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Proper Risk Behavior

Kaïs Dachraoui, Georges Dionne, Louis Eeckhoudt and Philippe Godfroid

Abstract

How does risk aversion affect choices when expenses improve probabilities? Attempts to
answer this question in the literature found an endogenous switching probability. In this
paper we introduce a new concept of comparative attitude to risk, namely proper risk
behavior and determine ½ as the threshold probability over which a more proper risk
behavior agent becomes a gambler. We consider applications related to self-protection and
willingness to pay. We give a sufficient condition for analytic comparative proper risk
behavior and show that all results hold in the presence of a background risk.

Keywords: Mixed risk aversion, proper risk aversion, proper risk behavior, self-
protection, willingness to pay, background risk, principal-agent.

Résumé

Comment la riscophobie peut-elle affecter les choix lorsque les dépenses affectent les
probabilités ? Des essais pour répondre à cette question ont proposé une probabilité
endogène cible. Dans cette étude, nous introduisons un nouveau concept, soit le
comportement cohérent face au risque, et déterminons ½ comme étant la probabilité cible
au-delà de laquelle un agent qui a un comportement plus cohérent devient un joueur. Nous
considérons également des applications reliées à la prévention et à la volonté à payer.
Nous proposons une condition suffisante pour comparer les divers degrés de
comportement cohérents et nous montrons comment nos résultats peuvent être étendus à
des situations avec deux sources de risques.

Mots clés : Aversion au risque mélangée, aversion au risque cohérente, comportement
cohérent face au risque, autoprotection, volonté à payer, principal agent.



1 Introduction
For many economic applications under risk and uncertainty, a simple concave
transformation of a von Newmann-Morgenstern utility function (or an Arrow-
Pratt increase in risk aversion) does not yield intuitive changes in decision
variables or in lottery choices by risk averse individuals. For example, Ross
[1981] showed that the risk premium of a more risk averse agent may not be
larger than that of a less risk averse agent in the presence of a background
risk or that a more risk averse individual may choose a more risky portfolio
in the same environment.

In another example, following the contribution of Ehrlich and Becker
[1972] who introduced the concepts of self-protection and self-insurance in
the literature, Dionne and Eeckhoudt [1985] showed that a more risk averse
individual does not necessarily produce more self-protection activities than a
less risk averse one1. In fact, one cannot make any prediction on how a more
risk averse agent will choose his optimal level of e¤ort in a principal-agent
relationship without introducing strong assumptions such as the separability
of the utility function (Arnott, 1992).

A third example concerns the willingness to pay literature (Drèze, 1962;
Jones-Lee, 1974; and Pratt and Zeckhauser, 1996). One can easily verify
that a more risk averse decision maker in the sense of Arrow-Pratt is not
necessarily willing to pay more for a lower probability of death or for a
lower probability of accident than a less risk averse decision maker (Eeck-
houdt, Godfroid and Gollier, 1997). In a fourth example, McGuire, Pratt
and Zeckhauser [1991] showed that more risk averse individuals may choose
more risky decisions (described as less insurance and more gamble) than less
risk averse individuals. They veri…ed that these behaviors are function of a
critical switching probability.

In the three examples discussed in the two preceding paragraphs, the in-
dividuals decisions imply …rst order shifts instead of pure second order ones.
Moreover, as we will see, their actions usually a¤ect higher moments when
appropriate restrictions are not imposed2. Consequently, to make predictions

1On this issue see also Briys and Schlesinger [1990], Julien, Salanié and Salanié [1998]
and Chiu [1997].

2For the self-protection example, the ith moment of the gross expected loss is p (x) li;
where p is the probability of accident, x is the level of self-protection and l is the amount
of loss in case of accident.
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on (risk averse) decision makers’ behaviors, one needs restrictions either on
utility functions or on distribution functions that take into account all dis-
tribution moments that are modi…ed by the individuals’ choices. In this
paper, we shall concentrate on restrictions related to utility functions. For
an analysis of restrictions on distribution functions see Julien, Salanié and
Salanié [1998], and for restrictions on the loss function see Lee [1998].

In 1987, Pratt and Zeckhauser introduced the concept of Proper Risk
Aversion in order to make prediction of lottery choices in presence of an in-
dependent, undesirable lottery or of an independent background risk. Their
concept is preserved in the class of utility functions that are completely
monotone or whose derivatives alternate in sign, with positive odd derivatives
and negative even derivatives. These functions come from a mixture of risk
averse exponential utility functions. Brocket and Golden [1987] developed a
parallel characterization of such functions and Hammond [1974] proposed a
…rst application using a mixture (discrete) of exponential functions.

