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Abstract

An important research question examined in the credit risk literature focuses on the proportion of
corporate yield spreads attributed to default risk. This topic is reexamined in the light of the different
issues associated with the computation of transition and default probabilities obtained from historical
default data. We find that the out of sample estimated default risk proportion in corporate yield spreads
is highly sensitive to the ex-ante estimated term structure of default probabilities used as inputs. This
proportion can become a large fraction of the yield spread when sensitivity analyses are made with
respect to the period over which the probabilities are estimated and the recovery rates. The computation
of approximate confidence sets evaluates the statistical precision of the estimated proportions which are
also shown to be sensitive to the different filtering procedures required to treat the historical default data
base.
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An important research question studied in the credit risk literature looks at the proportion of corporate

yield spreads explained by default risk i.e. the part of the spread rewarding the investor for the actuarial

expected default loss. This question is not only important for the pricing of bonds and credit derivatives

but also for computing banks’ optimal economic capital for credit risk (Crouhy, Galai, and Mark, 2000;

Gordy, 2000). Elton, Gruber, Agrawal and Mann (Elton et al., 2001) have verified that only a small fraction

of corporate yield spreads can be attributed to default risk or expected default loss. They got their result

from a reduced form model and have shown that the expected default loss explains no more than 25% of

corporate spot spreads. The remainder is attributed to a tax premium and a risk premium for systematic

risk. Huang and Huang (2003) reached a similar conclusion with a structural model. They verified that, for

investment-grade bonds (Baa and higher ratings), only 20% of the spread is explained by default risk.

The part of the spread rewarding the investor for the expected default loss can be seen as the product of

two key components: the probability of defaulting and the loss given default (1 - the recovery rate). Such

quantities may be inferred from databases on historical default frequencies from Moody’s and Standard and

Poor’s. For example, measuring default probabilities can be done by estimating, in a first step, the transition

probabilities between rating classes and then by using these, in a second step, to compute the term structure

of the default probability. This is the approach used in Elton et al. (2001). Although this method appears

straightforward, obtaining probability estimates with such a procedure is not a trivial exercise. As it is the

case with the measurement of recovery rates, many important issues arise in the process and the different

choices might lead to different results.

A first issue concerns the period over which the estimation is performed. As shown in Bangia et al.

(2002), transition-matrix estimates are sensitive to the period in which they are computed. Business and

credit cycles might have a serious impact on the estimated transition matrices and recovery rates and might

lead to highly different estimates for the default-risk proportion.

A second issue calling for close attention is the statistical approach. Because defaults and rating transi-

tions are rare events, the typical cohort approach used by Moody’s and Standard and Poor’s will produce

transition probabilities matrices with many cells equal to zero. This does not mean that the probability of the

cell is nil but that its estimate is nil. Such a characteristic could lead to underestimation of the default-risk

fraction in corporate yield spreads. Lando and Skodeberg (2002) have shown that a continuous-time analysis

of rating transitions using generator matrices will improve the estimates of rare transitions even when they

are not observed in the data, a result that cannot be obtained with the discrete-time cohort approach of

Carty and Fons (1993) and Carty (1997).
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A third issue arising in computing default and transition probabilities is the data filtering process which

determines the information considered about issuers’ movements in the database. For example, one must

decide whether to consider issuers that are present at the beginning of the estimation period but leave for

reasons other than default (withdrawn rating or right censoring). Another choice is whether to consider

issuers entering the database after the starting date of estimation. Again, these choices might have non-

negligible impacts on the final estimates.

A fourth consideration in computations of the default and transition probabilities is the statistical preci-

sion with which these quantities are calculated. The statistical uncertainty associated with these estimates

should be accounted for and reflected in the form of confidence intervals. It should be noticed that this

uncertainty is not a part of the default risk proportions. The default risk spread we measure here is asso-

ciated with the expected default loss. Statistical uncertainty is instead linked to the unexpected loss and

should not affect the level of the estimated default spread proportions. It does however affect the confidence

sets that can be built around the point estimates. Confidence intervals associated with the point estimates

should thus be computed and reported to ensure a meaningful interpretation of the results.

A last important issue concerns the link between recovery rates and the proportions of defaulting firms.

In the literature, this link is found to be negative (see Altman et al. (2005) and Hu and Perraudin (2002)).

Such a negative correlation is likely to result in higher default spreads: in periods where firms are more likely

to default, a lower recovery is obtained for more defaulting firms; in periods of low default, a higher recovery

will be obtained but for fewer defaulting firms. Recovery rates linked with the proportions of defaulting

firms might thus affect the estimated default spread.

In this article, we revisit the estimation of default spreads in light of the above considerations. For

this purpose, we introduce a simple continuous-time model of corporate zero-coupon bonds where default

time and default probabilities are characterized by a generator matrix describing the firms credit rating

migrations. This approach is interesting in our context because it allows us to address data filtering issues

when estimating the generator. Such a model can also be conveniently simulated. This enables us to address

the inference issue and get approximate confidence intervals for the default spread proportions. To use

historical databases for assessing the various alternatives associated with the estimation of physical default

probabilities, our model is built under an assumption of risk neutrality. Therefore, our estimates and analyses

only account for expected default loss and do not include any of the various risk premia potentially present

in corporate spreads1.

1Credit spreads are usually thought as being formed of various parts: (1) the expected default loss; (2) a risk premium on
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Our empirical analysis proceeds as follows. We first look at the issues associated with the choice of

the estimation periods and statistical approach for estimating transition matrices and computing default

probabilities. More specifically, sensitivity to the estimation period is illustrated using a rolling window

approach to estimate the ex-ante time-varying transition and default probabilities that will then be used as

inputs to get default spread proportions. This approach considers that the recent history of credit migration

and default data is the most relevant when assessing the probabilities of defaulting. Comparisons are then

made between the estimated proportions calculated with the cohort and the continuous-time generator

approach. The results show that the average default spread proportion for 10 years to maturity Baa bonds

can jump from 35% (Table 4) for the case obtained with a fixed cohort transition matrix to 54% (Table

7, 1987-1996 period) for one obtained with an ex-ante time-varying cohort transition matrix and recovery

approach. These estimates are also variable over time. For example, for the first half of our sample (1987-

1991 period), the estimated proportion jumps from 31% (Table 4) to 74% (Table 7). These results are

confirmed with the more robust generator estimation approach.

We then address the data filtering issues. Three data filtering procedures considering different types of

information are considered: the first excludes issuers entering after the starting date of estimation (entry

firms hereafter) and withdrawn-rating observations; the second one excludes only entry firm observations;

and the third considers entry firms observations and withdrawn-rating observations. Our results show that

the estimated proportions are sensitive to the choices relative to withdrawn-ratings and entry firms. Indeed,

for a Baa rated firm, the estimated proportion will range from 42% to 53% (Table 10, 1987-1996 period)

depending on the filtration approach.

Finally we study the statistical inference issues. For this purpose, we use a simulation approach to

compute approximate confidence intervals in the spirit of Christensen, Hansen, and Lando (2004). In many

cases, the 95% confidence sets are wide, illustrating the precision of the point estimates. The impact of the

negative link between the recovery and default rate is also studied in this framework. Using a recovery rate

series from Moody’s and the expected proportions of defaulting firms obtained from our simulation approach,

we get a statistical relationship similar to those estimated in the litterature. This estimated relation is used

in our simulation framework to assess the impact of stochastic recovery rates on the estimated proportions

of credit spreads in yield spreads and their associated confidence sets.

