In what happens, it would seem that the fact of dating the variables which do

not vary over time was a way of proving the existence of a permanent unobserved individual

effect. This thus excludes the hypothesis of state dependence initially envisioned and points

rather towards the hypothesis of unobserved heterogeneity.

Consequently, we come to the same conclusion as with cross-sectional analysis (DGV, 2001):

the policy holder does not have any more information than his insurer and the risk classification

has succeeded in capturing individual risks.

As regards the bonus-malus variable, the estimated coefficient of the BMINF1 category (to have

a bonus) is still positive and significant. This means that drivers who have a bonus buy more all-

                                                
6 See Section 5 for the notion of state dependence.
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risk coverage than other drivers, ceteris paribus. This is because of a price effect: the cost to buy

more coverage when one has a bonus is less expensive. Here, the equation estimated is an

equation on the demand for all-risk insurance coverage and the bonus-malus appears as a pricing

variable: policyholders with low bonus-malus pay a low price and thus ask for more all-risk

insurance coverage. But an important question is the following: is the presence of the bonus-

malus variable necessary to obtain our conclusion on the residual presence of asymmetrical

information in the data? Can we obtain the same result by using other classification variables?

Table 5:  Random-effects probit model (with dated variables)
Variable explained: Choice of insurance coverage

(all-risk vs third-party insurance)

Variable coefficients standard deviation T-stat P value

Constant -4.2313 0.7086 -5.9716 < 0.0000

NBACC 0.0780 0.0660 1.1823 0.2371

E(NBACC) 0.1107 0.5294 0.2091 0.8344

BMINF1 1.2326 0.2878 4.2830 0.0000

BMSUP1 0.1036 0.3762 0.2753 0.7831

KMU5 -0.3959 0.1167 -3.3919 0.0007

KM1015 0.3267 0.0955 3.4209 0.0006

KM1520 0.6071 0.1144 5.3093 0.0000

KM2030 0.5412 0.1294 4.1824 0.0000

KMO30 0.5288 0.1891 2.7955 0.0052

FARMER*T1 0.0180 0.0047 3.8008 0.0001

ARTISAN*T1 -0.0011 0.0038 -0.2945 0.7684

MANAGER*T1 0.0086 0.0028 3.0363 0.0024

PROF*T1 0.0115 0.0048 2.4171 0.0157

INTPROF*T1 0.0044 0.0022 1.9985 0.0457

TEACHER*T1 0.0065 0.0041 1.6071 0.1081

EMPLOYEE*T1 -0.0075 0.0022 -3.4383 0.0006

STUDENT*T1 0.0028 0.0041 0.6924 0.4887

OTHPROF*T1 -0.0024 0.0024 -0.9863 0.3240

FARMER*T2 0.0038 0.0088 0.4321 0.6657

ARTISAN*T2 -0.0170 0.0084 -2.0329 0.0421

MANAGER*T2 -0.0058 0.0076 -0.7613 0.4465
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Variable coefficients standard deviation T-stat P value