Recently, Caballé and Pomansky [1996] extended the analysis by char-
acterizing stochastic dominance in presence of such functions. They applied
their model to the standard portfolio choice and provided a new set of suf-
…cient conditions to obtain that a mixed risk averse individual will decrease
his risky position when the risk increases. One can also show that simple con-
cave transformations of mixed risk aversion functions are su¢cient to make
comparison of di¤erent risk averse individual choices for this simple portfolio
problem without a background risk and where the decision variable does not
a¤ect the mean of the random variable.

However, up to now, no study has proposed a transformation of the utility
function that would permit comparison of individual decisions that a¤ect all
the moments of the distribution. The objective of this paper is to propose
such a transformation for mixtures of exponential utilities.

In Section 2, we discuss on how the concept of mixed risk aversion is useful
to compare the levels of self-protection between a risk averse agent and a risk
neutral one. We …rst obtain that there exists an endogenous probability such
that a risk averse individual will produce more self-protection activities than a
risk neutral one3. A more interesting result is to …nd an exogenous bound for
such probability. In fact, under mixed risk aversion, this threshold probability
will be shown to be lower than 1/2. We also obtain that the threshold

3Jullien, Salanié and Salanié [1998] derived simultaneously and independently an iden-
tical result.
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probability is equal to 1/2 when the utility function is quadratic. Two direct
extensions of these results will imply that the switching probability de…ned
in Mcguire, Pratt and Zeckhauser [1991] is greater than 1/2 under mixed
risk aversion4 and that the willingness to pay threshold is also lower than
1/2 when we compare the choice of a risk averse individual to that of a risk
neutral one.

However, mixed risk aversion is not su¢cient to compare such decision
variables between di¤erent risk averse individuals. In Section 3 we propose
the concept of Proper Risk Behavior. We use the term Proper Risk Behavior
since our concern is to compare optimal decision variables that a¤ect all the
moments of the random variable distribution. We apply this new concept to
the class of mixed risk averse functions.

By de…nition, individual v has a more proper risk behavior than individual
u if he is more risk averse, more prudent, more temperent ... or if the
absolute ratio of the nth+1 derivative of v over the nth is higher than the
corresponding ratio of individual u for all n greater than one. We provide
di¤erent characteristics of the proper risk behavior function and we obtain
that many utility functions share the notion of proper risk behavior.

Among other results, we will show that the threshold probability where in-
dividuals having a more proper risk behavior will produce more self-protection
activities or will be willing to pay more for lower probabilities of accidents
remains lower than 1/2. This result is important since the great majority of
risky situations that include self-protection and public decisions on safety are
characterized for events with probability lower than 1/2. We also obtain that
the switching probability to become a gambler remains greater than 1/2 in
the probability-improving environment of McGuire, Pratt and Zeckhauser.
Finally, we extend the concept of Proper Risk Behavior to risky situations
with a background risk (Doherty and Schlesinger, 1983).

4In their model, activity x increases the winning probability instead of decreasing the
probability of loss as in the self-protection and willingness to pay applications.
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2 Mixed risk aversion and self-protection
In this section we show that the concept of mixed risk aversion is useful to
compare the optimal decision of self-protection between a risk neutral agent
and a risk averse one.

The standard model for self-protection (Ehrlich and Becker, 1972) can
be summarized as follows. Consider an individual with an increasing von-
Neuman-Morgenstern utility function u and a non-random initial wealth w0.
The agent faces a risk of total loss l and can invest in self-protection activities
an amount x in order to reduce the probability of loss (p (x)), a decreasing
and convex function of x. Self-protection activities do not necessarily reduce
risk since in general they do not reduce the spread of incomes across states
as in the insurance choice. With two states of the world the optimal choice
of self-protection is solution of:

max
x

p (x)u (w0 ¡ l ¡ x) + (1¡ p (x)) u (w0 ¡ x)

from which we derive the following …rst order condition:

0 = p0 (x) [u (w0 ¡ l¡ x)¡ u (w0 ¡ x)]¡
[p (x)u0 (w0 ¡ l¡ x) + (1¡ p (x)) u0 (w0 ¡ x)] : (1)

Note that risk aversion is not su¢cient for having the second order condition
negative (see Arnott, 1992 for details). In the reminder of this paper we
assume that all conditions for having the solution of (1) as a global maximum
are met. We now compare this optimal solution to that of a risk neutral agent.

Proposition 1 Let us de…ne xu and xn as the optimal levels of self-protection
respectively for the risk averse individual and for the risk neutral one. Then
there exists a threshold probability p such that xu > xn if and only if p (xn) <
p; where p is de…ned as:

p =

1P
i=1

(¡l)i u
(i+1) (w0 ¡ xn)
(i+ 1)!

1P
i=1

(¡l)i u
(i+1) (w0 ¡ xn)

i!

