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Exotic Options Pricing under Stochastic Volatility 
 

Abstract 

This paper proposes an analytical approximation to price exotic options within a stochastic 

volatility framework. Assuming a general mean reverting process for the underlying asset 

and a square-root process for the volatility, we derive an approximation for option prices 

using a Taylor expansion around two average defined volatilities. The moments of the 

average volatilities are computed analytically at any order using a Frobenius series solution 

to some ordinary differential equation. Pricing some exotics such as barrier and digital 

barrier options, the approximation is found to be very efficient and convergent even at low 

Taylor expansion order. 

 

Keywords: Option pricing; Exotic options; Digital barrier options; Mean reversion; 

Stochastic volatility; Frobenius series. 

JEL Classification: G13, C63 

 

Résumé 

Cet article  propose une approximation analytique pour évaluer les options exotiques dans 

un cadre de volatilité stochastique. En considérant un processus avec retour à la moyenne 

pour l’actif sous-jacent et un processus racine-carrée pour la volatilité, on dérive une 

approximation pour les options en utilisant un développement de Taylor autour de deux 

volatilités « moyennes » qui seront définies. Les moments des volatilités moyennes sont 

calculés analytiquement en utilisant une solution en séries de Frobenius d’une certaine 

équation différentielle ordinaire. En évaluant certaines options exotiques comme les 

options barrières et les options barrières digitales, on montre que l’approximation converge 

rapidement et qu’elle est très précise. 

 

Mots-clés: Évaluation d’options; Options exotiques; Options barrières digitales; Retour à la 

moyenne; Volatilité stochastique; Séries de Frobenius. 

Classification JEL: G13, C63 

 

 

 



Introduction 
 Several papers propose pricing formulas for plain vanilla options on stocks within 

different stochastic volatility frameworks. Heston (1993) is the first one who proposes a 

closed-form price for a standard European call when using a square-root volatility process 

by inverting the characteristic function seen as a Fourier transform. Bakshi, Cao and Chen 

(1997) propose an empirical performance study of some alternative option pricing models 

including stochastic volatility and jumps processes by deriving closed-form solutions in the 

same way as Heston (1993). Schöbel and Zhu (1999) and Zhu (2000) derive, in a very 

elegant way, a modular pricing method which includes the square-root and the Ornstein-

Uhlenbeck volatility processes mixed eventually with jumps. For some volatility models 

however, no closed-form solutions can be derived and some numerical techniques are used 

instead. Hull and White (1987) and Sabanis (2002, 2003) obtain an approximate solution 

using a Taylor series expansion based on the underlying asset’s distribution conditional on 

the average value of the stochastic variance.  

Slightly little work was done for pricing exotic derivatives such as path-dependent 

options in non-constant volatility models. Davydov and Linetsky (2001) derive closed-form 

solutions, in terms of Bessel and Whittaker functions, for barrier and lookback options 

under a constant elasticity of variance diffusion model. Henderson and Hobson (2000) 

price passport options in Hull and White (1987) and Stein and Stein (1991) stochastic 

volatility frameworks using the series expansion technique. In both cases, very simple 

closed-form solutions for the central moments of the average stochastic variance are 

proposed1. This is made possible for some volatility processes such as the geometric 

Brownian motion and the mean reverting diffusion2. Unfortunately, for other stochastic 

volatility processes such as the square-root diffusion, no simple closed-form formulas for 

the moments of the average variance can be found. In that case, other techniques such as 

numerical approximations or Monte Carlo simulation may be used to price derivatives. 

Apel, Winkler and Wystup (2001) propose a finite elements method to price plain vanilla  

and barrier options under a square-root stochastic volatility model.  

Many assets including interest rates, credit spreads [see Longstaff and Schwartz 

(1995), Tahani (2000), Prigeant et al. (2001) and Jacobs and Li (2003)] and some 

                                                 
1 Sabanis (2002, 2003) derives an iterative procedure to compute these moments 
2 Sabanis (2003) calls “mean reverting” the following volatility diffusion ( ) tttt dWVdtVdV σλκθ +−= .  

 



commodities (Schwartz, 1997) are shown to exhibit a mean reversion feature. But, there is 

little literature on pricing derivatives for this type of underlying assets. Under stochastic 

volatility models, most of the work is done on plain vanilla derivatives. Clewlow and 

Strickland (1997) price standard interest rate derivatives under a square-root volatility 

model using Monte Carlo simulations. Assuming the latter volatility process, Tahani (2004) 

prices credit spread options, caps, floors and swaps using Gaussian quadrature. Under a 

constant volatility assumption, Leblanc and Scaillet (1998) propose some path-dependent 

interest rate options formulas for the affine term structure model.  