The rest of the paper is organized as follows. In Section I, we describe how the empirical bond-spread

changes in default intensity; (3) a jump risk premium on the default event; (4) a risk premium on recovery risk; (5) a tax effect,
and (6) a liquidity premium. The estimated credit spread obtained with the model used here will only include the first part,
without any risk premia.

4



curves are estimated. Section II presents the default spread model used to estimate the default proportion of

the corporate yield spread for different rating categories and maturities. Section III explains the estimation

methodologies. The numerical findings are then presented in Section IV. More precisely, Subsections A

and B present the default risk proportions obtained with this model and examine their sensitivity to the

sample period and estimation methodology of probabilities. The results from the information considered in

the default database and inference are then presented in Subsections C and D. Section V concludes.

I Empirical bond-spread curves

Our bond price data come from the Lehman Brothers Fixed Income Database (Warga, 1998). We chose this

data to facilitate comparisons with other articles in this literature using the same information. The data

contain information on monthly prices (quote and matrix), accrued interest, coupons, ratings, callability,

and returns on all investment-grade corporate and government bonds for the period from January 1987 to

December 1996. All bonds with matrix prices and options were eliminated; bonds not included in Lehman

Brothers’ bond indexes, and bonds with an odd frequency of coupon payments were also dropped. A detailed

description of the bond filtering procedure and of the treatment of accrued interest is available upon request.

Month-end estimates of the yield-spread curves on zero-coupon bonds for each rating class are needed to

implement the models. These yield-spread curves are computed from zero-coupon yield curves obtained with

the Nelson and Siegel (1987) approach on government and corporate bonds grouped in three categories: Aa,

A, and Baa. When estimating the zero-coupon yield curves of corporate bonds, in a first pass, we remove all

bonds with a pricing error higher than $5. We then repeat the Nelson and Siegel (1987) calibration procedure

and data removal procedure until all bonds with a pricing error higher than $5 have been eliminated. Using

this procedure, 776 bonds were eliminated (one Aa, 90 A, and 695 Baa) out of a total of the 33,401 bonds

found in the industrial sector, which is the focus of this study. Our results are coherent, in that all of

our estimated empirical bond-spread curves, defined as the difference in yield to maturity of corporate and

government zero-coupon bonds, are positive. Moreover, the bond-spread curves between a high rating class

and a lower rating class are also positive.

Table I reports the average corporate yield spreads for two to ten years of maturity. The results are very

close to those presented in Table 1 of Elton et al. (2001) for the industrial sector. The small discrepancies

might be explained by differences in data filtration and estimation algorithms. In the first panel, the results

cover the entire 10-year period, while the second and third panels refer to two sub-periods of five years.

Finally, Table II compares the average root mean squared errors of the difference between theoretical bond
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prices computed using the Nelson-Siegel model and the actual bond prices for treasuries and industrial

corporate bonds. Again, our results are similar to those reported in the literature.

II Default spread model

We here define the corporate yield spread as the difference between the yield curves of the risky zero-coupon

bond and the risk-free, zero-coupon bond. Therefore, to characterize corporate yield spreads, one need only

to model the values of a risk-free and a corporate zero-coupon bond. The model developed here, unlike that

of Elton et al. (2001), avoids specifying a coupon rate that might absorb effects unrelated to default risk.

The model we propose thus focuses on zero-coupon bonds and assumes that a corporate yield spread might

be totally explained by the recovery rate and the possibility of default. The model will be used to measure

how much of the observed corporate yield spread is explained by these two components.

Our model relies on a constant recovery rate ρ and the intensity {λt : t ≥ 0} associated with the dis-

tribution of τ , the default time. The risk-free discount factor for the time interval (t, T ] is β (t, T ) =

exp
(
−
∫ T

t
r(s) ds

)
where r(s) denotes the instantaneous continuously compounded risk-free rate. In the

following, it is assumed that:

(i) There exists a martingale measure Q under which the discounted value of any risk-free, zero-coupon

bond is a martingale.

(ii) In case of default, a constant fraction ρ of the market value of an equivalent risky bond is recovered at

the default time.

(iii) Under the martingale measure Q, the default time intensity is driven by a time-homogeneous Markov

process X describing the credit rating migrations of the firms. This Markov process X is characterized

by the generator matrix Λ and we assume that Λ is diagonable.

In this context, Appendix A shows that the intensity can be written as:

λt =

∑m
k=1 akdk exp (dkt)

1−
∑m

k=1 ak exp (dkt)
(1)

where the constants d1, ..., dm are the eigenvalues associated with the generator matrix Λ and the constants

a1, ..., am are functions of the components of the eigenvectors of Λ and are described explicitly in Appendix

A.

(iv) Investors are risk neutral with respect to default risk.
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Assumption (i) is needed to price a bond as its expected discounted payoff. Assumption (ii) is as in Duffie

and Singleton (1999). Assumption (iii) links the default intensity to the credit rating migration’s generator.

Therefore, the default time of high-rated bonds reflects the downgrade risk which is the main source of risk

for this type of bond. Finally, assumption (iv), which implies that the distribution of the default time τ

will remain the same under the empirical probability measure P and the martingale measure Q, is required

to allow the use of databases containing information about default probabilities in our empirical analysis.

Under these assumptions, the time t value of a corporate zero-coupon bond paying one dollar at time T is

P̃ (t, T ) = P (t, T ) exp

(
− (1− ρ)

∫ T

t

λsds

)
(2)

where P (t, T ) is the price of a risk-free, zero-coupon bond. This result is a particular case of the Duffie and

Singleton (1999) approach. A derivation of the bond price equation is in Appendix B. Given this pricing

equation, the corporate yield spread curve at time t is given by

S (t, T ) =
lnP (t, T )

T − t
− ln P̃ (t, T )

T − t
=

1− ρ

T − t

∫ T

t

λsds. (3)

The spreads can then be computed using the following discrete approximation of equation (3):

1− ρ

T − t

∫ T

t

λsds ∼=
1− ρ

n

n∑
j=1

λ̂j∆t (4)

where ∆t = (T − t)/n = 10−6 and λ̂j is the estimated default intensity process.

III Generator estimation

The corporate yield spread’s model proposed in the previous section requires the estimation of a generator,

since such a quantity appears in the construction of the intensity (1). This section describes the different

methodologies that may be used to obtain such estimates.

One approach to the estimation of default probabilities imposes little structure on the data; it consists

in forming a cohort at one point in time and counting the defaults after one period, two periods, and so

on. The drawback of such an approach stems from the large standard errors associated with the estimates.

Generating accurate estimates requires the observation of many defaults, an unlikely possibility when working

with investment grade bonds. For such a case, many estimated probabilities would simply be zero. This

approach would also make it difficult to include the information provided by new firms entering the database

and would not capture the downgrade risk.
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Another approach found in the literature uses estimates of periodic transition matrices available from

Moody’s or Standard and Poor’s via the cohort method of Carty and Fons (1993) and Carty (1997). The

transitions from one credit rating class to another are counted and estimates of transition probabilities are

calculated using the number of bonds in the cohort at the beginning of the period. Probabilities of defaulting

for more than one period can then be conveniently computed from this transition matrix using simple matrix

multiplications. This convenience comes at the cost of imposing a Markovian structure on the data and it

is not clear whether such a structure will hold. As with the preceding approach, there are also several

drawbacks associated with such estimates of default probabilities. Defaults and rating transitions are rare

events and these transition matrices still contain many cells with estimated probabilities equal to zero. This

might lead to an underestimation of the default-spread. Again, as with the preceding approach, if one builds

confidence intervals around these estimates, the results turn out to be unsatisfactory. With a small sample

size, the default-spread could be misestimated because of large sampling errors.