:

Proof:
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The risk neutral individual faces:

min
x
[x+ p (x) l] :

With the associated FOC providing xn:

1 + p0 (x) l = 0: (2)

By properties of the concave functions, we know that there exists a unique
p which verify:

u (w0 ¡ xn)¡ u (w0 ¡ l ¡ xn)
l

= pu0 (w0 ¡ l ¡ xn) + (1¡ p)u0 (w0 ¡ xn) :
(3)

We evaluate (3) at xn by calculating

Sign

·
p0 (xn) [u (w0 ¡ l ¡ xn)¡ u (w0 ¡ xn)]¡

(p (xn)u
0 (w0 ¡ l ¡ xn) + (1¡ p (xn)) u0 (w0 ¡ xn))

¸
: (4)

Using (2) and (3) into (4) at the optimum xn we have to evaluate:

Sign [(p (xn)¡ p) (u0 (w0 ¡ xn)¡ u0 (w0 ¡ l¡ xn))] :

Since the marginal utility is decreasing, if p (xn) · p, we have

(p (xn)¡ p) (u0 (w0 ¡ xn)¡ u0 (w0 ¡ l ¡ xn)) ¸ 0

which implies that xn · xu.
By taking Taylor expansions around w0¡xn in equation (3) , one obtains:

1X

i=1

(¡l)i u
(i+1) (w0 ¡ xn)
(i+ 1)!

= p
1X

i=1

(¡l)i u
(i+1) (w0 ¡ xn)

i!
;

or

p =

1P
i=1

(¡l)i u
(i+1) (w0 ¡ xn)
(i+ 1)!

1P
i=1

(¡l)i u
(i+1) (w0 ¡ xn)

i!

: (5)

¥
In Proposition 1 the threshold probability (p) is endogenous since is de-

pends on outcomes and on preferences. However, we can prove the next
theorem that uses mixed risk aversion de…ned as:
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De…nition 1 (Caballé and Pomansky, 1996) A real-valued continuous utility
function u de…ned on [0;1) exhibits mixed risk aversion if and only if it has
a completely monotone …rst derivative on (0;1) ((¡1)n+1 u(n) (w) ¸ 0; for
n ¸ 1), and u (0) = 0.

We then have:

Theorem 1 If u is mixed risk averse, then xu ¸ xn only if the probability
of loss resulting from the optimal choice of the risk neutral agent (p (xn)) is
lower than 1=2.

From Theorem 1 we know that if the optimal choice of self-protection
expenses for a risk neutral agent is done and if the probability of loss eval-
uated at this optimal level is higher than 1/2, then any risk neutral agent
will spend more in self-protection activities than does any mixed risk averse
agent.

Proof of Theorem 1:
We need to prove that p · 1=2: Since (i+ 1)! = (i+ 1) i! > 2i! we have

1

(i+ 1)!
<
1

2

1

i!
;

and (¡l)i u(i+1) (w0 ¡ x) ¸ 0; then

(¡l)i u
(i+1) (w0 ¡ x)
(i+ 1)!

· 1

2
(¡l)i u

(i+1) (w0 ¡ x)
i!

:

Taking the summation over i ¸ 1 gives:

1X

i=1

(¡l)i u
(i+1) (w0 ¡ x)
(i+ 1)!

· 1

2

1X

i=1

(¡l)i u
(i+1) (w0 ¡ x)

i!
;

then by (5)
p · 1=2:

¥

In the case of a quadratic utility function, even if it does not belong to
the class of complete monotone functions, we have a more precise value for
p.
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Risk of the distribution  : σ2

p

1/20 1

Figure 1:

Proposition 2 If u exhibits a quadratic utility function, then the threshold
probability p is equal to 1=2:

In this particular case, all derivatives higher than two are nil and p as
de…ned in Proposition 1 is reduced to:

p =
¡l u

(2) (w0 ¡ xn)
2!

¡l u
(2) (w0 ¡ xn)

1!

= 1=2:

The graphical representation in Figure 1 illustrates clearly the intuition be-
hind Proposition 2 where the variance is the exact measure of risk.

The risk of the gross expected loss is reduced for the quadratic case to
the variance (¾2 = p (x) (1¡ p (x)) l2). As we evaluate the optimal condition
of the risk averse individual at the optimal level of self protection of the risk
neutral agent there is no mean e¤ect. For all probabilities lower than 1/2, an
increase in the level of self protection decreases p and decreases the variance.
However, when the initial probability is larger than 1/2, an increase in the
level of self-protection increases the variance which reduces the welfare of the
agent.
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3 Proper risk behavior

3.1 De…nitions

Caballé and Pomansky [1996] generalized the Arrow-Pratt index of absolute
risk aversion to higher order. They de…ned the nth order index of absolute
risk aversion as

Aun (w) = ¡u
(n+1) (w)

u(n) (w)
; for n ¸ 1:

Kimball [1993] introduced the concept of standard risk aversion and showed
that the de…nition is equivalent to decreasing absolute risk aversion and de-
creasing absolute prudence. We now consider the monotonicity of Aun and
its implication on decisions variables that a¤ect all moments of distribution
functions. Let us introduce the following de…nition.