This paper proposes to price some exotic options on a mean reverting underlying 

asset in a square-root volatility model using a series expansion around two average defined 

volatilities. The choice of this power series method is encouraged by the findings of Ball 

and Roma (1994) about its accuracy and its easy implementation in comparison to other 

approaches. The key thing of this method is that the price of a contingent claim may be 

computed as the expectation of the corresponding constant-volatility model’s price where 

the volatility and the spot price are random variables accounting for stochastic variance 

[see Hull and White (1987) and Romano and Touzi (1997)]. It remains though to derive the 

central moments of the average variances and use them in the series expansion. But since 

the closed-form formulas for these moments can only be derived in term of Whittaker 

functions3, which are heavy-computational, it is preferable to compute them using a 

Frobenius series solution4 which is very accurate, very fast and very easy to implement. 

 The next section presents the proposed model and introduces the series expansion 

method. Section II derives a Frobenius series solution to the moments of the average 

variances. Section III presents valuation formulas for some exotic options. Section IV 

presents some numerical results on convergence and efficiency. Section V will conclude. 

I The proposed model 
 Following Tahani (2004), we consider the two stochastic differential equations 

(SDEs) for the state variable and its volatility under a risk-neutral measure Q : 

( ) ( )uuuuuu dWdBVdtVXdX 21 ρργαµ −++−−=           (1) 

( ) uuuu dBVdtVdV σλκθ +−=              (2) 

                                                 
3 In fact, we can derive the moments of the average variances in term of derivatives of Whittaker functions 
w.r.t. the first and the third arguments. 
4 Selby and Strickland (1995) use the same technique to avoid the use of confluent hypergeometric functions 
in the Fong and Vasicek (1992) bond price formula.  

 



where  is the price process of a primitive asset such as a stock or a 

credit spread, 

( ){ TutX u ≤≤,exp }

{ }TutVu ≤≤,  is the volatility process and ρ  is the correlation between the 

state variable and its volatility. W and B are two independent Brownian motions on a 

probability space ( )Q,,FΩ  and { }Tutu ≤≤,F  is the Q-augmentation of the filtration 

generated by . The  parameters ( BW , ) µ , α , γ , κ , θ , λ  and σ  are constant. 

Pricing theory allows us to write the price ( )tVXp tt ,,  of any European contingent 

claim on X as the expectation, under a risk-neutral measure, of the discounted payoff of the 

contract in order to get : 

   ( ) { }( )( )ts
tTrQ

tt TTstXHeEtVXp F|,,,, )( ≤≤= −−                     (3) 

where r is the constant risk-free rate, T the contract maturity, H is the payoff that could 

depends on the whole path of the state variable ( ) TstsX ≤≤ . In order to develop a series 

expansion approximation to the contract price, we shall adapt the methodology in Romano 

and Touzi (1997) to our mean reverting process X. Referring to the details in Appendix 

3.A, we can write the solution to the SDE (1) as : 
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Defining an effective state variable X~  and some average variances by : 
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leads to conclude that the process X~  can be viewed as a solution to the following SDE :  

    ( ) uuu dWVduXVVXd 2
2

3
2

1 1~
2
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⎜
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Putting 0=α , r=µ  and 
2
1

=γ  leads to the corresponding expressions in Romano and 

Touzi (1997) given by : 
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The price of the contingent claim given in Equation (3.3) can thus be rewritten as : 

  ( ) { }( )( )( )tts
tTrQQ

tt TTstXHeEEtVXp FG ||,,~,, )( ≤≤= −−         (12) 

where { TutBW utt }≤≤= :,σG  is a new σ-algebra which assumes that the movements of 

the volatility over the entire life of the contract are known at time t. In their non-zero 

correlation model, Romano and Touzi (1997) derive the price of a standard European call 

option in this way as the expectation of the Black and Scholes (1973) price where the 

underlying asset price is replaced by )exp( ,Ttt YX +  and the volatility parameter is replaced 

by V
tT −

1 . But this is not an explicit formula since one still has to compute the 

expectation, which is almost impossible in the non-zero correlation case. Lewis (2000) 

notices that even in the case of a zero correlation, the pricing formula in Equation (3.3) 

does not always lead to an analytical solution because the integrated volatility density is 

difficult to derive in closed-form5. Both Hull and White (1987) and Sabanis (2002, 2003) 

                                                 
5 In Lewis (2000), page 116. 

 



assume zero correlation and derive an approximation to the European call price. Taking 

into account this findings and since our aim is to get some explicit pricing formulas for 

exotic options, we will assume for the remainder of the article that the correlation between 

the state variable and its volatility is zero6.  

