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Full Pooling in Multi-Period Contracting
with Adverse Selection and Noncommitment

Georges Dionne and Claude Fluet

Abstract

This paper analyses multi-period regulation or procurement policies under asymmetric
information between the regulator and regulated firms. As well known in the literature,
some degree of separation is always optimal under any form of commitment. In contrast,
we show that full pooling is optimal under noncommitment when the discount factor is
sufficiently high. We also discuss the meaning of full pooling under double randomization.
Finally, we provide a graphical analysis of the second-best policy in terms of the
regulator's commitment capacity.

JEL : D82, H57

Keywords : Incentives, multi-period contracts, regulation, procurement, renegotiation
proofness, asymmetric information, full pooling.

Résumé

Cet article analyse les politiques de réglementation et d’achat public sur plusieurs périodes
en présence d’asymétrie d’information entre le régulateur et les entreprises réglementées.
Un résultat bien connu dans la littérature est qu’un certain degré de séparation est toujours
optimal sous toute forme d’engagement des parties au contrat. En contraste, nous
montrons que le plein mélange des types est optimal sans engagement des parties au
contrat lorsque le facteur d’actualisation est suffisamment élevé. Nous discutons en détail
de la définition de plein mélange des types. Finalement, nous proposons une analyse
graphique des contrats optimaux en fonction des hypothèses d’engagement du régulateur.

JEL: D82, H57

Mots clés : Incitations, contrats sur plusieurs périodes, réglementation, achat public, à
l’abri de la renégociation, information asymétrique, plein mélange.



1 Introduction

The study of incentives in procurement and regulation under asymmetric
information is now a signi…cant subject of research. One of the main prob-
lems addressed in the recent literature is that of multi-period contracting.
In this respect, La¤ont and Tirole (1993) have introduced a general frame-
work that allows the consideration of di¤erent assumptions about the par-
ties’ commitment capacity. They distinguish between three possibilities: full
commitment, commitment and renegotiation, and noncommitment. Under
full commitment, the regulator can fully commit to a long-term contract.
Under noncommitment, the relationship between the regulator and the reg-
ulated …rm is governed by a series of short-term contracts. In contrast to the
two extreme forms of full commitment and noncommitment, commitment
and renegotiation describes a situation where the parties can sign long-term
contracts, but can alter the initial contract whenever this is mutually ad-
vantageous ex post. In this case, the relationship is essentially restricted to
renegotiation-proof contracts and its optimal allocation results in a regula-
tor’s expected welfare intermediate between those of the full commitment
and the noncommitment assumptions.

The di¤erent issues raised in designing the optimal incentive schemes
under commitment and renegotiation and under noncommitment (the ratchet
e¤ect, the take-the-money-and-run-strategy, the role of the discount rate,
etc.) are somewhat intricate and some results are far from intuitive. One
such result is how much pooling is optimal in the …rst contracting period?

As well known in the literature, some degree of separation is always op-
timal under any form of commitment. In contrast, we are going to show
that under noncommitment, full pooling is optimal when the discount factor
is su¢ciently high. This means that separation becomes too costly in some
circumstances.

The optimal scheme under full commitment is equivalent to a repetition
of the optimal static scheme in each period. Such a repetition of the optimal
static scheme is not feasible in long-term contracts without full commitment,
because of a form of “ratcheting”. This refers to the fact that any information
obtained about the …rm’s type in the …rst period will induce renegotiation in
the second period so as to induce the …rm to exert more e¤ort, whenever this
can be mutually bene…cial ex post. If the discount factor is large, this implies
that full separation may become too costly in terms of the extra rent that
now has to be paid out to the e¢cient type. Some degree of pooling may then
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be preferable to full separation, because it reduces the impact of ratcheting
by reducing the speed of information revelation. Speci…cally, partial pooling
introduces some e¢ciency cost in the …rst period (for both types the e¤ort
level is distorted away from the …rst best) but this is compensated by the
lower overall rent paid to the e¢cient …rm.

Under noncommitment the regulator is restricted in the timing of the
transfers that can be made to the …rm: because of his inability to commit,
the regulator cannot promise to pay out rent in the second period (to be
more precise, only self-enforceable promises are credible). As a consequence,
compared to commitment and renegotiation, more rent must now be paid
out in the …rst period in order to obtain some degree of separation. This
leads to the possibility of the “take-the-money-and-run” strategy, in that the
ine¢cient …rm could pro…t by misrepresenting its type in the …rst period
(by choosing the larger transfer designed for the e¢cient …rm), but then
quit the relationship in the second period. When this occurs, the two types’
self-selection constraints are binding.

We …rst show how the take-the-money-and-run strategy a¤ects the regu-
lator’s intertemporal welfare frontier. When the two self-selection constraints
are binding, the new welfare frontier is always below that of commitment and
renegotiation and its form depends on the discount factor. Because the take-
the-money-and-run strategy is a consequence of the ratchet e¤ect (given the
constraint on the timing of transfers) and because the impact of the ratchet
e¤ect can be reduced by more pooling in the …rst period, the optimal solution
under noncommitment is generally characterized by more pooling than un-
der commitment and renegotiation. In particular, the optimal solution may
involve double randomization. We show how double randomization can im-
prove the intertemporal welfare trade-o¤. We also discuss the meaning of full
pooling under double randomization and show that full pooling is optimal
under noncommitment when the discount factor is su¢ciently high.

Our result on full pooling contrasts with that of La¤ont and Tirole (1993)
who obtained that full pooling can never be optimal even under no commit-
ment. In fact, they limited their proof to a type of equilibrium (type I) which
implies that the incentive constraint of the non-e¢cient …rm is not binding
and rules out the possibility of double-randomization. However, we show
that double-randomization is optimal when the discount factor is su¢ciently
large.