De…nition 2 u has a proper risk behavior if and only if Aun (w) is decreasing
in w for all n:

De…nition 2 is a generalization of mixed risk aversion. In fact as we will
see in the next proposition mixed risk aversion utility functions are among
the class of proper risk behavior functions, the reverse is not always true.
In the reminder of this article we apply the concept of proper behavior to
mixed risk averse utility functions. As pointed out by Pratt and Zeckhauser
[1987], most known utility functions that are commonly used in economics
and …nance such as the logarithmic and the power functions are in the class
of completely monotone functions. (See Brocket and Golden, 1987 for other
examples). These functions have the property of being characterized by the
measure describing the mixture of exponential utilities:

For any mixed risk averse utility function u (w), there exists a distribution
function Fu satisfying Z 1

1

dFu (t)

t
< 1

with

u (w) =

Z 1

0

1¡ e¡tw
t

dFu (t) :

We now have the next result:
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Proposition 3 The next assertions are equivalent and are veri…ed for all
mixed risk averse utility function u,
i) Aun (:) is decreasing in w for all n:
ii) Aun (w) · Aun+1 (w) for all w and n:

Proof of Proposition 3:
The equivalence between i) and ii) is immediate since

Sign

µ
d

dw
Aun (w)

¶
= Sign

¡
Aun+1 (w)¡ Aun (w)

¢
.

If u is mixed risk averse as described by the distribution function Fu; ii) is
equivalent to

R1
0
tn¡1e¡wtdFu (t)R1

0
tn¡2e¡wtdFu (t)

·
R 1
0
tne¡wtdFu (t)R1

0
tn¡1e¡wtdFu (t)

: (6)

To prove (6) we apply Gauchy-Schwartz inequality, i.e.,

µZ
' (t)Ã (t) dF (t)

¶2

·
Z
'2 (t) dF (t)

Z
Ã2 (t) dF (t) ;

to
' (t) = tn=2e¡!t=2; Ã (t) = t(n¡2)=2e¡!t=2:

¥

3.2 Comparative proper risk behavior

Let us consider two risk averse agents u and v: Following Pratt [1964], it has
been established that comparative risk aversion can be reduced to applying a
simple concave transformation of utility functions: v is more risk averse than
u if and only if v = k(u) with k00 < 0. Such transformation is not su¢cient
to obtain a more proper risk behavior function. Let us consider the next
de…nition:

De…nition 3 Let u and v be two proper risk behavior utility functions. We
say that v has a more proper risk behavior than u if and only if Aun (w) ·
Avn (w), for all n and w.
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We will show how this new de…nition is useful to make comparison of
decision variables that a¤ect all distribution moments between individuals
having di¤erent proper risk behavior.

We have the next transformation theorem.

Theorem 2 Let u and v be two mixed risk averse utility functions described

respectively by distribution functions Fu and Fv. If
dFu (:)

dFv (:)
is decreasing over

(0;1); then v has a more proper risk behavior than u.

Before presenting the proof, let us consider a concrete example:

u (w) = ¡p1e¡a1w ¡ p2e¡a2w ¡ :::¡ pne¡anw;
v (w) = ¡q1e¡a1w ¡ q2e¡a2w ¡ :::¡ qne¡anw

with pi; qi; and ai as positive parameters for i = 1; :::n and a1 < a2 < ::: < an.
If p1

q1
¸ ::: ¸ pn

qn
, then from Theorem 2 we know that v is more risk averse,

more prudent, more temperent than u, and more generally

Aun (:) · Avn (:) ; for all n ¸ 1:

The intuition behind Theorem 2 is quite simple. Consider for the sake
of illustration the case where there are only two positive ai (a1 and a2) in
the example above. By transforming p1 into q1 lower than p1, less weight is
put upon the less risk averse component of the u function (since a1 < a2).
Of course lowering p1 also implies that q2 exceeds p2 so that simultaneously
more weight is placed upon the more risk averse component of u. As result
v is surely more risk averse than u and the theorem shows that this property
automatically extends to all ratios of successive derivatives of each utility
function.

Proof of Theorem 2:
We need to show that

R1
0
tn+1e¡wtdFu (t)R 1

0
tne¡wtdFu (t)

·
R1
0
tn+1e¡wtdFv (t)R1

0
tne¡wtdFv (t)

; for n ¸ 0:

The latter is equivalent to
Z 1

0

td eFn;wu (t) ·
Z 1

0

td eFn;wv (t) ; (7)
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where

d eF n;wi (t) =
tne¡wtdFi (t)R1
0
sne¡wsdFi (s)

; for i = u; v.