PROF*T2 0.0126 0.0047 2.6621 0.0078

INTPROF*T2 -0.0052 0.0074 -0.7027 0.4823

TEACHER*T2 0.0076 0.0034 2.2190 0.0265

EMPLOYEE*T2 -0.0112 0.0073 -1.5393 0.1238

WORKER*T2 -0.0128 0.0074 -1.7289 0.0838

STUDENT*T2 -0.0100 0.0072 -1.3780 0.1682

OTHPROF*T2 -0.0082 0.0073 -1.1147 0.2650

FARMER*T3 0.0379 0.0101 3.7364 0.0002

ARTISAN*T3 0.0232 0.0091 2.5520 0.0107

MANAGER*T3 0.0267 0.0086 3.1006 0.0019

PROF*T3 0.0133 0.0043 3.0819 0.0021

INTPROF*T3 0.0343 0.0084 4.0826 0.0000

TEACHER*T3 0.0087 0.0038 2.2965 0.0217

EMPLOYEE*T3 0.0280 0.0082 3.4000 0.0007

WORKER*T3 0.0228 0.0083 2.7378 0.0062

STUDENT*T3 0.0301 0.0079 3.8233 0.0001

OTHPROF*T3 0.0243 0.0084 2.9118 0.0036

AV0*T1 0.0279 0.0032 8.6851 0.0000

AV12*T1 0.0210 0.0024 8.6309 0.0000

AV69*T1 -0.0026 0.0012 -2.1180 0.0342

AV10+*T1 0.0390 0.0017 23.4036 0.0000

AV0*T2 0.0427 0.0065 6.5232 0.0000

AV12*T2 0.0200 0.0022 8.9641 0.0000

AV69*T2 -0.0082 0.0013 -6.3824 0.0000

AV10+*T2 0.0385 0.0016 23.3970 0.0000

AV0*T3 0.0274 0.0037 7.3274 0.0000

AV12*T3 0.0197 0.0022 9.0224 0.0000

AV69*T3 -0.0252 0.0015 -16.8129 0.0000

AV10+*T3 -0.0503 0.0023 -22.1447 0.0000

C2*T1 0.0245 0.0068 3.6325 0.0003

C3*T1 0.0001 0.0068 0.0179 0.9857

C4*T1 0.0042 0.0066 0.6402 0.5220

C5*T1 0.0096 0.0073 1.3191 0.1871

C2*T2 0.0238 0.0068 3.4815 0.0005
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Variable coefficients standard deviation T-stat P value

C3*T2 0.0088 0.0066 1.3294 0.1837

C4*T2 0.0117 0.0065 1.7955 0.0726

C5*T2 0.0141 0.0071 1.9943 0.0461

C2*T3 0.0624 0.0069 9.0348 0.0000

C3*T3 0.0114 0.0074 1.5466 0.1220

C4*T3 0.0151 0.0074 2.0346 0.0419

C5*T3 0.0180 0.0079 2.2948 0.0218

C2*A1820 -2.8612 4.1199 -0.6945 0.4874

C2*A2534 0.5787 0.2238 2.5859 0.0097

C2*A3544 1.1483 0.2366 4.8530 0.0000

C2*A4554 1.0972 0.2916 3.7625 0.0002

C2*A5564 0.5293 0.7081 0.7475 0.4548

C3*A1820 2.0836 2.0760 1.0036 0.3156

C3*A2534 0.0560 0.2817 0.1987 0.8425

C3*A3544 1.1619 0.2921 3.9782 0.0001

C3*A4554 1.4632 0.3047 4.8017 0.0000

C3*A5564 1.7559 0.3515 4.9949 0.0000

C3*A65+ 1.3918 0.6153 2.2620 0.0237

C4*A1820 2.8255 3.3711 0.8381 0.4020

C4*A2534 0.3133 0.3991 0.7850 0.4325

C4*A3544 0.7024 0.4033 1.7419 0.0816

C4*A4554 1.2803 0.4163 3.0753 0.0021

C4*A5564 0.9134 0.4567 1.9998 0.0455

C4*A65+ 2.2031 1.5140 1.4551 0.1457

C5*A1820 1.3738 0.5644 2.4340 0.0149

C5*A2534 -0.5752 0.8046 -0.7149 0.4747

C5*A3544 -0.2897 1.6609 -0.1744 0.8615

C5*A4554 2.7617 2.2734 1.2148 0.2245

Rho 0.8779 0.0076 115.1477 0.0000

Log-likelihood -5,846.23

Number of observations 16,399

Number of individuals 11,506
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Table 6 shows that the absence of the bonus-malus variable does not affect our conclusion about

the presence of residual asymmetric information in the data. Note that the corresponding accident

distribution estimations do not contain also the bonus-malus variable (detailed results are

available from the authors upon request).

Table 6: Random-effects probit model (without bonus-malus variable)
Variable explained: Choice of insurance coverage

(all-risk vs third-party insurance)

