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Résumé 

Nous testons la présence du problème d’asymétrie d’information sur le marché américain 

de gestion des prêts hypothécaires en utilisant une grande base de données sur des prêts 

hypothécaires non-gouvernementaux titrisés. La question de recherche principale est la 

suivante : est-ce que la vente de droits de gestion hypothécaire par l'initiateur de la 

titrisation à un deuxième gestionnaire révèle un problème d’asymétrie d’information ? 

Dans un premier chapitre, nous présentons l’industrie de gestion des prêts hypothécaires 

et décrivons les tâches, les revenus ainsi que les coûts et les risques associés. Nous 

présentons aussi les données, définissons les principales variables et fournissons des 

statistiques descriptives. Dans un deuxième chapitre, nous testons empiriquement la 

présence de l’asymétrie d’information sur le marché américain en utilisant des tests non-

paramétriques que nous étendons en une procédure en deux étapes avec des variables 

instrumentales pour prendre en compte de l'endogénéité et la simultanéité. Nos résultats 

révèlent une relation positive et statistiquement significative entre la décision de 

l'initiateur de vendre les droits de gestion et la fréquence de défaut des prêts hypothécaires. 

Dans un troisième chapitre, nous utilisons des algorithmes d'apprentissage automatique 

parfaitement adaptés aux prédictions du risque de défaut hypothécaire étant donné leur 

capacité à traiter des données volumineuses et à identifier des relations complexes et non-

linéaires entre les variables. Nos résultats montrent que les modèles d'apprentissage 

automatique surpassent constamment le modèle Logit et les modèles non-paramétriques. 

Nos résultats confirment la présence d’un problème d’asymétrie d’information sur le 

marché secondaire américain de gestion hypothécaire. Dans un quatrième chapitre, nous 

examinons la performance des fonds mutuels canadiens avec le modèle Markov de 

changement de régimes. Nos résultats montrent que les mesures de performance 

traditionnelles sous-estiment la valeur ajoutée par les gestionnaires actifs en période de 

récession lorsque l'incertitude règne et l'utilité marginale des investisseurs est très élevée. 

Mots clés : Titrisation, gestion des prêts hypothécaires, risque de défaut, asymétrie 

d’information, estimation non-paramétrique, apprentissage automatique. 

Méthodes de recherche : analyse multivariée, économétrie, intelligence artificielle. 
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Abstract 

In this dissertation, we test for evidence of asymmetric information in the U.S. mortgage 

servicing market using a large dataset on non-agency mortgages. The main research 

question is the following: Does the sale of mortgage servicing rights (MSR) by the 

originator to a second servicing company unveil an asymmetric information problem? In 

the first chapter, we introduce the mortgage servicing industry and describe the servicer’s 

tasks, income and the associated costs and risks. In the latter part of chapter 1, we present 

the dataset, define the main variables, and provide descriptive statistics. In the second 

chapter, we empirically test for evidence of asymmetric information in the servicing 

market using nonparametric testing procedures. We then extend this literature by 

proposing a nonparametric two-stage instrumental variable testing procedure to account 

for endogeneity and simultaneity. Our results reveal a statistically significant positive 

relationship between the mortgage originator’s decision to sell the MSR and the ex-post 

likelihood of default. In the third chapter, we rely on Machine Learning (ML) algorithms 

that we found to be ideally suited for mortgage default predictions given their ability to 

process big datasets, identify complex patterns in the data, and handle possible nonlinear 

relationships within large feature sets. Our results reveal that ML models constantly 

outperform both the logistic regression and the nonparametric model regardless of the 

evaluation metric, the study period, or the output class imbalance scheme. Our results 

provide strong support for the presence of a second-stage asymmetric information in the 

mortgage servicing market during the studied period. In the fourth chapter, we examine 

the performance of Canadian international mutual funds using Markov regime-switching 

models and bootstrap methods. Our results provide strong support for the fact that 

traditional static performance measures understate the value added by active fund 

managers in recessions, when economic uncertainty reins and investors’ marginal utility 

of wealth is very high. 

Keywords: Securitization, mortgage servicing, default risk, asymmetric information, 

nonparametric estimation, machine learning. 

Research methods: multivariate analysis, econometrics, artificial intelligence. 





vii 
 

Table of Contents 

  

Résumé ............................................................................................................................. iii 

Abstract ............................................................................................................................. v 

Table of Contents ............................................................................................................ vii 

List of Tables.................................................................................................................... xi 

List of Figures ................................................................................................................ xiii 

List of Acronyms ............................................................................................................ xv 

Acknowledgements ........................................................................................................ xix 

Introduction ....................................................................................................................... 1 

Chapter 1 Mortgage Servicing Market and Data .............................................................. 6 

Abstract ......................................................................................................................... 6 

1.1. Introduction ........................................................................................................ 7 

1.2. Overview of mortgage servicing activity ......................................................... 11 

1.2.1.  Mortgage servicer task, income and risks................................................. 11 

1.2.2. Servicing non-performing mortgages ....................................................... 15 

1.2.3. Securitization, MSR sale, and information disclosure .............................. 18 

1.3. Literature review on MSR valuation ................................................................ 22 

1.4. Data and variables ............................................................................................ 26 

1.4.1.  Data source ............................................................................................... 26 

1.4.2.  Sample construction .................................................................................. 29 

1.4.3. Variables and hypotheses .......................................................................... 30 

1.5. Summary statistics ............................................................................................ 33 

1.6. Conclusion ........................................................................................................ 41 

Bibliography ................................................................................................................ 43 

Chapter 2 Nonparametric Testing of Information Asymmetry ....................................... 49 

Abstract ....................................................................................................................... 49 

2.1. Introduction ...................................................................................................... 50 

2.2. The Kernel Density Estimation framework ...................................................... 52 



viii 
 

2.2.1. The univariate kernel density estimation ................................................... 54 

2.2.2. The multivariate kernel density estimation with mixed data types ............ 57 

2.2.3. The multivariate conditional kernel density estimation ............................. 58 

2.2.4. Bandwidth selection for kernel density estimators .................................... 60 

2.3. The nonparametric information asymmetry test ............................................... 62 

2.4. Empirical results ................................................................................................ 66 

2.4.1. Nonparametric models ............................................................................... 66 

2.4.1.1. The Chiappori and Salanié (2000) method…………………………67 

2.4.1.2. The Su and Spindle (2013) method…………………………………..69 

2.4.2. Robustness checks: parametric models ..................................................... 77 

2.4.3. Two-stage nonparametric framework ........................................................ 84 

2.5. Conclusion ......................................................................................................... 91 

Bibliography ................................................................................................................. 95 

Chapter 3 Machine Learning to test Information Asymmetry ....................................... 103 

Abstract ...................................................................................................................... 103 

3.1. Introduction ..................................................................................................... 105 

3.2. Literature review on Machine Learning applications in credit risk ................ 107 

3.3. Machine Learning models ............................................................................... 111 

3.3.1. Decision Trees ......................................................................................... 112 

3.3.2. Naïve Bayes .............................................................................................. 114 

3.3.3. k-Nearest Neighbors ................................................................................ 116 

3.3.4. Support Vector Machines ......................................................................... 117 

3.3.5. Random Forests ....................................................................................... 119 

3.4. Performance evaluation metrics ...................................................................... 120 

3.5. Data management ............................................................................................ 121 

3.5.1. Dealing with imbalanced output classes.................................................. 121 

3.5.2. Cross-Validation and model selection ..................................................... 123 

3.5.3. Hyperparameters tuning and stratified k-fold Cross-Validation ............. 124 

3.6. Empirical Results ............................................................................................ 126 

3.6.1. Optimal hyperparameters for Machine Learning algorithms ................. 126 

3.6.2. Out-of-sample performance of Machine Learning algorithms ................ 128 



ix 
 

3.6.3. The informational content of the decision to switch servicer ................. 130 

3.6.3.1. Feature importance analysis…………………………...………..…130 

3.6.3.2. Decision making path……………………………………….……….132 

3.6.3.3. Statistical significance…………………………………….……..….134 

3.6.4. Information asymmetry test ..................................................................... 138 

3.6.5. Two-stage testing procedure ................................................................... 142 

3.6.6. Cost-sensitive comparison of classification performance....................... 146 

 3.6.6.1. Cost curves construction……………………………..……………..146 

 3.6.6.2. Cost-sensitive performance analysis…………………………..…..148 

3.7. Conclusion ...................................................................................................... 155 

Bibliography .............................................................................................................. 157 

Chapter 4 A Markov Regime-Switching Modelling of the Performance of Canadian 

International Mutual Funds ........................................................................................... 167 

Abstract ..................................................................................................................... 167 

4.1. Introduction .................................................................................................... 169 

4.2. Literature review on mutual fund performance evaluation ............................ 172 

4.3. Methodology .................................................................................................. 175 

4.3.1. Security selection measures .................................................................... 175 

4.3.2. Market timing measures .......................................................................... 175 

4.3.3. Markov Regime-Switching framework .................................................... 176 

4.3.4. Bootstrap analysis on extreme funds ...................................................... 179 

4.4. Data ................................................................................................................ 180 

4.4.1. Mutual funds sample ............................................................................... 180 

4.4.2. Benchmarks, risk factors and state variables ......................................... 182 

4.5. Empirical results ............................................................................................. 184 

4.5.1. Markov regime-switching specification .................................................. 184 

4.5.2. Security selection skills ........................................................................... 187 

4.5.3. Market timing ability ............................................................................... 191 

4.5.4. International diversification benefits ...................................................... 193 

4.5.5. Bootstrap tests on extreme funds............................................................. 195 

4.6. Conclusion ...................................................................................................... 197 



x 
 

Bibliography ............................................................................................................... 199 

Conclusion ..................................................................................................................... 212 

Appendix A .................................................................................................................... 213 

Appendix B: Implementation of the Bootstrap Procedure ............................................. 223 

Appendix C: Sample construction procedure ................................................................ 225 



xi 
 

List of Tables 

Chapter 1: 

Table 1.1 - Summary statistics by origination year ........................................................ 47 

Table 1.2 - Summary statistics by loan type and status .................................................. 48 

Chapter 2: 

Table 2.1 - Commonly used kernel functions ................................................................. 99 

Table 2.2 - Results of the Chiappori and Salanié non-parametric test .......................... 100 

Table 2.3 - Results of the Probit model......................................................................... 101 

Table 2.4 - Results of the two-stage and bivariate Probit models ................................. 102 

Chapter 3: 

Table 3.1 - Tuned hyper-parameters for Machine Learning algorithms ....................... 163 

Table 3.2 - Out-of-sample performance of Machine Learning algorithms ................... 164 

Table 3.3 - Feature Importance by Decision Tree and Random Forest algorithms ...... 165 

Table 3.4 - Out-of-sample performance shifts .............................................................. 166 

Chapter 4: 

Table 4.1 - Selection of studies on mutual funds with an international objective ........ 201 

Table 4.2 - Survival and mortality of mutual funds ...................................................... 202 

Table 4.3 - Descriptive statistics for fund returns, risk factors, and state variable ....... 203 

Table 4.4 - Information criterion and regime selection................................................. 204 

Table 4.5 - Regime probabilities and duration .............................................................. 205 

Table 4.6 - Security selection measures of fund portfolios ........................................... 206 

Table 4.7 - Security selection ability of individual funds ............................................. 207 

Table 4.8 - Market timing ability of fund portfolios ..................................................... 208 

Table 4.9 - Market timing ability of individual funds ................................................... 209 

Table 4.10 - Diversification benefits for international funds ........................................ 210 

Table 4.11 - Bootstrap tests on extreme fund alphas .................................................... 211 

Appendix: 

Table A1 - Variable definition and source .................................................................... 213 

Table A2 - Probit results using +60 days definition ..................................................... 217 

Table A3 - Probit results using 2001-2006 period ........................................................ 218 



xii 
 

Table A4 - Probit results using 2001-2006 period and +60 days definition .................. 219 

Table A5 - Two-stage Probit results using +60 days definition .................................... 220 

Table A6 - Two-stage Probit results using 2001-2006 period ....................................... 221 

Table A7 - Two-stage Probit results using 2001-2006 period and +60 days definition 222 

 



xiii 
 

List of Figures 

Chapter 1: 

Figure 1.1 - Yearly evolution of the mortgage servicing costs  ...................................... 16 

Figure 1.2 - Securitization process and mortgage servicing ........................................... 18 

Figure 1.3 - FICO scores at origination by payment type ............................................... 35 

Figure 1.4 - FICO scores at origination by loan type ...................................................... 36 

Figure 1.5 - No/Low documentation at origination by payment type ............................. 38 

Chapter 2: 

Figure 2.1 - Kernel density fitting of the FICO score ..................................................... 70 

Figure 2.2 - Kernel density fitting of the LTV ratio ....................................................... 70 

Figure 2.3 - Fitting of the KDE with multiple bandwidths ............................................. 71 

Figure 2.4 - Credit quality vs. conditional probability of default ................................... 73 

Figure 2.5 - Credit quality vs. conditional probability of default ................................... 74 

Figure 2.6 - Divorce rate vs. expected probability of mortgage default ......................... 87 

Figure 2.7 - Income level vs. expected probability of mortgage default ........................ 87 

Figure 2.8 - Instrumental-variable 2-stage nonparametric estimator of switching ......... 89 

Chapter 3: 

Figure 3.1 - Illustration of Machine Learning models .................................................. 112 

Figure 3.2 - k-fold Cross-Validation illustration ........................................................... 125 

Figure 3.2 - Learning curve for Decision Tree algorithm ............................................. 127 

Figure 3.3 - Feature importance with Decision Tree .................................................... 131 

Figure 3.4 - Average feature importance with Random Forest ..................................... 132 

Figure 3.5 - Decision-making process for the Decision Tree model ............................ 134 

Figure 3.6 - ROC Curves for different configurations .................................................. 138 

Figure 3.7 - Credit quality vs. conditional probability of mortgage default ................. 140 

Figure 3.8 - First-stage estimation feature importance for the RF model ..................... 143 

Figure 3.9 - Second-stage estimation feature importance for the RF model ................ 144 

Figure 3.10 - Two-stage IV ML-based estimator of mortgage switching .................... 145 

Figure 3.11 - ROC curves and Cost curves point/lines duality ..................................... 149 

Figure 3.12 - ROC curves and Cost curves ................................................................... 150 



xiv 
 

Figure 3.13 - ROC curves and AUC values ................................................................... 151 

Figure 3.14 - Cost curves for candidate models ............................................................ 152 

Figure 3.15 - Cost curves vs. bad-risk misclassification cost ........................................ 155 

Chapter 4: 

Figure 4.1 - Regime probabilities  ................................................................................. 187 



xv 
 

List of Acronyms 

AIC  Akaike Information Criterion 

ARM  Adjustable-Rate Mortgage 

AUC  Area Under the ROC Curve 

BIC  Bayesian Information Criterion 

CDF  Cumulative Density Function 

CERI  Canadian-Dollar Exchange Rate Index 

CLI  Composite Leading Index 

CV  Cross-Validation 

DT  Decision Tree 

DTI  Debt-To-Income 

DVA  Department of Veterans Affairs 

EW  Equally Weighted 

FDIC  Federal Deposit Insurance Corporation 

FHA  Federal Housing Administration 

FICO  Fair Isaac Corporation 

FN  False Negative 

FP  False Positive 

FRM  Fixed-Rate Mortgage 

GB  Gradient Boosting 

GDP  Gross Domestic Product 

GNMA Government National Mortgage Association 

GSE  Government Sponsored Enterprises 

HELOC  Home Equity Line of Credit 

IAPT  International Arbitrage Pricing Theory 

IMSE  Integrated Mean Squared Error 

IO  Interest Only 

KDE  Kernel Density Estimation 

KNN  k-Nearest Neighbor 

KS  Kolmogorov-Smirnov 



xvi 
 

LTV  Loan-To-Value 

MBA   Mortgage Bankers Association 

MBS  Mortgage-Backed Securities 

ML  Machine Learning 

MLCV  Maximum Likelihood Cross-Validation 

MRS  Markov Regime-Switching  

MSCI  Morgan Stanley Capital International 

MSE  Mean Squared Error 

MSR  Mortgage Servicing Right 

NB  Naïve Bayes 

NBER  National Bureau of Economic Research 

OTS  Office of Thrift Supervision 

P&I  Principal and Interest 

PDF  Probability Density Function 

PMF  Probability Mass Function 

PSA  Pooling and Servicing Agreement 

PUD  Planned Unit Development 

RF  Random Forest 

ROC  Receiver Operating Characteristic (ROC) curve 

SML  Supervised Machine Learning 

SMOTE  Synthetic Minority Oversampling TEchnique 

SPV  Special Purpose Vehicle 

SRR  Statutory Right of Redemption 

SVM  Support Vector Machine 

T&I  Tax and Insurance 

TN  True Negative 

TP  True Positive 

UML  Unsupervised Machine Learning 

UPB  Unpaid Principal Balance 

VW  Value-Weighted 

 



xvii 
 

To my parents Ali & Nabiha,    

I love you.





xix 
 

Acknowledgements 

I would like to express my sincere gratitude for my supervisor Professor Georges Dionne 

whose guidance, feedback, and encouragement have been priceless throughout writing 

this dissertation. I gratefully acknowledge the generous funding received during my Ph.D. 

studies from Professor Dionne’s Canada research chair in risk management. Besides, I am 

deeply grateful to the funding received through the IVADO academic research program, 

the SSHRC of Canada Scholarship, the HEC Montreal Ph.D. Fellowship, and the HEC 

Montreal Foundation Excellence Award. Many thanks also go for Mohamed Jabir for 

priceless technical support with the CFI Canada Foundation Innovation database. I would 

also like to express my appreciation for my Ph.D. committee members; Professors Jean-

Guy Simonato and Simon Van-Norden from HEC Montreal and Professor Claude Fluet 

from Université Laval for the thoughtful comments.  