In the zero correlation case, the process  given in Equation (3.5) is always 0 and 

the Equations (3.4), (3.7) and (3.8) can be simplified as : 
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The pricing formula in Equation (3.12) can be simplified by first computing a pseudo-price 

as a function of the two average variances ( )21 ,VV  : 

   ( ) { }( )( )ts
tTrQ TTstXHeEVVp G|,,, )(

21 ≤≤= −−          (16) 

and then taking the expectation of this pseudo-price conditional on the initial Q-augmented 

filtration { }Tutu ≤≤,F  to get the price of the contingent claim : 

   ( ) ( )( )t
Q

tt VVpEtVXp F|21,,, =            (17) 

To obtain an approximation for the price in Equation (3.17), ( )21 ,VVp  is expanded in a 

Taylor series around the expected values of 1V  and 2V . Thus, the expectation on the right-

hand side of Equation (3.17) takes the following form : 
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6 In Forex and interest rates markets, it was found that the volatility smile is symmetric and thus the 
correlation between the volatility and the asset can be taken as zero. 

 



where all the expectations are taken under the risk-neutral measure Q conditional on tF . 

We must compute the (n,m)-derivatives of the pseudo-price w.r.t. to the average variances 

and the cross-moments ( )mn
VVE 21  for all orders (n,m)7. Since the differentiation of the 

pseudo-price depends on the contingent claim specifications, it will be done later and we 

start by deriving the cross-moments given the square-root volatility diffusion in Equation 

(3.2).  

 

II The Frobenius solution  
 Define the cross-moment generating function to be given by :  
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we can easily see that the (n,m)th cross-moment can be written as : 
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Considering g as a function of ),( Vτ , Feynman-Kac theorem allows us to write ),( Vg τ  as 

the solution to a partial differential Equation (3.PDE) that takes the following form : 
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where tT −=τ  and )2exp()exp()( αταττη −+−= ba . Following Tahani (2004), we 

assume that g is log-linear in ),( Vτ  and can be written as : 

   ( ))()(exp),( τττ CVDVg +=             (22) 

where D(.) and C(.) are solutions to the two following ordinary differential equations 

(ODEs) : 
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7 Hopefully, we won’t need to get to very large values of n and m. Sabanis (2002, 2003) and Apel et al (2001) 
only need the second and find the third order of negligible impact.  
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The exact solutions to these ODEs are given by : 
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where U solves the following linear homogeneous second-order ODE : 
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Tahani (2004) provides the exact solution to this ODE that involves Whittaker functions : 
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where M(.) and W(.) are Whittaker functions and constants8 Φ  and  can be determined 

using the initial conditions in ODE (26).  

Ψ

To compute the cross-moments, we must compute the derivatives of functions D 

and C w.r.t variables a and b that appear in the first and the third arguments in Whittaker 

functions as well as in Φ  and Ψ , which is very heavy. Instead, we will develop a 

Frobenius9 solution to the ODE (26) (see Appendix 3.B for details). Making the change of 

variable )exp( ατ−=z  and defining the function  by : )(zS
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leads to the following series solution : 
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8  and Ψ will depend on the variables a and b. Φ
9 Under some regularity conditions, an ODE may have a series solution taking the form . ∑
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where constants Φ  and  are determined using the fact that  and Ψ 1)1( =S β−=)1('S , and 

functions  are computed recursively by the following formulas : ( ) n≤0nk (.)
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where  is an arbitrary constant. Once functions D and C are computed according to 

Equation (3.25), the computation of the moments can be achieved by differentiating the 

function g in Equation (3.20). We only need to differentiate the series solution in Equation 

(3.29) by truncating it at a finite order instead of dealing with Whittaker functions in 

Equation (3.27). The computation of the cross-(centered)-moments in Equation (3.18) is 

thus straightforward.  

0k

 

 



The no mean reversion case  

In the case of no mean reversion (i.e. 0=α ), the function η  in PDE (21) becomes 

constant and the moment generating function10 is defined by : 
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We do not need a Frobenius series solution since the moment generating function g is given 

by a simple closed-form expression [see Cox, Ingersoll and Ross (1985)] : 
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Notice that the solution U to the ODE (26) is also very easy to compute by : 
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These formulas will be used later for pricing some exotic derivatives on equities. At this 

stage, we are able to use Equation (3.18) to compute the approximate price for any 

contingent claim using a Taylor expansion as long as we can compute the derivatives of the 

pseudo-price in Equation (3.16) w.r.t. average variances either analytically or numerically.  

The next section will present some standard and some exotic options on both mean 

reverting and non-mean reverting underlying assets. The computation of standard option 

prices in a stochastic volatility model will allow us to check for the accuracy of the series 

expansion in simple cases where (semi)-closed-form solutions exist, among which Heston 

(1993) and Tahani (2004) models11. 

 

                                                 
10 It can be seen as a zero-coupon price by considering ( ) TstsV ≤≤η  as the instantaneous interest rate in Cox, 
Ingersoll and Ross (1985) model. 
11 The constant volatility counterparts of Heston (1993) and Tahani (2004) models are respectively Black and 
Scholes (1973) and Longstaff and Schwartz (1995) models, which will be used to compute the pseudo-prices 
in Equation (3.16). 