The paper develops as follows. Section 2 introduces the notation and
the single-period model. Section 3 discusses the noncommitment model and
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presents the main result of the paper. It also shows how the commitment and
renegotiation case can be represented as a special case of the noncommitment
model. Section 4 presents simulation results. The last section concludes.

2 The model

2.1 Full information benchmark

A project is to be undertaken in each period with monetary cost C¿ = ¯¡e¿ ,
¿ = 1; 2 where ¯ is an exogenous e¢ciency parameter and e¿ is the producer’s
e¤ort in controlling costs1. E¤ort entails a disutility in monetary equivalent
of Ã (e¿), a strictly increasing and strictly convex function with Ã (0) =
Ã0 (0) = 0, and Ã000 (e¿ ) ¸ 0. The …rm has the same type in each period.

The regulator does not observe ¯ nor e¿ . ¯ can take two values ¯ and ¯
with ¯ > ¯. We assume that the regulator has a prior about ¯ and we write
º = Pr

¡
¯ = ¯

¢
. To …x ideas, consider …rst the case where there is only one

type in the economy.
For each period, the contract leads to a realized monetary cost and to a

transfer to the …rm. This can be represented by a pair (C¿ ; t¿) where t¿ is
the net transfer paid in addition to reimbursing C¿ . The …rm’s utility level
or surplus is U¿ = t¿ ¡ Ã (¯ ¡ C¿ ) when ¯ > C¿ . A cost target C¿ > ¯ can
be realized with zero e¤ort and we write Ã ´ 0 for such case.

The project has value S for consumers in each period. The net surplus
of consumers is

S ¡ (1 + ¸) (C¿ + t¿ )
where C¿ + t¿ is the total monetary transfer to the …rm and ¸ is the marginal
shadow cost of public funds2. Total welfare in each period is the sum of the
net consumers’ surplus and of the producer’s surplus:

W¿ = S ¡ (1 + ¸) (C¿ + t¿) + U¿ : (1)

Normalizing the individual rationality constraint U¿ ¸ 0, welfare is max-
imized by a contract such that U¿ = 0 and e¿ = e¤ de…ned by

1¡ Ã0 (e¤) = 0: (2)

1On procurement see also McAfee and McMillan (1987), Tirole (1986) and Riordan
and Sappington (1988).

2For more details on the shadow cost of public funds, see Atkinson and Stiglitz (1980).
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Under such a contract C¿ = ¯ ¡ e¤ and t¿ = Ã (e¤).
When there are two types and types are observable, di¤erent contracts

are o¤ered to both types and expected welfare is

W¿ = S ¡ º [(1 + ¸) (C¿ + t¿ ) + U ¿ ] + (1¡ º)
£
(1 + ¸)

¡
C¿ + t¿

¢
+ U ¿

¤
(3)

where upper bar is refered to ¯.
Maximum expected welfare under full information (FI) is

W FI = S ¡ (1 + ¸)
£
º¯ + (1¡ º)¯ ¡ e¤ + Ã (e¤)

¤
: (4)

Aggregate expected social welfare over the two periods is then equal to
(1 + ±)W FI where ± is the discount factor.

2.2 One period asymmetrical information benchmark

When the e¢ciency parameter is unknown to the regulator3, the above …rst
best solutions are not implementable because of the incentive for the more
e¢cient …rm to misrepresent its type. To analyse this information problem,
suppose for a moment there is only one period relationship. As is well known,
the regulator can o¤er a menu of separating contracts, provided these satisfy
the incentive compatibility constraints:

U ´ t¡ Ã(¯ ¡ C) ¸ t¡ Ã(¯ ¡ C); IC (5)

U ´ t¡ Ã(¯ ¡ C) ¸ t¡ Ã(¯ ¡ C); IC (6)

together with the individual rationality constraints

U ¸ 0; IR (7)

U ¸ 0: IR (8)

3For models where the regulator does not observe costs, see Baron and Myerson (1982)
and Baron and Besanko (1988). The asymmetric information considered here is of the
adverse selection kind with no stochastic output but with an unobserved action. See
Guesnerie and La¤ont (1984) and Picard (1987) for di¤erent adverse selection models
and Dionne and Doherty (1994) and Fombaron (1997) for adverse selection models with
stochastic output or result. For a recent model when moral hazard and adverse selection
are present, see Lewis and Sappington (1997) and for issues related to repeated moral
hazard and the role of memory, see the survey of Chiappori et al. (1994).
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In the solution to this optimization program, the only binding constraints
are IC and IR. Substituting from these two binding constraints and letting
¢¯ = ¯ ¡ ¯, we have

U = Ã(¯ ¡ C)¡ Ã(¯ ¡C)
= Ã(e)¡ Ã(e¡¢¯) (9)

´ ©(e) (10)

where ©(e) is the e¢cient type’s rent in terms of the ine¢cient type’s e¤ort
level. It can be veri…ed that ©0(0) = 0, ©0(e) > 0 for e > 0 and ©00(e) ¸ 0.
Substituting in the expression for the expected welfare (equation 3), the
regulator’s problem reduces to …nding e and e so as to minimize

º
£
(1 + ¸)(¯ ¡ e+ Ã(e)) + ¸©(e)

¤
+ (1¡ º)(1 + ¸)(¯ ¡ e+ Ã(e)):

In the solution, e = e¤ and e satis…es:

1¡ Ã0(e) = º

1¡ º
¸

1 + ¸
©0(e) or e = eS(º) (11)

where S stands for separation4.
It will be useful to keep in mind the comparative statics of the solution

with respect to changes in º: First,

deS(º)

dº
< 0 (12)

with 0 � eS(º) � e¤ as º varies between unity and zero. Second, writing the
e¢cient types’s rent as U(º) = ©(eS(º)), we have

dU(º)
dº

< 0 (13)

with 0 � U(º) � ©(e¤).
Finally, the maximum expected welfare under asymmetric information

(AI) as a function of º will be denoted:

WAI(º) = S ¡ º
£
(1 + ¸)(¯ ¡ e¤ + Ã(e¤)) + ¸©(eS(º))

¤

¡ (1¡ º)(1 + ¸)
£
¯ ¡ eS(º) + Ã(eS(º))

¤
(14)

4We must emphasize that a separating solution is a general property in a principal-
agent framework (Stiglitz, 1977; La¤ont and Tirole, 1990). In other words, a pooling
solution cannot be optimal.
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which can be veri…ed to be strictly increasing in º. From now on, the …rm’s
type is taken to be unobservable by the regulator5 in a two-period relation-
ship.