Lando and Skodeberg (2002) have suggested estimating a Markov-process generator rather than a one-

year transition matrix. Such a generator can then be used to compute transition matrices for any desired

horizon. As with the cohort approach, this method also imposes a Markovian structure. Lando and Skode-

berg (2002) have shown that this continuous-time analysis of rating transitions using generator matrices

improves the estimates of rare transitions even when they are not observed in the data, a result that cannot

be obtained with the discrete-time analysis of Carty and Fons (1993) and Carty (1997). A continuous-time

analysis of defaults permits estimates of default probabilities even for cells that have no defaults. This is

possible because the approach draws on the information in the transition from one class to another to infer

better estimates of the default probabilities. Finally, as shown in Christensen, Hansen, and Lando (2004),

inference in such a framework is informative and can be conveniently computed.2

As just discussed, the generator may be estimated using raw data on the timing of credit migration. We

use this approach herein under the label of “continuous-time generator”. However, for sake of comparison

with the widely used cohort approach, we must construct a generator estimate from transition probability

matrices obtained with the cohort estimation approach. As shown in Israel et al. (2001), the existence of

such a generator for a given transition probability matrix is not guaranteed. However, as proposed by these

authors, a solution to this problem is to obtain a generator that will produce a transition matrix close to

the original transition matrix. We therefore use the procedure suggested in Israel et al. (2001) to verify the

2Other recent references about estimating transition matrices and the resulting inferences issues are Jafry and Schuermann
(2004) and Hanson and Schuermann (2006).
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existence and obtain the underlying generators for the transition matrices that will be used in our empirical

analysis. Using these generators, we shall then compute the intensities with equation (1). We label this

approach “cohort”.

IV Empirical findings

A Sample period

A first key issue associated with estimating transition and default probabilities is the choice of the estimation

period. As discussed in Moeler and Molina (2003), there can be substantial variations in default probabilitiy

through time. Although we do not observe default probabilities, we can observe substantial variations in

spreads over time. These variations can be ascribed to changes in expected recovery rates, liquidity or risk

premia, but also to changes in default probabilities. Figure 1 plots the times series of empirical yield spreads

for Aa, A, and Baa industrial bonds with ten years to maturity. Given the wide variations in the spread level

over time, it is not clear that using a long history of past data to assess the probabilities of defaulting is the

best approach for our purposes. With the model described in Section II, a constant term structure of default

probabilities will generate a constant credit spread. A long history of default data updated regularly will

most likely produce term structures of default probabilities and credit spreads that will be fairly constant

over time. This would be at odds with the substantial time variations observed in spreads. Here, we adopt

the view that the most recent ex-ante credit-migration and default history is perhaps a more valid indicator

of the subjective probability of defaulting used by investors to determine the proper yield for bonds in the

various credit classes. We thus assume that, at a given year, economic agents use the most recent rating

transition data to form their anticipations about survival and default probabilities for various horizons. The

default probabilities are estimated using a rolling window approach to frame new transition and default

probabilities each year. For example, with a 1-year window, the default proportions for each month in 1987

would be assessed with default data from January 1986 to December 1986.

With such an approach, the length of the window is an important consideration. To provide some

guidance about what a proper length should be, Table III shows the sample correlations between yield

spreads and estimated default spreads obtained with our model and various window lengths. In this table,

the time series of estimated default spreads are computed with transition matrices estimated with the cohort

approach. For the whole sample, we see that short window lengths are associated with positive but modest

correlations. A detailed look of the data shows that these low correlations are mostly caused by the high

negative correlation in the first year of the sample. Removing these first 12 observations obtains correlations

9



of 0.32, 0.69 and 0.50 for Aa, A, and Baa bonds with a one-year window. These correlations are then seen

to decrease as the window length is increased and actually become negative with longer window lengths.

Figures 2 and 3 plots the time series of yield spreads and estimated default spreads on a two scale graph

for one-year and ten-years window lengths cases. As shown in these graphs, a short window length seems

in better agreement with the yield spreads than a long one. Although the one-year window length obtains

higher correlations, it is still important to look at how different window lengths affect the estimated default

proportions. We will therefore analyze the results with window lengths of one, two and three years.

To assess how different treatments of default data impact on the estimated proportions of credit spreads,

a benchmark case is required. Table IV shows the estimated proportions for such a case, computed with a

constant transition probability matrix and recovery rates as in Elton et al. (2001). This transition matrix is

the one used in their analysis and it was estimated by applying the cohort approach to Moody’s default data

for the 1970-1993 period. Although their pricing model is different from ours because it deals with coupon

bonds and a different theoretical recovery assumption, the results are almost identical. The estimated

proportions with our model are 5%, 12%, and 35% for 10 years to maturity Aa, A, and Baa bonds whereas

the Elton et al. (2001) model gets 5%, 12%, and 37%. This suggests that the results presented next cannot

be attributed to differences in our modeling approach or recovery assumptions.

Table V presents the results obtained with the time-varying probabilities’ term structure computed with

the window approach described above in this section. As with the previous table, the transition matrices

are estimated using a cohort approach. Window lengths of 1, 2, and 3 years are considered. For 2 years

to maturity bonds, the proportions are roughly doubled for the 1987-1991 period for all credit classes and

window lengths. For the ten years to maturity case, the proportions are also roughly doubled except for the

Baa case that goes from 35% in Table IV to numbers around 47% for this case. Results are also presented for

the first and second halves of our sample, that is the 1987-1991 and 1992-1996 sub-periods. As seen in the

table, the proportions vary substantially across sub-samples and window lengths. For the first part of the

sample, a shorter window length produces higher estimated default proportions, while the reverse situation

occurs for the second part of the sample. This can be explained by looking at the estimated term structure

of default probabilities shown in Table VI. Comparing the estimates for different window lengths shows

that, for the second half of the sample, a longer window length tends to include years with many defaults,

which in turns gets high estimates of default probabilities. If investors give higher weight to the information

provided by the more recent default history when forming their expectations, it is not clear that the results

obtained with a longer window length such as three years will be relevant. They are nevertheless indicative
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of the sensitivity of the estimated proportions to different sample periods for the default data.

Another of our model’s input – the recovery rate (which was assumed to be constant) – is seen to vary

greatly across time. Figure 4 plots the average recovery rates obtained from Moody’s (2005). These rates

are defined as the ratio of the defaulted bond’s market price to its face value, as observed 30 days after the

default date, for all bonds irrespective of their rating. The average recovery rates vary significantly across

time. They range from a high of 62% to a low of 28%. The average recovery rate during the 1987-1991

sub-period is equal to 40.8%, while that of the 1992-1996 sub-period is equal to 45.8%. It is also documented

in Moody’s (2005) that the recovery rates are even lower for industrial bonds. Because these recovery rates

are for all bond ratings, they can be interpreted as the recovery rates of bonds with an average risk. They

should thus approximate well the expected recovery rates of Baa ratings, a category falling between the

high quality investment grade bonds (like Aaa, Aa, and A) and the speculative grades (like Ba, B, and

Caa-C). Table VII shows the average proportions obtained for Baa bonds using these time varying recovery

rates. Again, these rates are used ex-ante. Thus, to get the 1987 average default proportion, the average

recovery rate estimated for 1986 was used. Using these time varying recovery rates does affect the results.