 



III Valuation formulas for exotic options 
 In this section, we will remind some well-known closed-form pricing formulas for 

path-dependent stock options under a constant volatility model, which will be used in the 

series expansion for pricing the same path-dependent options under the square-root 

stochastic volatility model. In the case of a mean reverting asset and a constant volatility, 

Leblanc and Scaillet (1998) propose closed-form solutions (up to an inversion of Fourier 

transform) for some path-dependent options on affine yields among which the arithmetic 

average option. This approach will be used to derive a pricing formula for credit spread 

average options. We also will use the distribution of the first passage time for an Ornstein-

Uhlenbeck process to a boundary derived in Leblanc et al. (2000) to price digital barrier 

credit spread options. Once theses pseudo-prices of exotic options are computed, we will 

use them in Equation (3.18) in order to price the same exotics under a stochastic volatility 

model. 

 

Barrier and digital asset-or-nothing stock option 

 These formulas are derived in details in Reiner and Rubinstein (1991) and Haug 

(1997). The diffusion of the state variable X under the filtration )( tG  and the average 

variance V  are given in Equation (3.11). The stock price is given by  and the pseudo-

price of a down-out call with strike price K and barrier L when 

Xe

LK ≤  is given by : 
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and  is the standard normal cumulative function.  ( )⋅Ν

The pseudo-price of a digital down-out asset-or-nothing option can be obtained by 

taking a strike price equal to 0=K  in Equation (3.36) :  
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while the pseudo-price of an up-out put with LK ≤  is given by : 
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Digital cash-or-nothing credit spread option 

 In the case of mean reversion, i.e. 0≠α , the diffusion of the state variable X under 

the filtration )( tG  is an Ornstein-Uhlenbeck process given in Equation (3.14) and the 

average variances ( )21 ,VV  are given in Equation (3.15) : 

   ( ) sss dWVdsXVdX 21 +−−= αγµ            (39) 

Defining the first hitting time { }LXsT sL ≥= :inf , the density of  is derived in Leblanc 

et al. (2000) :  

LT

( ) ( )dsTQsLVV L ∈≡,;, 21χ               (40)        

2
3

2

2

2

2

2

1

2

1

2 sinh

1

coth)(
2

exp
2

)(

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
=

s
V

V
s

V
XLs

V
L

V
X

V
XL

α

α

α

α
γµ

α
γµ

α
π

 

Göing-Jaeschke and Yor (2003) point out that the distribution given in Leblanc et al. 

(2000) is only true if the boundary level coincides with the long-run mean12, which in our 

case leads to 
α
γµ 1VL −

=  in Equation (3.40). A digital up-in cash-or-nothing credit spread 

option pays off a certain amount K at maturity if the credit spread  crosses the barrier  

from below during the option life. Its pseudo-price is then given by : 

Xe Le

                                                 
12 Linetsky (2003) derives an approximation to this density for any fixed boundary level in terms of Sturm-
Liouville eigenfunction expansion, while Alili et al. (????) provide an integral representation. 
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In order to apply the series expansion in Equation (3.18), the derivatives of the pseudo-

price w.r.t. ( )21 ,VV  are computed by differentiating under the integral sign. 

 

Option on average credit spread 

 Denoting the average credit spread by  where the diffusion of X is 

given in Equation (3.39), the pseudo-price of a call on average credit spread with strike K 

can be obtained by : 
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where the density of  can be computed by inverting its characteristic functionTY 13 and then 

the integration in Equation (3.42) will be done numerically using Gaussian quadrature [see 

Tahani (2004)].  

 

IV Numerical results 
 In order to assess the efficiency and the accuracy of the proposed methodology, we 

price some plain vanilla and exotic options in Heston (1993) and Tahani (2004) square-root 

stochastic volatility frameworks.  

For standard options, Heston (1993) and Tahani (2004) option prices will be 

considered as the true prices towards which the series expansion must converge. Tables 1 

to 4 show the results for standard call options. It is found that the numerical prices 

converge rapidly to the true prices; at most, we need the 4th order to achieve a good 

accuracy.  

                                                 

13 The characteristic function of  is given by  and can be 

computed as a zero-coupon bond price in Vasicek (1977) model where the instantaneous rate is 

∫
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For exotic options, since there are no closed-form formulas under stochastic 

volatility, we will compute a Monte Carlo price with 105 paths using the antithetic variate 

method and consider it as the true price. Tables 5 to 10 show the results for barrier and 

digital barrier options14. The numerical prices are shown to converge rapidly at low 

expansion orders, which proves the accuracy of the series method even for exotic options.  

The series expansion is also found to be very efficient. In fact, once the (cross)-

centered moments are computed for a given set of parameters, they can be used to price as 

many options as we want, simply by adding terms in the series expansion, which makes the 

computation time very small. 