2.3 Asymmetric information in a two-period relation-
ship

The nature of the solution under asymmetric information in a multi-period
relationship depends on the capacity for the principal to commit himself to
a contract. Three types of commitment assumptions have been discussed in
the literature: full commitment, commitment and renegotiation, and no com-
mitment. Full commitment means that at the beginning of the …rst period
the regulator can o¤er an immutable menu of long-term contracts specifying
net transfers and cost targets in each period. It is now well established in the
literature that the optimal scheme under full commitment is a repetition of
the static solution, that is e1 = e2 = e

¤ and e1 = e2 = eS (º). In other words,
the low-cost …rm is induced to exert the …rst-best level e¤ at each date while
the high-cost …rm exerts the static second-best e¤ort eS (º) at each date.
In general, however, such long term contracts are not renegotiation-proof
(Dewatripont, 1989).

The full commitment is extreme because, at the beginning of the second
period, the …rm’s type is known to the regulator. If the …rm turns out to
be the high-cost type, the planned e¤ort level eS (º) can be improved upon
ex-post: the second period welfare could be increased if the regulator o¤ered
to renegotiate the initial contract so as to realize the …rst-best cost ¯ ¡ e¤.
However this behavior can be anticipated and the lack of full commitment
introduces some ine¢ciency because it is anticipated that the information
revealed in period one cannot be disregarded in period two and lead to the
ratcheting of the ine¢cient type’s e¤ort; this in turn increases the cost of
separation at the beginning of the relationship. A less extreme commitment
assumption is to suppose that parties can sign long term contracts but com-
mit not to renegotiate. Such renegotiation-proof contracts were analysed by
La¤ont and Tirole (1990) as commitment and renegotiation6 . We shall come

5To simplify, we assume S > (1+¸)¯. This ensures that the separating menu satisfying
(11) is optimal for any º 2 (0; 1), with eS(º) ! 0 as º ! 1.

6On renegotiation with multiple screening variables, see Dewatripont and Maskin
(1995).
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back on this type of contract since, for some parameters values, it leads to
an allocation that is identical to that obtained under no commitment.

Without any form of commitment whatsoever, there is an additional dif-
…culty since now the regulator cannot defer to period two the payment of the
rent needed to induce separation in the initial period: only short-term con-
tracts are possible (or promises are credible only if they are self-enforceable).
By revealing its type today, the e¢cient …rm therefore jeopardizes its future
rent7. As a consequence, if separation is to be obtained, the e¢cient …rm
must be paid its informational rent up-front at the beginning of the relation-
ship. In other words, if there is separation, noncommitment adds a constraint
on the timing of transfers.

This timing constraint leads to the possibility that the ine¢cient …rm
misrepresent its type in period one, pocket the larger incentive payment
designed for the e¢cient type, and then quit the relationship in period two.
Since the incentive payment that must now be paid in period one increases
with the discount factor, the “take-the-money-and run” strategy will matter
only when the discount factor is above some critical value. When this is
the case, the incentive compatibility constraints of both the e¢cient and the
ine¢cient type become binding in period one. We …rst examine the e¤ect of
a binding IC constraint and then consider the case where both constraints
are binding. As we will see, when only the IC constraint is binding, only
the e¢cient type randomnize. When both constraints are binding, there is
the possibility that both types randomnize between the date one contracts
(double randomization). Indeed, the fundamental result of this article is
that, in the no commitment case, with a su¢ciently large ±, the full pooling
of types in period one is second-best optimal.

3 No commitment in a two-period relation-
ship

We consider the possibility that, as in any adverse selection situation, it may
be in the interest of the regulator to o¤er a menu of contracts at date one
so as to separate types. Let these contracts be denoted A0 and A1. Since
there is no commitment with respect to period two on either part, A0 and

7This is the standard “ratchet e¤ect” noted by various authors. See for instance Freixas
et al. (1985).
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A1 are one-period contracts. That is, once the …rm has picked one of these
contracts, it must expect for date two the contract or menu of contracts that
will then be ex post optimal from the regulator’s point of view, given the
information available to him at that date.

As it will become clear, in the solution, the e¢cient type or both types
may randomize at date one between A0 and A1. Assuming for the moment
that only the e¢cient type randomizes, let A0 be the contract picked by the
low-cost …rm only (with probability x), while A1 is picked by the high-cost
…rm and also (with probability 1 ¡ x) by the low-cost …rm. Let e1 denote
the e¢cient type’s e¤ort under contract A0 and e1 the ine¢cient type’s e¤ort
under contract A1.

3.1 Randomization

Recalling that º is the probability that the …rm is the e¢cient type, contract
A0 is chosen with probability xº and contract A1 is chosen with probability
(1¡ x) º + (1¡ º). If the …rm picks A0, it is known at date two that it is
the e¢cient type. If it picks A1, the date two posterior probability that the
…rm is the low-cost type is

º1 (x) =
(1¡ x) º

(1¡ x) º + (1¡ º) :

Note that x = 1 corresponds to full separation, i.e. the limiting case where
contract A1 is picked by the high-cost …rm only, while x = 0 corresponds to
full pooling, both types picking A1 as if contract A0 were not o¤ered. In
what follows, note that it is always optimal to design A1so as to give zero
rent to the ine¢cient type.