I am deeply indebted to my parents Ali and Nabiha for unconditional support throughout 

my studies and my whole life. My deepest thanks also go for my love Nouha Jannet for 

her patience and for being a great source of encouragement and motivation. Besides, I 

wish to acknowledge the priceless support and great love of my family, my beloved 

brother Mohamed Amine and my precious sisters Ibtissem, Hanèn, and Linda. Finally, I 

would like to say thank you to my large family: Jedidi, Keskes, and Ghanem. 

Last but not least, I would like to say special thank you to my friends Kais El Heni, Denada 

Ibrushi, Nahla Slim, and Gabriel Yergeau for the stimulating discussions and for the fun-

time we spent together at HEC Montreal.  

 

Helmi Jedidi 

Montréal. March 25th, 2020. 

 





1 

 

Introduction 

Mortgage securitization is the process by which illiquid mortgages are converted into 

tradable securities sold to investors in the financial market. In theory, securitization 

provides lenders with many benefits such as increasing liquidity, lowering regulatory 

capital, and reducing funding costs. Moreover, securitization enables mortgage 

originators to transfer the credit risk associated with their lending activity into the 

marketplace as securitized assets are whipped off their balance-sheets. 

Over the last few decades, mortgage securitization has increasingly attracted the attention 

of numerous scholars who criticize its misuse. Among incentive problems, researchers 

advocate asymmetric information as a motive for mortgage securitization. In a principal-

agent setting, the mortgage originator decision to securitize is commonly considered as 

the agent action stimulated by asymmetric information (see for example Ambrose et al. 

(2005), Keys et al. (2010, 2012), Casu et al. (2011), Agarwal et al. (2012), Krainer and 

Laderman (2014), Malekan and Dionne (2014), Albertazzi et al. (2015), and Elul (2016), 

just to name a few). The common view is that securitization permits mortgage originators 

to transfer the credit risk associated with lending activity to market participants. Herein, 

the existing literature documents an interesting positive link between the decision to 

securitize and the likelihood of mortgage default. Researchers point out that mortgage 

originators possess privileged information they obtain at the time of original underwriting. 

Moreover, only part of the “hard” information set is observed by investors who buy these 

mortgages as part of a securitized pool while soft information is privately kept by lenders 

(see for example Agarwal and Hauswald (2010), Keys et al. (2010, 2012), Liberti and 

Peterson (2018), and Agarwal and Ben-David (2018), for a hard-soft information 

distinction in lending). 

Despite this intense focus on the asymmetric information problem in securitization 

process, no prior research has investigated this problem in the mortgage servicing market. 

Indeed, no particular attention has been attributed to the decision to switch the servicer of 

the mortgage once it has been securitized. A knowledge gap exists as to what motivates 

mortgage originators to sell the servicing rights of some mortgages they originate while 
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keeping the servicing rights of some others. Therefore, this dissertation aims to fill this 

research gap by testing for evidence of a second-stage asymmetric information problem. 

The main research question of this research is: Once mortgage securitization is achieved, 

does the decision by the mortgage originators to sell the mortgage servicing rights (MSR) 

unveils any asymmetric information problem? 

This dissertation has three chapters on mortgage servicing along with a fourth chapter on 

mutual funds performance. In Chapter 1, we provide a gentle introduction to mortgage 

servicing and explain basic terminology. As part of this introductory chapter, we 

enumerate the main tasks of a mortgage servicer and describe the major components of 

its income stream as well as the main costs associated with its activity. We then present 

the rationale for this research through identifying the impact of borrower delinquency on 

the mortgage servicer income stream. In this part, we stress out the potential link between 

the mortgage lender decision to sell the underlying servicing right and the ex-post 

likelihood of mortgage default. The introductory chapter also briefly summarises the 

literature that investigate the pricing of mortgage servicing rights. We particularly focus 

on empirical studies that contribute to the understanding of the main factors that impact 

MSR valuation. In the last part of this introductory chapter, we present the dataset that we 

use in the empirical analysis, define the main variables of interest, and provide descriptive 

statistics. At this step, we contrast the ex-ante mortgage default risk that lenders choose 

to sell the underlying MSRs to those they hold on their servicing portfolios.  

In chapter 2, we perform an empirical test for the presence of asymmetric information in 

the U.S. mortgage servicing market using nonparametric methods. The main idea is to 

investigate the statistical link between the mortgage originator decision to sell the MSR 

and the ex-post likelihood of mortgage default. The econometric methodology proposed 

in Chapter 2 is purely nonparametric in the sense that no restrictive assumptions are made 

about neither (i) the conditional distribution of the lender MSR-selling decision nor (ii) 

the functional form of the relationship between MSR sale and mortgage default. The main 

advantage of our estimation methodology is that inferences about the distribution are 

made purely from the data. Therefore, the density estimation is more data-driven than it 

would be the case where the density function is constrained to fall in a given parametric 
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family. The first part of chapter 2 introduces the Kernel Density Estimation (KDE) 

techniques with mixed data types which define the basis of our nonparametric testing 

procedure inspired from the pioneering work by Su and Spindler (2013). We then present 

our proposed two-stage nonparametric testing methodology which accounts for potential 

endogeneity, econometric misspecification error, and simultaneity. We also provide 

results from the Chiappori and Salanié (2000) nonparametric testing procedure based on 

a sequence of the Pearson’s 2 test of independence. To corroborate our findings, we 

provide a battery of results from parametric models such as standard probit, two-stage 

instrumental variable probit, and bivariate probit with simultaneous regressions. 

Chapter 3 examines the same research question but with a novel methodology. Indeed, 

we employ Machine Learning (ML) algorithms to predict the likelihood of mortgage 

default and to test for evidence of asymmetric information in the U.S. mortgage servicing 

market. This chapter is twofold. In the first part, we build a predictive model of mortgage 

default risk using Machine Learning. The first research question is: How much these new 

advanced tools can help real estate researchers in predicting mortgage default? In doing 

so, we train five ML algorithms each presents a unique approach to process information 

contained in the feature set and a distinct decision-making path. The selected candidate 

ML models are: Decision Trees, Naïve Bayes, k-Nearest Neighbors, Support Vector 

Machines, and Random Forests. In our analysis, we consider both basic learners as well 

as meta-algorithms that belong to ensemble learning which differ largely in the learning 

scheme. In this part of Chapter 3, we show that mortgage default prediction is an 

application domain where Machine Learning offers a significant contribution. In fact, ML 

provides sophisticated tools that successfully handle huge data amounts, identify hidden 

data patterns, and capture complex non-linear relationships in the features-attributes 

space. In the second part of Chapter 3, we employ the ML-based mortgage default 

prediction to test asymmetric information in the mortgage servicing market. Our results 

from Chapter 3 are in line with previous findings using nonparametric estimation 

techniques. The key advantage of the proposed approach in Chapter 3 is taking into 

consideration the significant contribution of Machine Learning in credit risk analysis. 
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This part of the dissertation contributes to the existing literature in several ways. This 

study is the first to investigate the determinants of the decision of mortgage originators to 

sell the underlying MSR, after securitization is made. In fact, we are the first researchers 

to focus on already-securitized mortgages and test what we define a “second-stage” 

asymmetric information problem in the secondary market. Second, this research 

contributes to the real estate literature by focusing on the non-agency segment of the MBS 

market. Although the agency counterpart is extensively examined in many empirical 

studies, little is known about the non-agency market. Third, this work contributes to the 

literature on credit risk assessments by using the novelty of Machine Learning algorithms. 

In fact, this study is the first to employ ML predictive models to estimate the mortgage 

default risk in the U.S. non-agency market. Fourth, we contribute to applied econometrics 

by using Machine Leaning in order to test for evidence of asymmetric information in a 

principal-agent context. We show that Machine Learning, a subfield of Artificial 

Intelligence, has a lot to offer to the theory of contract economics as it provides advanced 

new tools that we exploit in this study. 

In the fourth chapter, we evaluate the risk-adjusted performance of international Canadian 

equity mutual funds using Markov regime-switching models. Numerous studies report 

little evidence of significant superior performance by internationally diversified mutual 

funds (see for example Eun et al. (1991), Droms and Walker (1994), Gallo and Swanson 

(1996), Detzler and Wiggins (1997), Fletcher (1999), Redman et al. (2000), Tkac (2001), 

and Fletcher and Marshall (2005) and  just to name a few). We show that the documented 

poor performance is, indeed, regime specific. This can be explained by the fact that 

traditional (single-regime) multi-factor models restrict the performance measure to the 

average performance over the whole study period without taking into consideration 

cyclical movements in the investment environment featured by bear-bull market 

alternations. A second contribution of this chapter is implementing a residual-only 

bootstrap procedure in the vein of Kosowski et al. (2006) based on Markov regime-

switching multi-factor models in order to compute corrected p-values. We implement a 

such procedure since individual stocks may exhibit significant higher moments (i.e., 

skewness and kurtosis) and varying levels of autocorrelations in their return time-series 

due to, for example, the implementation of dynamic strategies by fund managers. 
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Furthermore, non-normality in the alphas of individual mutual funds is translated into 

non-normality in the distribution of cross-section mutual funds alphas. Thus, a sample of 

individual funds with heterogeneous levels of risk over time can result in fatter (or thinner) 

tails of the cross-sectional distribution of alphas than those of a normal distribution due 

to their higher (lower) probability of being located in the extreme tails of the cross-

sectional distribution of alpha estimates. So, the originality of this analysis remains in 

combining the Kosowski et al. (2006) residual-only bootstrap approach that deal with the 

above problems with the Markov regime-switching analysis where each estimation 

parameter is state-dependent. Our results reveal that international Canadian fund 

managers exhibit superior performance during recession periods. However, fund 

managers are not able to outperform the world portfolio in expansion. Our results also 

show that fund managers are actively reducing their fund’s beta during bear market states 

and increasing their fund’s exposure during bull market states. Our results provide strong 

support for the fact that traditional static performance measures understate the value added 

by active fund managers in recessions, when economic uncertainty reins and investors’ 

marginal utility of wealth is very high.  

 



 

 

Chapter 1 

Mortgage Servicing Market and Data 

Abstract 

In this chapter, we provide a gentle introduction to mortgage servicing and explain the 

basic terminology used in this dissertation. We enumerate the main tasks that a mortgage 

servicer has to perform and describe the major components of its income stream as well as 

the main costs associated with its activity. We next proceed to present the rationale for this 

research and shed the light on the impact of borrower delinquency on mortgage servicing 

profitability. In this part, we stress out the link between the mortgage originator’s decision 

to sell the underlying servicing right and the ex-post likelihood of mortgage default. This 

introductory chapter also briefly summarises the literature on mortgage servicing rights 

pricing. We review the main empirical studies that aim to identify the key factors that 

impact the pricing of mortgage servicing rights. Finally, we present our data set, define the 

main variables, and provide descriptive statistics. The univariate analysis reveals that 

mortgages for which the servicing rights have been sold were granted for borrowers with 

a high probability of financial distress. 
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1.1. Introduction 

A mortgage is defined as a contractual debt in which a real estate property is used as a 

collateral to secure the debt. The Code of Laws of the United States of America (U.S. Code 

12 U.S.C. § 3752 Title 12 on banks and banking) defines a mortgage as: 1 

“The term "mortgage" means a deed of trust, mortgage, deed to secure 

debt, security agreement, or any other form of instrument under which 

any property (real, personal or mixed), or any interest in property (including 

leaseholds, life estates, reversionary interests, and any other estates under 

applicable State law), is conveyed in trust, mortgaged, encumbered, pledged, or 

otherwise rendered subject to a lien for the purpose of securing the payment of 

money or the performance of an obligation.”  

Mortgages are commonly used by individuals to make important real estate purchases 

without paying the entire value up front. In a typical mortgage lending process, a 

homebuyer (mortgagor) fills out a credit application to obtain funding. The lender 

(mortgagee) obtains also the borrower’s credit report from credit bureaus. Based on this 

set of information, the lender expends effort to assess the borrower’s reliability and 

creditworthiness before financing the purchase. Once contracted, the borrower must pay 

back the principal and interest until full repayment. In the event where the borrower fails 

to fully pay back the debt, the lender has the right to take possession of the property through 

a legal procedure known as foreclosure. Such prescribed procedure allows the mortgagee 

to evict the borrower and sell the property to recover the debt using the sale proceeds. 

In the olden times, lenders used to hold mortgages they originate on their balance-sheets 

until the scheduled maturity. Therefore, mortgage originators assume all risks associated 

with their lending activities. However, rapid development of financial markets and 

 

1 United States Code, 2006 Edition, Supplement 5, Title 12 - BANKS AND BANKING, CHAPTER 38A - 

SINGLE FAMILY MORTGAGE FORECLOSURE, Sec. 3752 - Definitions. More information on the 

content of the Code can be retrieved from the U.S. Government Publishing Office’s website. Link: 

https://www.govinfo.gov/content/pkg/USCODE-2011-title12/html/USCODE-2011-title12-chap38A-

sec3752.htm. 

https://www.govinfo.gov/content/pkg/USCODE-2011-title12/html/USCODE-2011-title12-chap38A-sec3752.htm
https://www.govinfo.gov/content/pkg/USCODE-2011-title12/html/USCODE-2011-title12-chap38A-sec3752.htm
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advances in structured finance enabled lenders to overcome this “traditional” lending 

scheme by removing mortgages they originate from their balance-sheets before maturity 

through securitization. Defined as the process by which illiquid assets are converted into 

tradable securities, securitization enables mortgage originators to sell mortgage-related 

cash flows to third parties in the form of liquid interest-bearing securities traded on 

financial markets. These securities are commonly known as mortgage-backed securities 

(hereafter referred to as MBS). The main advantages that securitization provides to lenders 

are: (i) improving liquidity by converting long-term illiquid assets into tradable securities, 

and (ii) reducing regulatory capital requirements since securitized assets are whipped off 

the originator balance-sheet. 

Once the securitization process is achieved and mortgage-backed securities are sold to 

investors, a key player intervenes: the mortgage servicer. Its main task is ensuring the 

upkeep of the debt via guarantying the cash flow connection between borrowers and MBS-

holders in the secondary market. The task of a mortgage servicer includes also 

administrative functions such as managing borrower’s escrow accounts, maintaining loan 

records, and responding to borrowers’ inquiries. In exchange, the servicing company is 

entitled to earn a compensation package mainly composed of a servicing fee, ancillary fees, 

and float earnings. Customarily, the mortgage servicer incurs various expenses such as 

salaries, operating expenses, and technology costs. 

Naturally, the originating entity acts as the servicer of the deal and ensures the link between 

borrowers and MBS-investors. However, the originator can sell the underlying mortgage 

servicing right (MSR) to another servicing institution (or, MSR-purchaser). In that case, 

the new servicing entity substitutes the original servicer in ensuring the mortgage upkeep. 

Consequently, the borrower becomes in a direct link with the new servicer for whom he/she 

makes monthly debt payments.  

In case where the borrower misses his/her periodic debt payments, the servicing costs 

increase considerably as the servicer incurs additional costs. For instance, the servicing 

company is required to deploy additional resources to work with the delinquent borrower 
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to find solutions, perform loss mitigation activities, manage a foreclosure process, and in 

some cases, pay third-party fees related to foreclosure proceedings. More importantly, the 

mortgage servicer is required to advance payments to MBS-investors, tax authorities, and 

insurance companies on behalf of the delinquent borrower. In some cases, the servicer is 

required also to protect the property from vandalism and prevent its deterioration through 

preventive maintenance during the foreclosure process. As a consequence, servicing non-

performing mortgages is highly expensive (see for example technical reports by the 

Federal Housing Finance Agency (2011), Housing Finance Policy Center (2014, 2018a), 

Oliver Wyman (2017), Bureau of Consumer Financial Protection (2019), and Federal 

Deposit Insurance Corporation (2019) for a comprehensive analysis of servicing costs). 

For illustration, the annual cost-to-service a delinquent mortgage in 2008 averaged five 

times higher than the cost-to-service a performing mortgage ($482 vs. $59). Although, the 

average cost of servicing has witnessed a steady climb over recent years, the cost of 

servicing delinquent loans, in particular, has escalated sharply (Goodman, 2016). In 2013, 

the average annual cost-to-service of a performing loan has tripled ($156) while quintupled 

for a non-performing mortgage ($2,358).  

Undoubtedly, the cost of financing principal and interest (P&I) and tax and insurance 

(T&I) advances can cause disastrous liquidity pressures if delinquencies surge rapidly and 

unexpectedly in the servicer’s portfolio. Therefore, borrower delinquency is recognized to 

have a thrilling impact on servicing profitability: servicing inferior-quality mortgages (i.e. 

granted for borrowers with a high financial distress risk) impairs the performance of 

mortgage servicers. 

Given the fact that mortgage originators possess advantageous information –both hard and 

soft– obtained at the time of original underwriting (Agarwal and Hauswald, 2010; Agarwal 

and Ben-David, 2018; Liberti and Peterson, 2018) and that only part of hard information 

can be observed by a third party while soft information is kept private (Keys et al., 2010; 

2012), this dissertation aims at testing whether or not mortgage originators are taking 

advantage of this crucial information advantage. 
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To do so, we utilize a large dataset on U.S. mortgages originated between January 2000 

and December 2013 and tracked until December 2015. We scrutinize the relationship 

between the originator MSR-selling decision and the ex-post likelihood of mortgage 

default. Our main focus is on mortgages securitized through the private-label channel (i.e. 

with characteristics that do not meet the Government-Sponsored Enterprises (GSE) 

lending standards). We are particularly interested in the non-agency market for multiple 

reasons. First, default risk is not a major concern in the agency market as MBS securities 

are guaranteed against default by the U.S. government agencies. Second, liquidity 

pressures to finance P&I and T&I advances are not of concern in the agency market as 

servicers are entitled to reimburse such advances and other related costs in the event of 

borrower delinquency. Besides, the government agencies are committed to purchase back 

the defaulting loans in some cases. Last but not least, the fundamental risk characteristics 

of loans pooled in the agency market are ex-ante known to meet the GSE lending standards 

so lower asymmetric information issues should be pronounced in this market.    