 

V Conclusion 
 We propose an analytical approximation using Taylor series expansion to price 

exotic options on stocks and on general mean reverting assets when the volatility is 

stochastic. The main purpose of the expansion method is the computation of the moments 

of the average variances in a square-root volatility model, which is done using either a 

closed-form formula if there is no mean reversion; or using a Frobenius series solution in 

the case of a mean reverting process. The series expansion method is found to be very 

accurate and very efficient when pricing stock and credit spread standard and exotic 

options. 

 

                                                 
14 To compare the barrier and digital barrier options approximated prices with Monte Carlo ones, the barrier 
levels are adjusted to account for the discrete sampling as suggested in Broadie et al. (1997). 

 



Appendix 3.A :  
 
Assuming that the diffusion processes for the state variable and its volatility are given by: 

( ) ( )uuuuuu dWdBVdtVXdX 21 ρργαµ −++−−=       (A.1) 

( ) uuuu dBVdtVdV σλκθ +−=          (A.2) 

the solution for X can be solved as : 
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By defining the process Y : 
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this allows for the solution X to be rewritten as : 
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and shows that the effective variable X~  given by : 
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where the average variances 321  and, VVV are defined : 
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Appendix 3.B: Frobenius series solution 
The function S given in Equation (3.28) by : 
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where )exp( ατ−=z must solve the following second-order ODE : 
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Developing a Frobenius series solution for ODE (B.2) consists in finding a special solution 

taking the form . Substituting this series in ODE (B.2) gives : ∑
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or equivalently : 
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Comparing the series coefficients yields to : 
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Thus, ODE (B.2) has a Frobenius series solution only if 1+= βε  or βε −= , in which 

cases, the series coefficients are given by :  
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A general solution to ODE (B.2) is then given by : 
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where the constants  and Φ Ψ  are determined using the conditions 1)1( =S  and 

β−=)1('S . The arbitrary constant  can be taken equal to 1. 0k

 



References 
 
Alili L., P. Patie, and J.L. Pedersen, 2004, “Representation of the first Hitting Time Density 
of an Ornstein-Uhlenbeck Process,” Working paper, RiskLab. 

Apel T., G. Winkler, and U. Wystup, 2001, “Valuation of Options in Heston’s Stochastic 
Volatility Model Using Finite Element Methods,” Foreign Exchange Risk, Risk 
Publications. 

Bakshi G., C. Cao, and Z. Chen, 1997, “Empirical Performance of Alternative Option 
Pricing  Models,” The Journal of Finance, Vol 52, 2003-2049. 

Ball C., and A. Roma, 1994, “Stochastic Volatility Option Pricing,” Journal of Financial 
and Quantitative Analysis, Vol 29, 589-607. 

Black F., and M. Scholes, 1973, “The Valuation of Options and Corporate Liabilities,” 
Journal of Political Economy, Vol 81, 637-654. 

Broadie M., P. Glasserman, and S. Kou, 1997, “A continuity correction for discrete barrier 
options, ” Mathematical Finance, Vol 7, 325-349.  

Clewlow L. J., and C. R. Strickland, 1997, “Monte Carlo Valuation of Interest Rate 
Derivatives under Stochastic Volatility,” The Journal of Fixed Income, Vol 7, 35-45. 

Cox J., J. Ingersoll, and S. Ross, 1985, “A Theory of the Term Structure of Interest Rates,” 
Econometrica, Vol 53, 385-407. 

Davydov D., and V. Linetsky, 2001, “Pricing and Hedging Path-Dependent Options Under 
the CEV Process,” Management Science, Vol 47, 949-965. 

Fong H.G., and O. A. Vasicek, 1992, “Interest Rate Volatility as a Stochastic Factor,” 
Working paper, Gifford Associates. 

Göing-Jaschke A., and M. Yorc, 2003, “A Clarification Note about Hitting Times Densities 
for Ornstein-Uhlenbeck Processes,” Finance and Stochastics, Vol 7, 413-415. 

Haug E.G., 1997, The Complete Guide to Option Pricing Formulas, McGraw-Hill. 

Henderson V., and D. Hobson, 2000, “Passport Options with Stochastic Volatility,” 
Working paper, University of Bath. 

Heston S.L., 1993, “A Closed-form Solution for Options with Stochastic Volatility, with 
Applications to Bond and Currency Options,” The Review of Financial Studies, Vol 6, 327-
343. 

Hull J., and A. White, 1987, “The Pricing of Options on Assets with Stochastic 
Volatilities,” Journal of Finance, Vol 42, 281-300. 

Karatzas I., and S.A. Shreve, 1991. Brownian Motion and Stochastic Calculus, Springer 
Verlag, New York. 

 



Jacobs K., and X. Li, 2004, “Modeling the Dynamics of Credit Spreads with Stochastic 
Volatility,” Finance and Stochastics, Vol 2, 349-367. 

Leblanc B., and O. Scaillet, 1998, “Path Dependent Options on Yields in the Affine Term 
Structure Model,” Finance and Stochastics, Vol 2, 349-367. 