Variable coefficients standard deviation T-stat P value

CONSTANT -2.9052 0.6850 -4.2414 < 0.0000

NBACC 0.0882 0.0654 1.3486 0.1775

E(NBACC) -0.6102 0.4759 -1.2822 0.1998

KMU5 -0.4126 0.1172 -3.5195 0.0004

KM1015 0.3442 0.0960 3.5865 0.0003

KM1520 0.6582 0.1146 5.7437 < 0.0000

KM2030 0.5846 0.1292 4.5263 < 0.0000

KMO30 0.5839 0.1862 3.1367 0.0017

FARMER*T1 0.0181 0.0047 3.8295 0.0001

ARTISAN*T1 -0.0010 0.0038 -0.2542 0.7994

MANAGER*T1 0.0095 0.0028 3.3446 0.0008

PROF*T1 0.0114 0.0048 2.3821 0.0172

INTPROF*T1 0.0051 0.0022 2.3397 0.0193

TEACHER*T1 0.0073 0.0042 1.7542 0.0794

EMPLOYEE*T1 -0.0078 0.0022 -3.5701 0.0004

STUDENT*T1 0.0019 0.0042 0.4453 0.6561

OTHPROF*T1 -0.0020 0.0024 -0.8518 0.3943

FARMER*T2 0.0052 0.0093 0.5548 0.5791

ARTISAN*T2 -0.0154 0.0088 -1.7529 0.0797

MANAGER*T2 -0.0034 0.0081 -0.4253 0.6706

PROF*T2 0.0133 0.0047 2.8260 0.0047

INTPROF*T2 -0.0026 0.0079 -0.3358 0.7370

TEACHER*T2 0.0082 0.0035 2.3398 0.0193

EMPLOYEE*T2 -0.0093 0.0078 -1.1887 0.2346

WORKER*T2 -0.0108 0.0079 -1.3613 0.1734
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STUDENT*T2 -0.0091 0.0077 -1.1896 0.2342

OTHPROF*T2 -0.0060 0.0078 -0.7718 0.4402

FARMER*T3 0.0367 0.0104 3.5359 0.0004

ARTISAN*T3 0.0223 0.0093 2.3888 0.0169

MANAGER*T3 0.0268 0.0089 3.0305 0.0024

PROF*T3 0.0124 0.0043 2.8652 0.0042

INTPROF*T3 0.0342 0.0087 3.9362 0.0001

TEACHER*T3 0.0094 0.0037 2.5594 0.0105

EMPLOYEE*T3 0.0271 0.0085 3.1911 0.0014

WORKER*T3 0.0216 0.0086 2.5231 0.0116

STUDENT*T3 0.0297 0.0081 3.6477 0.0003

OTHPROF*T3 0.0235 0.0086 2.7257 0.0064

AV0*T1 0.0279 0.0033 8.3689 < 0.0000

AV12*T1 0.0210 0.0025 8.5689 < 0.0000

AV69*T1 -0.0027 0.0012 -2.2231 0.0262

AV10+*T1 0.0396 0.0017 23.7297 < 0.0000

AV0*T2 0.0405 0.0060 6.7731 < 0.0000

AV12*T2 0.0202 0.0022 8.9630 < 0.0000

AV69*T2 -0.0082 0.0013 -6.3556 < 0.0000

AV10+*T2 0.0391 0.0017 23.6388 < 0.0000

AV0*T3 0.0274 0.0038 7.2395 < 0.0000

AV12*T3 0.0196 0.0022 8.9714 < 0.0000

AV69*T3 -0.0255 0.0015 -16.9573 < 0.0000

AV10+*T3 -0.0511 0.0023 -22.3592 < 0.0000

C2*T1 0.0241 0.0071 3.3937 0.0007

C3*T1 -0.0009 0.0071 -0.1298 0.8967

C4*T1 0.0031 0.0070 0.4430 0.6578

C5*T1 0.0089 0.0076 1.1730 0.2408

C2*T2 0.0234 0.0072 3.2581 0.0011

C3*T2 0.0061 0.0066 0.9283 0.3533

C4*T2 0.0093 0.0066 1.4195 0.1558

C5*T2 0.0119 0.0072 1.6653 0.0959

C2*T3 0.0626 0.0072 8.6463 < 0.0000

C3*T3 0.0121 0.0074 1.6287 0.1034

C4*T3 0.0159 0.0075 2.1225 0.0338
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C5*T3 0.0190 0.0079 2.4015 0.0163

C2*A1820 -5.0170 1.9147 -2.6202 0.0088

C2*A2534 0.5890 0.2249 2.6190 0.0088

C2*A3544 1.1561 0.2373 4.8713 < 0.0000

C2*A4554 1.1058 0.2913 3.7957 0.0001

C2*A5564 0.4627 0.6922 0.6685 0.5038

C3*A1820 2.1877 2.1610 1.0124 0.3114

C3*A2534 0.0526 0.2861 0.1838 0.8541

C3*A3544 1.1782 0.2953 3.9894 0.0001

C3*A4554 1.4680 0.3081 4.7650 < 0.0000

C3*A5564 1.7905 0.3522 5.0838 < 0.0000

C3*A65+ 1.3435 0.5999 2.2396 0.0251

C4*A1820 2.9190 3.1833 0.9170 0.3592

C4*A2534 0.2721 0.3983 0.6831 0.4945

C4*A3544 0.7305 0.4022 1.8162 0.0694

C4*A4554 1.2686 0.4163 3.0474 0.0023

C4*A5564 0.9267 0.4568 2.0286 0.0425

C4*A65+ 2.2220 1.5368 1.4459 0.1482

C5*A1820 1.1847 0.5684 2.0842 0.0372

C5*A2534 -0.7854 0.8285 -0.9480 0.3432

C5*A3544 0.1018 1.9551 0.0521 0.9585

C5*A4554 1.2666 1.6468 0.7691 0.4418

RHO 0.8793 0.0076 116.4324 < 0.0000

Log-likelihood -5860.94

Number of observations 16,399

Number of individuals 11,506

Conclusion

In this analysis, we have attempted to extend the Dionne, Gouriéroux, and Vanasse test (2001) to