Inequality (7) is equivalent to5

Z 1

0

[1¡ eF n;wu (t)]dt ·
Z 1

0

[1¡ eFn;wv (t)]dt;

or Z 1

0

[ eFn;wv (t)¡ eFn;wu (t)]dt · 0: (8)

A su¢cient condition to have (8) is to show that

eFn;wv (t) · eFn;wu (t) ; for all t and all n. (9)

For a complete monotone function the last inequality simpli…es to
R t
0
sne¡wsdFu (s)R t

0
sne¡wsdFv (s)

¸
R1
0
sne¡wsdFu (s)R1

0
sne¡wsdFv (s)

:

Since R1
0
sne¡wsdFu (s)R1

0
sne¡wsdFv (s)

= lim
t!1

R t
0
sne¡wsdFu (s)R t

0
sne¡wsdFv (s)

;

the result will be done if we prove that

K (t) =

R t
0
sne¡wsdFu (s)R x

0
sne¡wsdFv (s)

is decreasing in t.
A simple calculation shows that K (:) is decreasing if and only if

dFu (t)

dFv (t)
· K (t) : (10)

We now prove (10):

K (t) =

R t
0
sne¡ws

dFu (s)

dFv (s)
dFv (s)

R t
0
sne¡wsdFv (s)

¸ dFu (t)

dFv (t)

R t
0
sne¡wsdFv (s)R t

0
sne¡wsdFv (s)

=
dFu (t)

dFv (t)
:

This completes the proof of Theorem 2. ¥
5See Lemma 1, page 148 in Feller, 1971.
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4 Applications

4.1 Self-Protection

As shown by Briys and Schlesinger [1990], self-protection activities do not
necessarily reduce risk, but a¤ects the probabilities of the various states as
well as the contingent outcomes. The problem here is di¤erent from that
where probabilities are …xed as in the context of market insurance. One
consequence is that more risk averse agents do not necessarily choose higher
level of self-protection spending (see Dionne and Eeckhoudt, 1985 for explicit
examples). McGuire, Pratt and Zeckhauser [1991] found an endogenous crit-
ical switching probability that depends on preferences and outcomes, and
interpret expenditures as gambling or insurance. This endogenous switch-
ing probability is retrieved by Lee [1998]. In this section, we show that the
endogenous probability is lower than 1/2 for self-protection and willingness
to pay and greater than 1/2 in the probability improving environment of
McGuire, Pratt and Zeckhauser [1991].

Proposition 4 Assume v is more risk averse than u in the sense of Arrow-
Pratt, then there exists a threshold probability p such that self-protection is
higher for v than for u if and only if the probability of loss resulting from the
optimal choice of u is less than p, with

p =

1X

i=1

(¡1)i
i!

li
£
v0u(i) ¡ u0v(i)

¤

1X

i=1

1X

j=1

(¡1)i (¡1)j l
ilj

i!j!
[v(i)u(j+1) ¡ u(i)v(j+1)]

:

Proof:
We evaluate the FOC for agent v at xu: After simpli…cation we obtain

xu · xv if and only if

p (xu)

1¡ p (xu)
· v0 (w0 ¡ xu)¢u¡ u0 (w0 ¡ xu)¢v
u0 (w0 ¡ xu ¡ l)¢v ¡ v0 (w0 ¡ xu ¡ l)¢u;

where

¢u = u (w0 ¡ xu ¡ l)¡ u (w0 ¡ xu) ; ¢v = v (w0 ¡ xu ¡ l)¡ v (w0 ¡ xu) :

13



Since
p

1¡ p is strictly increasing and maps (0; 1) into (0;1) ; we know that

there exists a unique p verifying

p

1¡ p =
v0 (w0 ¡ xu)¢u¡ u0 (w0 ¡ xu)¢v

u0 (w0 ¡ xu ¡ l)¢v ¡ v0 (w0 ¡ xu ¡ l)¢u;

which simpli…es to

p =
v0 (w0 ¡ xu)¢u¡ u0 (w0 ¡ xu) ¢v

¢u0¢v ¡¢v0¢u : (11)

Taylor expansion around w ¡ x gives

¢u =
1X

i=1

(¡1)i l
i

i!
u(i) (w0 ¡ xu) ; ¢v =

1X

i=1

(¡1)i l
i

i!
v(i) (w0 ¡ xu)

¢u0 =
1X

i=1

(¡1)i l
i

i!
u(i+1) (w0 ¡ xu) ; ¢v0 =

1X

i=1

(¡1)i l
i

i!
v(i+1) (w0 ¡ xu) :

We can rewrite (11) as:

p =

1X

i=1

(¡1)i
i!

li
£
v0u(i) ¡ u0v(i)

¤

1X

i=1

1X

j=1

(¡1)i (¡1)j l
ilj

i!j!
[v(i)u(j+1) ¡ u(i)v(j+1)]

: (12)

¥
As for Proposition 1, p given by (12) is still endogenous since it depends

on u, v and on outcomes. In Section 2, the concept of mixed risk aversion
was applied to compare self-protection activities of a risk neutral individual
vs a risk averse one. We now extend the result of Theorem 1 and study the
relationship between risk attitude and self-protection spending to the class
of proper risk behavior agents. In fact, we can show the next result.