This interest is also justified by the tremendous size of debt under management in the non-

agency market. Prior to the financial crisis, mortgage servicing companies used to ensure 

the ongoing management of about $1.6 trillion in prime (22%), Alt-A (35%), and Subprime 

(43%) mortgages securitized through the private-label channel (Housing Finance Policy 

Center, 2018b). Between 2005 and 2007, the non-agency servicing companies managed 

about $1.2 trillion worth of mortgage-backed securities every year, on average. Given the 

significant amount of the non-agency debt under management, properly assessing the 

credit risk of these financial intermediaries is an important task for both academia and 

regulatory authorities.2  

The remainder of this introductory chapter proceeds as follows. Section 2 introduces the 

mortgage servicer’s task and describes the main sources of income and expenses. It also 

highlights the impact of borrower delinquency on mortgage servicing profitability. Section 

 

2 Nevertheless, this market has witnessed a dramatic drop after the financial crisis for multiple reasons (e.g. 

change in lenders’ behavior, investors’ risk appetite, regulation etc.). More details on size shifts of this market 

are in the Summary and Statistics subsection. 



11 

 

3 summarizes the literature on servicing rights pricing. Section 4 describes the sample and 

details of variable construction. Section 5 provides descriptive statistics while section 6 

concludes this introductory chapter. 

1.2. Overview of mortgage servicing activity 

1.2.1.  Mortgage servicer task, income and risks 

The legal definition of the term “servicing” could be retrieved from the U.S. Code of Laws 

on servicing mortgage loans and administrating escrow accounts: 3 

“The term "servicing" means receiving any scheduled periodic payments from a 

borrower pursuant to the terms of any loan, including amounts for escrow accounts 

described in section 2609 of this title, and making the payments of principal and 

interest and such other payments with respect to the amounts received from the 

borrower as may be required pursuant to the terms of the loan.” 

From the above definition, servicing can be resumed in collecting periodic payments from 

borrowers and transferring the required amounts to the designed entities. Accordingly, a 

mortgage servicer occupies an intermediate position between borrowers and purchasers of 

the underlying mortgage-backed securities.  

The mortgage servicer duties and responsibilities are defined throughout a specific contract 

commonly referred to as the “Pooling and Servicing Agreement” (hereafter, PSA). If the 

mortgage backing the MBS security is guaranteed by Freddie Mac or Fannie Mae, the 

 

3 United States Code, 2006 Edition, Supplement 5, Title 12 - BANKS AND BANKING, CHAPTER 27 - 

REAL ESTATE SETTLEMENT PROCEDURES, Sec. 2605 - Servicing of mortgage loans and 

administration of escrow accounts. Retrieved from the U.S. Government Publishing Office’s website: 

https://www.govinfo.gov/content/pkg/USCODE-2011-title12/html/USCODE-2011-title12-chap27-

sec2605.htm. 

https://www.govinfo.gov/content/pkg/USCODE-2011-title12/html/USCODE-2011-title12-chap27-sec2605.htm
https://www.govinfo.gov/content/pkg/USCODE-2011-title12/html/USCODE-2011-title12-chap27-sec2605.htm
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servicer tasks and obligations are governed by the so-called “Servicing Guide”.4,5 Over the 

entire lifetime of a mortgage, the servicer task includes collecting periodic principal and 

interest payments from the borrower and remitting all funds due to MBS investors under 

the scheduled remittance cycle. The mortgage servicer task also includes administrating 

borrower escrow account by ensuring the timely payment of real estate taxes to authorities, 

property and flood insurance premiums to insurance companies, and any other charges 

related to the property backing the mortgage. The servicing company is also responsible 

for maintaining accurate loan records, reporting tax and insurance information to 

authorities, reporting loan-level transactions to investors, responding to borrower inquiries, 

and assisting the borrower with property-related issues and legal actions, among other 

administrative functions.  

In exchange for fulfilling these tasks, a service provider is allowed to retain a compensation 

package specified in the PSA. The major component of the servicer compensation is a 

servicing fee calculated as a fixed percentage of the declining unpaid principal balance 

(UPB). The monthly servicing fee is deducted from the borrower’s interest payment before 

deposited into the appropriate account. The minimum servicing fee is 25 basis points for 

Fannie Mae and Freddie Mac and 19 basis points for Federal Housing Administration 

(FHA) and U.S. Department of Veterans Affairs (VA) loans.6 In the non-agency market, 

the mortgage servicing fees are typically higher due to higher risks. The Federal Housing 

Finance Agency (2011) discussion paper on alternative mortgage servicing compensation 

points out that the servicing fee in the private-label securitization market can reach 50 basis 

points of the UPB.7 The monthly servicing fee is generally collected only if the borrower 

 

4 An example of Freddie Mac Single Family Servicer Guide (November 13, 2019) could be retrieved at the 

following link: https://sf.freddiemac.com/content/_assets/resources/pdf/fact-sheet/guide.pdf. 

5 An example of Fannie Mae Single Family Servicing Guide (April 10, 2019) could be retrieved at the 

following link: https://www.fanniemae.com/content/guide/svc041019.pdf. 

6 Records according to the Government National Mortgage Association (GNMA). For additional information 

on servicing fee calculation, please refer to the Fannie Mae 2018 Single-Family Servicing Guide that could 

be retrieved at https://www.fanniemae.com/content/guide/svc031418.pdf. 

7 Our sample servicing fee averages 44 basis points. Both adjustable-rate and subprime loans exhibit a 

slightly higher servicing fee of 47 basis points, on average. Please refer to Table 1.1 for more details. 

https://sf.freddiemac.com/content/_assets/resources/pdf/fact-sheet/guide.pdf
https://www.fanniemae.com/content/guide/svc041019.pdf
https://www.fanniemae.com/content/guide/svc031418.pdf
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makes her/his debt payments. Consequently, if a borrower is delinquent, the main 

component of the servicer income stream vanishes.  

The mortgage servicer is also entitled to earn ancillary fees such as late charges, 

prepayment penalties, loan modification fees, property ownership transfer fees, among 

other charges. Last but not least, the servicer also makes float earnings from holding P&I 

and T&I payments during the period between collection and remittance. However, the 

value of this income component largely depends on the opportunity costs of funds which 

in turn depends on the current short-term interest rate. In fact, this opportunity cost is more 

valuable when interest rates are high between collection and remittance. According to the 

Mortgage Bankers Association and PricewaterhouseCoopers (2015) joint report, the 

current mortgage servicing compensation package was established in the 1980s but has 

never been changed since.8  

During the process of mortgage servicing, a service provider incurs a variety of expenses 

basically related to business operating such as personal salaries, premises costs, occupancy 

rents, equipment maintenance, technology costs, etc. The servicing costs encompass also 

administrative costs such those of collecting debt payments, sending payment notices, 

submitting payments and requisite reports to MBS-holders, etc. Generally, the mortgage 

servicing profitability is established when the servicer revenue stream exceeds the costs 

associated with mortgage servicing. Whenever this the case, the MSR (considered as a 

financial asset) is deemed value-creating. 

Regarding the risks associated with mortgage servicing, there are basically three main risks 

that a servicing institution may endure: prepayment risk, default risk, and operational risk. 

Each of these is discussed in turn below.  

 

8 Similar facts are reported in the Board of Governors of the Federal Reserve System, Federal Deposit 

Insurance Corporation, Office of the Comptroller of the Currency, and National Credit Union Administration 

2016 Report to the Congress on the Effect of Capital Rules on Mortgage Servicing Assets which can be 

accessed at: https://www.federalreserve.gov/publications/other-reports/files/effect-capital-rules-mortgage-

servicing-assets-201606.pdf. 

https://www.federalreserve.gov/publications/other-reports/files/effect-capital-rules-mortgage-servicing-assets-201606.pdf
https://www.federalreserve.gov/publications/other-reports/files/effect-capital-rules-mortgage-servicing-assets-201606.pdf
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Prepayment is defined as the hazard of an unscheduled early repayment of a debt contract. 

Although fully paying the debt balance is well perceived (at least from an economic 

perspective), prepayment is usually considered as a financial risk for financial institutions 

in general and servicing companies in particular. In fact, when a borrower fully repays the 

principal prior to maturity, the servicing company loses the stream of scheduled servicing 

fees, so the servicing contract has no remaining value. Naturally, the prepayment risk is 

driven by changes in the interest rate. When interest rates fall below the contracted coupon 

rate, borrowers may find it advantageous to refinance their mortgages at a lower rate (cost). 

So, when interest rates decline, the borrower propensity of prepayment increases which in 

turn terminates the servicing company income stream. Besides, since the servicer income 

encompasses P&I and T&I float components, these components are less valuable when 

interest rates are low. 

The second risk is the credit or default risk defined as the hazard that the borrower is unable 

to timely honor the required principal and/or interest payments on his debt. Given the 

above discussion, the default risk has a significant negative effect on the profitability of 

servicing activity: if the borrower’s ability to make monthly payments is impaired, the 

mortgage servicer income stream extinguishes. In such case, the deal servicer could suffer 

an unexpected loss in profitability due to a sudden loss of servicing fee and float income. 

Moreover, if the borrower stops making debt payments, the servicer is required to timely 

advance P&I to MBS investors and T&I to authorities and insurers conforming to the PSA 

terms and conditions.  

Regarding the operational side, the servicer also encounters various shortfalls due to 

inadequate procedures, failed systems, or employee errors. These types of losses are of an 

entirely different nature from the above-mentioned risks (prepayment and default). One 

example of operational risks for a mortgage servicer is the possibility that the initial 

mortgage was basically made on fraudulent information. Where the loans are guaranteed 

by the GSEs, the servicer will get reimbursed for advances made to MBS holders. Even if 

the mortgage was made properly, then certain files relating to loan origination are lost or 
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misplaced, then the servicer might not be reimbursed for any losses relating to that 

particular loan. 

1.2.2. Servicing non-performing mortgages 

When a borrower misses the contractual debt payments, the key functions of a mortgage 

servicer are enlarged to include (i) advancing principal and interest payments to MBS 

investors as scheduled in the PSA, (ii) working with each delinquent borrower to 

understand her/his financial situation, (iii) evaluating alternative loss mitigation strategies, 

(iv) executing loss mitigation to cure delinquency, and ultimately (v) initiating and 

managing a foreclosure process. Moreover, the servicing company is required to advance 

tax payments to authorities and insurance premiums to insurance companies as scheduled. 

In some cases, the servicer duties also include inspecting the property on a regular basis, 

securing it from vandalism, and preventing its value from deterioration through preventive 

maintenance. In consequence, servicing non-performing mortgages is viewed as a highly 

expensive and labor-intensive task. Technical reports by the Federal Housing Finance 

Agency (2011), Housing Finance Policy Center (2014, 2018a), Oliver Wyman (2017), 

Bureau of Consumer Financial Protection (2019), and Federal Deposit Insurance 

Corporation (2019) provide a comprehensive summary on how costly is servicing of non-

performing loans.  

Figure 1.1 illustrates the yearly evolution of loan servicing costs by loan status (performing 

vs. nonperforming). In 2008 the average annual cost-to-service of a delinquent loan was 5 

times higher than that of a performing loan ($482 vs. $59). Although, the average cost of 

servicing has steadily increased over the last few years, the cost of servicing delinquent 

loans, in particular, has escalated sharply. For performing loans, the average annual cost 

has increased from $59 in 2008 to $156 in 2013, an increase of 264 percent. However, the 

average annual cost of servicing a non-performing loan has increased by 500 percent, from 

$482 in 2008 to $2,414 2013.  By the end of our study period (2015), the annual cost-to-

service was, on average, 14 times higher than a non-performing mortgage ($2,386 vs. 

$181). 



16 

 

 

1 Figure 1.1 - Yearly evolution of the mortgage servicing costs 9 

Given this disproportionate servicing costs, Goodman (2016) shows that servicing non-

performing mortgages consumes excessive servicer resources despite they represent a 

small percentage of its holdings. For illustration, let’s suppose a service provider holding 

1,000 single-family mortgages on its servicing portfolio and that the 2013 annual 

delinquency rate is 9.01%.10 Without loss of generality, 90 out of the 1,000 mortgages in 

the servicer portfolio would be delinquent. The total cost-to-service of these 90 non-

performing mortgages would be $217,260 on average while the cost associated with 

servicing the 910 performing loans would be only $141,960.11 Despite they represent only 

9% of its entire servicing portfolio, non-performing mortgages would cost the servicing 

company 60% higher than what cost the remaining 91% performing loans, on average.12 

Goodman (2016) also shows that non-performing loans are labor intensive. The author 

estimates that in 2008 each servicing employee was able to process 1,638 loans per year, 

on average, while this number dropped to 647 loans per year in 2013. According to 

Goodman’s (2016) calculations, to process the exact same number of non-performing 

 

9 Source: Federal Deposit Insurance Corporation (FDIC) quarterly report (2019 vol 13 n° 4). 

10 Source: Federal Reserve Bank of St. Louis: Delinquency Rate on Single-Family Residential Mortgages, 

Booked in Domestic Offices, All Commercial Banks: https://fred.stlouisfed.org/series/DRSFRMACBS#0. 

11 Non-performing loans cost: 90 × $2,414 = $217,260.  Performing loans cost: 910 × $156= $141,960. 

12 60% = $217,260 / ($217,260 + $141,960) × 100. 

https://fred.stlouisfed.org/series/DRSFRMACBS#0
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mortgages, a servicing company was required to hire more labor force in 2013 than it was 

the case in 2008. 

Additionally, mortgage servicing costs would rise further if the property securing the debt 

is located in judicial foreclosure states where a judge order is required to evict a defaulting 

homeowner. Notably, servicing delinquent mortgages are more costly in states with long 

foreclosure timelines. For illustration, it can take up to 990 days and 750 days to foreclose 

in New York and New Jersey, respectively, while a typical foreclosure process takes only 

240 days in Alabama and Missouri. These state-level discrepancies in foreclosure timelines 

could result in disproportionate costs of mortgage servicing since states with long 

foreclosure timelines would have more and more mortgages stuck in long-lasting judiciary 

pipelines (while non-judicial states have cleared pipelines). More critically, the Consumer 

Financial Protection Bureau (CFPB) has established consumer protections to help ensure 

that borrowers have an opportunity to stay in their homes. An excellent example of 

protection is the Foreclosure Statutory Redemption Law which provides a defaulting 

borrower the right to stay at home even after an auction or sale has been accomplished.13 

Typically, the statutory redemption law provides the distressed owner with an additional 

time period of maximum one year to redeem his/her property.  

Together, all these issues make servicing delinquent mortgages tremendously costly. If the 

borrower’s ability to make debt payments is impaired, not only the mortgage servicer 

income stream vanishes but it is also asked to advance P&I and T&I payments to investors, 

authorities, and insurers using its own resources. Undoubtedly, the cost of financing 

advances could be exorbitant if the number of delinquent loans in the servicer portfolio 

surges rapidly and unexpectedly which can result in critical liquidity pressures. However, 

it is worthy to note that these pressures are of bigger concern especially in the non-agency 

 
13 The CFPB was founded on 21 July 2011. 
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market since servicers in this market lack the GSE backup as they cannot be reimbursed 

for P&I advances or any other costs.14 

1.2.3. Securitization, MSR sale, and information disclosure 

Figure 1.2 shows various entities involved in the mortgage lending process along with the 

generated cash flows at every step. 

 

2 Figure 1.2 - Securitization process and mortgage servicing 

A typical mortgage lending process starts with a borrower applying for a mortgage in order 

to buy a property or to refinance an existing loan (to take advantage of lower interest 

payments). The mortgage originator is the financial entity that makes the loan which can 

be a commercial bank, a credit union, or a non-depository retail lender. Whatever the case, 

the mortgage originator manages the entire loan-granting process during which it expends 

 

14 Please refer to chapter 18 of Ginnie Mae’s Mortgage-Backed Securities Guide which can be accessed at:  

https://www.ginniemae.gov/doing_business_with_ginniemae/issuer_resources/MBSGuideLib/Chapter_18.

pdf. 

https://www.ginniemae.gov/doing_business_with_ginniemae/issuer_resources/MBSGuideLib/Chapter_18.pdf
https://www.ginniemae.gov/doing_business_with_ginniemae/issuer_resources/MBSGuideLib/Chapter_18.pdf
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effort to assess the borrower’s reliability and creditworthiness. If the borrower meets the 

lending requirements, the application is approved and funds are released as represented by 

cash flow 1 in Figure 1.2. Naturally, the borrower is required to repay back the loan as 

scheduled. Scheduled principal and interest payments in absence of securitization are 

represented by cash flow 2.  

In this “traditional” lending scheme, the originating institution retains the loan on its 

balance-sheet as it bears all associated risks, notably default. In such context, lenders hold 

an economic interest in mortgages they originate which fosters vigilant lending practices.  

Over recent decades, securitization permitted lenders to remove mortgages they originate 

from balance-sheets. Through financial engineering, illiquid loans are pooled then 

converted to marketable securities sold on financial markets. The major advantages of 

securitization are enhancing liquidity and reducing regulatory capital requirements as the 

illiquid risky mortgages are whipped from lenders balance-sheets. Moreover, securitisation 

allows lenders to escape credit risk and interest rate risk associated with mortgage lending. 

From 2001 to 2009, almost 70% of all originated mortgages were securitized according to 

the Housing Finance Policy Center (2018a) and the Federal Deposit Insurance Corporation 

(2019) reports. According to the same source, the year 2006 saw the peak of securitization 

activity when almost 90% of the originated mortgages were securitized (both agency and 

non-agency) with an outstanding issuance volume of residential MBS of 1.28 trillion U.S. 

dollars. However, the market has witnessed a dramatic drop after the financial crisis for 

multiple reasons (e.g. change in lenders’ behavior, risk appetite, regulation etc.). 

At a conceptual level, mortgage securitization is relatively complex as specialization has 

led to the inclusion of a large number of economic agents who are involved in the process. 