the case of individual longitudinal data. Our main objective was to find out if the conclusions
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from successive tests conducted on cross-sectional studies would hold true in the case of panel

data. Our panel was constructed over the period 1995–1997.

The results of the different regressions allowed us to come to the same conclusion as in the case

of the cross-sectional tests: absence of any informational advantage of the policy-holder over his

insurer and efficiency of risk classification in accounting for individual risks. We also show that

the bonus-malus is a pricing variable (in the equation on choice of coverage) as well as a signal

of type of risk (in the equation on accidents). It thus constitutes a significant element in the

pricing mechanism, making it possible to introduce incentives for drivers with regard to the

prevention of traffic accidents.

However, its absence does not affect the conclusion about the presence of residual asymmetric

information in the data. It seems that its overall effect can be replicated by other appropriate risk

classification variables. Finally, since the test shows that there is no residual asymmetric

information between insurers and insureds in this market, there is non need to add a further step

of analysis to separate moral hazard from adverse selection as in Dionne and Gagné (2002).



32

References

M. Abramovitz, and I. Stegun [1985], Handbook of Mathematical Functions, Dover Press, New-
York.

J. S. Butler and R. Moffit [1982], A Computationally Efficient Quadrature Procedure for the
One-Factor Multinomial Probit, Econometrica, 50, 761-764.

Conseil des Communautés Européennes [1992], directive No 92/49/CEE dite "Troisième
directive assurance non-vie", JOCE, Commission européenne, Bruxelles.

S. J. Chandler [1999], Insurance Regulation, mimeo, University of Houston Law Centre.

P-A. Chiappori [2000], Econometric Models of Insurance Under Asymmetric Information, In G.
Dionne (ed.), Handbook of Insurance, Kluwer Academic Publishers, 363-392.

P-A. Chiappori, and B. Salanié [1997], Empirical Contracts Theory: The Case of Insurance Data,
European Economic Review, 41, 943-951.

P. A. Chiappori, and B. Salanié [2000], Testing for Asymmetric Information in Insurance
Markets, Journal of Political Economy, 108, 1, 56-78.

P. A. Chiappori, and B. Salanié [2002], Testing Contracts Theory: a Survey of Some Recent
Work. Mimeo, CREST, France.

R. Cooper, and B. Hayes [1987], Multi-period Insurance Contracts, International Journal of
Industrial Organization, 5, 211-231.

K. Crocker, and A. Snow [1986], The Efficiency Effects of Categorical Discrimination in the
Insurance Industry, Journal of Political Economy, 94, 321-344.

M. Dahchour [2002], Tarification de l’assurance automobile, utilisation du permis à points et
incitation à la sécurité routière : une analyse empirique, Ph. D Dissertation, University of
Paris X-Nanterre, France.

M. Dahchour, and S. Lassarre [2001], Road Risk Analysis using Panel Data of French Drivers, In
G. Govaert, J. Janssen, N. Limnios (Eds.). Proceedings of the 10th International
Symposium on Applied Stochastic Models and Data Analysis (ASMDA), vol 1. 348-353.
Université de Technologie Compiègne, France.

G. Dionne [2002], Insurance Regulation in Other Industrial Countries, In J. D. Cummins (ed.)
Deregulating Property-Liability Insurance; AEI-Brookings Joint Center For Regulatory
Studies, Washington, 341-396.



33

G. Dionne, and N. Doherty [1994], Adverse Selection, Commitment and Renegotiation:
Extension to and Evidence from Insurance Markets, Journal of Political Economy,102,
209-235.

G. Dionne, N. Doherty, and N. Fombaron [2000], Adverse Selection in Insurance Markets, in
Handbook of Insurance, G. Dionne (Ed.), Kluwer Academic Publishers, 185-243.

G. Dionne et R. Gagné [2002], Replacement Cost Endorsement and Opportunistic Fraud in
Automobile Insurance, WP No 00-01, Risk Management Chair, HEC-Montreal,
Forthcoming Journal of Risk and Uncertainty.