Leblanc B., and O. Scaillet, 2000, “A Correction Note on the First Passage Time of an 
Ornstein-Uhlenbeck Process to a Boundary,” Finance and Stochastics, Vol 4, 109-111. 

Lewis A., 2000, Option Valuation under Stochastic Volatility, Finance press, California. 

Linetsky V., 2003, “Computing Hitting Time Densities for OU and CIR Processes: 
Applications to Mean-reverting Models, ” Working paper, Department of Industrial 
Engineering and Management Sciences, Northwestern University. 

Longstaff F.A., and E.S. Schwartz, 1995, “Valuing Credit Derivatives,” The Journal of 
Fixed Income, Vol 5, 6-12. 

Prigeant J.-L., O. Renault, and O. Scaillet, 2001, “An Empirical Investigation into Credit 
Spread Indices,” Journal of Risk, Vol 3, 27-55. 

Reiner E., and M. Rubinstein, 1991, “Breaking down the barriers,” Risk, Vol 4, 28-35. 

Romano M., and N. Touzi, 1997, “Contingent Claims and Market Completeness in a 
Stochastic Volatility Model,” Mathematical Finance, Vol 7, 339-412. 

Sabanis S., 2002, “Stochastic volatility,” International Journal of Theoretical and Applied 
Finance, Vol 5, 515-530. 

Sabanis S., 2003, “Stochastic volatility and the Mean Reverting Process,” The Journal of 
Futures Markets, Vol 23, 33-47. 

Schöbel R., and J. Zhu, 1999, “Stochastic Volatility With an Ornstein-Uhlenbeck Process: 
An Extension,” European Finance Review, Vol 3, 23-46. 

Schwartz E.S., 1997, “The Stochastic Behavior of Commodity Prices: Implications for 
Valuation and Hedging,” The Journal of Finance, Vol 3, 6-12. 

Selby M. J. P., and C. R. Strickland, 1995, “Computing the Fong and Vasicek Pure 
Discount Bond Price Formula,” The Journal of Fixed Income, Vol 5, 78-84. 

Stein E., and J. Stein, 1991, “Stock Price Distributions with Stochastic Volatility: An 
Analytic Approach,” The Review of Financial Studies, Vol 4, 727-752. 

Tahani N., 2000, “Credit Spread Option Valuation under GARCH,” Working paper 00-07, 
Canada Research Chair in Risk Management, HEC Montréal. 
http://www.hec.ca/gestiondesrisques/00-07.pdf. 

Tahani N., 2004, “Valuing Credit Derivatives Using Gaussian Quadrature: A Stochastic 
Volatility Framework,” The Journal of Futures Markets, Vol 24, 3-35.  

 

http://www.hec.ca/gestiondesrisques/00-07.pdf


Vasicek O.A., 1977, “An Equilibrium Characterization of the Term Structure,” Journal of 
Financial Economics, Vol 5, 177-188. 

Zhu J., 2000, “Modular Pricing of Options,” Working paper, Eberhard-Karls-Universität 
Tübingen. 

 

 



Tables 

Table 3.1 : Plain vanilla call price under Heston model 

Table 3.1 presen n Heston (1993) 

Order Price Absolute error Relative error
0 8,1802 1,27e-02 1,55e-03
2 8,1674 1,53e-04 1,88e-05
3 8,1677 2,03e-04 2,49e-05
4 8,1675 1,70e-05 2,08e-06
5 8,1675 9,43e-06 1,16e-06
6 8,1675 1,84e-06 2,25e-07
7 8,1675 7,31e-07 8,94e-08
8 8,1675 1,83e-07 2,25e-08
9 8,1675 1,82e-07 2,23e-08

10 8,1675 4,26e-08 5,21e-09
True price 8,1675

ts the results of the valuation of a plain vanilla call withi

model for different expansion orders. The true price is given by Heston closed-form 

formula. The option’s parameters are )100ln(0 =X ; 04.00 =V ; 100=K ; 05.0=r ; 1=T . 

The model’s parameters are r=µ ; 0=α ; 5.0=γ ; 1.0=σ ; 4=λ ; 1=κ  an 0.d 50=θ . 

 

 



 

 

Table 3.2 : Plain vanilla call price under Heston model 

Table 3.2 presen  Heston (1993) 

Order Price Absolute error Relative error
0 15,2350 1,95e-03 1,28e-04
2 15,2369 2,60e-05 1,71e-06
3 15,2367 2,28e-04 1,49e-05
4 15,2369 2,29e-05 1,50e-06
5 15,2369 1,53e-05 1,00e-06
6 15,2369 3,21e-06 2,11e-07
7 15,2369 1,19e-06 7,82e-08
8 15,2369 2,98e-07 1,95e-08
9 15,2369 4,88e-07 3,20e-08

10 15,2369 2,77e-08 1,82e-09
True price 15,2369

ts the results of the valuation of a plain vanilla call within

model for different expansion orders. The true price is given by Heston closed-form 

formula. The option’s parameters are )100ln(0 =X ; 04.00 =V ; 90=K ; 05.0=r ; 1=T . 