Following the choice of A1, the period two scheme o¤ered to the …rm is
the optimal static menu for a probability º1(x) that the …rm is the e¢cient
type. If it chooses A1, the e¢cient …rm can then expect in period two a
rent equal to U(º1(x)). Its total discounted rent in choosing A1 is therefore
©(e1) + ± U(º1(x)). To induce separation the same rent must be available
with contract A0. With the latter contract no rent will be forthcoming in
period two because the regulator is then fully informed of the …rm’s type.
For separation to be possible at date one, the contract A0 must therefore pay
an up-front a cash transfer equal to
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Ã(e1) +
©
©(e1) + ± U(º1(x))

ª

The …rst term compensates for the …rm’s e¤ort e1, the second term is the
rent element of the transfer.

Consider now the ine¢cient …rm’s decision problem. If it picked A0, it
would need to exert the e¤ort e1+¢¯ to meet the imposed cost target under
that contract, thus earning net utility is equal to

Ã(e1) +
©
©(e1) + ± U(º1(x))

ª
¡ Ã(e1 +¢¯):

Given that the ine¢cient …rm earns zero rent under A1, this …rm will choose
the latter contract only if the following self-selection constraint is satis…ed:

©(e1)¡©(e1 +¢¯) + ± U(º1(x)) � 0 IC (15)

For a given randomization probability x, the period two welfare is

cW2(x) = ºx
£
S ¡ (1 + ¸)(¯ ¡ e¤ + Ã(e¤))

¤

+(º (1¡ x) + 1¡ º)WAI
£
º1(x)

¤
: (16)

For x given, the best date one contracts A0 and A1 must be designed so that
e1 and e1 maximize the …rst-period welfare

S ¡ ºx
©
(1 + ¸)(¯ ¡ e1 + Ã(e1)) + ¸

£
©(e1) + ± U(º1(x))

¤ª

¡ º(1¡ x)
©
(1 + ¸) (¯ ¡ e1 + Ã(e1 ¡¢¯)) + ¸©(e1)

ª

¡ (1¡ º)(1 + ¸) (¯ ¡ e1 + Ã(e1)) (17)

subject to the IC constraint (15). Let e1(x) and e1(x) denote the solution to
this problem and let cW1(x) be the corresponding optimal …rst period welfare.

Whether or not the constraint IC is binding in the latter optimization
problem depends on the discount factor. When the constraint is not binding,
the solution to the date one contract design problem is e1 (x) = e

¤, with e1 (x)
strictly increasing in x and tending to the static second-best level eS(º) as x
tends to unity (full separation). At x = 0, we have the full pooling scheme
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and we denote the ine¢cient type’s e¤ort by e1(0) = eP . When ± = 0,
the …rst-period optimization problem is identical to the static one-period
problem; since the ine¢cient type’s self-selection constraint is not binding
in the latter problem, by continuity it is easily seen that the constraint is
not binding in the present case for a small enough discount factor.8 In what
follows we examine …rst the case where the IC constraint is not binding.

3.2 Non binding IC constraint

The randomization probability x determines how much information is re-
vealed in the …rst period. Changes in x generate a trade-o¤ between the …rst
and second-period welfare levels. In order to be able to make direct com-
parison with the full-commitment situation, as well as with the commitment
and renegotiation case, we de…ne the “accounting” …rst and second period
welfare as

W1(x) ´ cW1(x) + ºx¸± U(º1(x)) (18)

W2(x) ´ cW2(x)¡ ºx¸U(º1(x)) (19)

Since W1 + ±W2 = cW1 + ±cW2, total discounted welfare is left unchanged by
this transformation, so that working with the accounting levels of welfare
rather than with the actual ones does not a¤ect the analysis.

(Figure 1, here)

Figure 1 compares the …rst and second period “accounting” welfare levels
for the two extreme cases of full separation (point S with x = 1) and full
pooling (point P with x = 0). Point F in the …gure depicts the per-period
welfare levels that would be reached under full commitment; as discussed
previously, this allows the second-best static welfareWAI(º) in both periods.
Under no commitment, the …rst-period welfare with full separation is also the
same as in the static solution; however, the second period is smaller because
both types are required to supply the …rst-best e¤ort in period two, which
implies that too much rent is then paid out. By contrast, under full pooling,

8If the constraint is not binding at x = 1, it is easily veri…ed that it is not biding for
smaller values of x.
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the …rst-period welfareW P = W1(0) is smaller than in the static solution; on
the other hand, the date two welfare is then identical to the static solution.
In …gure 1, the full separation scheme lies on a higher isowelfare line and
would therefore be preferred to full pooling. Of course, the ranking would
be reversed for a su¢ciently higher discount factor (i.e., a smaller slope for
the isowelfare lines).

When the randomization probability x is allowed to vary between zero
and one, W1(x) and W2(x) trace out an opportunity locus in the (W1;W2)
plane. Figure 2 is similar to the previous …gure except that we have now
drawn the welfare opportunity locus between S and P . Along the curve, the
value of x decreases when we move from S to P and each point of the curve
corresponds to a di¤erent semi-separating scheme. The slope of the locus is
given by

dW2

dW1
=
W 0
2(x)

W 0
1(x)

(20)

Since increases in x imply a move towards the second-best static scheme
in period one, the …rst-period welfare satis…es W 0

1(x) > 0. On the other
hand, increasing x brings the second period welfare further away from the
static second-best static solution so that W 0

2(x) < 0 for x 6= 0; at x = 0,
the second period welfare is at a maximum and we have W 0

2(x) = 0. The
slope of the SP locus is therefore negative for x 6= 0 and is equal to zero at
x = 0. The locus is concave in a neighborhood of full pooling but need not
be concave everywhere.