G. Dionne, C. Gouriéroux and C. Vanasse [1998], Evidence of Adverse Selection in Automobile
Insurance Markets. In Automobile Insurance: Road Safety, New Drivers, Risks, Insurance
Fraud and Regulation, G. Dionne and C. Laberge-Nadeau (Eds.), Kluwer Academic
Publishers, 13-46.

G. Dionne, C. Gouriéroux, and C. Vanasse [2001], Testing for Evidence of Adverse Selection in
the Automobile Insurance Market: A Comment. Journal of Political Economy, 109, 444-
453.

A. Finkelstein et J. Poterba [2000], Adverse Selection in Insurance Markets: Policyholder
Evidence from the U.K. Annuity Market, NBER Working Paper No. 8045.

N. Fombaron [1997], Contrats d’assurance dynamiques en présence d’antisélection : les effets
d’engagement sur des marchés concurrentiels, Ph.D Dissertation, University Paris X-
Nanterre. France.

N. Fombaron [2002], Dérégulation du bonus-malus en assurance automobile et incitations à la
sécurité routière : le cas de la France, Assurances, 69, 4, 589-601.

W. Greene [1998], Limdep, Version 7.0, User’s Manual, Econometric Software, New York.

W. Greene [2000], Econometric Analysis, Fourth Edition, Prentice-Hall, New Jersey.

I. Hendel, and A. Lizzeri (2000), The Role of Commitment in Dynamic Contracts: Evidence
from Life Insurance, Mimeo, Princeton University.

D. K. Guilkey, and J. L. Murphy [1993], Estimation and testing in the random effects probit
model, Journal of Econometrics, 59. 301-317.

J. J. Heckman [1981 a], Panel data, in C. F. Manski, and D. MacFadden (eds.), Structural
Analysis of Discrete Data with Econometric Applications, Chap 3, MIT Press.

J. J. Heckman [1981 b], Heterogeneity and State Dependence, in S. Rosen (ed.), Studies in Labor
Markets, Chicago University Press. 91-139.



34

B. E. Honoré, and E. Kyriazidou [2000], Panel Data Discrete Choice Models with Lagged
Dependent Variables. Econometrica. Vol. 68, No. 4, 939-874.

C. Hsiao [1996], Logit and Probit models, in Mátyàs, and Sevestre (Eds.), The Econometrics of
Panel Data: Handbook of Theory with Applications, Kluwer Academic Publishers.
Dordrecht.

H. Kunreuther, and M. Pauly [1985], Market Equilibrium with Private Knowledge, Journal of
Public Economics, 26, 269-288.

K.M. Murphy, and R.H. Topel [1985], Estimation and Inference in Two-Step Econometric
Models. Journal of Business and Economic Statistics, 3, 370-379.

T. Nielssen [2000], Consumer Lock-in with Asymmetric Information, International Journal of
Industrial Organization, 18, 649-666.

P. Picard [2000], Les nouveaux enjeux de la régulation des marches d’assurance, WP No 2000-
53, Thema, Université Paris X Nanterre.

J. Pinquet [1999], Une analyse des systèmes bonus-malus en assurance automobile, Assurances,
67, 2, 241-249.

J. Pinquet [2000], Experience Rating through Heterogeneous Models. In G. Dionne (Ed.)
Handbook of Insurance, Kluwer Academic Publishers.

R. Puelz, and A. Snow [1994], Evidence on Adverse Selection : Equilibrium Signaling and Cross
Subsidization on the Insurance Market, Journal of Political Economy, 102, 236-257.

D.Richaudeau [1998], Le marché de l’assurance automobile en France, Assurances, 66, 3, 423-
458.

D. Richaudeau [1999], Automobile Insurance Contracts and Risk of Accident : an Empirical Test
Using French Individual Data, Geneva Papers on Risk and Insurance Theory, 24, 97-114.

G. Rosenwald [2000], Devenir du bonus-malus, Communication at « La société Française de
Statistique », November 29, 2000, Paris.

M. Rothschild, and J. Stiglitz [1976], Equilibrium in Insurance Markets: An Essay on the
Economics of Imperfect Information, Quarterly Journal of Economics, 90, 630-649.

C. Wilson [1977], A Model of Insurance Markets with Incomplete Information, Journal of
Economic Theory, 16, 167-207.



35

Appendix

List of explanatory variables

Age and sex of principal driver

SEXM = 1 if the driver is male, otherwise 0.