For example, for the one-year window case with 10 years to maturity, the proportions of 47%, 64% and 29%

(Table 5) for the whole sample and the two subsamples move up to 53%, 74%, and 33% (Table 7). The effect

is similar but less pronounced for the two years to maturity case.

B Generator’s estimation

As mentioned in the introduction, estimating the transition matrices, generators and default probabilities

used to measure the proportion of the spread from default data involves the choice of a particular statistical

approach. It is not clear that the results for default proportions are invariant to these different approaches.

We have already used the cohort approach in the previous subsection. The goal here is to see whether

continuous-time estimation of the generator produces similar results.

Table VIII presents the results with the time-varying probabilities calculated with the window approach

but now using generators estimated with the continuous-time approach. From a comparison with Table V,

we find only marginal impacts in most cases. Our earlier results, which were obtained by applying the cohort

method to small sample sizes, might have inherited of the large sampling errors associated with this approach.

We find here that the generator approach, which has been found to have better statistical properties, brings

similar results and confirms our preceding findings.

11



C Data filtering

We discuss here the impact of the data filtering process and the information considered when estimating

transition matrices and generators. Such an analysis is important for financial institutions that are building

their own internal rating system for Basel II and for the regulators who will have to monitor these systems.

When working with default databases, one must deal with issuers’ movements in the database. For

example, a decision must be made about whether to consider issuers that are present at the beginning

of the estimation period but leave for reasons other than default. Such cases will be referred to here as

withdrawn ratings (or right censoring). Another decision is whether or not to consider issuers that enter

the database after the starting date of estimation. These cases will be referred to as entry firms. Excluding

withdrawn ratings and entry firms is more in the spirit of Moody’s standard cohort analysis, which also

produces statistics including withdrawals (right censoring).

To show the impact of these decisions on the data set used to estimate a generator, Table IX examines the

data composition with respect to the three filtering alternatives. First, we exclude entry firm and withdrawn-

rating data. Second, we include entry firm and right censored data. Finally, we exclude entry firm data but

include withdrawals. The analysis was done for the 1987-1996 period and for the 1987-1991 and 1992-1996

sub-periods. We observe, from Table IX, that the proportions of default issuers (Defaults/Issuers) vary

substantially when the filtering approach is varied. For example, when compared with the case of entry

and withdrawal exclusion, this proportion decreases when including withdrawals and entry firm data. These

differences in proportions might affect the estimated generators and default probabilities. A sensitivity

analysis of the impact of these issues on corporate default proportions is thus done here.

Table X presents a sensitivity analysis of the data filtering procedure. As the results show, important

differences are observed. For a Baa rated firm, the 10 years to maturity default spread proportion goes from

42% to 53%. The case of excluded withdrawn-ratings and entry data reports higher default proportions. A

detailed examination of the results also shows that these are essentially caused by higher estimates of default

probabilities. We observe, from Table IX, that the number of defaults is the same in the first and third

cases, while the numbers of issuers and rating observations are higher in the third case. Inclusion of the

withdrawals reduces default probabilities and default risk proportions in yield spreads. The same conclusion

is obtained when entry firms are added. Default-risk proportions and implied default probabilities are even

lower.
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D Inference

As argued in the introduction, inference is another important issue associated with computing default pro-

portions. Because defaults are rare events, default probabilities and recovery rates are typically estimated

with much uncertainty. Statistical confidence intervals should thus be reported to allow meaningfull inter-

pretations of the point estimates. We thus propose here a procedure, based on the parametric bootstrap

simulation approach described in Christensen, Hansen, and Lando (2004), to compute approximate confi-

dence intervals for the estimated default proportions. The procedure is as follows:

• In a first step, using the one-year cohort transition matrices with which the default spread proportions

were assessed in Tables V and VII, we compute the 10 associated generators using the procedure in

Israel et al. (2001). These estimated generators are considered the true generators governing the data

generating process.

• The second step then repeats, for each year of our sample period, the following procedure. Using

the estimated generator got in the first step and the distribution of issuers at the beginning of the

year, we simulate one year of rating history for each issuer (see Appendix D for details about this

simulation procedure). A generator is then estimated with the yearly rating histories of all issuers.

A term structure of credit spread can then be computed using equation (3) and the proportions of

default in the spread for this year can be assessed. Using the estimated proportions for each of the 10

years, we then compute an average proportion for the whole 10-year period and the two sub-periods

of 5 years.

The second step is repeated 10,000 times to generate 10,000 estimates of average default proportions

in yield spreads. We then compute different statistics (mean, median, percentiles 2.5 and 97.5 used as our

approximate confidence intervals) of the average default proportion for each rating and maturity. Table

XI reports the distribution of issuers by rating at the starting date of the years over which our transition

matrices were estimated. Two different sets of results are looked at. The first set does not account for the

sampling variability of the recovery rates which are considered constant. A second set of results then looks

at cases for which a variability is introduced for these rates.

Table XII reports the results for the approximate confidence intervals obtained with the simulation

approach for the whole sample and the two sub-periods of our data set for the constant recovery rate case.

The results from this table should be compared to those of Table V for the one-year window case. As should
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be expected, the averages of the mean default spread proportions are very close to those reported in Table

V. The 95% confidence intervals, reported under the columns labeled ub and lb (upper and lower bound),

are wide in many cases, especially for the 1987-91 period for the 10 years to maturity bond case.

A caveat about these measures is the use of constant recovery proportions which are at odds with the

wide variations in recovery rates observed over time (see Section A). The results from Table XII might

thus understate the estimated proportions and sampling variability because of the fixed recovery used in

the procedure. Indeed, empirical evidence reported in Hu and Perraudin (2002) and Altman et al. (2005)

finds that recovery rates are negatively correlated with the proportions of defaulting firms. This negative

correlation is likely to result in higher default spreads: in periods for which firms are more likely to default, a

smaller recovery will be obtained for a greater number of defaulting firms; in periods in which firms are less

likely to default, a higher recovery will be obtained, but for a smaller number of defaulting firms. Another

way to see the effect of this negative correlation is to realize that the expected default loss can be seen

as the product of the probability of default and the loss given default (one minus the recovery rate). The

expected value of this product of random variables implies a positive covariance that is nil when the recovery

is considered non random.

Table XIII thus reports the results for cases with (i) non-random but time-varying recovery rates and (ii)

random recovery rates. The first panel of this table reports the results of the simulation procedure amended

with non-random, time-varying recovery rates. These rates come from the yearly recovery time series used

in Table VII. Again, as argued in section A, because these rates are measured without rating distinctions,

they can be interpreted as the recovery rates of bonds with an average risk and should approximate well the

expected recovery rates of Baa ratings, a category falling between the investment and non-investment grade

bonds. The results from this panel should be compared with those from the one-year window case of Table

VII. Again, averages for the mean default spreads are very close to those of Table VII. The recovery rates

generating the above results capture some of the negative correlation effects between recovery and default

rates. In our simulation framework, this can be measured by looking at the correlation of the recovery

rate series with the average proportions of defaulting firms obtained from simulating 10,000 rating histories.

These average proportions of defaulting firms obtained for years 1986 to 1995 are (in %) 2.24, 1.36, 1.13,

1.84, 2.78, 3.55, 1.75, 1.53, 0.73, and 1.03. As shown in Figure 4, there is a negative relation between the

recovery rates and our simulated average proportions of defaulting firms. The correlation of these two series

is estimated to be -0.51.
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Although these rates capture some of the negative relation between the recovery and defaulting firm

proportions, they might understate the estimated portion of the spread rewarding the investor for default.