Theorem 3 let u and v be two mixed risk averse utility functions and xu, xv
be their corresponding optimal levels of self-protection. If v has a more proper
risk behavior than u, then xv ¸ xu only if the probability of loss resulting from
the optimal choice of u is less than 1=2.
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Theorem 3 says that if the probability of loss resulting from the optimal
choice of agent u is higher than 1/2, then whatever is the level of outcomes,
agent v will spend less in self-protection activities if he has a more proper
risk behavior than u.

Proof of Theorem 3:
It is su¢cient to prove that p · 1=2: Let’s denote

Kij = (¡1)i (¡1)j
£
v(i)u(j+1) ¡ u(i)v(j+1)

¤
:

By Proposition 3 we can show that:

Kij

8
<
:
> 0 if i < j + 1
= 0 if i = j + 1
< 0 if i > j + 1

: (13)

The denominator in (12) can be written as:

¡l
1X

i=1

(¡1)i
i!

li
£
v0u(i+1) ¡ u0v(i+1)

¤
+

1X

i=2

1X

j=1

li+j

i!j!
Kij:

Now we prove that
1X

i=2

1X

j=1

li+j

i!j!
Kij ¸ 0:

In fact, for i ¸ j + 1

Kij = (¡1)i (¡1)j
£
v(i)u(j+1) ¡ u(i)v(j+1)

¤

= ¡ (¡1)i (¡1)j
£
u(i)v(j+1) ¡ v(i)u(j+1)

¤

= ¡ (¡1)i¡1 (¡1)j+1
£
u(i)v(j+1) ¡ v(i)u(j+1)

¤

= ¡Kj+1;i¡1;

since j + 1 · (i¡ 1) + 1 then by (13)

Kj+1;i¡1 ¸ 0:

Moreover since i > j + 1 then

1

i!j!
<

1

(j + 1)! (i¡ 1)!
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and consequently

1

i!j!
Kij +

1

(j + 1)! (i¡ 1)!Kj+1;i¡1 ¸ 0:

As a result

8 n ¸ 2;
nX

i=2

nX

j=1

Li+j

i!j!
Kij ¸ 0;

and at the limit we obtain
1X

i=2

1X

j=1

li+j

i!j!
Kij ¸ 0:

The denominator in (12) is the sum of two positive terms. We can then write

p ·

1X

i=1

(¡1)i
i!

li
£
v0u(i) ¡ u0v(i)

¤

1X

i=1

(¡1)i+1
i!

li+1 [v0u(i+1) ¡ u0v(i+1)]

or

p ·

1X

i=2

(¡1)i
i!

li
£
v0u(i) ¡ u0v(i)

¤

1X

i=2

(¡1)i
(i¡ 1)! l

i [v0u(i) ¡ u0v(i)]
:

Since for i ¸ 2, i! > 2 (i¡ 1)!; and since (¡1)i li
£
v0u(i) ¡ u0v(i)

¤
> 0; we then

have
(¡1)i
i!

li
£
v0u(i) ¡ u0v(i)

¤
<
1

2

(¡1)i
(i¡ 1)! l

i
£
v0u(i) ¡ u0v(i)

¤
;

taking the summation over i ¸ 2 gives p · 1=2: ¥
By symmetry it can be obtained that p ¸ 1=2 when p (x) is increasing in x

as in McGuire, Pratt and Zeckhauser [1991]. The mathematical development
is identical to that made in Theorem 3 with 1¡ p(x) be the new probability
of loss for the modi…ed problem. We have the next result:

Corollary 1 When p (x) is increasing in x, if v and u are mixed risk averse
and if v has a more risk behavior than u, then xv ¸ xu only if the winning
probability resulting from the optimal choice of u is higher than 1=2.
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4.2 Willingness To Pay

We …rst present the formal analysis of Pratt and Zeckhauser [1996]. An in-
dividual adhering to the axioms of von Neumann-Morgenstern utility theory
has the utility function u (s; w0), where s is equal to 0 if the individual dies
and 1 if the individual survives, and w0 is initial wealth. The individual faces
a probability of death p: His expected utility is then given by