A1820 = 1 if the age is between 18 and 20, otherwise 0.

A2124 = 1 the age is between 21 and 24, otherwise 0. (reference)

A2534 = 1 if the age is between 25 and 34, otherwise 0.

A3544 = 1 is the age is between 35 and 44, otherwise 0.

A4554 = 1 if age is between 45 and 54, otherwise 0.

A5564 = 1 if age is between 55 and 64, otherwise 0.

A65+ = 1 if age is equal to 65 and over, otherwise 0.

Socio-professional category of driver

FARMER = 1 if driver is a farmer, otherwise 0.

ARTISAN = 1 if driver is an artisan, otherwise 0.

MANAGER = 1 if driver is a manager, otherwise 0.

PROF = 1 if the driver is a professor or teacher, otherwise 0.

STUDENT = 1 if driver is a student, otherwise 0.

INTERPTOF = 1 if driver is of intermediate profession, otherwise 0.

EMPLOYEE = 1 if driver is an employee, otherwise 0.

WORKER = 1 if driver is a worker, otherwise 0.

OTHPROF = 1 if driver is of some other profession, otherwise 0.

RETRIRED = 1 if driver is retired, otherwise 0. (reference)

Driving experience

EXP01 = 1 if the license is between 0 and 1 year, otherwise 0.

EXP23 = 1 if license is between 2 and 3 years, otherwise 0. (reference)

Exp 410 = 1 if license is between 4 and 10 years , otherwise 0.

EXP 11+ = 1 if the license is 11 years or more, otherwise 0.

Driver’s bonus-malus coefficient

BMINF1=1 if the bonus-malus coefficient is less than 1, otherwise 0.

BMEGAL1=1 if the bonus-malus coefficient is equal to 1, otherwise 0. (reference)

BMSUP1=1 if the bonus-malus coefficient is greater than 1, otherwise 0.

Household income

HI70 = 1 if the household to which the driver belongs has an annual income less than 70, 000 F,
otherwise 0.

HI70to100 = 1 if the household to which the driver belongs has an annual income between 70 00F and
100 000 F, otherwise 0. (reference)
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HI100to130 = 1 if the household to which the driver belongs has an annual income between 100 000F
and 130 000F, otherwise 0.

HI130to160 = 1 if the household to which the driver belongs has an annual income between 130 000F
and 160 000F, otherwise 0.

HI160 to 190 = 1 if the household to which the driver belongs has an annual income between 160 000F and 190
000F, otherwise 0.

HI190 to230 = 1 if the household to which the driver belongs has an annual income between 190 000 and
230 000, otherwise 0.

HI230to290 = 1 if the household to which the driver belongs has an annual income between 230 000 F
and 290 000F, otherwise 0.

Region of residence

PARIS = 1 if the driver resides in the Parisian region, otherwise 0. (reference)

NORTH = 1 if the driver resides in the North, otherwise 0.

EAST = 1 if the driver resides in the East, otherwise 0.

WEST = 1 if the driver resides in the West, otherwise 0.

SOUTHWEST = 1 if the driver resides in the Southwest, otherwise 0.

SOUTHEAST = 1 if the driver resides in the Southeast, otherwise 0.

MEDITERA = 1 if the driver resides in the Mediterranean region, otherwise 0.

Network used

CITY = 1 if the network used is mainly urban, otherwise 0.

ROAD = 1 if the network used is mainly country roads, otherwise 0. (reference)

HIGHW = 1 if the network used is mainly highway, otherwise 0.

Age of vehicle

AV0 = 1 if the vehicle is new ( year of purchase corresponding to year of survey), otherwise 0.

AV12 = 1 if the vehicle is 1 or 2 years old, otherwise 0.

AV35 - 1 if the vehicle is 3, 4, or 5 years old, otherwise 0. (reference)

AV69 = 1 if the vehicle is 6,7, 8, or 9 years old, otherwise 0.

AV10+ = 1 if the vehicle is 10 year old or over, otherwise 0.

Group of vehicle

GROU7U = 1 if the vehicle belongs to group 7 or under, otherwise 0.

GROU89 = 1 if the vehicle belongs to groups 8 or 9, otherwise 0.

GROU1011 = 1 if the vehicle belongs to groups 10 or 11, otherwise 0. (reference)

GROU1213 = 1 if the vehicle belongs to groups 12 or 13, otherwise 0.

GROU140 = 1 if the vehicle belongs to the group 14 or over, otherwise 0.