Indeed, they are not statistically linked with the proportions of defaulting firms in each of our 10,000 rating

hitories. The second panel of Table XIII thus reports the results of our procedure amended for random

recovery rates generated with the following specification:

ln(Recoveryt) = −1.797− 0.222× ln(DefPropt) + ut

where DefPropt is the proportion of default firms in the simulated history for year t and ut is a random

N
(
0, 0.22

)
variate. The coefficients from this relationship are derived from a least-square regression of the log

recovery series on the above log average default rate series. In Altman et al. (2005), such a specification was

found to be the best for describing the empirical relationship between the recovery rates and the proportion

of defaulting firms. Interestingly, our estimated coefficients are close to those reported in Altman et al.

(2005) which are estimated with different data series and sample periods. Their estimates are −1.983 for the

intercept and −0.293 for the slope while their sample period is 1982 to 2001. Our system is thus generating

average defaulting firm proportions with properties close to the observed defaulting firm proportions used

in Altman et al. (2005)3.

With such a specification, our estimated default spread proportions have increased to 56%, 76%, and

35% for the whole sample and the two sub periods. The confidence intervals are also now wider because of

the additional uncertainty brought in by the random recovery rates.

V Conclusion

We have revisited the estimation of default-risk proportions in corporate yield spreads. Past studies have

found that only a small proportion of the spreads can be attributed to default risk. Such results do not

hold for all periods of our 1987-1996 sample when sensitivity analyses are made with respect to the sample

period used to estimate ex-ante default and transition probabilities. We find here that the 1987-1991 period

corresponds to a high default period, while the 1992-1996 period corresponds to a low default period. The

estimated proportions can reach 76% of the estimated spread for maturities of ten years for Baa bonds during

the 1987-1991 period. We also find that the estimated proportion of default in credit spread is sensitive to

changes in recovery rates and to the data filtration approach used to estimate default probabilities. Finally,

3A specification in levels instead of logarithms was also estimated and examined in our simulation framework. Again, the
coeficients were close to those found in Altman et al. (2005). The estimated default spread proportions and confidence intervals
were similar to those got from the log specification.
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the sampling variability is estimated to be large in many cases.

These conclusions are important for financial institutions planning to use internal rating systems and

for the regulators that will have to monitor these systems. For example, the Basel II accord on banking

regulations recommends measuring the required capital for credit risk4 based on three parameters: exposure

at default, probability of default, and loss given default. As our study confirms, the use of probabilities

estimated from long histories of default data produces default spreads that are at odds with the observed

credit spreads and might underestimate the required capital for default in certain periods. Furthermore,

in Basel II, the loss given default for a given risk pool is discussed mostly as a constant parameter over

the business cycles. Our results show that default spread estimates are sensitive to the use of time-varying

loss given defaults (recovery rates) and their correlation with default proportions. This correlation increases

the default component of credit risk and should also be accounted for when computing required capital.

Basel II also puts emphasis on the documentation of the credit risk rating system related to the internal

ratings based approach. This approach requires accurate statistical models based on appropriate data. A

participating bank must document that the data are representative of the bank’s risks. Our results show that

the estimated default risk proportion in credit spreads is function of data filtration for estimating default

risk. Therefore, the bank should document its data filtration approach and the regulatory authority should

be able to monitor this approach.

Our study could be extended in several directions by relaxing some of the restrictive assumptions used

here. First, the assumption of risk neutrality could be relaxed. Risk-neutral probabilities different from the

default probabilities obtained under the objective measure could then be computed. Building confidence

intervals around such estimates might produce results that leave little room for taxes once liquidity premia

are taken into account. This would produce results consistent with the vast and successful literature on

derivative securities in which the inclusion of taxes has been found to be of little help.

Finally, it should be noticed that we have observed substantial increases in the estimated proportion

in the first half of our sample only. The results in the 1991-1996 low default period confirms that a small

proportion of the spread is attributable to the default risk.
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Appendix A Intensity under assumption (iii)

If the generator matrix Λ is diagonable, then one can write Λ = PDP−1 where the columns of the matrix

P contain the eigen vectors of Λ and D = (di) is a diagonal matrix filled with the eigen values of Λ. Let

Qt = (Q [Xt = j |X0 = i ])i,j=1,...,m denotes the transition matrix of the Markov process X. Then

Qt = exp (Λt) =
∞∑
k=1

(Λt)
k

k!
=

∞∑
k=1

PDkP−1tk

k!
= P exp (Dt)P−1

=

(
m∑

k=1

pik exp (dkt) p
−1
kj

)
i,j=1,...,m

where pij are the components of P, p−1
ij are the components of P−1, and the first equality is justified by

the definition of the generator of a time-homogenous Markov process. Let τi be the default time of a firm

initially rated i and note that the default state corresponds to state m. The cumulative distribution of τi is

Q [τi ≤ t] = Q [Xt = m |X0 = i ] . Therefore, the intensity associated with τi is

λi,t =
∂
∂tQ [Xt = default |X0 = i ]

1−Q [Xt = default |X0 = i ]
=

∑m
k=1 pikp

−1
kmdk exp (dkt)

1−
∑m

k=1 pikp
−1
km exp (dkt)

=

∑m
k=1 akdk exp (dkt)

1−
∑m

k=1 ak exp (dkt)
.

Appendix B Default spread model derivation

In case of default, the bondholder recovers, at time τ, a fraction of the market value of an equivalent bond.

The value of the corporate zero-coupon bond is expressed as the expectation, under the martingale measure

Q, of its discounted payoff:

P̃ (t, T ) = EQ
t

[
β (t, T )1τ>T + β (t, τ) ρP̃ (τ, T )1τ≤T

]
= EQ

t

[
exp

(
−
∫ T

t

[r(s) + (1− ρ)λs] ds

)]

= EQ
t

[
exp

(
−
∫ T

t

r(s)ds

)]
exp

(
− (1− ρ)

∫ T

t

λsds

)

= P (t, T ) exp

(
− (1− ρ)

∫ T

t

λsds

)

where the second line is obtain using results from Duffie and Singleton(1999).

Appendix C Data description for transition matrix estimation

The rating transition histories used to estimate the generator are taken from Moody’s Corporate Bond

Default Database (January, 09, 2002). We consider only issuers domiciled in the United States and having

at least one senior unsecured estimated rating. We started with 5,719 issuers (in all industry groups) with
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46,305 registered debt issues and 23,666 ratings observations. For each issuer we checked the number of

default dates in the Master Default Table (Moody’s, January, 09, 2002). We obtained 1,041 default dates

for 943 issuers in the period 1970-2001. Some issuers (91) had more than one default date. In the rating

transition histories, there are 728 withdrawn ratings that are not the last observation of the issuer. These

irrelevant withdrawals were eliminated and so we obtained 22,938 ratings observations.

The most important and difficult task is to get a proper definition of default. In order to compare

our results with recent studies, we treat default dates as do Christensen et al. (2004). First, all the non

withdrawn-rating observations up to the date of default have typically been unchanged. However, the ratings

that occur within a week before the default date were eliminated. Rating changes observed after the date of

default were eliminated unless the new rating reached the B3 level (which is a subcategory of the B rating)

or higher and the new ratings were related to debt issued after the date of default. In theses cases we treated

theses ratings as related to a new issuer. It is important to emphasize that the first rating date of the new

issuer is the latest date between the date of the first issue after default and the first date we observe an

issuer rating higher than or equal to B3. The same treatment is applied for the case of two and three default

dates. Finally, a few issuers have a registered default date which falls before the first rating observation in

the Senior Unsecured Estimated Rating Table (Moody’s, January, 09, 2002). In these cases, we considered

that there was no default. With this procedure we got 5821 issuers with 965 default dates. We aggregated

all rating notches and ended up with the nine usual ratings Aaa, Aa, A, Baa, Ba, B, Caa-C, Default, and

NR (Not Rated) with 15,564 rating observations.