(Figure 2, here)

The optimal scheme is obtained by a randomization probability x which
maximizes the total discounted welfare W1(x) + ±W2(x). This is equivalent
to choosing the point on the SP curve that lies on the highest isowelfare line.
In the case represented in Figure 2 the optimal scheme is semi-separating.
Clearly, when ± is less than some critical value, the optimal scheme is the
full separation solution x = 1. For ± su¢ciently large, the solution is a
semiseparating contract. The optimal x is non-increasing in ±; that is, the
higher the discount rate the less information will the regulator want to extract
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from the …rm at date one.9 In particular, because the slope of SP is zero at
x = 0, we have

d

dx
(W1(x) + ±W2(x))

¯̄
¯̄
x=0

> 0 (21)

which means that full pooling can never be a solution when the IC constraint
is not binding. We write this as our …rst proposition10.

Proposition 1 For a small enough discount rate, full pooling in period one
is never optimal when the IC constraint is not binding.

3.3 Both self-selection constraints are binding

We now examine the consequences of a binding IC constraint on the intertem-
poral opportunity locus. When the self-selection constraints of both types
are binding, the solution may involve randomization by both the low- and
high-cost …rm. For expository reasons, we examine …rst the case where only
the low-cost …rm randomizes.

3.3.1 Simple randomization

First, even though both self-selection constraints are binding, full pooling is
obviously always feasible so that point P of …gure 2 must be part of the locus.
Second, W2(x) is not a¤ected by a binding IC constraint and it is therefore
de…ned as in the previous section. Third, because IC is binding, W1(x) is
now smaller, at least for some x, so that the intertemporal locus is below
the SP curve of Figure 2. Fourth, for ± su¢ciently large, the constraint is
binding for arbitrarily small deviations from the full pooling scheme at P .
This follows from the fact that, for x close to zero, the IC constraint is not
binding only if

©(¹eP )¡ ©(e¤ +¢¯) + ±U(º) � 0 (22)

9Note that the optimal x is generally not a continuous function of ± because the locus is
typically not concave. In the simulations with a quadratic cost of e¤ort, the locus becomes
non concave for su¢ciently large values of º.

10Note that this case also corresponds to commitment and renegotiation.
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where ¹eP = ¹e1(0) is the ine¢cient type’s e¤ort level in a full pooling solution.
Since ¹eP does not depend on ±, it is clear that the preceding inequality cannot
hold for ± su¢ciently large. Finally, the opportunity locus may have a positive
slope in a neighborhood of full pooling; that is, around full pooling, total
discounted welfare may be decreasing in x. We write the latter statement as
our next proposition.

Proposition 2 When only the low-cost …rm randomizes, for ± su¢ciently
large

d(W1(x) + ±W2(x))

dx

¯̄
¯̄
x=0

< 0 (23)

Proof. See the appendix.

Possible forms of the opportunity locus under simple randomization are
represented in Figure 3. The SP curve is the locus when ± is small and IC
is not binding. The locus shifts to the left when ± increases su¢ciently and
IC becomes binding. The numerical simulations (see the next section) show
that the locus may become convex everywhere. As a result, the only schemes
worth considering on a curve such as S 00P are full separation (point S 00) or
full pooling (point P ). Note the contrast with the previous section: as earlier,
the slope of the opportunity locus is zero at the full pooling point P , but this
point may now be a strict local maximum (in fact, a corner solution).11

(Figure 3, here)

3.3.2 Double randomization

We now allow both types to randomize. Let y > 0 denote the probability
that the ine¢cient type chooses A0. Without loss of generality, we may take
x ¸ y; that is, contract A0 is by convention the one that is more likely to
be chosen by the e¢cient type. At date two, if contract A0 has been chosen,
the posterior probability that the …rm is the e¢cient type is given by

º0(x; y) =
xº

xº + y(1¡ º) : (24)

11That is, as before, W 0
2(x) < 0 for x 6= 0 and W 0

2(0) = 0, but we can now have
W 0

1(x) < 0 in a neighborhood of x = 0.

13



If contract A1 has been chosen, the posterior probability that the …rm is the
e¢cient type is

º1(x; y) =
(1¡ x)º

(1¡ x)º + (1¡ y)(1¡ º) : (25)

The equilibrium second-period contract is given by the optimal static
scheme with respect to º0 or º1, depending on what contract was chosen by
the …rm in the initial period. The expected welfare for period two is therefore

cW2(x; y) = (xº + y(1¡ º))WAI [º0(x; y)]

+ ((1¡ x)º + (1¡ y)(1¡ º))WAI [º1(x; y)] (26)

We now turn to the date one allocation. As before, e1 denotes the e¢cient
…rm’s e¤ort under the …rst period contractA0; the ine¢cient …rm’e¤ort under
the same contract is then e1+¢¯. Similarly, under contract A1, the ine¢cient
…rm’s e¤ort is e1 and that of the e¢cient …rm is then e1 ¡ ¢¯. In both
contracts the ine¢cient …rm earns zero rent, which takes care of the IC
constraint. Under A0 the e¢cient …rms gets a …rst period rent of ©(e1+¢¯)
and can expect U [º0(x; y)] at date two. Under A1 it gets a …rst period rent of
©(e1) and can expect U [º1(x; y)] at date two. The e¢cient …rm is indi¤erent
between both date one contracts if

©(e1) + ±U
£
º1(x; y)

¤
= ©(e1 +¢¯) + ±U

£
º0(x; y)