The model’s parameters are r=µ ; 0=α ; 5.0=γ ; 1.0=σ ; 4=λ ; 1=κ  a 05.0nd =θ . 

 



 

 

Table 3.3 : Plain vanilla call price under Tahani model 

Table 3.3 presen  Tahani (2004) 

Order Price Absolute error Relative error
0 0,0019759 2,08e-06 1,05e-03
2 0,0019738 4,71e-08 2,39e-05
3 0,0019738 2,17e-09 1,10e-06
4 0,0019738 2,04e-08 1,03e-05
5 0,0019738 1,89e-08 9,58e-06
6 0,0019738 1,88e-08 9,53e-06
7 0,0019738 1,91e-08 9,67e-06
8 0,0019738 1,88e-08 9,54e-06
9 0,0019738 1,90e-08 9,62e-06
10 0,0019738 1,89e-08 9,56e-06

True price 0,0019738

ts the results of the valuation of a plain vanilla call within

square-root model for different expansion orders. The true price is given by Tahani semi-

closed-form formula. The option’s parameters are )02.0ln(0 =X ; 04.00 =V ; 02.0=K ; 

05.0=r ; 1=T . The model’s parameters are 03.0=µ ; 01.0=α ; 2.0=γ ; 1.0=σ ; 4=λ ; 

1=κ  and 05.0=θ . 

 



 

 

Table 3.4 : Plain vanilla call price under Tahani model 

Table 3.4 presen  Tahani (2004) 

Order Price Absolute error Relative error
0 0,0066518 4,02e-06 6,04e-04
2 0,0066561 2,89e-07 4,34e-05
3 0,0066559 3,74e-08 5,62e-06
4 0,0066557 1,75e-07 2,62e-05
5 0,0066559 7,57e-08 1,14e-05
6 0,0066557 1,57e-07 2,36e-05
7 0,0066558 2,72e-08 4,08e-06
8 0,0066558 2,45e-08 3,69e-06
9 0,0066556 2,16e-07 3,25e-05

10 0,0066561 2,48e-07 3,72e-05
True price 0,0066558

ts the results of the valuation of a plain vanilla call within

square-root model for different expansion orders. The true price is given by Tahani semi-

closed-form formula. The option’s parameters are )025.0ln(0 =X ; 04.00 =V ; 02.0=K ; 

05.0=r ; 1=T . The model’s parameters are .0 03=µ ; 01.0=α ; 0=γ ; 2.0=σ ; 4=λ ; 

1=κ  and 05.0=θ . 

 

 



 

 

Table 3.5 : Down-out barrier call price under Heston model 

Table 3.5 pre ithin Heston 

Order Price Absolute error Relative error
0 8,4046 1,79e-02 2,12e-03
2 8,4226 1,40e-04 1,66e-05
3 8,4221 4,09e-04 4,85e-05
4 8,4226 1,54e-04 1,83e-05
5 8,4226 9,69e-05 1,15e-05
6 8,4226 1,29e-04 1,54e-05
7 8,4226 1,23e-04 1,46e-05
8 8,4226 1,26e-04 1,49e-05
9 8,4226 1,25e-04 1,49e-05

10 8,4226 1,25e-04 1,49e-05
Monte Carlo 8,4225

sents the results of the valuation of a down-out barrier call w

(1993) model for different expansion orders. The Monte Carlo price is given by 105 paths 

using the antithetic variate method. The option’s parameters are )100ln(0 =X ; 04.00 =V ; 

90=K ; 95=L ; 05.0=r ; 36.0=T . The model’s parameters are r=µ ; 0=α ; 5.0=γ ; 

1.0=σ ; 4=λ ; 1=κ  and 05.0=θ . 

 



 

 

Table 3.6 : Down-out barrier call price under Heston model 

Table 3.6 pre ithin Heston 

Order Price Absolute error Relative error
0 9,3847 3,17e-02 3,37e-03
2 9,4168 4,23e-04 4,49e-05
3 9,4153 1,10e-03 1,17e-04
4 9,4166 2,35e-04 2,50e-05
5 9,4164 2,67e-05 2,83e-06
6 9,4165 1,37e-04 1,46e-05
7 9,4165 1,07e-04 1,13e-05
8 9,4165 1,20e-04 1,27e-05
9 9,4165 1,15e-04 1,23e-05

10 9,4165 1,17e-04 1,24e-05
Monte Carlo 9,4164

sents the results of the valuation of a down-out barrier call w

(1993) model for different expansion orders. The Monte Carlo price is given by 105 paths 

using the antithetic variate method. The option’s parameters are )100ln(0 =X ; 04.00 =V ; 

90=K ; 95=L ; 05.0=r ; 1=T . The model’s parameters are r=µ ; 0=α ; 5.0=γ ; 

1.0=σ ; 4=λ ; 1=κ  and 05.0=θ . 