Appendix D Simulation procedure for the rating history

The procedure for simulating a rating history of T years for an issuer is as follows. With the initial rating i,

we simulate t1, the waiting time for leaving this state. This waiting time is simulated with an exponential

distribution with mean 1
|λii| , where λii are the elements of the generator matrix for j = i. If t1 > T , the

issuer stays in its current rating for the whole period and the simulation ends. If the waiting time is shorter

than T years, we determine the rating class to which it migrates. To do this, the interval [0, 1] is divided

into sub-intervals with the migration intensities
λij

|λii| for all j ̸= i. A uniform random variate between 0 and

1 is then drawn to determine the new rating. If the new rating is not a default (in which case the simulation

ends), we then determine whether the company stays with the new rating or migrates, i.e. we draw a waiting

time t2 and verify if t1 + t2 > T. If t1 + t2 > T , the simulation ends. If t1 + t2 < T , we have to determine

the new rating. The procedure is repeated until
∑

tk > T or the firm migrates to the default state.
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Table I: Measured corporate yield spreads

Years to maturity 2 3 4 5 6 7 8 9 10

1987-1996
Average Treasury yields (%) 6.454 6.709 6.920 7.090 7.226 7.337 7.426 7.500 7.562
Average Aa yield spread (%) 0.413 0.416 0.447 0.477 0.502 0.526 0.548 0.569 0.590
Average A yield spread (%) 0.612 0.672 0.722 0.752 0.769 0.776 0.779 0.778 0.776
Average Baa yield spread (%) 1.180 1.206 1.229 1.237 1.234 1.224 1.210 1.193 1.174

1987-1991
Average Treasury yields (%) 7.601 7.775 7.928 8.054 8.157 8.241 8.309 8.364 8.410
Average Aa yield spread (%) 0.512 0.495 0.515 0.545 0.579 0.617 0.656 0.697 0.738
Average A yield spread (%) 0.737 0.802 0.845 0.869 0.882 0.889 0.893 0.895 0.896
Average Baa yield spread (%) 1.421 1.400 1.402 1.400 1.391 1.379 1.363 1.346 1.328

1992-1996
Average Treasury yields (%) 5.306 5.643 5.912 6.126 6.296 6.433 6.544 6.636 6.713
Average Aa yield spread (%) 0.315 0.336 0.379 0.409 0.425 0.434 0.439 0.441 0.442
Average A yield spread (%) 0.487 0.543 0.599 0.635 0.655 0.664 0.665 0.661 0.655
Average Baa yield spread (%) 0.939 1.012 1.056 1.074 1.077 1.070 1.057 1.040 1.019

This table reports the average corporate spot yield spreads for industrial Aa, A, and Baa corporate bonds for maturities

from two to ten years. Corporate bond spreads are calculated as the difference between the corporate spot rates and treasury

spot rates for a given maturity. Spot rates were computed using the Nelson-and-Siegel (1987) model. The first panel contains

the average treasury spot rates and corporate yield spreads over the entire 10-year period of our sample. The second panel

contains the averages for the first five years of our sample and the third panel contains the averages for the second five years.
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Table II: Average root mean squared errors

Treasuries Aa A Baa

1987-1996 0.220 0.525 0.812 1.458
1987-1991 0.304 0.555 0.876 1.387
1992-1996 0.136 0.496 0.748 1.529

This table presents the average root mean squared errors obtained from the difference between theoretical bond prices computed

using the Nelson-and-Siegel model and the actual bond prices for treasuries and industrial Aa, A, and Baa corporate bonds.

The estimation procedure is described in Section 2. Root mean squared error is measured in cents per dollar. For a given class

of bonds, the root mean squared error is calculated once per period (month). The number reported is the average of all root

mean squared errors within a given class over the months of the corresponding period.
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Table III: Correlations between the yield spreads and estimated default spreads for varying sampling window
lengths

Window 1 year 2 years 3 years 5 years 7 years 10 years

Industrial Aa bonds
1987-1996 0.12 0.18 0.08 -0.23 -0.67 -0.75
1987 -0.94 -0.94 -0.94 -0.94 -0.94 -0.94
1988-1996 0.32 0.32 0.12 -0.20 -0.72 -0.82

Industrial A bonds
1987-1996 0.36 0.39 0.34 0.27 -0.45 -0.70
1987 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99
1988-1996 0.69 0.48 0.36 0.30 -0.50 -0.78

Industrial Baa bonds
1987-1996 0.34 0.14 -0.04 -0.30 -0.62 -0.59
1987 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97
1988-1996 0.50 0.18 -0.02 -0.28 -0.69 -0.64

This table reports the correlations between the 10 years to maturity estimated default spread, Equation (3), and the correspond-

ing Nelson-Siegel yield spread. The generators have been estimated using the cohort method and several sampling window

lengths. Recovery rates are 59.59% for Aa, 60.63% for A, and 49.42% for Baa. These rates are from Altman and Kishore (1998)

and were used in Elton et al. (2001).
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Table IV: Average default spread proportions: constant Moody’s cohort transition matrix

2 years 10 years

Proportions (%) Aa
1987-1996 0.55 4.97
1987-1991 0.43 3.90
1992-1996 0.66 6.03

Proportions (%) A
1987-1996 2.27 11.79
1987-1991 1.82 10.04
1992-1996 2.72 13.54

Proportions (%) Baa
1987-1996 9.68 34.78
1987-1991 7.37 31.03
1992-1996 12.00 38.53

This table reports the average of two and ten years to maturity default spread proportions obtained with the Moody’s matrix
reported in Elton et al. (2001) and used over the entire 10-year period. This matrix is estimated with Moody’s data over the
1970-1993 period. Recovery rates, from Altman and Kishore (1998), are 59.59% for Aa, 60.63% for A, and 49.42% for Baa.
Averages are computed for the entire 10-year period and the two 5-year sub-periods of our sample.
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Table V: Average default spread proportions: Moody’s time-varying cohort transition matrices

2 years to maturity 10 years to maturity
Window 1 year 2 years 3 years 1 year 2 years 3 years

Proportions in %: Industrial Aa bonds
1987-1996 1.45 1.44 1.48 10.88 11.14 11.49
1987-1991 2.61 2.41 2.16 17.76 16.47 14.60
1992-1996 0.29 0.46 0.81 3.99 5.80 8.38

Proportions in %: Industrial A bonds
1987-1996 5.42 4.93 4.77 20.02 20.40 20.64
1987-1991 9.43 7.86 6.72 31.83 29.43 26.00
1992-1996 1.42 1.99 2.81 8.21 11.37 15.29

Proportions in %: Industrial Baa bonds
1987-1996 16.89 16.39 18.09 46.56 47.68 48.93
1987-1991 23.53 21.83 21.79 64.23 62.22 55.70
1992-1996 10.26 10.95 14.39 28.90 33.14 42.16

This table reports the average of two and ten years to maturity default spread proportions for generators estimated with the

cohort approach and a rolling window of 1, 2, and 3 year lengths of ex-ante default data. Recovery rates, from Altman and