¤
(27)

For x and y given, the optimal …rst period contracts are such that, subject
to condition (27), e1 and e1 maximize

S ¡ ºx
©
(1 + ¸)(¯ ¡ e1 + Ã(e1)) + ¸©(e1 +¢¯)

ª

¡ º(1¡ x)
©
(1 + ¸) (¯ ¡ e1 + Ã(e1 ¡¢¯)) + ¸©(e1)

ª

¡ (1¡ º)y(1 + ¸) (¯ ¡ e1 + Ã(e1 +¢¯))
¡ (1¡ º)(1¡ y)(1 + ¸) (¯ ¡ e1 + Ã(e1)) (28)

Let cW1(x; y) denote the solution to this problem. Observe that x = y
implies º0 = º1 = º. When the randomization probabilities are the same
for both types, the second period welfare is the second-best static welfare
WAI(º). Furthermore, the condition (27) is then ©(e1) = ©(e1 + ¢¯) and
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the solution to the period one problem is identical to the full pooling contract
derived in the preceding section. That is, the …rst-period contracts A0 and
A1 are identical and we have the full pooling level of welfare at date one12;
the date two welfare is of course also the same as would be obtained following
full pooling.

Lemma 1 For any x and y, x = y is equivalent to full pooling.

As in the preceding section, in order to draw the intertemporal opportu-
nity locus, we introduce “accounting” levels of welfare now de…ned as

W1(x; y) = cW1(x; y) + ºx¸±
©
U

£
º1(x; y)

¤
¡ U

£
º0(x; y)

¤ª
(29)

W2(x; y) = cW2(x; y)¡ ºx¸
©
U

£
º1(x; y)

¤
¡ U

£
º0(x; y)

¤ª
(30)

For a given y 2 (0; 1), we examine the opportunity locus generated by
W1(x; y) and W2(x; y) when x varies in the interval [y; 1]. We know that the
locus includes the full pooling point P when x = y. The slope of the locus is

dW2

dW1

=
@W2(x; y)=@x

@W1(x; y)=@x
(31)

It can be shown13 that the numerator of this expression is always negative
(even at the full pooling x = y); the sign of the denominator is in general
indeterminate, but it is positive at x = y. In particular, we have:

Lemma 2 For all y 2 (0; 1) and all ±,

@(W1(x; y) + ±W2(x; y))

@x

¯̄
¯̄
x=y

= 0 (32)

12Let e1(x; y) and e1(x; y) denote the e¤ort levels under the optimal …rst period con-
tracts. Then e1(y; y) = eP and e1(y; y) = eP ¡ ¢¯, and therefore cW1(y; y) = WP .

13See the proof of the next lemma.
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Proof. See the appendix.

This means that, under double randomization, a small deviation from
full pooling to some degree of “asymmetric pooling” has only a second-order
e¤ect on total discounted welfare. Geometrically, the lemma implies that,
under double randomization, the slope of the opportunity locus at the full
pooling point P is

dW2

dW1

¯̄
¯̄
x=y

= ¡1
±

for any y 2 (0; 1) (33)

3.4 Optimal …rst-period contracts

From the previous lemma, full pooling is a stationary value of the total
discounted welfare with respect to small changes in x towards some degree
of “asymmetric” pooling. Depending on the curvature of the total welfare
function with respect to x, full pooling may therefore be a local minimum
or a local maximum. We now show that, in a neighborhood of full pooling,
the curvature of a locus does not depend on the randomization probability
y, but only on the discount factor.

Lemma 3 There exists b± such that for all y 2 (0; 1)

@2(W1(x; y) + ±W2(x; y))

@x2

¯̄
¯̄
x=y

¸ 0 if and only if ± � b± (34)

Proof. See the appendix.

The last two lemmas show that, when the discount factor is greater than
some critical value, full pooling is a strict local maximum within the class
of all …rst-period contracts designed so as to satisfy both IC and IC. An
illustration is given in …gure 4 which shows the opportunity locus as x varies
in a neighborhood of the full-pooling point at x = y, for some given arbitrary
y (the curvature in the …gure assumes ± > b±).

(Figure 4, here)

Since we also know from proposition 2 that, for ± su¢ciently large, a
small deviation from full pooling to a semi-separating scheme under simple
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randomixation decreases total discounted welfare, it follows that full pooling
is a strict local maximum for su¢ciently large discount factors. The next
proposition states that for su¢ciently large discount factors it is in fact a
strict global maximum.

Proposition 3 For ± su¢ciently large, the best …rst-period scheme under
no commitment is full pooling.

Proof. From proposition 9.11 in La¤ont and Tirole (1993), as ± gets arbi-
trarily large the optimal …rst-period scheme is such that º0(x; y) ¡ º1(x; y)
gets arbitrarily small, which means an x arbitrarily close to y. But from the
previous discussion, if ± is su¢ciently large, full pooling strictly dominates
any scheme (x; y) with x close to y, for any y. Q.E.D.

Thus, when there is no commitment, for some su¢ciently large discount
factors it is not in the interest of the principal to o¤er a menu of contracts
in period one.

4 Simulations

The simulations are based on the quadratic utility of e¤ort functions used by
La¤ont and Tirole in their Appendix 9.9.

Two types of equilibrium are of interest, depending on whether or not the
incentive compatibility constraint of the ine¢cient type is binding. Recall
that, for given parameters, the take-the-money-and-run strategy will matter
only when the discount factor is su¢ciently large. Table 1 reproduces the
results from table 9.1 in La¤ont and Tirole. When ± = 0:01 and ± = 0:1, the
IC constraint is not binding and the optimal scheme involves full separation
in period one. For ± = 1 and ± = 10, the constraint is binding.