This process is summarized in steps 3 to 6 in Figure 1.2. In the first step of the securitization 

process, the originating institution transfers the mortgage to a special purpose vehicle 

(SPV) defined as a legally separate entity created to handle the securitization process. The 

mortgage transfer is marked by cash flow 3. The SPV packages the illiquid mortgages and 

transforms them into liquid securities. This process of handling securitization involves 
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external parties such as the underwriter that assists with the sale, the credit enhancement 

agency, and the credit rating agency that rates the interest-bearing securities. Once the 

tradable MBS are created and rated, the SPV sells them to investors, as depicted in cash 

flows 4 to 5. Finally, the sale proceeds are used to pay back the entity that originated the 

underlying debt, as illustrated by cash flow 6.  

Once the securitization process is finalized and MBS securities are sold to investors, the 

mortgage servicer ensures the upkeep of debt payments. The main task of a mortgage 

servicer is collecting principal and interest payments from the borrower (cash flow 7) and 

passing the proceeds to the linked MBS-investors (cash flow 8). These cash flows are 

passive claims linked to the pool of loans packaged by the SPV and held by MBS investors 

in the secondary market. As the borrower makes P&I payments, the servicer ensures that 

the cash flows are paid back to the appropriate investors in accordance with PSA terms. 

Historically, mortgage originators used to hold the servicing duties for loans they have 

originated and securitized (i.e. mortgage originator and servicer are the same legal entity). 

Typically, the mortgage servicing income stream serves as an offset for mortgage 

origination costs (Federal Housing Finance Agency, 2011). However, today’s 

specialization has led to the performance of mortgage origination and servicing by distinct 

entities. In fact, when a mortgage is securitized, the underlying servicing right could be 

sold so the indexed cash flows are transferred to another servicing company in compliance 

with the “Mortgage Servicing Rights Purchase and Sales Agreement.”15 In such case, the 

MSR-purchaser replaces the original servicer and ensures the deal management. The MSR 

seller should send a notice to the borrower at least 15 days before the sale effective date. 

The notice must include the new mortgage servicer identity, its contact information as well 

as the specific date after which the borrower must start paying the new servicer. 

Should the mortgage originator choose to sell the underlying MSR to a new servicer, the 

sale of mortgage servicing rights and the corresponding cash proceeds are indicated in 

 

15 An example of Fannie Mae Mortgage Servicing Rights Purchase and Sales Agreement can be retrieved 

at: https://www.fanniemae.com/content/guide/selling/e/2/07.html. 

https://www.fanniemae.com/content/guide/selling/e/2/07.html
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Figure 1.2 by cash flows 9 and 10, respectively. In this case, borrowers become directly 

linked to the new servicer to whom they continue making periodic payments (cash flow 

11) that the latter passes to MBS investors (cash flow 12). In return for these services, the 

new servicer collects monthly revenue stream as represented by cash flow 13. Finally, if a 

borrower stops making monthly payments due to financial distress, the new mortgage 

servicer is required to advance funds to MBS-investors as indicated by cash flow 14. 

At this point, it is crucial to note that neither the MSR-purchaser nor MBS-investors in the 

secondary market observe all the information that the originating lender possesses. In fact, 

the information detained by the lender could be classified into two main forms: hard and 

soft (see Agarwal and Hauswald (2010), Agarwal and Ben-David (2018), and Liberti and 

Peterson (2018) for a discussion on information disclosure in the lending process). On the 

one hand, hard information includes all quantitative data that the originating lender collects 

and stores such as borrower’s credit score, employment statement, marital status, income 

statements, debt payments history, etc. The mortgage-related hard information includes the 

requested amount, down payment, coupon rate, payment type, location and value of the 

property securing the loan, among other variables. On the other hand, soft information 

includes information that cannot be quantified such as opinions, believes, and self-made 

judgments for economic projections. For instance, during the process of mortgage 

origination, lenders typically meet with mortgage applicants and conduct in-depth 

interviews in order to verify the provided information and to evaluate borrowers’ 

creditworthiness. Through personal contact with applicants, originators build a subjective 

assessment of the propensity of borrowers’ default. Agarwal and Ben-David (2018) 

advocate that mortgage originators, in some cases, adjust the applicant’s score if they judge 

that an applicant deserves credit while she/he slightly deviates from lending standards. 

Liberti and Peterson (2018) argue that in-depth interviews with applicants represent a 

crucial opportunity for originators to gather soft information that is not possible to verify 

by a third party.  

In such environment, when selling MSR contracts in the market for servicing rights, the 

originating lenders are hypothesised to enjoy an informational advantage about borrowers’ 
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ex-post likelihood of financial distress. Lenders transmit only part of the hard information 

to MSR purchasers since they cannot observe and verify all the hard information set.16 Yet, 

soft information is privately held by the originating entity.  

In this dissertation, we conjecture that this informational advantage about the ex-post 

likelihood of borrower default influences the behavior of mortgage originators either by 

(i) selling the MSR of low-quality mortgages to less-informed servicers while superior-

quality deals are kept on their servicing portfolios –Adverse Selection theory– or (ii) by 

reducing their efforts in terms of screening applicants and monitoring borrowers once the 

underlying MSR are considered for sale –Moral Hazard theory. Note that under either 

theory of adverse selection or moral hazard, a positive correlation is established between 

the originator MSR sale decision and the ex-post likelihood of mortgage default. In this 

research, we do not separate the two information problems since we do not have a dynamic 

relationship between servicers as in Abbring et al. (2003) and in Dionne et al. (2013).17 

1.3. Literature review on MSR valuation 

As mentioned above, servicing companies can acquire mortgage servicing contracts by 

purchasing the right to service loans from other originators. A major problem for servicers, 

regardless whether they sell or purchase an MSR, is assessing the fundamental value of 

such contract which represents an ongoing challenge in the existing literature. However, 

even if the economics of mortgage servicing is important, the existing literature devoted 

to MSR pricing is quite sparse relatively to the general mortgage literature. In what 

follows, we briefly summarize the main contributions to the MSR valuation literature.  

 

16 Hard information is partially supplied in the sense that only part of the hard information is often transmitted 

to the third party since the latter may not observe for example the borrower’s employment or marital status, 

or family total income which represent quantitative “hard” information.  

17 These studies employ dynamic insurance data to separate adverse selection and moral hazard in the 

automobile insurance market. 
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The first model to price mortgage servicing rights is developed by McConnell (1976). The 

author proposes a static model where the MSR value is merely the discounted value of net-

of-costs cash flows that a servicer expects to receive for fulfilling his task. Through 

simulation and sensitivity analysis, the author illustrates the impact of different mortgage 

amounts, termination distributions, and expected servicing costs on MSR valuation. For 

instance, the mortgage face value increases the value of the servicing contract while the 

loan age decreases its value. The author also demonstrates that increasing interest rates 

(decreasing prepayment hazard) enhance the value of a servicing portfolio. He also 

demonstrates that the value of a servicing contract is a decreasing function of servicing 

costs. Although the McConnell (1976) model is considered as a pioneering reference, it 

ignores the stochastic property of interest rates. 

A succeeding work by Van Drunen and McConnell (1988) improves the McConnell’s 

model by developing the first intertemporal model for MSR valuation. The authors propose 

a two-state continuous-time model to account for stochastic interest and inflation rates. 

The proposed model includes a stochastic short-term interest rate and a stochastic realized 

inflation rate which jointly determine the current coupon rate, the borrower’s prepayment 

decision, the servicer future net-of-costs cash flows, as well as the discount rate. The 

authors illustrate that interest rate variability can produce two opposed effects on MSR 

prices. On the one hand, when interest rates decrease, the MSR value decreases also since 

the likelihood that the borrower plump to refinance and prepay the existing loan rises. On 

the other hand, since interest rates are used as discount rates for future cash flows, their 

decline implies a rise in the MSR value. Van Drunen and McConnell (1988) also show that 

an expected increase in inflation reduces MSR values. The authors argue that mortgage 

servicer cash inflows are fixed nominal amounts while its cash outflows are subject to 

inflation. Accordingly, an increase in the aggregate price level rises nominal servicing 

costs but leaves nominal servicing revenues unchanged. Therefore, the authors suggest that 

mortgage servicers’ profitability is sensitive to the dynamics of inflation rates.  

Aldrich et al. (2001) argue that a static model underestimates the true risk exposure 

inherent in servicing and that a dynamic interest rate model should be used. They 
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contribute to the ongoing debate by treating MSR contracts as interest-only (IO) securities. 

For instance, the authors advocate that servicing fees (identical to the IO strips) account 

for almost 70% of the mortgage servicer income stream. Besides, they show that all other 

servicer income components behave similarly as those generated by IO securities. 

Consequently, Aldrich et al. (2001) affirm that the risks associated with holding the MSR 

are quite similar to those associated with investing in IO securities. Both markets share, 

notably, a common hazard: the prepayment risk. In this perspective, the authors apply 

commonly used IO valuation models to extract the value of MSR contract. Nevertheless, 

the main shortfall of such approach is that MSR investors are not passive. Unlike an 

interest-only security holder, the MSR holder must perform multiple tasks to receive cash 

flows and incur various expenses (as described in the previous sections). Thus, a mortgage 

servicer who can accomplish its duties more efficiently should be able to extract higher 

returns than a less efficient servicer. Another issue related to this model is that IO securities 

are actively traded in a relatively liquid market while MSR market is nowhere near as 

liquid. 

Another paper by Lin and Ho (2005) also considers similarities between interest-only 

securities and mortgage servicing rights. However, they introduce a new framework that 

incorporates the Office of Thrift Supervision (OTS) dynamic prepayment model. Using 

simulations, the authors document that MSR values are, on average, higher for adjustable-

rate mortgages (ARM) than for fixed-rate mortgages (FRM). They also demonstrate that 

MSR prices are less sensitive to interest rate variations for ARM than for FRM contracts. 

The authors argue this can be explained by the fact that ARM coupon rates vary according 

to a market index so refinancing incentives are reduced as new coupon rates are always 

close to market rates (i.e. chances that an ARM being refinanced are much lower than for 

an FRM). Lin and Ho (2005) also document an important impact of interest rate drift and 

speed of adjustment on MSR pricing, especially for an MSR lying on an FRM.  

It is important to note that all of the above-mentioned studies focus on the prepayment risk 

only and ignore the effect of default risk on MSR valuation. In this line, Buttimer and Lin 

(2005) contribute to the ongoing debate by taking into consideration the default risk. They 
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propose an option-based MSR valuation model that takes into account both prepayment 

and default risks in an economy with stochastic interest rates and house prices. The authors 

show that MSR pricing is sensitive to interest rate and housing volatility as well as to 

mortgage characteristics (e.g. loan balance, loan-to-value ratio, coupon rate, etc.). Based 

on simulations, the authors demonstrate that whenever the interest rate volatility is low, 

the increasing housing volatility reduces the MSR value. In contrast, whenever the interest 

rate volatility is high, the increasing housing volatility boosts the MSR value. Buttimer and 

Lin (2005) claim that, in a low interest rate volatility environment, an increase in housing 

volatility raises the value of default to the point where the borrower chooses to exercise 

the default option and forgo prepayment. On the other hand, in a high interest rate volatility 

environment, an increase in housing volatility increases the value of default, but, since the 

value of the prepayment is already high (due to high interest rate volatility), the borrower 

will delay exercising either option. Additional results by Buttimer and Lin (2005) indicate 

that the interaction between the default and prepayment options can –under certain 

conditions– increase the value of the borrower’s option to delay termination which in turn 

increases the MSR value since the time during which the MSR holder receives the 

servicing fee increases. 

Lin et al. (2006) extend the MSR pricing model first proposed by Buttimer and Lin (2005) 

by explicitly incorporating the realistic assumption that additional costs are involved in 

servicing non-performing loans. The proposed model allows the costs of servicing to vary 

depending upon borrower delinquency. It allows the examination of the mortgage servicer 

actions undertaken to maximize the value of an MSR of a delinquent loan. The authors 

investigate how the value of an MSR varies with interest rate volatility, house price 

volatility, delinquency options, deficiency judgments, default penalties, forbearance 

periods, and speed of adjustments factors. Regarding the role of deficiency judgments on 

MSR pricing, the authors report a positive association between obtaining a deficiency 

judgment and MSR value as the probability of delinquency is found to decrease 
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dramatically with deficiency judgments.18  The authors also show that imposing a penalty 

associated with delinquency reduces the likelihood of delinquency, thereby increasing the 

value of the servicing contract. Besides, they examine the effect of forbearance periods on 

MSR evaluation.19 They find that the value of the MSR increases as the delay increases 

from 3 to 12 months. The authors argue that this occurs because an increase in the 

forbearance period delays the foreclosure and provides higher chance to the borrower to 

cure delinquency. Therefore, according to Lin et al. (2006) a loss-mitigation program that 

allows a delay in foreclosure is beneficial to the mortgage servicer. 

To summarize, the ongoing real estate literature identifies the prepayment risk as well as 

the default risk as main factors that influence the pricing of MSR as they truncate the 

mortgage servicer income stream. Moreover, the mortgage loan balance, the LTV ratio and 

the coupon rate all appear to positively influence MSR prices. Regarding the economic 

environment, researchers point out that higher market interest rates, higher-than-expected 

inflation rates, higher aggregate price levels and greater housing price volatility 

significantly reduce the value of the mortgage servicing portfolio. A fixed- vs. adjustable-

rate comparative analysis suggests that servicing ARM is presumably preferred to FRM as 

the servicing contracts for ARM are less sensitive to prepayment. 

1.4. Data and variables 

1.4.1.  Data source 

We use a large data set provided by MBSData, LLC. The initial set comprises more than 

25 million U.S. mortgages securitized through the private-label channel (i.e. with 

characteristics that do not meet the GSE lending standards). Our choice of this particular 

 

18 Deficiency judgments are used in some states in the U.S. in order to control the default behavior by 

allowing mortgage servicers to recover any deficiencies from the borrower’s assets (other than the property 

securing the mortgage). 

19 When foreclosure proceedings are initiated, a mortgage servicer has the ability to slow down the process 

in order to allow a borrower that is experiencing temporary financial difficulties to reinstate a delinquent 

mortgage.  
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set of data is motivated by three factors. First, default risk is not a major concern in the 

agency market as MBS securities are guaranteed against default by the U.S. government 

agencies. Second, liquidity pressures to finance P&I and T&I advances are not of concern 

in the agency market as servicers are entitled to reimburse such advances and other related 

costs in the event of borrower delinquency. Third, the fundamental risk characteristics of 

loans pooled in the agency market are ex-ante known to meet the GSE lending standards 

so no asymmetric information issues should be pronounced in this market.  

This interest is also justified by the tremendous size of debt under management in the non-

agency market. Prior to the financial crisis, mortgage servicing companies were ensuring 

the ongoing management of about $1.6 trillion in prime (22%), Alt-A (35%), and Subprime 

(43%) mortgages securitized through the private-label channel (Housing Finance Policy 

Center, 2018b). Between 2005 and 2007, the non-agency servicing companies were 

managing about $1.2 trillion worth of mortgage-backed securities every year, on average.  

The bad risk management of this tremendous growth in the non-agency market is widely 

recognized to be the main trigger of the financial crisis. For instance, the below-standards 

lending (usually referred to as subprime lending) provided a great hope for less 

creditworthy homebuyers to gain financing to purchase a house. It also promised financing 

home purchases where loan amounts exceeded the agency conformity standards. 

Therefore, properly assessing the credit risk of these financial intermediaries is an urging 

task for both academia and regulatory authorities.  

Overall, given these reasons, we believe that focusing on mortgages securitized through 

the private-label channel should be in accordance with our main research question: testing 

for evidence of residual asymmetric information in the mortgage servicing market. 

The MBSData, LLC database consists of two main files; The first is a static file reporting 

detailed information collected at the time of mortgage underwriting while the second is a 

dynamic file reporting monthly-updated information. The static file provides detailed 

information on the homebuyer, the mortgage terms, and the property securing the loan. For 

example, it reports the borrower’s FICO credit score and the Debt-To-Income (DTI) ratio 
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as measures of creditworthiness and indebtedness, respectively. The static file also reports 

detailed loan-level information such as the mortgage initial amount, the Loan-To-Value 

(LTV) ratio, and the initial interest rate. It also reports the loan purpose, payment type, 

private insurance percentage, prepayment penalty, …among many others. The information 

regarding the property securing the loan includes the house value, city, state and zip code. 

For the mortgage originating institution, the dataset reports the originating lender’s name 

and type along with the identity of the original mortgage servicer. All the information in 

the static file is recorded at the time of the original underwriting.  

The second set consists of dynamic files reporting historical data that had been collected 

over the mortgage lifetime on a monthly basis. The key variables recorded in the monthly 

remittance files are: current loan balance, current interest rate, scheduled principal and 

interest, next due date, and more importantly, a monthly delinquency code indicator 

compiled according to both the Office of Thrift Supervision (OTS) and the Mortgage 

Bankers Association (MBA) methodologies. The delinquency codes are: current, paid-off, 

+30, +60, and +90 days delinquent, in foreclosure, in bankruptcy, or real estate owned. 

The dynamic data set also displays information on losses and loan modifications. Loss files 

mainly report loan-level loss amount, loss severity, recovery amount, loan liquidation 

proceeds, and current value at liquidation. Loan modification files report the modification 

type, pre- and post-modification loan amount and interest rates, term modification, 

deferred payment period schedules as well as the modification effective distribution date. 

Last but not least, the dynamic files identify the name of the original servicer as well as 

that of the subsequent servicer which is crucial in our analysis as this information will be 

used to compute the Switch_Servicer indicator variable (the agent’s decision variable). 

Although the MBSData LLC. is a rich database as it encloses more than a hundred of 

variables, unfortunately the selling price of the Mortgage Servicing Right is missing. This 

would represent a crucial variable in our analysis since the market price can reveal an 

important private information message in equilibrium (Akerlof, 1970; Bhattacharya and 

Spiegel, 1991; Levin, 2001; Dionne et al., 2009; Einav and Finkelstein, 2011; Dionne et 

al. 2015). Ultimately, price revelations can reduce (even eliminate) the significance of the 
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residual asymmetric information problem.20, 21 However, as already mentioned, we do not 

have access to this information. 