Kishore (1998), are 59.59% for Aa, 60.63% for A, and 49.42% for Baa. Averages are computed for the entire 10-year period

and the two 5-year sub-periods of our sample.
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Table VI: Estimated term structure of default probabilities: Moody’s time-varying cohort transition matrices

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
Default probabilities in %: 1 year window

1 1.55 0.15 0.07 0.59 0.23 0.59 0.27 0.02 0.01 0.03
2 3.38 0.56 0.29 1.65 0.85 1.53 0.63 0.09 0.05 0.10
3 5.46 1.20 0.66 3.13 1.81 2.80 1.08 0.21 0.13 0.22
4 7.76 2.03 1.17 4.96 3.07 4.39 1.61 0.39 0.23 0.38
5 10.23 3.02 1.80 7.08 4.60 6.24 2.21 0.62 0.37 0.57
6 12.84 4.14 2.54 9.43 6.37 8.32 2.88 0.91 0.54 0.80
7 15.53 5.37 3.38 11.96 8.33 10.57 3.61 1.24 0.74 1.05
8 18.27 6.68 4.29 14.61 10.45 12.95 4.38 1.60 0.97 1.32
9 21.04 8.06 5.28 17.34 12.69 15.42 5.18 2.00 1.22 1.62
10 23.81 9.50 6.32 20.12 15.02 17.94 6.02 2.42 1.50 1.94

Default probabilities in %: 2 years window
1 0.81 0.77 0.10 0.30 0.29 0.30 0.41 0.13 0.02 0.02
2 1.87 1.82 0.41 0.90 1.07 0.93 1.00 0.33 0.07 0.07
3 3.16 3.11 0.89 1.77 2.30 1.90 1.77 0.60 0.17 0.15
4 4.64 4.60 1.54 2.88 3.91 3.18 2.71 0.94 0.31 0.27
5 6.29 6.26 2.33 4.20 5.85 4.75 3.81 1.34 0.49 0.42
6 8.07 8.04 3.24 5.69 8.07 6.56 5.03 1.80 0.72 0.60
7 9.95 9.93 4.25 7.31 10.49 8.57 6.37 2.31 0.98 0.81
8 11.91 11.89 5.34 9.05 13.07 10.74 7.80 2.85 1.28 1.06
9 13.93 13.91 6.51 10.87 15.77 13.03 9.29 3.43 1.61 1.32
10 15.99 15.96 7.73 12.76 18.53 15.41 10.84 4.04 1.97 1.62

Default probabilities in %: 3 years window
1 0.66 0.53 0.51 0.21 0.20 0.38 0.28 0.27 0.09 0.02
2 1.49 1.32 1.25 0.70 0.75 1.18 0.80 0.66 0.22 0.08
3 2.50 2.34 2.18 1.46 1.64 2.38 1.55 1.18 0.41 0.18
4 3.66 3.55 3.30 2.44 2.83 3.93 2.52 1.83 0.66 0.31
5 4.95 4.92 4.57 3.61 4.27 5.79 3.70 2.59 0.96 0.49
6 6.36 6.42 5.97 4.95 5.93 7.90 5.05 3.45 1.31 0.71
7 7.87 8.03 7.47 6.42 7.77 10.22 6.55 4.39 1.70 0.96
8 9.45 9.71 9.06 8.00 9.74 12.69 8.18 5.40 2.13 1.24
9 11.09 11.46 10.71 9.66 11.82 15.27 9.90 6.46 2.60 1.55
10 12.76 13.24 12.40 11.38 13.97 17.92 11.69 7.57 3.09 1.88

Estimated term structure of default probabilities for horizons of one to ten years and window lengths of 1, 2, and 3 years of

ex-ante default data.
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Table VII: Average default spread proportions: Moody’s time-varying cohort transition matrices and recovery
rates

2 years to maturity 10 years to maturity
Window 1 year 2 years 3 years 1 year 2 years 3 years

Proportions in %: Industrial Baa bonds
1987-1996 19.65 17.84 19.83 53.44 52.88 54.16
1987-1991 27.58 23.58 23.82 73.79 68.56 61.29
1992-1996 11.72 12.09 15.84 33.09 37.20 47.04

This table reports the average of two and ten years to maturity default spread proportions for generators estimated with the

cohort approach and a rolling window of 1, 2, and 3 year lengths of ex-ante default data. Time-varying recovery rates, obtained

from Moody’s 2005 database, have been used here and are defined as the ratio of the defaulted bond’s market price, observed

30-days after its default date, to its face value (par) for all bonds.
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Table VIII: Average default spread proportions: Moody’s time-varying generators

2 years to maturity 10 years to maturity
Window 1 year 2 years 3 years 1 year 2 years 3 years

Proportions in %: Industrial Aa bonds
1987-1996 1.61 1.94 2.22 8.94 10.37 11.18
1987-1991 3.06 3.70 3.40 14.87 16.61 15.13
1992-1996 0.16 0.18 1.03 3.01 4.13 7.24

Proportions in %: Industrial A bonds
1987-1996 3.11 3.20 3.37 15.78 17.80 19.12
1987-1991 5.12 5.02 4.67 25.03 26.48 24.30
1992-1996 1.10 1.38 2.07 6.53 9.11 13.95

Proportions in %: Industrial Baa bonds
1987-1996 12.46 14.19 16.64 42.76 48.80 52.84
1987-1991 15.20 16.28 16.49 59.50 63.05 58.83
1992-1996 9.73 12.09 16.80 26.02 34.55 46.84

This table reports the average of two and ten years to maturity default spread proportions for estimated generators computed

using the continuous-time approach and a rolling window of 1, 2, and 3 year lengths of ex-ante default data. Recovery rates,

from Altman and Kishore (1998), are 59.59% for Aa, 60.63% for A, and 49.42% for Baa. Averages are computed for the entire

10-year period and the two 5-year sub-periods of our sample.
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Table IX: Sensitivity to data filtering

Excluding Including Including withdrawals
withdrawals and entry withdrawals and entry and excluding entry

87-96 87-91 92-96 87-96 87-91 92-96 87-96 87-91 92-96
Issuers 1,239 1,539 1,432 3,879 2,656 3,090 1,977 1,977 1,867
Rating observations 2,731 2,672 2,236 7,652 4,690 4,829 4,590 3,667 3,213
Defaults 250 196 92 399 267 132 250 196 92
Defaults/Issuers 20.18% 12.74% 6.42% 10.29% 10.05% 4.27% 12.65% 9.91% 4.93%

This table reports the number of firms, transitions, and defaults used to estimate the continuous-time transition matrices.