 

 



 

 

Table 3.7 : Up-out barrier put price under Heston model 

 Table 3.7 pres within Heston 

Order Price Absolute error Relative error
0 1,8159 1,30e-02 7,19e-03
2 1,7992 3,80e-03 2,11e-03
3 1,7994 3,55e-03 1,97e-03
4 1,7993 3,70e-03 2,05e-03
5 1,7993 3,70e-03 2,05e-03
6 1,7993 3,69e-03 2,05e-03
7 1,7993 3,69e-03 2,05e-03
8 1,7993 3,69e-03 2,05e-03
9 1,7993 3,69e-03 2,05e-03

10 1,7993 3,69e-03 2,05e-03
Monte Carlo 1,8030

ents the results of the valuation of an up-out barrier put 

(1993) model for different expansion orders. The Monte Carlo price is given by 105 paths 

using the antithetic variate method. The option’s parameters are )100ln(0 =X ; 04.00 =V ; 

100=K ; 110=L ; 05.0=r ; 24.0=T . The model’s parameters are r=µ ; 0=α ; 

5.0=γ ; 1.0=σ ; 4=λ ; 1=κ  a 05.nd 0=θ . 

 

 



 

 

Table 3.8 : Up-out barrier put price under Heston model 

Table 3.8 prese Heston (1993) 

Order Price Absolute error Relative error
0 6,6753 6,20e-02 9,38e-03
2 6,6119 1,41e-03 2,14e-04
3 6,6143 9,68e-04 1,46e-04
4 6,6116 1,70e-03 2,57e-04
5 6,6120 1,34e-03 2,02e-04
6 6,6117 1,58e-03 2,39e-04
7 6,6118 1,51e-03 2,29e-04
8 6,6118 1,55e-03 2,35e-04
9 6,6118 1,54e-03 2,32e-04

10 6,6118 1,55e-03 2,34e-04
Monte Carlo 6,6133

nts the results of the valuation of an up-out barrier put within 

model for different expansion orders. The Monte Carlo price is given by 105 paths using the 

antithetic variate method. The option’s parameters are )100ln(0 =X ; 09.00 =V ; 100=K ; 

120=L ; 05.0=r ; 1=T . The model’s parameters are r=µ ; 0=α ; 5.0=γ ; 1.0=σ ; 

1=λ ; 2=κ  and 05.0=θ . 

 



 

 

Table 3.9 : Digital down-out asset-or-nothing option  

price under Heston model 

Table 3.9 presents the results of thing option 

Order Price Absolute error Relative error
0 78,7675 1,58e-01 2,00e-03
2 78,9361 1,09e-02 1,38e-04
3 78,9344 9,17e-03 1,16e-04
4 78,9329 7,68e-03 9,73e-05
5 78,9334 8,15e-03 1,03e-04
6 78,9329 7,70e-03 9,76e-05
7 78,9330 7,83e-03 9,92e-05
8 78,9330 7,76e-03 9,83e-05
9 78,9330 7,78e-03 9,86e-05

10 78,9330 7,77e-03 9,84e-05
Monte Carlo 78,9252

 the valuation of a digital down-out asset-or-no

within Heston (1993) model for different expansion orders. The Monte Carlo price is given 

by 105 paths using the antithetic variate method. The option’s parameters are )100ln(0 =X ; 

04.00 =V ; 90=L ; 05.0=r ; 36.0=T . The model’s parameters are r=µ ; 0=α ; 

5.0=γ ; 1.0=σ ; 4=λ ; 1=κ  a 05.nd 0=θ . 

 



 

 

Table 3.10 : Digital up-in cash-or-nothing option  

price under Tahani model 

Table 3.10 presents the result tal down-out asset-or-nothing 

Order Price Absolute error Relative error
0 0,9393 3,01e-04 3,21e-04
2 0,9397 9,27e-05 9,87e-05
3 0,9396 6,97e-05 7,41e-05
4 0,9397 9,36e-05 9,96e-05
5 0,9396 8,93e-05 9,50e-05
6 0,9397 9,19e-05 9,78e-05
7 0,9397 9,11e-05 9,69e-05
8 0,9397 9,15e-05 9,73e-05
9 0,9397 9,13e-05 9,72e-05

10 0,9397 9,14e-05 9,72e-05
Monte Carlo 0,9396

s of the valuation of a digi

option within Tahani (2004) model for different expansion orders. The Monte Carlo price is 

given by 105 paths using the antithetic variate method. The option’s parameters are 

)045.0ln(0 =X ; 04.00 =V ; 1=K ; 05.0=L ; 0=r ; 1=T . The model’s parameters are 

03.0−=µ ; 01.0=α ; 0=γ ; 1.0=σ ; 4=λ ; 1=κ  and 05.0=θ . 
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