1.4.2.  Sample construction 

The initial sample includes more than 25 million mortgages granted by various lenders 

ranging from top U.S. financial institutions —for example the Bank of America, 

CitiFinancial, J.P. Morgan Chase, Washington Mutual, and Wells Fargo, just to name a 

few— to regional small-sized credit retailers. The yearly distribution of loan origination 

follows a pattern similar to that observed in the entire U.S. mortgage market. In terms of 

geographic coverage, the data 

set has a good geographical distribution over the U.S. territory while the State of California 

is highly represented as it accounts for 20% of the total number of mortgages in the sample. 

We impose several inclusion restrictions to create a homogenous sample. We focus on 

mortgages in a first-lien position on the property securing the mortgage and exclude both 

second-lien mortgages and home equity lines of credit (HELOC). Our choice is primarily 

motivated by the fact that first-lien mortgages have priority over all other subsequent 

claims (i.e. second-lien or junior) on a property in the event of borrower’s default. We 

restrict attention to single-family owner-occupied homes and exclude multifamily and/or 

non-owner-occupied properties. We also exclude loans with the main purpose designated 

as home improvement and retain loans with the main purpose identified as to purchase a 

house or to refinance an existing mortgage (both cash-out and non-cash-out). We also 

exclude planned unit developments (PUD) and mobile homes.  

 

20 An important improvement for this information asymmetry study would be to estimate the value of the 

Mortgage Servicing Right (MSR) using key variables present in the MBSData LLC (see section 1.3 on key 

variables used to estimate the MSR contract value). Then, we may include the MSR price into the set of 

conditioning variables. The inclusion may result in a reduction in the significance of the information 

asymmetry results. 

21 I would like to thank professors Claude Fluet from Université Laval and Simon Van Norden for 

their comments on this issue. 
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All these restrictions result in a final sample including 5,591,353 distinct mortgages 

originated by different U.S. lenders during the period between January 2000 and December 

2013. The mortgages are tracked until December 2015 on a monthly basis (more than 90 

million loan-month observations). We acknowledge that the sample construction process 

results in a dramatic drop of the sample size –from over 25 million observations to 5.5 

million. However, it is reassuring that the number of observations in the final mortgage 

sample is still large and satisfying a rigorous statistical analysis. 

1.4.3. Variables and hypotheses 

The main variable of interest in our empirical analysis is the mortgage servicer switching 

indicator variable, denoted Switch_Servicer. This dummy variable takes the value of 1 if 

the originating lender sells the mortgage servicing right to another servicing company and 

0 if the originator retains the servicing rights. In the MBSData dataset, we identify the 

event of mortgage servicer switch when the entity name appearing in the cell <current 

servicer name> changes over the mortgage lifetime. Note that the identification of the 

event of MSR sale takes into consideration any name changes that occur by official name 

changes, mergers, or failure acquisitions. Historical name information about financial 

entities are retrieved from the Federal Deposit Insurance Corporation, FDIC 

(https://www.fdic.gov/) and the U.S. department of Treasury (https://home.treasury.gov) 

websites. 

The second most important variable of interest is Default which denotes whether a given 

loan becomes 90+ days delinquent (i.e. when a loan is first reported as the borrower has 

missed three or more consecutive monthly payments). This definition of default is 

considered a relatively “early” definition if compared with foreclosure or bankruptcy 

which usually occur several months later. See for example Ambrose et al., (2005), Casu et 

al. (2011), Agrawal et al. (2012), Krainer and Laderman (2014), Albertazzi et al. (2015), 

and Elul (2016), among others who investigate the mortgage originator decision to 

securitize. In line with the existing literature, we adopt the standard 90+ definition of 

default to avoid the ambiguity of differences in state laws governing foreclosure, which 

https://www.fdic.gov/
https://home.treasury.gov/
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are widely recognized to have significant effect on the length of time it takes to conclude 

a foreclosure. For robustness, we report additional results in the appendix using an 

alternative definition of mortgage default which considers 60+ days delinquent. 

The set of covariates includes several explanatory variables recorded at the time of original 

underwriting. All variables are defined in Table A1 in the Appendix. The first variable we 

consider is the borrower’s FICO score created and calculated by the Fair Isaac Corporation. 

The FICO score is commonly used as a proxy for the creditworthiness of borrowers which 

takes into account individual’s payment history, length of credit history, current level of 

indebtedness, and types of credit used. The FICO values range between 300 and 850 and, 

typically, a score above 660 is indicative of a good credit quality. In our context of 

mortgage servicing and in accordance with the information asymmetry theory, we expect 

that originators will tend to sell the MSR of mortgages granted for borrowers with low 

FICO scores (i.e. individuals with poor payment history) while keeping servicing 

mortgages granted for borrowers with high FICO scores, thus a negative relationship is 

presumed. Our reasoning is motivated by the discussion in subsection 1.2.2 where we 

explain that delinquency extinguishes the cash flow stream of a mortgage servicer and 

seriously deteriorates its operations performance. 

The second independent variable is the Loan-To-Value ratio, abbreviated LTV, calculated 

as the percentage of the first-lien mortgage to the property total value. The LTV ratio is 

one of the key factors used by U.S. lenders when qualifying borrowers for a mortgage. In 

the United States, mortgagors with LTV ratios higher than 80% are required to buy private 

mortgage insurance to protect the lender from the default risk, which indeed increases the 

cost of borrowing. The LTV ratio also measures the equity stake of borrowers in a given 

property. The higher the LTV ratio, the lower the down payment, so the lower the 

borrower’s equity stake in that property. Since a high LTV ratio mirrors a risky mortgage 

where the borrower holds a little equity stake in a given house, we expect the lender 

decision to sell the underlying MSR to be positively correlated with the LTV ratio.  
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Another key explanatory variable is No/Low documentation, a dummy variable indicating 

whether the lender has collected the required level of documentation. As discussed above, 

the borrower is asked to fill out a credit application and provide a number of statements 

and proofs on his employment status and income when asking for a loan. Based on this set 

of documentation, the lender expends effort to assess the borrower’s creditworthiness. A 

no/low-documentation loan is a debt contract for which the lender has not gathered a 

sufficient level of information on borrower’s income. In terms of default risk, there is no 

reason to presume that no/low-documentation loans will default at a higher pace than full-

documentation mortgages, as this is not a direct measure of credit risk. Consequently, the 

sign of the No/Low documentation coefficient is an empirical matter. Nevertheless, we 

believe this variable is of great importance in testing for evidence of information 

asymmetry as it measures the originator effort in gathering the required level of 

information, thus its level of lending diligence.  

The next independent variable is an adjustable-rate mortgage dummy. The ARM variable 

indicates whether the interest rate paid on the outstanding balance of a given mortgage 

varies according to a specific benchmark. The initial interest rate is usually fixed for a 

period of time (commonly known as the teaser period) after which it fluctuates, often on a 

monthly basis, based on a benchmark plus an additional spread called the ARM margin. 

In terms of risk, the ARM-type mortgages transfer part of the interest rate risk from the 

lender to the borrower. Indeed, these mortgages are generally used where interest rates 

fluctuate and are difficult to predict (which make fixed-rate mortgages, FRM, difficult to 

obtain). According to credit market conditions, the borrower will benefit from the fall of 

interest rates as debt payments will decrease. Conversely, if interest rates increase, the 

borrower will be penalized as his debt payments surge. In our analysis, a positive 

correlation with the default likelihood is expected as an ARM indicator refers to 

circumstances of economic instability where interest rates fluctuate and are hard to predict. 

In terms of MSR selling decision, a positive relationship is adversely expected. 

We also include a conforming indicator as an explanatory variable to denote mortgages 

with characteristics obeying the GSEs (Fannie Mae and Freddie Mac) lending guidelines. 



33 

 

The GSE_conforming dummy variable indicates whether the mortgage was qualified to be 

sold to the GSEs at origination. Following the GSE recommendations,22 we classify a 

mortgage as conforming if the borrower’s FICO score is above 660 and the loan amount 

is below the conforming loan limit in place at the time of origination and the LTV is either 

less than 80 percent or the loan has a private mortgage insurance if the LTV is greater than 

80 percent. As conforming loans meet the GSE lending standards, we expect a negative 

correlation with the default event. Indeed, being within the GSE prudence guidelines 

should significantly reduce the probability of mortgage default. Regarding the choice of 

switching the servicer, we presume that both signs are plausible. On the one hand, being 

GSE-conforming increases the ease of finding a buyer for the underlying MSR. For 

instance, since these loans are originated following the GSE standards, it would be easier 

to “find” MSR buyers for the securitized GSE-conforming-loans in the market. Thus, a 

positive sign is expected. On the other hand, being GSE-conforming increases the 

probability that the lender will be paid back as scheduled. So, lenders may adversely hold 

the MSR of these good-quality loans on their servicing portfolios as the associated credit 

risk is significantly low. Therefore, the sign on the GSE-conforming coefficient is an 

empirical matter. 

Table A1 in the Appendix displays the full list of variables that we consider in the empirical 

part. The table reports a detailed description of each variable, its construction method, and 

the corresponding source. 

1.5. Summary statistics 

We provide summary statistics for some of the key variables used in our analysis. As we 

are focusing on the non-agency market, we pay a special attention to the role of credit 

score, the loan-to-value ratio, the amount of documentation collected by the lender, and 

 

22 For details about the Government Sponsored Enterprise conformity classification, please refer to the 

Federal Reserve Bank of St. Louis web site. The document “What Is Subprime Lending?” could be retrieved 

at: https://files.stlouisfed.org/files/htdocs/publications/es/07/ES0713.pdf. For additional details on the 

lending guidance, please see: www.federalreserve.gov/boarddocs/press/bcreg/2007/20070302/default.htm. 

https://files.stlouisfed.org/files/htdocs/publications/es/07/ES0713.pdf
file:///C:/Users/Helmi%20Jedidi/Desktop/www.federalreserve.gov/boarddocs/press/bcreg/2007/20070302/default.htm
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some interest rate features. Table 1.1 reports descriptive statistics for the entire study 

period (January 2000 - December 2013) as segmented by origination year. Table 1.2 breaks 

down the sample by payment type (FRM vs. ARM), loan type (Prime vs. Subprime), 

financial crisis (before vs. after), delinquency (default vs. no default) and originator’s 

MSR-selling decision (sell vs. retain). 

[Table 1.1 about here] 

The first two columns of Table 1.1 provide a comprehensive picture of the evolution of the 

non-agency market over the 14-years study period. At a first glance, it is clear that 

mortgage origination has witnessed two major trends ruled by the financial crisis. First, 

the market expanded rapidly from the year 2000 to the year 2006 and reached its highest 

level just before the financial crisis. Afterwards, the mortgage origination has suffered a 

period of dramatic drop. For illustration, total mortgage origination had witnessed a 

spectacular growth from $9.6 billion in 2000 to $173.5 billion in 2003, which represent 

1.12 and 11.27 percent of the sample, respectively. The non-agency market has reached its 

peak in the years 2005 and 2006 where the total origination volume averaged $430 billion 

each year. However, over the financial crisis period the market has witnessed a dramatic 

drop as the origination of new mortgages during the 2008-2009 period didn’t even sum up 

to a billion. After the financial crisis (2010 and beyond), the mortgage origination remained 

far away from what had been before the financial crisis. Scrutinizing the origination sample 

shows that this was mainly due to the disappearance of subprime loans. According to the 

dataset, the origination of subprime-labelled loans has dropped to almost zero after the 

financial crisis. Therefore, the post-crisis sample consists mainly of prime mortgages 

which account for less than 1% of the total sample. 

[Table 1.2 about here] 

We are now examining FICO scores (a measure of borrower creditworthiness), provided 

in the sample, and the evolution of homebuyer’s credit quality over the years. The third 

column of Table 1.1 displays the average FICO credit score in the sample. Unsurprisingly, 
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the average credit score is 4 points lower than the 660 thresholds. The next column also 

shows that almost half of the sample (48%) is composed of loans granted for borrowers 

with credit scores higher than 660. Examining the evolution of the FICO credit score over 

the sampling period shows interesting results. Initially, the credit quality of borrowers was 

below the 660 thresholds before the financial crisis (655) but increased afterwards (671). 

For illustration, the credit score averaged 611 and 650 in 2000 and 2006, respectively. 

However, after the crisis, the credit quality has significantly enhanced, as the average FICO 

score was consistently higher than 770 in the 2010-2013 period.  

Figures 1.3 and 1.4 depict the evolution of FICO scores over the sampling period by 

payment type (ARM versus FRM) and by loan type (Prime versus Subprime). Figure 1.3 

shows that ARM borrowers have lower credit scores than FRM borrowers, on average. In 

2002, the average FICO score for ARM was 619 while the average FICO for FRM 

borrowers was 672, respectively. The 53 FICO points difference between the two groups 

is statistically significant at the 1% level. This trend was almost true over the period before 

the financial crisis, after which the difference in credit scores was reduced to 10 points. 

 

3 Figure 1.3 - FICO scores at origination by payment type 
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Figure 1.4 suggests that, unsurprisingly, the average credit score for subprime loans is 

significantly lower than for prime loans. For illustration, in 2002 the average FICO score 

for subprime loans is almost 120 points lower than for prime borrowers (616 versus 735). 

Table 1.2 indicates that over the study period the average FICO scores for prime and 

subprime borrowers are 731 and 635, respectively. The difference of 96 FICO points is 

statistically significant at the 5% level. After the financial crisis, the average credit score 

tended to improve each year, mainly due to the drop in subprime lending. As column 4 of 

Table 1.1 indicates, almost all loans originated after the financial crisis have a credit score 

higher than 660 thresholds. 

Regarding the loan-to-value (LTV) ratio of sampled mortgages, columns 5 and 6 of Table 

1.1 show that the average LTV ratio in the sample is 77% and that 60% of sampled 

mortgages have an LTV ratio superior to 80%. An investigation of the evolution of the 

LTV ratio over the years shows a significant drop of the LTV ratio soon after the financial 

crisis. For instance, column 6 of Table 1.2 shows that more than 60% of loans have an 

LTV ratio superior to 80% throughout the pre-crisis period. However, this proportion drops 

to almost 20% in the 2010-2013 post-crisis period.  

 

4 Figure 1.4 - FICO scores at origination by loan type 
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We further scrutinize the LTV ratio according to payment type (ARM versus FRM) and 

loan type (Prime versus Subprime). According to Table 1.2, down payments for ARMs are 

lower than those for FRM, on average. For instance, the proportion of mortgages with an 

LTV ratio superior to 80% is 48% for FRM and 67% for ARM, as shown in columns 2 and 

3. Regarding the loan type, subprime mortgages have significantly lower down payments 

than prime loans (the average LTV ratios for subprime and prime loans are 81% and 63%).  

In the same vein, a pre- and post-crisis comparison shows that the LTV ratio significantly 

dropped after the financial crisis. According to these primary findings, it seems that lenders 

were taking more risk over the period of early 2000s by originating more ARM and 

subprime mortgages granted for borrowers with low FICO credit scores with low equity 

stakes (i.e. high LTV ratios). However, this behavior has changed radically after the 

financial crisis where the sample is primarily composed by borrowers with better credit 

scores and mortgages with higher down payments (i.e. low LTV ratios). These after-crisis 

lending practices of increasing the borrower’s credit quality and tying the loan amount to 

the size of the down payment permit lenders to limit their exposure to the credit risk. 

We also investigate the mortgage originator effort to gather all documentation required at 

the date of original underwriting. The statistics show that 47% of the time lenders granted 

funding for borrowers though they did not gather the sufficient level of documentation on 

applicant’s income and employment status. Yearly statistics (See Table 1.1, column 8) 

show that this practice of granting funding without gathering the required level of 

documentation increased steadily in the early 2000s. The proportion of loans granted with 

no or little documentation increased from an initial level of 34% in 2000 to 51% in 2005 

and 2006. This practice peaked in early 2007 when almost 60% of loans were granted 

without gathering sufficient information. In contrast, the proportion of mortgages with no 

or little documentation fell to around 2% and 3% in 2010 and 2012. These results suggest 

that lenders in the subprime market did not make an adequate effort to gather the required 

level of information on borrowers’ income and employment status before the financial 

crisis. 
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Similarly, we examine the proportion of mortgages that conform to the Government-

Sponsored Enterprises prudent lending guidelines. As expected, the proportion of GSE-

conforming mortgages was significantly small before the financial crisis as only 17% of 

the loans in the sample conform to the GSE lending standards. However, Table 1.1 shows 

that the GSE-conforming proportion dropped to zero after the crisis. Scrutinizing the 

sampled mortgages shows that this post-crisis non-conformity was mainly due to jumbo 

mortgages whith the initial issuance amounts exceeded the loan conforming limits set by 

the government-sponsored agencies for that year. So, even though the credit quality of 

homebuyers had increased on average in the post-crisis period and that down payments 

were higher than 20%, the sampled mortgages were not eligible to be purchased by the 

GSE (i.e. securitized via the agency-channel) since the initial loan amounts exceeded the 

yearly conforming loan limits. 

 

5 Figure 1.5 - No/Low documentation at origination by payment type 

In general, it appears that the lending strategy of the mortgage originators radically 

changed after the financial crisis. This shift in lending practices entailed (i) increasing 

loans granted for borrowers with good credit quality, (ii) reducing loans with small down 

payments (high LTV ratios), and (iii) reducing the proportion of loans granted with 
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insufficient documentation level. These changes in underwriting patterns have been 

consistent with lenders looking for new ways to limit risk exposure after the financial crisis 

and following new rules set by the U.S. authorities. 

To motivate our main research question, we contrast the ex-ante risk characteristics of 

mortgages for which the originator chooses to sell the underlying servicing rights to 

another servicer with those he chooses to continue servicing.  

We note that for 54.7 percent of the sampled mortgages the originator chooses to cease 

servicing the deal and switch the mortgage servicer. For the remaining loans (45.3% of the 

sample), the originator keeps servicing mortgages it originates and to hold them in its 

servicing portfolio until maturity. Table 1.2 shows that the average servicing fee is 44 bp, 

which did not change very much before and after the financial crisis. If compared with the 

average servicing fees applied by the GSE and the FHA/VA of 25bp and 19bp, it shows 

that servicers in the non-agency market tend to charge significantly higher fees, on average. 