There are three cases: (1) exclusion of withdrawals and exclusion of entry firms; (2) inclusion of withdrawals and inclusion of

entry firms; (3) inclusion of withdrawals and exclusion of entry firms.
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Table X: Average default spread proportions: sensitivity to data filtering

2 years to maturity 10 years to maturity
wre & efe wri & efe wri & efi wre & efe wri & efe wri & efi

window length: 1 year
Proportions (in %): industrial Aa bonds

1987-1996 1.61 1.55 1.37 8.94 8.94 8.01
1987-1991 3.06 2.94 2.59 14.87 14.93 13.34
1992-1996 0.16 0.16 0.15 3.01 2.95 2.68

Proportions (in %): industrial A bonds
1987-1996 3.11 3.09 2.71 15.78 15.80 14.25
1987-1991 5.12 5.11 4.45 25.03 25.37 22.75
1992-1996 1.10 1.06 0.97 6.53 6.22 5.75

Proportions (in %): industrial Baa bonds
1987-1996 12.46 12.42 11.51 42.76 42.35 38.81
1987-1991 15.20 15.44 14.11 59.50 59.89 54.24
1992-1996 9.73 9.39 8.91 26.02 24.81 23.38

window length: 2 years
Proportions (in %): industrial Aa bonds

1987-1996 1.94 1.81 1.52 10.37 10.17 8.76
1987-1991 3.70 3.45 2.88 16.61 16.40 13.92
1992-1996 0.18 0.18 0.16 4.13 3.95 3.59

Proportions (in %): industrial A bonds
1987-1996 3.20 3.12 2.64 17.80 17.45 15.09
1987-1991 5.02 4.95 4.15 26.48 26.37 22.42
1992-1996 1.38 1.29 1.13 9.11 8.52 7.75

Proportions (in %): industrial Baa bonds
1987-1996 14.19 13.65 12.06 48.80 46.74 41.17
1987-1991 16.28 15.83 13.48 63.05 61.06 52.10
1992-1996 12.09 11.47 10.63 34.55 32.43 30.24

window length: 3 years
Proportions (in %): industrial Aa bonds

1987-1996 2.22 1.97 1.72 11.18 10.65 9.37
1987-1991 3.40 3.07 2.68 15.13 14.77 12.89
1992-1996 0.87 0.87 0.77 7.24 6.54 5.84

Proportions (in %): industrial A bonds
1987-1996 3.37 3.17 2.62 19.12 18.08 15.46
1987-1991 4.67 4.49 3.65 24.30 23.62 19.74
1992-1996 2.07 1.85 1.60 13.95 12.54 11.17

Proportions (in %): industrial Baa bonds
1987-1996 16.64 15.43 13.30 52.84 48.74 42.48
1987-1991 16.49 15.45 12.61 58.83 55.13 46.26
1992-1996 16.80 15.40 13.98 46.84 42.36 38.69

This table reports the average of two and ten years to maturity default spread proportions for generators estimated with the

continuous-time approach and a rolling window. Three cases are examined for each maturity; wre & efe : withdrawn ratings

exclusion and entry firm exclusion; wri & efe : withdrawn rating inclusion and entry firm exclusion; wri & efi : withdrawn

rating inclusion and entry firm inclusion. Recovery rates, from Altman and Kishore (1998), are 59.59% for Aa, 60.63% for A,

and 49.42% for Baa.
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Table XI: Rating distributions

Aaa Aa A Baa Ba B Caa-C
1986 64 253 537 326 351 174 7
1987 65 253 511 328 445 254 11
1988 74 235 511 337 491 308 9
1989 73 214 520 348 492 341 12
1990 75 205 504 338 476 356 14
1991 71 198 495 361 402 316 19
1992 67 176 484 374 357 264 19
1993 56 164 491 393 365 265 19
1994 54 166 526 416 391 313 35
1995 50 176 553 409 386 407 54

This table reports the distribution of issuers, by rating, at the starting date of the estimation period used to construct the

confidence sets of average default-spread proportions.
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Table XII: Approximate confidence intervals for default spread proportions with fixed recovery rates

2 years to maturity 10 years to maturity
mean std lb ub mean std lb ub

Proportions in %: industrial Aa bonds
1987-1996 1.44 0.75 0.78 2.74 10.68 1.40 8.18 13.63
1987-1991 2.59 1.15 1.35 4.61 17.44 2.59 12.78 22.93
1992-1996 0.29 0.95 0.08 0.44 3.92 1.03 2.34 6.15

Proportions in %: industrial A bonds
1987-1996 5.44 0.90 3.84 7.37 19.82 1.92 16.17 23.75
1987-1991 9.46 1.72 6.40 13.14 31.51 3.48 25.00 38.72
1992-1996 1.42 0.48 0.61 2.48 8.12 1.56 5.35 11.48

Proportions in %: industrial Baa bonds
1987-1996 16.88 2.70 11.99 22.49 46.15 3.83 38.77 53.88
1987-1991 23.52 4.38 15.87 32.75 63.63 6.30 51.78 76.56
1992-1996 10.23 3.15 4.97 17.14 28.67 4.28 20.74 37.52

This table reports the mean, standard error (std), and percentiles 2.5 and 97.5 (columns lb and ub) of average default-spread

proportions for 2 and 10 years to maturity zero-coupon bonds obtained from Monte Carlo simulations using the time-varying

cohort matrices from the rolling window approach with a 1 year length of ex-ante default data. The recovery rates, from Altman

and Kishore (1998), are 59.59% for Aa, 60.63% for A, and 49.42% for Baa.
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Table XIII: Approximate confidence intervals for default spread proportions with random recovery rates

2 years to maturity 10 years to maturity
mean std lb ub mean std lb ub

Prop. in % Baa bonds: non-random time-varying recovery
1987-1996 19.02 3.05 13.51 25.34 52.01 4.32 43.70 60.72
1987-1991 26.51 4.94 17.88 36.91 71.71 7.10 58.35 86.28
1992-1996 11.53 3.54 5.60 19.32 32.31 4.82 23.38 42.28

Proportions in % Baa bonds: random recovery
1987-1996 20.39 3.57 13.93 27.95 55.75 5.72 44.78 67.19
1987-1991 28.17 5.87 18.05 40.76 76.15 9.66 58.05 96.06
1992-1996 12.60 4.05 5.92 21.60 35.35 6.05 24.40 47.98

This table reports the mean, standard error (std), and percentiles 2.5 and 97.5 (columns lb and ub) of average default-spread

proportions for 2 and 10 years to maturity zero-coupon bonds obtained from Monte Carlo simulations using the time-varying

cohort matrices from the rolling window approach with a 1 year length of ex-ante default data. The time-varying, non-random

recovery rates are from Moody’s (2005) and are defined as the ratio of the defaulted bond’s market price, observed 30-days after

its default date, to its face value (par) for all bonds. The random time-varying recovery rates are computed, for each simulated

history of ratings, with ln(Recoveryt) = −1.797− 0.222× ln(DefPropt) + ut where DefPropt is the proportion of default in the

simulated history for year t and ut is a random N
(
0, 0.22

)
variate.
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Figure 1: Ten years to maturity corporate yield spread levels

0

0.005

0.01

0.015

0.02
Aa

0.005

0.01

0.015
A

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
0.005

0.01

0.015

0.02

0.025
Baa

This figure shows the ten year to maturity zero-coupon yield spread levels estimated with the Nelson-Siegel approach on samples

of corporate coupon bonds from January 1987 to December 1996.
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Figure 2: One year window length
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Default spread

This figure shows on two scale graphs the yield spreads and the estimated default spreads for ten years to maturity Baa

zero-coupon bonds from January 1987 to December 1996. For each year, the estimated spreads are estimated with default

probabilities based on a one-year window of out of sample default data and the cohort approach.
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Figure 3: Ten years window length
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Default spread

This figure shows on two scale graphs the yield spreads and the estimated default spreads for ten years to maturity Baa

zero-coupon bonds from January 1987 to December 1996. For each year, the estimated spreads are estimated with default

probabilities based on a ten year window of out of sample default data and the cohort approach.
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Figure 4: Annual defaulted bond recovery rates and simulated average default rates
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Default rates

This figure shows the time series of average recovery rates obtained from Moody’s (2005) and defined as the ratio of the defaulted

bond’s market price, observed 30-days after its default date, to its face value (par) for all bonds. Also shown are the default

rates obtained from our simulation procedure used to assess confidence intervals around our estimated default proportions.
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