U = pu (0; w0) + (1¡ p) u (1; w0) :
The agent is given the opportunity to reduce the probability of death from
p to p¡ r. He will accept to forfeit a positive amount of wealth in order to
reduce this probability. Willingness To Pay (WTP) is then de…ned as the
maximum amount x that he would pay for such reduction, i.e., x is solution
of

(p¡ r) u (0; w0 ¡ x) + (1¡ p + r) u (1; w0 ¡ x) = U;
and for all x0 > x;

(p¡ r)u (0; w0 ¡ x0) + (1¡ p + r) u (1; w0 ¡ x0) < U:
Willingness to pay is a guideline for public and private investment poli-

cies and according to WTP, public investment projects, such as health care,
environment or road safety conditions will be recommended only if the total
of sums that di¤erent agents bene…ciating from favorable probability changes
exceeds the capital cost of the project in concern. Alternative resource allo-
cations are also compared on the basis of WTP.

In other situations it is more appropriate to o¤er di¤erent bundles of risk
to di¤erent individuals if valuation of risk are di¤erent among agents. It is
then necessary for establishing those bundles to know WTP for the di¤erent
risk classes. It is this last point that we will discuss in the reminder of this
section. Suppose that risk-reducing bene…ts are privately valued (medicine
expenses). As pointed out by Pratt and Zeckhauser [1996], individuals with
‘high valuation of risk reduction’ would choose expensive plans which may
lead to services that are ine¤ective to most individuals. As we did for the
self-protection model we will use risk aversion to order WTP values and
show that higher valuation of risk reduction does not necessarily coincide
with higher risk aversion.

Back to the model, we suppose that u (0; w0) = u (1; w0 ¡ l) = u (w0 ¡ l) :
Let’s denote xu as the WTP of agent u given the probability of loss is reduced
from p to p¡ r: We can show the next result.
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Theorem 4 let u and v be two mixed risk averse utility functions and xu;
xv their corresponding optimal amounts of willingness to pay. If v has a
more proper risk behavior than u, then xv ¸ xu only if the probability of loss
resulting from the optimal choice of u is lower than 1=2.

Proof:
The expected utility for u is:

U = pu (w0 ¡ l) + (1¡ p)u (w0)

and for individual v

V = pv (w0 ¡ l) + (1¡ p) v (w0) :

In order to obtain the willingness to pay for u we completely di¤erentiate U
with respect to p and w0 to have:

WTPu =
dw0
dp

=
u (w0)¡ u (w0 ¡ l)

pu0 (w0 ¡ l) + (1¡ p) u0 (w0)
: (14)

The same result holds for individual v

WTPv =
dw0
dp

=
v (w0)¡ v (w0 ¡ l)

pv0 (w0 ¡ l) + (1¡ p) v0 (w0)
: (15)

The threshold probability p is solution of (14)=(15):

p =
v0 (w0)¢u¡ u0 (w0) ¢v
¢u0¢v ¡¢v0¢u : (16)

With Taylor expansion we have

¢u =
1X

i=1

(¡1)i l
i

i!
u(i) (w0 ¡ x) ; ¢v =

1X

i=1

(¡1)i l
i

i!
v(i) (w0 ¡ x) :

We can then rewrite (16) as:

p =

1X

i=1

(¡1)i
i!

li
£
v0u(i) ¡ u0v(i)

¤

1X

i=1

1X

j=1

(¡1)i (¡1)j l
ilj

i!j!
[v(i)u(j+1) ¡ u(i)v(j+1)]

: (17)

The remainder of the proof is the same as that of Theorem 3. ¥
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5 Background risk
In this section we consider the case where the individual faces a background
risk (e") on wealth that is independent from the occurrence of an accident.
Let’s denote eu (w) = E" (u (w + ")) =

R
u (w + ") dF (") : We know that an

individual with utility function u and a background risk e" behaves as an
individual with utility function eu and no background risk. Kimball [1993]
showed that if u has a decreasing absolute risk aversion and a decreasing
absolute temperance, then these properties hold for eu. In other words if u is
standard risk averse then eu is also standard risk averse. If we suppose that u
is mixed risk averse, then eu is also mixed risk averse and then by Proposition 3
eu has a proper risk behavior i.e., for all n ¸ 1; ¡

R
u(n+1)(w+")dF (")R
u(n)(w+")dF (")

is decreasing
in w, which is a generalization of Proposition 4 in Kimball [1993].

Pratt [1988] showed that provided either u or v has a decreasing absolute
risk aversion, ev is more risk averse that eu whenever v is more risk averse
than u. The next theorem extends this results to the concept of proper risk
behavior for mixed risk averse utility functions.

Theorem 5 Let u and v be two mixed risk averse functions and suppose that
v has a more proper risk behavior than u, then eu and ev are mixed risk averse
functions and ev has a more proper risk behavior than eu.