Comparing the servicing fees based on payment type as well as on loan type provides 

additional interesting results. Servicers tend to charge fees for ARM higher than those on 

FRM loans. This could be attributed to the complexity of management of variable-rate 

mortgages where the interest rate varies throughout the loan term on a monthly basis. 

Mortgage servicers also tend to charge higher fees for subprime mortgages, on average. A 

result attributed to the higher-than-average default risk that a mortgage servicer bears when 

servicing subprime loans. 

Regarding borrower’s credit quality, originators tend to keep servicing mortgages granted 

for borrowers with superior credit quality. The average credit score for loans held on the 

originator servicing portfolio is 660, say 5 basis points above the overall sample average. 

On the other hand, the average credit score for loans for which the lender decides to sell 

the underlying MSR is 653, so 3 basis points below the sample average. The two-sample 

mean difference is 6.02 points statistically significant at the 1% level. Table 1.2 shows that 

the fraction of loans granted for borrowers with FICO scores superior to the 660 threshold 
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is significantly larger for loans held on servicing portfolio (51% for non-switch vs. 46% 

for switch).  

Regarding LTV and DTI ratios, we find that lenders choose to sell the MSR of “riskier” 

while they keep servicing the less risky. For instance, the pool of loans for which the 

servicer has changed is characterized by higher loan-to-value ratios and higher debt-to-

income ratios. Regarding subprime loans, the statistics do not show too much evidence as 

the propensity to switch the servicer of the deal is 52% for primes and 55%, slightly higher, 

for subprime loans. The results also show that 15% of loans for which the servicer has 

switched follow the GSE prudent lending guidelines while this percentage increases to 

20% for loans held on the originator servicing portfolio. Recall that the proportion of loans 

that conform to the GSE lending guidelines at origination represents only 17%. 

Since the mortgages for which the originator has sold the underlying MSR are “seemingly” 

of inferior credit quality, we observe that the average interest rate offered to these loans is 

significantly higher than those held on the originator servicing portfolio. For illustration, 

the average monthly interest rates for sold vs. retained MSR are 7.06% and 6.90%, 

respectively. Regarding the payment type, it appears that ARM-type mortgagors have a 

higher chance to witness a mortgage servicer switch.  

To summarise, the univariate analysis shows that, on the one hand, mortgages for which 

the servicing task has been transferred to another institution are generally attributed to 

borrowers with inferior credit quality and are commonly associated with higher default 

rates. On the other hand, mortgages held on originator servicing portfolio are seemingly of 

better credit quality with lower likelihood of borrower default. These primary results give 

us a first insight on a possible association between the originator decision to switch the 

servicer of the deal and the ex-post likelihood that the borrower defaults. 

 

 



41 

 

1.6. Conclusion 

Mortgage servicers play an important role in the U.S. mortgage market as they ensure the 

ongoing management and upkeep of debt contracts. The main task of mortgage servicers 

is collecting principal and interest payments from borrowers and passing the proceeds to 

the linked MBS investors in the secondary market. Typically, the originating entity can act 

as the servicer of the deal by guaranteeing the connection of cash flow streams between 

borrowers and MBS-investors in the secondary market. Alternatively, mortgage servicers 

can acquire servicing contracts by buying mortgage servicing rights (MSR). In the case 

where a new servicer substitutes the originating entity, the borrower becomes in a direct 

link with the new servicer for whom he/she makes monthly debt payments.  

The real estate literature identifies many factors that influence MSR prices. For instance, 

the mortgage loan balance, the LTV ratio, and the coupon rate all appear to favorably 

influence MSR pricing. Regarding the economic environment, researchers point out that 

higher market interest rates, higher-than-expected inflation rates, higher aggregate price 

levels and greater housing price volatility significantly reduce the value of the mortgage 

servicing portfolio. A fixed- vs. adjustable-rate comparative analysis suggests that 

servicing ARM is naturally preferred to FRM as the servicing contracts for ARM display 

higher price levels and are less sensitive to the prepayment risk.  

More importantly, the existing literature points out that the default risk is the key factor in 

determining MSR prices. In fact, the default risk has a significant effect on the profitability 

of the mortgage servicing activity; if a borrower’s ability to make monthly payments is 

impaired, the mortgage servicer’s income stream extinguishes and the associated costs 

upsurge. Furthermore, as more and more borrowers in the servicer portfolio are becoming 

delinquent, the profitability of the servicing activity significantly deteriorates which may 

cause the servicer to, ultimately, cease activity and go bankrupt.  

Our preliminary univariate analysis shows on the one hand, that mortgages for which the 

servicing rights have been sold are generally granted for borrowers with low credit quality 
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and are commonly associated with a higher default risk. On the other hand, mortgages held 

on the originator servicing portfolio are seemingly of better credit quality with a lower 

likelihood of default. These primary findings give us a first insight on the possible presence 

of asymmetric information as a clear link emerges between the originator decision to 

switch the servicer of the deal and the borrower likelihood of default.  

In the next chapters, we are going to examine these patterns closely in more details in a 

multivariate framework using advanced tools such as nonparametric methods (Chapter 2) 

and Machine Learning algorithms (Chapter 3). 
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1 Table 1.1 - Summary statistics by origination year 

The table reports summary statistics for the sample of 5,591,353 distinct U.S. mortgages originated over the 

period from January 2000 to December 2013. The mortgages have been securitized through the non-agency 

channel. The first row reports statistics over the 2000-2013 study period while the next rows report statistics 

by origination year. The first two columns Volume (in %) and Volume (in $B) refer to the total origination 

volume expressed in percentage of the total sample and in US$ billions, respectively. FICO score abbreviates 

the borrower’s Fair Isaac Corporation score at origination. FICO.660 denotes the fraction of loans granted 

for borrowers with FICO scores higher than 660. LTV abbreviates the initial loan-to-value ratio. LTV.80 

denotes the fraction of loans with LTV ratios higher than 80%. DTI stands for the debt-to-income ratio. 

No/Low doc. indicates whether the originator collected no or little documentation. Interest rate is the coupon 

rate applied at origination. Balloon denotes balloon payment mortgages. ARM denotes adjustable-rate 

mortgages. GSE conf. denotes the fraction of loans that conform to the Government-Sponsored Enterprises’ 

prudent lending guidelines. Prep. Penalty measures the fraction of mortgages with prepayment penalties. 

Origination 

year 
Volume 

(in %) 

Volume 

(in $B) 

FICO 

score 

FICO. 

660 

LTV 

ratio 

LTV. 

80 
DTI  

No/Low 

doc. 

Interest 

rate 
Balloon  ARM  

GSE 

conf. 

Prep. 

Penalty 

All period 100.0 1509.1 657.12 0.48 76.93 0.60 38.65 0.47 6.97 0.06 0.63 0.17 0.49 

2000 1.05 8.87 615.49 0.31 78.20 0.62 38.65 0.34 10.08 0.07 0.34 0.17 0.41  

2001 2.47 32.07 648.33 0.47 76.87 0.56 37.74 0.29 8.56 0.03 0.36 0.23 0.33  

2002 5.74 69.08 644.97 0.42 77.47 0.58 37.84 0.33 7.92 0.02 0.54 0.21 0.38  

2003 11.46 170.89 670.12 0.56 75.14 0.51 36.95 0.38 6.60 0.01 0.49 0.25 0.31  

2004 16.93 232.68 657.75 0.49 77.60 0.60 36.81 0.44 6.30 0.00 0.70 0.19 0.52  

2005 27.28 411.36 658.81 0.49 76.97 0.62 38.33 0.51 6.51 0.02 0.69 0.16 0.53  

2006 27.11 422.92 650.45 0.44 77.44 0.63 39.90 0.52 7.44 0.15 0.66 0.12 0.57  

2007 7.79 153.39 668.92 0.56 75.92 0.56 39.17 0.57 7.32 0.12 0.52 0.15 0.47  

2008 0.02 0.60 717.06 0.80 73.25 0.44 36.59 0.40 7.16 0.03 0.48 0.03 0.17  

2009 0.00 0.21 774.60 1.00 53.11 0.06 36.00 0.30 4.79 0.00 0.83 0.03 0.00  

2010 0.01 0.43 772.33 1.00 61.78 0.17 32.48 0.02 4.93 0.00 0.08 0.01 0.21  

2011 0.02 1.17 770.62 1.00 66.60 0.23 32.98 0.17 4.72 0.00 0.06 0.01 0.16  

2012 0.06 2.79 773.08 1.00 66.42 0.20 34.00 0.03 4.06 0.00 0.02 0.00 0.13  

2013 0.06 2.67 771.14 1.00 66.24 0.19 30.80 0.00 3.91 0.00 0.01 0.00 0.01 
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2 Table 1.2 - Summary statistics by loan type and status 

The table reports summary statistics for the sample of 5,591,353 U.S. mortgages originated over the period 

from January 2000 to December 2013. The mortgages have been securitized through the non-agency channel. 

The table breaks down the sample by payment type (FRM vs. ARM), loan type (Prime vs. Subprime), 

financial crisis era (Before vs. After), default status, and servicer switch status. FICO score abbreviates the 

borrower’s Fair Isaac Corporation score at origination. FICO.660 denotes the fraction of loans granted for 

borrowers with a FICO score higher than 660. LTV abbreviates the initial loan-to-value ratio. LTV.80 denotes 

the fraction of loans with LTV ratios greater than 80%. DTI stands for the debt-to-income ratio. No/Low doc. 

indicates whether the originator collected either no or low documentation. Interest rate is the coupon rate 

applied at origination. Balloon denotes balloon payment mortgages. ARM denotes adjustable-rate mortgages. 

Subprime and Prime are sub-prime loan classifiers. GSE conf. denotes the fraction of loans conforming to 

the GSEs’ lending guidelines. Prep. Penalty indicates the fraction of mortgages with prepayment penalty. 

Service fee is the mortgage servicer fee expressed in percentage of the remaining balance. Switch servicer 

indicates the fraction of mortgages for which the originator switched the servicer of the deal. Default denotes 

the fraction of mortgages in default. Age at default is the average age of defaulting mortgages. Default 12, 

Default 18, and Default 24, refer to the fraction of loans defaulting within 12, 18, and 24 months since 

origination, respectively. 

 All Payment type Loan type Financial crisis Default Switch Servicer 

  FRM ARM Prime Subprime Before After No Yes No Yes 

FICO score 657.12 678.00 644.84 730.93 634.87 655.92 671.02 669.62 635.77 660.62 654.23 

FICO.660 0.48 0.61 0.41 1.00 0.33 0.48 0.57 0.55 0.37 0.51 0.46 

LTV 76.93 73.89 78.73 63.48 80.99 77.04 75.72 74.86 80.48 76.49 77.30 

LTV.80 0.60 0.48 0.67 0.00 0.78 0.60 0.55 0.53 0.72 0.58 0.61 

DTI 38.65 37.64 39.08 35.71 39.10 38.60 39.09 37.63 39.91 38.02 38.95 

No/Low doc. 0.47 0.46 0.48 0.63 0.43 0.46 0.55 0.45 0.50 0.49 0.45 

Interest rate 6.97 7.10 6.89 5.57 7.39 6.94 7.26 6.71 7.41 6.86 7.05 

Balloon 0.06 0.04 0.08 0.01 0.08 0.06 0.12 0.03 0.11 0.04 0.08 

ARM 0.63 0.00 1.00 0.45 0.68 0.64 0.52 0.59 0.70 0.59 0.66 

Subprime 0.77 0.66 0.83 0.00 1.00 0.77 0.72 0.70 0.89 0.75 0.78 

Prime 0.23 0.34 0.17 1.00 0.00 0.23 0.28 0.30 0.11 0.25 0.22 

GSE Conf. 0.17 0.25 0.12 0.56 0.05 0.17 0.15 0.21 0.10 0.19 0.15 

Prep. Penalty 0.49 0.34 0.58 0.24 0.57 0.50 0.46 0.42 0.63 0.49 0.50 

Purchase 0.37 0.30 0.42 0.22 0.42 0.38 0.30 0.36 0.40 0.36 0.39 

Refin. cash-out 0.47 0.49 0.45 0.46 0.47 0.46 0.51 0.46 0.47 0.49 0.45 

Refin. no cash-out 0.16 0.21 0.13 0.31 0.11 0.15 0.19 0.18 0.12 0.15 0.16 

Service fee 0.44 0.38 0.47 0.33 0.47 0.44 0.39 0.42 0.46 0.41 0.46 

Switch servicer 0.55 0.50 0.58 0.52 0.56 0.56 0.44 0.18 0.50 0.00 1.00 

Default 0.37 0.30 0.41 0.18 0.43 0.35 0.54 0.00 1.00 0.26 0.62 

Age at default 36.64 45.25 32.98 47.72 35.21 37.41 30.81 . 36.64 38.07 35.47 

Default 12 0.11 0.06 0.12 0.03 0.12 0.10 0.12 . 0.11 0.09 0.12 

Default 18 0.23 0.15 0.26 0.08 0.24 0.22 0.26 . 0.23 0.20 0.24 

Default 24 0.35 0.24 0.40 0.15 0.38 0.34 0.44 . 0.35 0.32 0.37 
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Chapter 2 

Nonparametric Testing of Information Asymmetry 

Abstract 

In this chapter, we empirically test for evidence of asymmetric information in the U.S. 

mortgage servicing market. The main research question is: Does the sale of mortgage 

servicing rights (MSR) by the originator to a second servicing institution unveil an 

asymmetric information problem? In doing so, we analyze the originator MSR-selling 

decision using a large sample of U.S. non-agency mortgages during the 2000-2013 period. 

The econometric methodology is nonparametric in the vein of Chiappori and Salanié 

(2000) and Su and Spindler (2013). We extend this literature by proposing a nonparametric 

two-stage instrumental variable testing procedure to account for endogeneity and 

simultaneity. We validate our results via parametric tests that control for econometric 

misspecification and endogeneity. Our results document a statistically significant positive 

relationship between the mortgage originator decision to sell the underlying MSR and the 

likelihood of default. Our results provide strong support for the presence of a second-stage 

asymmetric information in the mortgage servicing market during the studied period.  

Keywords: Mortgage servicing, default risk, asymmetric information, nonparametric 

tests, kernel estimation, instrumental variables. 
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2.1. Introduction 

Over the last two decades, information collection and disclosure throughout the lending 

process have attracted the attention of many researchers and practitioners. Several studies 

have reached a consensus that loan originators profit from privileged information they 

acquire at the time of original underwriting. Apart from gathering the required documents 

for loan processing, originators also acquire critical knowledge on the applicant’s 

creditworthiness through in-depth personal interviews (Agarwal and Hauswald, 2010; 

Liberti and Peterson, 2018; Agarwal and Ben-David, 2018). Yet, this set of information 

can neither be recorded, nor observed or verified by a third party. 

Asymmetric information has been widely identified as a motive for securitization through 

which lenders transfer the credit risk of a pool of mortgages into marketplace. One strand 

of the literature identifies adverse selection as the main motive for mortgage originators to 

securitize low-quality loans while high-quality loans with low credit risk are hold on 

balance sheets (see for example Ambrose et al., (2005), Casu et al. (2011), Agrawal et al. 

(2012), Krainer and Laderman (2014), Albertazzi et al. (2015), and Elul (2016), among 

many others). A second strand of the literature advocates moral hazard as the main reason 

why mortgage originators reduce monitoring and screening efforts once securitization is 

considered (see for example Malekan and Dionne (2014) and Chemla and Hennessy (2014) 

for theoretical models and Keys et al. (2010, 2012) and Bubb and Kaufman (2014) for 

empirical tests). Based on different data sets, these studies report a positive statistical link 

between the decision to securitize a mortgage and the ex-post likelihood of loan default.  

So, the general consensus is that asymmetric information fosters originators propensity to 

pass credit risk into the secondary market via securitization. In our data set, we have 

noticed that several originators, after securitization is achieved, opt to switch the servicer 

of the deal –by selling the underlying mortgage servicing rights (MSR)– while keeping 

servicing others. Despite the associated economic importance, very little is known about 

what motivates mortgage originators to sell the underlying MSR after the credit risk has 
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been transferred into market participants. A knowledge gap exists as to what persuades 

some mortgage originators to sell the servicing rights of a pool of mortgages while keeping 

servicing others. This dissertation aims to fill this gap by testing for evidence the “second-

stage” asymmetric information problem after securitization is made. Thus, our main 

research question is: Does the decision of originators to sell the mortgage servicing rights 

(MSR) unveil any residual information asymmetry problem between the mortgage 

originator and the MSR-purchaser? In a typical principal-agent relationship, we 

hypothesize that the mortgage originator (agent) possesses a competitive informational 

advantage over the MSR-purchaser (principal) in the market for mortgage servicing rights.  

To empirically test for evidence of asymmetric information in the market for mortgage 

servicing rights, we analyze the originator MSR-selling choice using a large sample of 

U.S. mortgages originated and securitized through the private-label channel during the 

period from January 2000 to December 2013. Our econometric methodology is purely 

nonparametric in the sense that we do not make any restrictive assumptions about neither 

(i) the conditional distribution of the originator selling decision nor (ii) the functional form 

of the relationship between the MSR-selling decision and default risk. The main advantage 

of our methodology is that inferences about the distribution are made purely from the data, 

and the density estimation is thus more data-driven than it would be if the density function 

were constrained to fall in a given parametric family. Our methodology is inspired from 

nonparametric tests of asymmetric information first proposed in the automobile insurance 

literature (Chiappori and Salanié, 2000; Su and Spindler, 2013). To corroborate our 

findings, we employ a battery of parametric tests that control for econometric 

misspecification, endogeneity and simultaneity.  