(Table 1, here)

Figures 5 and 6 depict the intertemporal welfare loci for these values of
the discount factor. When ± = 1, the optimal scheme is also full separation.
In …gure 5a, the curve PS 0 is the intertemporal welfare frontier with ± = 1
generated by varying x, when only the e¢cient type is allowed to random-
ize. Point P corresponds to the full pooling scheme and S 0 to full separation
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under the binding IC constraint. Figure 5b is an enlargement of …gure 5a in
a neighborhood of the full pooling scheme; it depicts the trade-o¤s between
the …rst and second period welfare under double randomization, for di¤erent
values of y. Note that each curve (for a given y > 0) is convex in a close
neighborhood of P , emphasizing the fact that full pooling cannot be a solu-
tion. This corresponds to the case ± < b± in lemma 3 where full pooling is a
local minimum.

(Figure 5 here)

By contrast, when ± = 10 the optimal scheme involves full pooling. Figure
6 is an enlargement in a neighborhood of full pooling for this value of the
discount factor. Note that each intertemporal locus for y > 0 is concave in
a close neighborhood of the full pooling point P , which corresponds to the
fact that ± > b±. In this case, recalling that each locus for y > 0 is tangent
to the isowelfare line through P , full pooling dominates any scheme in its
neighborhood.

(Figure 6 here)

5 Conclusion

In this paper we have proposed a graphical analysis of multi-period pro-
curement under asymmetric information. We have shown how the di¤erent
commitment assumptions generate di¤erent allocation results over time. In
particular, we have obtained that, when the discount factor is su¢ciently
high, full pooling is optimal in the non-commitment model while it is never
optimal under full commitment or under commitment and renegotiation.

Our analysis was based on the intertemporal welfare frontier, between the
…rst and second period welfare levels, generated by varying the degree of ran-
domization that characterizes semi-separating incentive schemes. The shape
of this frontier is determined by the prior with respect to the …rm’s type, by
the e¢ciency parameters and by the commitment assumptions. The frontier
emphasizes the trade-o¤ between e¢ciency and rent under commitment and
renegotiation and shows how some degree of pooling (semi-pooling) permits
more e¢ciency with less rent by reducing the speed of information revelation.
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Under noncommitment, when all self-selection constraints are binding, the
frontier itself becomes a function of the discount factor. This demonstrates
the di¢culty of …nding simple solutions even in the two-period-two-type case.

Appendix

Proof of proposition 2: As discussed in the text, the IC constraint is
binding for ± su¢ciently large. To solve for the …rst-period contracts, we
therefore maximize (28) subject to

©(e1)¡ ©(e1 +¢¯) + ±U(º1(x)) = 0 (35)

Let ¹ denote the multiplier of (35). Then

dW1(x)

dx
= º(1 + ¸)

©
(¯ ¡ e1 + Ã(e1 ¡¢¯))¡ (¯ ¡ e1 + Ã(e1))

ª
(36)

¡¹±dU [º1(x)]
dx

where ¹, e1 and e1 are solution values as a function of x. At x = 0, it can be
veri…ed that ¹ = 0, e1 = eP and that e1 is de…ned by

©(eP )¡ ©(e1 +¢¯) + ± U(º) = 0 (37)

Thus,

dW1(x)

dx

¯̄
¯̄
x=0

= º(1 + ¸)
©
(¯ ¡ eP + Ã(eP ¡¢¯))¡ (¯ ¡ e1 + Ã(e1))

ª

= º(1 + ¸)
©£
Ã(eP ¡¢¯))¡ (eP ¡¢¯)

¤
¡ [Ã(e1))¡ e1]

ª

(38)

From (37), e1 is increasing in ± which implies thatW 0
1(0) can be made negative

for ± su¢ciently large. The result then follows from the facts thatW 0
2(x) < 0

for x 6= 0 and W 0
2(0) = 0. Q.E.D.

Proof of lemma 2: Using the envelope theorem,

@W2(x; y)

@x
= ¡ºx¸ @

@x

©
U

£
º1(x; y)

¤
¡ U

£
º0(x; y)

¤ª
< 0 (39)
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In particular, at x = y,

@W2(x; y)

@x

¯̄
¯̄
x=y

= (1¡ º)º2¸U 0(º)

µ
1 +

y

1¡ y

¶
< 0 (40)

Regarding the …rst period welfare, let ¹ denote the Lagrange multiplier
associated with the constraint (27). Using the envelope theorem and substi-
tuting from (27),

@W1(x; y)

@x
= º(1 + ¸)

©¡
(¯ ¡ e1 + Ã(e1 ¡¢¯))¡ (¯ ¡ e1 + Ã(e1))

¢ª

+ ± (¹+ ºx¸)
@

@x

©
U

£
º1(x; y)

¤
¡ U

£
º0(x; y)

¤ª
(41)

This expression may be either positive or negative. At x = y, it is easily seen
that ¹ = 0 and we have

@W1(x; y)

@x

¯̄
¯̄
x=y

= ¡±(1¡ º)º2¸U 0(º)

µ
1 +

y

1¡ y

¶
> 0 (42)

Combining (40) and (42), we get the statement in the lemma. Q.E.D.