Proof of Theorem 5:
To simplify the notation and without a¤ecting the proof we write " for

w+ ". We need to prove that for all n and " and whenever Aun (w) · Avn (w) ;
the following inequality holds:

¡
R
u(n+1) (") dF (")R
u(n) (") dF (")

· ¡
R
v(n+1) (") dF (")R
v(n) (") dF (")

;

or
Z Z

v(n) ("0) [u(n+1) (")¡ u(n) (") v
(n+1) ("0)

v(n) ("0)
]dF (") dF ("0) ¸ 0: (18)

Since v has more proper behavior than u; we have

¡v
(n+1) ("0)

v(n) ("0)
¸ ¡u

(n+1) ("0)

u(n) ("0)
; for all n and "0
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and then (since v(n) ("0) u(n) (") ¸ 0)

v(n) ("0) [u(n+1) (")¡ u(n) (") v
(n+1) ("0)

v(n) ("0)
]

¸ v(n) ("0) [u(n+1) (")¡ u(n) (") u
(n+1) ("0)

u(n) ("0)
]

=
v(n) ("0)

u(n) ("0)
[u(n+1) (")u(n) ("0)¡ u(n) (") u(n+1) ("0)]:

The integral in (18) is then superior to
Z Z

f"·"0g

v(n) ("0)

u(n) ("0)
[u(n+1) (")u(n) ("0)¡ u(n) (") u(n+1) ("0)]dF (") dF ("0)

+

Z Z

f"¸"0g

v(n) ("0)

u(n) ("0)
[u(n+1) (") u(n) ("0)¡ u(n) (")u(n+1) ("0)]dF (") dF ("0)

= ¡
Z Z

f"·"0g

v(n) ("0)

u(n) ("0)
[u(n) (")u(n+1) ("0)¡ u(n+1) (")u(n) ("0)]dF (") dF ("0)

+

Z Z

f"¸"0g

v(n) ("0)

u(n) ("0)
[u(n+1) (") u(n) ("0)¡ u(n) (")u(n+1) ("0)]dF (") dF ("0)

= ¡
Z Z

f"¸"0g

v(n) (")

u(n) (")
[u(n+1) (") u(n) ("0)¡ u(n) (")u(n+1) ("0)]dF (") dF ("0)

+

Z Z

f"¸"0g

v(n) ("0)

u(n) ("0)
[u(n+1) (") u(n) ("0)¡ u(n) (")u(n+1) ("0)]dF (") dF ("0)

=

Z Z

f"¸"0g

µ
v(n) ("0)

u(n) ("0)
¡ v(n) (")

u(n) (")

¶

£ [u(n+1) (")u(n) ("0)¡ u(n) (") u(n+1) ("0)]dF (") dF ("0) : (19)

Again since v has a more proper risk behavior than u, the ratio v(n)("0)
u(n)("0) is

decreasing; and since -u
(n+1)

u(n)
is decreasing then

u(n+1) (")u(n) ("0)¡ u(n) (") u(n+1) ("0) ¸ 0; for "0 · ":

The last integral in (19) is then positive which ends the proof. ¥
Using the result in Theorem 5 we can directly extend the results of Section

4 to situations with a background risk. For example if the probability of loss
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resulting from the optimal self-protection choice of agent u is lower than 1/2,
and if an agent v has a more proper risk behavior than u, then even in the
presence of a background risk, it follows from direct extensions of Theorems
3 and 5 that exv ¸ exu; where ex is the optimal level of self-protection in the
presence of a background risk.

6 Conclusion

In this article we have proposed the concept of proper risk behavior. We
have shown how this extension of proper risk aversion can be useful to make
comparison of decision variables that a¤ect all distribution moments between
di¤erent individuals. We have obtained that mixed risk aversion utility func-
tions are among the class of proper risk behavior functions and consequently
proper risk behavior can be applied to mixtures of exponential utility func-
tions that are often discussed in the …nance and insurance literatures.

Many extensions of this article can be considered. First it would be inter-
esting to analyze how proper risk behavior functions can be useful to make
prediction of the agent’s action in a principal-agent framework when utility
functions are not additively separable. How di¤erent proper risk behavior
agents choose the optimal level of e¤ort in function of a given risk shar-
ing contract? A more di¢cult question would be to compare di¤erent risk
sharing contracts between di¤erent proper risk behavior agents.

Another extension is related to the willingness to pay literature. Up to
now, since it was not possible to know the circumstance where it was possible
to make comparison of di¤erent willingness to pay amounts between di¤erent
risk averse individuals, the aggregation of such amounts was not possible
to implement. Such aggregation is now possible for the class of proper risk
behavior utility functions in situations where accidents probabilities are lower
than 1/2. In fact, the class of accidents corresponds to the great majority of
observed accidents in the real world.
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