This chapter proceeds as follows. In section 2, we introduce the Kernel Density Estimation 

(KDE) framework used to estimate the main ingredient of the test: the conditional density 

function. In Section 3, we describe the econometrics of the information asymmetry test. In 

Section 4, we discuss our empirical results. For robustness purposes, we report results of 

commonly used parametric tests. Finally, Section 5 concludes this chapter. 
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2.2. The Kernel Density Estimation framework 

The probability density function (PDF) is a fundamental concept in econometrics. Consider 

any continuous random variable, 𝑋𝑐, with a probability density function denoted 𝑓𝑋𝑐. The 

superscript c denotes that the variable under consideration is continuous. Specifying the 

function 𝑓𝑋𝑐 gives a natural description of the distribution of 𝑋𝑐 and allows the 

probabilities of 𝑋𝑐 to be calculated from the following equation: 

𝑃(𝑎 < 𝑋𝑐 < 𝑏) = ∫ 𝑓𝑋𝑐(𝑥)𝑑𝑥
𝑏

𝑎

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 < 𝑏                   (2.1) 

In simple words, the probability density function of a continuous random variable, 𝑓𝑋𝑐,  

allows us to find the probability of the event that 𝑋𝑐 falls in some interval (𝑎,  𝑏).  

For a discrete random variable, 𝑋𝑑, with a finite range of d values {𝑥1, 𝑥2, … , 𝑥𝑑}, the 

probability mass function (PMF), 𝑓𝑋𝑑, could be expressed as following:  

𝑓𝑋𝑑(𝑥𝑖) = 𝑃(𝑋𝑑 = 𝑥𝑖), 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑑                               (2.2) 

Accordingly, the probability that 𝑋𝑑 has values in a given interval (𝑎, 𝑏) is exactly the sum 

of the PMFs of the possible discrete values of 𝑋𝑑 falling within the interval (𝑎, 𝑏).  

Let’s suppose now that we have a random sample of 𝑛 observed data points, {𝑋𝑖}𝑖=1
𝑛 , that 

we assume to be drawn from an unknown distribution family. The main goal of the density 

estimation framework is constructing an estimate of the density function from a given set 

of data points that we dispose. At this point, the econometric approach to estimate the 

density function has a twofold classification: “parametric” and “nonparametric”. 

Generally, all estimation models falling within the parametric category involve explicit 

assumptions about the statistical distribution of the data. In fact, in a parametric framework 

we usually suppose that we know a priori what functional form is appropriate for 

describing the distribution of a given random variable. Assuming that the data points are 

drawn from a known parametric distribution family, e.g. normal distribution with mean 𝜇 
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and variance 𝜎, then the density 𝑓 underlying the data could be merely estimated by finding 

estimates of 𝜇 and 𝜎 from the sampled data points and substituting these estimates into the 

formula for the normal density function. Therefore, any hypothesis testing procedure 

would be crucially dependent on the validity of the estimates of the parameters of that 

distribution (the first two moments for example) from the sample. Consequently, several 

conditions of validity must be met so that the results of the parametric testing procedure 

are considered reliable.  

An alternative approach to estimate the density function is nonparametric. Nonparametric 

methods have become one of the most important sub-fields in modern econometrics. Such 

approach is widely known as distribution-free since we do not assume any specific 

distributional form for the data, thus, inferences about the distribution are purely made 

from the data. Although we will be assuming that the distribution has a deterministic 

probability density 𝑓, the estimation of 𝑓 will be entirely data-driven in the sense that the 

data will be allowed to speak for themselves, more than would be the case if 𝑓 were 

constrained to fall in a given parametric family.  

The primary advantage of the nonparametric approach is its robustness as it could be 

applied in a broader range of situations even where the parametric conditions of validity 

are not met. A second advantage of the nonparametric approach is the ability to be applied 

using small sizes of data points. For instance, using parametric methods could deliver 

misleading results if coupled with a very small sample of data that does not meet the sample 

size guidelines and for which one might not be able to properly ascertain the distribution 

of the data. Another notable advantage of the nonparametric approach is its ability to 

handle various data types (e.g. continuous, ordinal, and ranked data) even if measured with 

some imprecision or comprises outliers, anomalies widely recognised to seriously affect 

the routine of parametric tests.  

In this analysis, we opt for the nonparametric methodology as we make less restrictive 

assumptions about the distribution of the observed data. Later, we will be comparing our 



54 

 

findings to the results of the so-called parametric estimation methods for robustness checks 

and for validation purposes. 

Let’s turn now to a more general question: given an arbitrary sample of data points, 

{𝑋𝑖}𝑖=1
𝑛 , how could we find the density function associated with them? In what follows, we 

describe one of the most important nonparametric method of estimating density functions, 

namely the kernel density estimation (KDE). 

2.2.1. The univariate kernel density estimation 

The kernel method to estimate the univariate probability density function for continuous 

random variables was first suggested by Rosenblatt (1956). In general, the kernel method 

uses the observed data points in the sample to estimate a strong smooth density function.  

Consider a randomly drawn sample of a continuous random variable 𝑋𝑐 composed of 𝑛 

independent and identically distributed i.i.d. data points, {𝑋𝑖
𝑐}𝑖=1

𝑛 . Technically, a kernel is 

defined as a weighting function that weights the observations 𝑋𝑖
𝑐 in the sample based on 

their distance from a specific value 𝑥, usually referred to as the smoothing point, within a 

fixed range known as the bandwidth, denoted ℎ. The weights given by the kernel function 

to the observations in the sample are known as the local weights. The kernel density 

estimator is basically calculated as the sample average of the local weights that are given 

by the kernel function for all data points in the sample, {𝑋𝑖
𝑐}𝑖=1

𝑛 . 

Formally, the estimator of the univariate density function for a continuous variable 𝑋𝑐 with 

a bandwidth estimator ℎ̂ at the evaluation point 𝑥 using the sample of observation {𝑋𝑖
𝑐}𝑖=1

𝑛  

could be represented as follows: 

𝑓𝑋𝑐(𝑥) =
1

𝑛
∑ℎ̂−1𝑘 (

𝑋𝑖
𝑐 − 𝑥

ℎ̂
)

𝑛

𝑖=1

                                         (2.3) 

where 𝑘(∙) denotes the kernel weighting function which controls the weights given to the 

observations in {𝑋𝑖
𝑐}𝑖=1

𝑛  based on their proximity from each evaluation point 𝑥, within a 
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range of ℎ. The latter parameter, the bandwidth or the smoothing parameter controls the 

size of the neighborhood around the evaluation point 𝑥. This kernel estimator is commonly 

referred to as the Rosenblatt-Parzen density estimator, named after the contribution of 

Rosenblatt (1956) and Parzen (1962). 

The nonparametric econometrics pay a special attention to the estimation of the kernel 

function 𝑘(∙) which weights the observations around the smoothing point 𝑥 in an interval 

of ±ℎ. In general, the kernel is a symmetric function that satisfies the following 

consistency conditions (Racine, 2008): 

i.  ∫ 𝑘(𝑧)𝑑𝑧 = 1 

ii.  ∫ 𝑧𝑘(𝑧)𝑑𝑧 = 0 

iii.  ∫ 𝑧𝑟𝑘(𝑧)𝑑𝑧 = 𝜏𝑟 ≠ 0 

where 𝑧 =
𝑋𝑖

𝑐−𝑥

ℎ̂
 to simplify notation. 

The simplest form of weights is given by the Uniform (a.k.a. the Naïve) kernel which is 

merely a function that gives equal weights of 1/2 for all observations inside the interval 

[𝑥 − 1, 𝑥 + 1), and zero weights for all the observations outside this interval. Other kernel 

functions apply different types of weights, some of which have highly sophisticated 

formulas. The general rule in all kernel functions is: the closer the observation in the 

sample to the evaluation point 𝑥 is, the higher the weight is given to that observation by 

the kernel function. Therefore, in KDEs the observations that are near to the smoothing 

point 𝑥 and inside the interval [𝑥 –  ℎ, 𝑥 +  ℎ) have higher weights than the far 

observations inside the interval. All the observations lying outside the interval are given 

zero weights.  

In practice, the econometric literature proposes a variety of kernel functions that might be 

used to estimate the density function. For an illustrative purpose, Table 2.1 displays 

examples of commonly used kernel functions for both continuous (Panel A) and discrete 

(Panel B) random variables. The three commonly used kernel functions for continuous 

random variables are the Gaussian, Epanechnikov, and Quadratic kernels. Li and Racine 
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(2007) state that the choice between these kernels rarely makes significant differences in 

the estimates. Properties of the univariate KDE for continuous variables and bandwidth 

selection methods are detailed in Li and Racine (2007) and Racine (2008). 

[Table 2.1 about here] 

Where considered a discrete variable 𝑋𝑑, an extension of the univariate kernel density 

function to estimate the univariate probability mass function is developed by Aitchison 

and Aitken (1976). Consider a randomly drawn sample, {𝑋𝑖
𝑑}

𝑖=1

𝑛
, composed on n data 

points for a discrete random variable denoted 𝑋𝑑 that takes on a finite number of 𝑑 possible 

values, each occurring with some probability. The univariate PMF could be estimated 

using the following equation: 

𝑓𝑋𝑑(𝑥) =
1

𝑛
∑𝑙(𝑋𝑖

𝑑 , 𝑥, 𝛾)

𝑛

𝑖=1

                                              (2.4) 

where 𝑙(𝑋𝑖
𝑑 , 𝑥, 𝛾) is a weighting function that depends on the estimated bandwidth 𝛾. This 

smoothing parameter, 𝛾, takes a value in [0,1] and depends on the number of values in the 

support of 𝑋𝑑. Similar to the continuous variable kernel, the weighting function for a 

discrete kernel estimator has to satisfy the following consistency condition: 

∑ 𝑙(𝑋𝑖
𝑑, 𝑥, 𝛾) = 1𝑑

𝑥=1 ,  

where 𝑙(𝑋𝑖
𝑑 , 𝑥, 𝛾) ≥ 0 for every x in {𝑥1, 𝑥2, … , 𝑥𝑑}, 𝑖 = {1,… , 𝑛}, and 𝛾 ∈ [0,1]. 

It is important to note that the nonparametric econometric literature suggests many various 

kernel functions that could be used to estimate the probability mass functions distinctly for 

unordered and ordered discrete variables. While the structure of the estimator is the same, 

the type of the kernel function, 𝑙(∙), will be different if the ordering of the discrete variable 

is of interest or not (from an economic perspective). Since all of our variables are binary 

variables –so take the values of 0 and 1 only– ordered kernel functions are beyond the 
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scope of this research, thus, not covered.23 Panel B of Table 2.1 displays examples of 

commonly used kernel functions for unordered discrete random variables. 

2.2.2. The multivariate kernel density estimation with mixed data types 

The multivariate (joint) kernel density function for data of a particular type is estimated by 

using the product of the univariate kernel functions. For 𝑞 continuous variables, the 

estimator of the multivariate density function takes the following form: 

𝑓𝑋𝑐(𝑥1
𝑐 , 𝑥2

𝑐 , … , 𝑥𝑞
𝑐) =

1

𝑛
∑∏ℎ̂𝑠

−1
 𝐾 (

𝑋𝑖,𝑠
𝑐 − 𝑥𝑠

𝑐

ℎ̂𝑠

)

𝑞

𝑠=1

𝑛

𝑖=1

                     (2.5) 

where ℎ̂𝑠 denotes the estimated bandwidth of the 𝑠-th continuous variable, 𝑠 =  {1, … , 𝑞}. 

Similarly, the estimator of the multivariate density function of 𝑝 discrete variables is 

represented as follows: 

𝑓𝑋𝑑(𝑥1
𝑑, 𝑥2

𝑑 , … , 𝑥𝑝
𝑑) =

1

𝑛
∑∏𝑙(𝑋𝑖,𝑟

𝑑 , 𝑥𝑟
𝑑 , 𝛾𝑟)

𝑝

𝑟=1

𝑛

𝑖=1

                          (2.6) 

where 𝛾𝑟 denotes the estimated bandwidth of the 𝑟-th discrete variable, 𝑟 =  {1, … , 𝑝}.  

In this dissertation, we consider the case where we are faced with a mixture of discrete and 

continuous data types. An estimation framework involving a mixture of continuous and 

discrete variables using the nonparametric KDE technique is widely known as mixed data 

types kernel estimation framework. Early attempt of estimating a multivariate density 

function for mixed discrete and continuous variables is created by Ahmad and Cerrito 

(1994) where they use uniform and geometric discrete kernel functions to estimate a 

bivariate distribution of one continuous and one discrete variable. Nevertheless, the 

multivariate kernel density with more than one discrete variable and one continuous 

variable had been challenging until recent developments of the modern econometrics, 

 

23 Interested readers about kernel functions for ordered discrete random variables can refer to Racine and Li 

(2004) and Li and Racine (2003, 2008) for more details. 
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particularly, the smoothing techniques. Examples of works that contribute to the 

development of the nonparametric estimation techniques (especially for multivariate 

discrete variables) are by notably by Li and Racine (2003, 2008) and Racine and Li (2004). 

The KDE estimator of the multivariate density function including both continuous and 

discrete variables could be expressed as the product of the univariate kernel functions of 

the mixed-type variables in the model. Formally, let 𝑋 =  (𝑋𝑐, 𝑋𝑑) denotes the ensemble 

of 𝑞 continuous and 𝑝 discrete variables. So now, 𝑋𝑐 denotes a 𝑞 × 1 vector of continuous 

variables while 𝑋𝑑 denotes a 𝑝 × 1 vector of discrete variables. The general form of the 

mixed-type multivariate (joint) density function could be represented as follows: 

𝑓(𝑥1
𝑐 , … , 𝑥𝑞

𝑐 , 𝑥1
𝑑 , … , 𝑥𝑝

𝑑) =  
1

𝑛
∑∏ℎ̂𝑠

−1
 𝐾 (

𝑋𝑖,𝑠
𝑐 − 𝑥𝑠

𝑐

ℎ̂𝑠

)

𝑞

𝑠=1

𝑛

𝑖=1

.∏𝑙(𝑋𝑖,𝑟
𝑑 , 𝑥𝑟

𝑑 , 𝛾𝑟)

𝑝

𝑟=1

      (2.7) 

In practice, the mixed data types of kernel estimation framework enlarge the applications 

of the nonparametric estimation techniques in modern econometrics. For instance, most of 

the topics that researches aim to investigate involve a mixture of discrete and continuous 

variables. Moreover, it allows having a nonparametric counterpart for the discrete choice 

models like probit, logit, multinomial logit, or the ordered logit. Li and Racine (2007) 

suggest using the Aitchison and Aitken kernel function for unordered discrete variables 

and a modified version of the Aitchison and Aitken kernel function for ordered discrete 

variables. Further details on this topic could be found in Li and Racine (2007). 

2.2.3. The multivariate conditional kernel density estimation 

The estimation of the conditional density function represents the core of our information 

asymmetry test. The nonparametric estimation framework is rich with methods to estimate 

different type of models where the conditional density functions are data-driven and 

estimated without assuming a specific functional form of the relationships between the 

variables in the model. 
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Let 𝑦 be the vector of values of a mixed-type random variable, 𝑦 =

{𝑦1
𝑐, … , 𝑦𝑞𝑦

𝑐 ; 𝑦1
𝑑 , … , 𝑦𝑝𝑦

𝑑 }, and 𝑥 be the vector of values of another random variable with 

mixed data type too,  𝑥 = {𝑥1
𝑐 , … , 𝑥𝑞𝑥

𝑐 ; 𝑥1
𝑑 … , 𝑥𝑝𝑥

𝑑 }.  

For simplicity’s sake, we use 𝑓𝑌 and 𝑓𝑋 to denote the marginal densities of 𝑌 and 𝑋, 

respectively. 𝑓𝑌.𝑋 denotes the joint density while 𝑓𝑌|𝑋 denotes the conditional density. 

In general, the conditional KDE for random variable 𝑦 given values in 𝑥, denoted 

𝑓𝑌|𝑋(𝑦|𝑥), is given by the Bayes’ theorem: 

𝑓𝑌|𝑋 =
𝑓𝑌.𝑋

𝑓𝑋
⁄                                                         (2.8) 

Using the above expressions of univariate and joint kernel functions, the conditional 

multivariate KDE using mixed-data types is represented as follows: 

𝑓𝑌|𝑋 =

1
𝑛

∑ ∏ ℎ̂𝑠
−1

𝐾 (
𝑍𝑖,𝑠

𝑐 − 𝑧𝑠
𝑐

ℎ̂𝑠

)𝑞
𝑠=1 . ∏ 𝑙(𝑍𝑖,𝑟

𝑑 , 𝑧𝑟
𝑑 , 𝛾𝑟)

𝑝
𝑟=1

𝑛
𝑖=1

1
𝑛

∑ ∏ ℎ̂𝑠
−1

𝐾 (
𝑋𝑖,𝑠

𝑐 − 𝑥𝑠
𝑐

ℎ̂𝑠

)
𝑞𝑥
𝑠=1 . ∏ 𝑙(𝑋𝑖,𝑟

𝑑 , 𝑥𝑟
𝑑 , 𝛾𝑟)

𝑝𝑥
𝑟=1

𝑛
𝑖=1

       (2.9) 

where 𝑧(∙) denotes the variables 𝑦(∙) and 𝑥(∙) in the multivariate (joint) kernel density 

function for brevity, so 𝑧𝑐 = {𝑦1
𝑐, 𝑦2

𝑐, … , 𝑦𝑞𝑦
𝑐 , 𝑥1

𝑐 , 𝑥2
𝑐 , … , 𝑥𝑞𝑥

𝑐 } and 𝑧𝑑 =

{𝑦1
𝑑 , 𝑦2

𝑑 , … , 𝑦𝑝𝑦
𝑑 , 𝑥1

𝑑 , 𝑥2
𝑑 , … , 𝑥𝑝𝑥

𝑑 }, 𝑞 is the number of continuous variables, and 𝑝 is the 

number of discrete variables the model and in the joint density function respectively. 𝐾(∙) 

and 𝑙(∙) denote the kernel functions for the univariate continuous and discrete variables, 

respectively (examples are presented in Table 2.1). 