Use of vehicle

DAILY = 1 is the vehicle is used daily, otherwise 0. (reference)

ALMDAIL = 1 if the vehicle is used almost daily, otherwise 0.

LESSOFT = 1 if the vehicle is used less often, otherwise 0.
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WEEKEND = 1 if the vehicle is used only on weekends, otherwise 0.

ALMNEV = 1 if the vehicle is almost never used, otherwise 0.

NONPROP=1 if the vehicle is owned by the driver, otherwise 0.

DIESEL=1 if the vehicle uses gas-oil as a fuel, otherwise 0.

Mileage

KMU5 = 1 if the mileage is under 5 000 km a year, otherwise 0.

KM510 = 1 if the mileage is between 5 000 and 10 000 km a year, otherwise 0.

KM1015 = 1 if the mileage is between 10 000 and 15 000 km a year, otherwise 0. (reference)

KM1520 = 1 if the mileage is between 15 000 and 20 000 km a year, otherwise 0.

KM2030 = 1 if the mileage is between 20 000 and 30 000 km a year, otherwise 0.

KMO30 = 1 if the mileage is over 30 000 km a year, otherwise 0.

Occasional users

NOOCC = 1 if there is no occasional user of the vehicle, otherwise 0. (reference)

YOCCL = 1 if the occasional user is young (male or female under 25) having driven less than 10% of
total mileage, otherwise 0.

YOCCM = 1 if the occasional user is young and has driven more than 10% of the total mileage,
otherwise 0.

MPCCM = 1 if the occasional user is man over 25 having driven less than 10% of the total mileage,
otherwise 0.

MOCCM = 1 if the occasional user is a man over 25 having driven more than 10% of the total mileage,
otherwise 0.

WOCCL = 1 if the occasional user is a woman over 25 having driven less than 10% of the total mileage,
otherwise 0.

WOCCM = 1 if the occasional user is a woman over 25 having driven more than 10% of the total
mileage, otherwise 0.
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Table 7: Estimation of negative binomial model period by period over 1995-1997
(Dependant variable: total number of accidents)

1995 1996 1997
Variable

Coefficient T-stat Coefficient T-stat Coefficient T-stat

CONSTANT -2.7736 -8.0426 -2.6424 -9.1161 -2.3902 -7.5116

(Age and sex of driver)

Sexm -0.1524 -1.5025 -0.0648 -0.7648 -0.2714 -3.0055

A1820 -0.3027 -0.6198 -0.5287 -1.0928 0.7039 1.5276

A2124 0.2016 1.0010 0.1198 0.6109 0.0947 0.3881

A2534 Reference

A3544 0.0138 0.1026 0.0434 0.3777 -0.0099 -0.0820

A4554 -0.1273 -0.7048 -0.0911 -0.5821 -0.0541 -0.3307

A5564 -0.1040 -0.4198 -0.3378 -1.5535 0.0699 0.3112

A65+ 0.2626 0.8604 -0.1834 -0.6714 0.0395 0.1392

(Driving experience)

EXP01 0.8287 1.5335 1.2237 2.6142 -0.9238 -1.3398

EXP12 0.6018 1.2247 0.9019 2.0426 -0.6629 -1.2988

EXP34 Reference

EXP510 -0.1716 -0.2684 0.6509 1.0103 -0.6822 -0.9054

EXP11+ -0.3170 -2.0306 -0.0222 -0.1585 -0.2045 -1.3633

Bonus-malus (continuous) 0.6874 2.7907 1.2930 6.7611 0.7705 3.2279

(Driver’s SPC)

RETIRED Reference

FARMER -0.4802 -1.1623 -0.6992 -1.6345 -0.6553 -1.3431

ARTISAN -0.5591 -1.6492 0.0484 0.1892 -0.0308 -0.1213

MANAGER -0.1353 -0.5505 0.0063 0.0310 0.2153 1.0940

PROF 0.1840 0.6689 0.1756 0.8490 -0.2152 -0.9061

INTPROF -0.0891 -0.4119 -0.1138 -0.6211 -0.0128 -0.0701

TEACHER -0.0677 -0.3189 0.2335 1.4486 0.2475 1.3758

EMPLOYEE -0.4560 -2.0324 -0.2156 -1.1508 -0.1286 -0.6848

WORKER -0.4944 -2.1119 -0.3543 -1.8253 -0.105 -0.5469

STUDENT -0.0204 -0.0670 -0.4195 -1.4410 -0.0132 -0.0404

OTHPROF -0.1761 -0.7526 -0.1143 -0.5568 -0.1475 -0.7153

(Region)