Proof of lemma 3: Write W (x; y) = W1(x; y) + ±W2(x; y). Let ¹(x; y) be
the multiplier of the constraint (27) in the …rst-period optimization program.
From the expression for @W1=@x and @W2=@x and using (27),

@W (x; y)

@x
= (1 + ¸)º

£
(¯ ¡ e1 + Ã(e1 ¡¢¯))¡ (¯ ¡ e1 + Ã(e1))

¤

+ ±¹
@

@x

©
U

£
º1(x; y)

¤
¡ U

£
º0(x; y)

¤ª
(43)

where e1, e1 and ¹ are short-hand for e1(x; y), e1(x; y) and ¹(x; y). Noting
that ¹(y; y) = 0 and using e1(y; y) = eP and e1(y; y) = e

P ¡¢¯,
@2W (x; y)

@x2

¯̄
¯̄
x=y

= (1 + ¸)º(1¡ Ã0(eP ¡¢¯))
�
@e1
@x

¡ @e1
@x

¸
+ ±¢x

@¹

@x
(44)

where all derivatives on the right-hand side are evaluated at x = y and where

¢x ´ @

@x

©
U

£
º1(x; y)

¤
¡ U

£
º0(x; y)

¤ª¯̄
¯̄
x=y

(45)

= ¡º(1¡ º)U 0(º)

�
1

1¡ y +
1

y

¸
> 0 (46)
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Solving for the comparative statics of the …rst-period program,

@e1
@x

¯̄
¯̄
x=y

=
(1¡ y)±¢x

©0(eP )
> 0 (47)

@e1
@x

¯̄
¯̄
x=y

= ¡ y±¢x

©0(eP )
< 0 (48)

@¹

@x

¯̄
¯̄
x=y

= ¡B©
0(eP ) + y(1¡ y)D±¢x£

©0(eP )
¤2 (49)

where
B ´ (1¡ º)(1 + ¸)(1¡ Ã0(eP )) < 0 (50)

D ´ º
£
(1 + ¸)Ã00(eP ¡¢¯) + ¸©00(eP )

¤
+ (1¡ º)(1 + ¸)Ã00(eP ) > 0

(51)

Substituting in (44),

@2W (x; y)

@x2

¯̄
¯̄
x=y

= E

�
±¢x

©0(eP )

¸
¡ y(1¡ y)D

�
±¢x
©0(eP )

¸2
(52)

where

E ´ (1 + ¸)
£
º(1¡ Ã0(eP ¡¢¯))¡ (1¡ º)(1¡ Ã0(eP ))

¤
> 0 (53)

where the sign follows from eP ¡ ¢¯ < e¤ < eP . The sign of @2W=@x2 in
(52) is the same as the sign of the expression

E ¡ y(1¡ y)D
�
±¢x

©0(eP )

¸
= E + ±

º(1¡ º)DU 0(º)

©0(eP )
(54)

Because E and D do not depend on y and given that E > 0, D > 0 and
U 0 < 0, there clearly exists a b± as stated in the lemma. Q.E.D.

21



References

Atkinson, A. and J. Stiglitz (1980), “Lectures on Public Economics”, New
York, McGraw-Hill.

Baron, D. and D. Besanko (1988), “Monitoring of Performance in Or-
ganizational Contracting: The Case of Defense Procurement”, Scandinavian
Journal of Economics, 90, 329-356.

Baron, D. and R. Myerson (1982), “Regulating a Monopolist with Un-
known Costs”, Econometrica, 50, 911-930.

Chiappori, P.A., I. Macho, P. Rey and B. Salanié (1994), “Repeated
Moral Hazard: The Role of Memory, Commitment, and the Access to Credit
Markets”, European Economic Review 38, 1527-1553.

Dewatripont, M. (1989), “Renegotiation and Information Revelation over
Time in Optimal Labour Contracts”, Quarterly Journal of Economics, 104,
589-620.

Dewatripont, M. and E. Maskin (1995), “Contractual Contingencies and
Renegotiation”, Rand Journal of Economics, 26(4), 704-719.

Dionne, G. and N. Doherty (1994), “Adverse Selection, Commitment, and
Renegotiation: Extension to and Evidence from Insurance Markets”, Journal
of Political Economy, 102, 209-235.

Dionne G. and C. Fluet (1995), “Incentives in Multi-Period Regulation
and Procurement: A Graphical Analysis”, Working Paper 9516, THEMA,
France.

Fombaron, N. (1997), “No-Commitment and Dynamic Contracts in Com-
petitive Markets with Adverse Selection”, Working Paper 9718, THEMA,
France.

Freixas, X. R. Guesnerie and J. Tirole (1985), “Planning Under Incom-
plete Information and the Ratchet-E¤ect”, Review of Economic Studies, 52,
173-192.

Guesnerie, R. and J.-J. La¤ont (1984), “A Complete Solution to a Class
of Principal-Agent Problems with an Application to the Control of Self-
Managed Firms”, Journal of Public Economics, 25, 329-369.

La¤ont, J.-J. and J. Tirole (1990), “Adverse Selection and Renegotiation
in Procurement”, Review of Economic Studies, 57, 597-625.

La¤ont, J.-J. and J. Tirole (1993), “A Theory of Incentives in Procure-
ment and Regulation”, Boston, MIT Press.

Lewis, T.R. and D.E.M. Sappington (1997), “Penalizing Success in Dy-
namic Incentive Contracts: No Good Deed Goes Unpunished?”, Rand Jour-

22



nal of Economics, 28(2), 346-358.
McAfee, P. and J. McMillan (1987), “Incentives in Government Contract-

ing”, Toronto, University of Toronto Press.
Picard, P. (1987), “On the Design of Incentive Schemes under Moral

Hazard and Adverse Selection”, Journal of Public Economics, 33, 305-331.
Rey, P. and B. Salanié (1995), “On the Value of Commitment with Asym-

metric Information”, Working Paper, ENSAE-CREST, Paris.
Riordan, M. and D. Sappington (1988), “Commitment in Procurement

Contracting”, Scandinavian Journal of Economics, 90, 357-372.
Stiglitz, J.E. (1977), “Monopoly, Non-linear Pricing and Imperfect In-

formation: the Insurance Market”, Review of Economic Studies, XLIV(3),
407-430.

Tirole, J. (1986), “Procurement and Renegotiation”, Journal of Political
Economy, 94, 235-259.

23