PARIS Reference

NORTH -0.2471 -1.5762 -0.0004 -0.0035 -0.3371 -2.2280

EAST -0.1086 -0.7442 -0.1155 -0.9285 -0.0233 -0.1861
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1995 1996 1997
Variable

Coefficient T-stat Coefficient T-stat Coefficient T-stat

WEST -0.0117 -0.0873 -0.0620 -0.5631 -0.0314 -0.2762

SOUTHWEST 0.0634 0.4608 0.0440 0.3724 -0.2244 -1.7355

SOUTHEAST 0.0518 0.4194 0.0761 0.7237 -0.2245 -1.8600

MEDITERA -0.0351 -0.2534 0.0354 0.3114 0.0052 0.0446

(Vehicle: group and age)

GROU7U -0.1355 -1.5542 -0.1348 -1.3656 -0.1142 -1.1996

GROU89 -0.0902 -0.8650 0.0332 0.3158 -0.0404 -0.3004

GROU1011 Reference

GROU1213 -0.1879 -1.8738 0.1365 1.4658 -0.0525 -0.4561

GROU14P 0.3462 2.4735 0.2376 1.9961 -0.133 -0.8428

AV0 -0.0428 -0.2917 -0.1226 -0.9487 -0.2206 -1.4895

AV12 -0.0471 -0.4349 0.0341 0.3893 0.0888 0.9427

AV35 Reference

AV69 -0.0460 -0.4753 0.0554 0.6530 0.0539 0.6160

AV10PLUS 0.4953 4.5781 0.2304 2.4502 0.3671 3.2033

NONPROP 0.6325 2.7844 0.1533 0.6229 0.3422 1.3760

DIESEL -0.0191 -0.2010 0.0608 0.7727 0.0218 0.2636

(Mileage)

KMU5 -0.8541 -0.7780 -2.9919 -2.8837 -0.6385 -0.5944

KM510 Reference

KM1015 0.3116 2.5054 0.0111 0.1089 0.1796 1.5894

KM1620 0.4877 3.6258 0.1793 1.6077 0.3101 2.5089

KM2030 0.4965 3.4519 0.2425 2.0746 0.5791 4.6439

KM030 0.8817 4.9679 0.5079 3.4769 0.5646 3.4033

(Network)

CITY 0.2725 2.6999 0.2159 2.5963 0.2407 2.6451

HIGHWAY 0.1176 1.3772 0.1276 1.7938 0.2553 3.3070

ROAD Reference

(Use)

DAILY Reference

ALMDAI 0.1399 1.4527 0.0192 0.2338 -0.0693 -0.7813

WEEKEND -0.6399 -1.9227 0.1615 0.9324 -0.3221 -1.3152

ALMNEV -0.4632 -1.0408 -0.3707 -0.9764 -0.0014 -0.0036

LESSOFT -0.0100 -0.0790 -0.1263 -1.1918 -0.0582 -0.5132

(Income)
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1995 1996 1997
Variable

Coefficient T-stat Coefficient T-stat Coefficient T-stat

HI70 0.0567 0.1883 0.2584 0.3872 -0.0195 -0.0791

HI70to100 Reference

HI100to130 0.1304 0.3713 -0.5332 -1.0993 -0.1919 -1.2534

HI130to160 -0.3075 -1.1698 -0.2234 -1.0361 -0.2482 -1.8385

HI160to190 -0.0305 -0.1948 -0.0918 -0.7139 -0.1927 -1.4543

HI190to230 -0.1277 -0.9580 -0.0834 -0.7590 -0.2099 -1.4699

HI230to290 -0.0571 -0.5556 -0.0886 -1.0442 -0.1943 -1.8091

(Occasional users)

NOOCC Reference

WOCCL 0.3149 2.5705 -0.0513 -0.5031 0.0839 0.7711

MOCCL 0.3050 2.2373 -0.1132 -0.9313 -0.2502 -1.8424

WOCCM 0.4033 3.3741 0.0272 0.2563 0.1036 0.9291

MOCCM 0.2971 0.8736 -0.1555 -0.5181 0.0805 0.2625

YOCCL 0.0336 0.0652 -0.6620 -1.2559 0.8225 2.1992

YOCCM 0.7401 1.7069 0.0998 0.2392 -0.0139 -0.0227

Dispersion coefficient 1.6600 6.1256 0.8800 4.6243 0.6263 4.3828

Number of observations 5,703 5,837 5,279

Log-likelihood -2,468.29 -3,010.88 -2,431.44