For the purpose of our testing procedure, we use the Nadarya-Watson (introduced 

separately by Nadaraya (1965) and Watson (1964)) kernel regression, a.k.a. the local 

constant nonparametric regression, to estimate the conditional distribution function. The 

last equation (2.9) represents the core of the nonparametric test of information asymmetry. 
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In the next section, we provide a detailed description of the testing procedure and the 

hypotheses to be tested as well as their intuition. 

2.2.4. Bandwidth selection for kernel density estimators 

It is widely recognized that the performance of kernel density estimators depends crucially 

on the value of the smoothing parameter or the bandwidth (denoted ℎ for the continuous 

variable kernel and 𝛾 for the discrete variable kernel). In the nonparametric kernel 

estimation method, the choice of the kernel function is not as sensitive as the choice of the 

bandwidth. In fact, the bandwidth selection influences the precision of the kernel estimates 

as it influences the estimated standard error of the density and the convergence rate to the 

true density. Hence, the precision of the nonparametric kernel density estimator 

deteriorates dramatically if the smoothing parameter is inappropriately chosen.  

In general, there are two main approaches for bandwidth selection: an approximation 

approach and a data-driven estimation approach. The former consists of approximating the 

true theoretical bandwidth of the kernel function while the latter is data-driven since the 

bandwidth is estimated basically through the observed data. In particular, all data-driven 

methods falling within the latter estimation approach estimate the bandwidth by optimizing 

an objective function that makes a trade-off between the variance and the bias of the kernel 

density estimator. Variance and bias of the continuous univariate kernel density estimator 

are represented as follows: 

𝑉𝑎𝑟𝑓̂ℎ(𝑥) ≈ 
𝑓(𝑥)

𝑛ℎ
∫𝑘2(𝑦)𝑑𝑦                                                   (2.10) 

𝐵𝑖𝑎𝑠𝑓̂ℎ(𝑥) ≈  
ℎ2

2
𝑓"(𝑥)∫𝑧2𝑘(𝑧)𝑑𝑧 ,                                         (2.11) 

where 𝑘(∙) is the kernel function of a continuous variable. The optimum value for the 

bandwidth corresponds to the value minimizing the mean square error (MSE) viewed as 

a measure of discrepancy between the estimated density 𝑓ℎ and the true density f . The 

MSE is formulated as follows: 
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𝑀𝑆𝐸𝑓̂ℎ(𝑥) =  𝐸{𝑓ℎ(𝑦) − 𝑓(𝑦)}
2
 

= { 𝑏𝑖𝑎𝑖𝑠 𝑓ℎ(𝑦) }
2
+ 𝑣𝑎𝑟 𝑓ℎ(𝑦)                    (2.12) 

In practice, the data driven bandwidth estimation methods require hard calculations. In 

addition, numerical calculations become harder when the sample size increases, the 

number of variables in the model rises, and/or higher-order kernel functions are used. As 

shown above, the optimal bandwidth is a function of the second derivative of the true 

density which is unknown in the model. The bandwidth approximation methods use some 

underlying assumptions about the true density which may be considered inconsistent with 

the objectives of nonparametric estimation. However, they may be attractive in a model 

with a large number of variables or large sample size. So, the ultimate choice of the 

bandwidth selection method remains an empirical matter, which can be one of the 

following methods. 

a. Trial and Error Approach (Graphical Selection Approach) — May be considered 

as the most trivial method for selecting the optimal bandwidth since the method is fully 

dependent on an arbitrary choice of ℎ. This method, as shown in Pagan and Ullah (1999), 

is an easy and arbitrary method mainly basically through graphical presentation with 

different values of ℎ. The optimal bandwidth ℎ is selected after studying a number of plots 

of 𝑓ℎ(𝑥) with different values of ℎ. Hence, the Trial and Error method is applicable only 

when the sample size is small, and the model includes a very few number of variables (one 

or two variables only). For multivariate densities, the Trial and Error approach becomes 

very difficult and ineffective. 

b. Plug-in Method — Introduced by Woodroofe (1970) and assumes that the variable 

in the model follows a certain density function, then uses the above formulas to obtain an 

initial pilot value of ℎ. The disadvantage of the Plug-in method is that it is not fully 

nonparametric and inconsistent with the objectives of the nonparametric estimation 

framework. The assumption regarding the distribution of the variable is not plausible in 

kernel estimation. 
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c. Rule of Thumb Method — One of the oldest methods to estimate the smoothing 

parameter introduced during the early stages of the development of the nonparametric 

kernel estimation techniques (Deheuvels, 1977, and Silverman, 1986). A pilot value 

obtained by one of the above methods, the Trial and Error method or the Plug-in method 

is used, as a smoothing parameter itself. So, it conflicts with the objective of the 

nonparametric method, because it does not include any searching process for the optimal 

bandwidth. However, when the cost of the numerical calculation increases, the Rule of 

Thumb method offers a solution, particularly for the large sample sizes, since the true 

bandwidths converge in probability to some known values. 

d. Cross-Validation Methods — A set of data-driven bandwidth estimation techniques 

that attract most of the attention in the most recent nonparametric estimation researches. 

The cross-validation (CV) methods aim to estimate the smoothing parameter of the kernel 

function automatically from the sample by optimizing a loss objective function on the true 

density.24 In general, the existing literature uses two key methods of cross-validation; the 

Least-Squares Cross-Validation (LSCV) and the Maximum Likelihood Cross-Validation 

(MLCV). Interested readers could refer to Li and Racine (2007) and Racine (2008) for 

additional details on bandwidth selection methods. 

2.3. The nonparametric information asymmetry test 

In Section 1.2.3 of Chapter 1, we briefly summarized the mortgage lending process along 

with the generated cash flows at every step. We also presented the various contracted 

parties involved in this process, notably the mortgage servicer. In this section, we 

formulate our test of information asymmetry. 

Let 𝑌 denote the outcome, 𝑋 the set of exogenous control variables, and 𝑍 the decision 

variable. In the context of this thesis, 𝑌 refers to the event of mortgage default, 𝑋 includes 

 

24 Examples of commonly used loss objective functions include the integrated square error (ISE), the 

integrated mean square error (IMSE), the weighted integrated mean square error (WIMSE), and the 

asymptotic integrated mean square error (AIMSE), among few others. 
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a set of characteristics on the mortgage contract as well as the borrower that are observable 

to both parties (i.e. the seller and the buyer of the MSR contract), while 𝑍 denotes the 

originator’s MSR-selling decision. A crucial point that deserves a particular attention is 

that the originator’s decision to sell the MSR rather than to keep servicing the loan is also 

made based on his set of private information (i.e. not observed, nor verified by a third 

party) he obtains at the time of original underwriting. 

In a principal-agent context, where the principal and the agent do not share the same set of 

information, the null hypothesis of information symmetry might be formulated in terms of 

conditional probability functions as follows: 

𝑓(𝑌|𝑋, 𝑍)  =  𝑓(𝑌|𝑋)                                                 (2.13) 

where 𝑓(𝑌|𝑋, 𝑍) denotes the conditional density of mortgage default given the observed 

risk characteristics (borrower FICO score, loan amount, interest rate, ...) and the 

originator’s decision to sell the servicing right to another servicing company.  

In simple words, Equation (2.13) indicates that observing the mortgage originator (agent)’s 

decision to sell the MSR or to continue servicing the deal should not convey any additional 

information useful in predicting the probability of mortgage default (outcome) as long as 

all observable risk characteristics on the loan and the borrower are properly taken into 

consideration (Dionne et al., 2001). Therefore, if empirically 𝑓(𝑌|𝑋, 𝑍) ≠ 𝑓(𝑌|𝑋), then 

we reject the null hypothesis which means a potential presence of asymmetric information 

in the data. 

Statistically, the rejection of the null hypothesis of information symmetry may be sensitive 

to the choice of the set of conditioning information included in 𝑋.25 Therefore, our null 

hypothesis is characterized as a joint null hypothesis of:  

(i) symmetric information, and  

 

25 I would like to thank prof. Simon Van Norden for precious comments about the join null hypothesis 

specification. 
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(ii) a correctly-specified set of conditioning information 𝑋.  

Along this thesis, we employ multiple combinations of exogenous conditioning variables 

𝑋 in order to show that our empirical results are robust. 

Dionne et al. (2001) state that Equation (2.13) admits an equivalent testing form: 

𝑓(𝑍|𝑋, 𝑌)  =  𝑓(𝑍|𝑋)                                          (2.14) 

According to Equation (2.14), the outcome 𝑌 (the likelihood of mortgage default) should 

not provide any additional useful information to predict the conditional density of the 

decision variable 𝑍 (the originator’s decision to sell or retain the servicing rights). Such a 

testing form could be interpreted as what would be the lender’s decision if he possesses 

advantageous information about the likelihood of mortgage default.  

To investigate the presence of information asymmetry, we limit the analysis to testing the 

presence of a correlation structure (not causality) between both variables of interest Y and 

Z. Due to the symmetry of the correlation function, the correlation structure can be assessed 

from either side. Also, Gouriéroux and Monfort (1995) and later Dionne et al. (2001) show 

that both forms are equivalent so testing Equation (2.13) is equivalent to testing Equation 

(2.14). However, the distinction between Equations (2.13) and (2.14) becomes crucial 

when we address causality in Section 2.4.3. 

In sum, we are interested in testing the statistical link between the mortgage originator’s 

MSR-selling decision and the likelihood of mortgage default. Accordingly, our proposed 

testing procedure consists of verifying the following joint null hypothesis of (i) absence of 

information asymmetry and (ii) a correctly-specified set of conditioning variables. 

Now let us turn to the empirical design of the nonparametric information asymmetry test. 

We consider the case where both 𝑌 and 𝑍 consist of discrete random variables while 𝑋 

contains both continuous and discrete variables. Given a set of 𝑛 i.i.d. randomly drawn 

observations {𝑌𝑖, 𝑍𝑖, 𝑋𝑖
𝑐 , 𝑋𝑖

𝑑}𝑖=1
𝑛 , the nonparametric test compares the following two 

conditional CDF estimates: 𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 1) and 𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 0).  
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𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧)
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           (2.16) 

Afterwards, the test statistic measures the variation in 𝐹̂(𝑦|𝑥𝑐, 𝑥𝑑 , 𝑧) across possible values 

of 𝑧 and different observations as follows (Su and Spindler, 2013): 

𝐷∗ = ∑[𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 1) − 𝐹̂(𝑦𝑖|𝑥𝑖
𝑐, 𝑥𝑖

𝑑 , 𝑧𝑖 = 0)]
2

𝑛

𝑖=1

. 𝑎(𝑥𝑖
𝑐)         (2.17) 

where 𝑎(·) is a uniformly bounded nonnegative weight function with compact support that 

lies within the support of 𝑋𝑖
𝑐. Su and Spindler (2013) state that this quantity serves to 

perform trimming in areas of sparse support of the continuous conditioning variable. It is 

expressed as follows: 

𝑎(𝑥𝑖
𝑐) = ∏𝐼(𝑞𝑠(0.025) ≤ 𝑋𝑖,𝑠

𝑐 ≤ 𝑞𝑠(0.975))                            (2.18)

𝑞

𝑠=1

 

where 𝑞𝑠(𝛼) denotes the 𝛼-𝑡ℎ sample quantile of the 𝑠-𝑡ℎ component of 𝑋𝑖
𝑐 and 𝑞 is the 

total number of continuous variables. 

The test statistic 𝐷∗ in Equation (2.17) could be viewed as the difference between the 

expected probability of default depending on whether the originator switches the servicer 

or not. Su and Spindler (2013) demonstrate that 𝐷∗ is asymptotically normally distributed 

under the null hypothesis of independence. The authors also demonstrate that the test 

statistic, after being appropriately re-centered and scaled, is asymptotically distributed as 

a 𝑁(0,1) under the null hypothesis. We implement a bootstrap procedure to obtain the 

corresponding test p-values. In Section 2.4, we propose an extension of the test in order to 

take into account the endogeneity and simultaneity issues. 
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2.4. Empirical results 

2.4.1. Nonparametric models 

Our main objective is to examine whether the originating lender decision to sell the 

servicing right conveys any useful information that help predict the probability of default 

for that mortgage, provided that all observable risk characteristics are taken into account. 

The joint null hypothesis to be tested is there is no significant link between switching the 

mortgage servicer and the likelihood of mortgage default based on a correctly-specified 

set of conditioning variables.  

We consider two different nonparametric approaches in this chapter. The first is based on 

a sequence of the Pearson's 2 test of independence (Chiappori and Salanié, 2000). The 

second is driven by kernel density estimation (KDE) techniques (Su and Spindler, 2013). 

2.4.1.1 The Chiappori and Salanié (2000) method 

The first nonparametric testing procedure is based on a sequence of the Pearson’s 2 test 

of independence. This test is widely used in statistics to test whether there is a significant 

relationship between two categorical variables or not. The Pearson’s 2 test is considered 

as a distribution free test since it does not require any restrictive assumption with respect 

to the distribution of the data. In fact, the test does not require equality of means and/or 

variances among groups. Instead, the 2 test of independence compares the frequency of 

each category of the first categorical variable across categories of the second variable. This 

can be easily displayed in a contingency table where each row represents a category for 

one variable and each column represents a category for the second variable.  

The asymmetric information test proposed by Chiappori and Salanié (2000) is a 

conditional test in the sense that the independence is determined conditionally on a set of 

observable characteristics. Formally, let 𝑌𝑖 denotes a binary variable that indicates whether 

the mortgage i defaults. Let 𝑍𝑖 denotes a binary variable that takes the value of 1 if the 

originator of mortgage i decides to switch the servicer of the deal by selling the underlying 
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mortgage servicing right to another servicer and the value of 0 if he decides to continue 

servicing that mortgage until maturity. Finally, let 𝑋𝑖 denotes the set of exogenous control 

variables for mortgage i. To apply this methodology, we need to consider only binary 

(dummy) variables. Therefore, in this part of the dissertation we convert the continuous 

variables, FICO score and LTV ratio, into binary variables: FICO660 and LTV80. The first 

denotes borrowers with a FICO score superior to 660 while the second denotes those with 

an LTV ratio superior to 80%. The explanatory variables that we consider in this analysis 

are FICO660, LTV80, ARM, No/Low documentation, Balloon, GSE conforming, Subprime, 

and Prepayment Penalty. All variables are defined in Table A1 in the Appendix. We use 

various variable inclusion configurations for robustness purposes.26, 27 The upper part of 

Table 2.2 displays the different inclusion configurations. 

The testing procedure could be summarized in the following steps. First, we select a set of 

𝑚 control variables. Since variables are binary, we construct 𝑀 =  2𝑚 cells with 

mortgages that have the same values of the selected control variable. For illustration, take 

3 control variables, FICO660, LTV80, and ARM, so the total number of cells is 𝑀 = 23 =

 8. The first cell (0,0,0) comprises all mortgages granted for borrowers with FICO scores 

below 660, have LTV ratios above 80%, and FRM payment types. The other 7 cells display 

all the remaining combinations of these 3 variables. Next, we draw, in each cell, a 2-by-2 

contingency table for our two variables of interest (Default and Switch_Servicer) to count 

the occurrence of each event. Then, we conduct the Pearson’s 2-test of independence in 

each cell. This procedure produces 𝑀 Pearson’s test statistics. Under the null hypothesis 

of no correlation, each test statistic is distributed asymptotically as χ
(1)
2 . 

 

26 We do not include all these variables simultaneously since some are functions of the others (e.g. GSE 

conforming and Subprime). 

27 We acknowledge that the set of conditioning variables varies considerably across the different 

methodologies that we use (i.e. non-parametric KDE and machine learning). This is necessarily due to the 

relative complexity of some methods which precluded the use of higher-dimensional 𝑋’s. Nevertheless, to 

compare our results among models, we should unify the set of conditioning variables. 
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Three different methodologies can be utilized to test for conditional independence. The 

first method considers the Kolmogorov-Smirnov (KS) nonparametric test to compare the 

empirical distribution function of the 𝑀 test statistics with the theoretical 2
(1) distribution. 

The second method compares each individual test statistic against the theoretical χ
(1)
2  

critical value then counts the number of rejections of the null hypothesis in each individual 

cell. The total number of rejections is asymptotically distributed as binomial 𝐵(𝑀, 𝛼) 

under the null hypothesis, where α denotes the significance level of the 2 test within each 

cell. The latter method consists of simply summing all 2 test statistics within the 𝑀 cells. 

The sum denoted 𝑆 is asymptotically distributed χ
(M)
2  under the null hypothesis. 

Table 2.2 displays empirical results of this procedure. The upper part of the table shows 

the different combinations of the binary control variables that we consider. The table also 

reports the number of control variables included in each configuration as well as the total 

number of cells. For example, when we consider three control variables, the number of 

cells is 23 = 8. When we increase the number of variables to be included to 6 or 7, the 

total number of cells surges to 64 or 128, respectively.  

[Table 2.2 about here] 

We first examine the p-values of the Kolmogorov-Smirnov (KS) one-sample test. The 

corresponding null hypothesis is that the empirical distribution of the M test statistics is 

similar to the 2
(1). Using all possible combinations, we clearly reject the null hypothesis 

at the 1% significance level. Using the second method, the rejection rate of the null 

hypothesis of independence in individual cells is high for all configurations. For instance, 

almost all test statistics within individual cells exceed the χ
(1)
2  critical value of 3.84 (at a 

5% significance level). The highest rejection rate is reached with configuration II which 

includes 4 control variables FICO660, LTV80, ARM, and NoLow_doc.28 The latter method 

 

28 A rejection rate of 100% means that we are able to reject the null hypothesis of independence between the 

decision to switch the servicer and the default event in all individual cells. 
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confirms these findings where the aggregate test statistic is above the critical values of the 

χ
(M)
2  theoretical distribution according to all possible configurations.  

It is clear that all inclusion combinations enable us to reject the null hypothesis of 

conditional independence between the two variables Switch_Servicer and Default. The 

results show a statistically significant correlation between the decision of originators to 

sell the mortgage underlying servicing rights and the ex-post likelihood of default.  

2.4.1.2 The Su and Spindler (2013) method 

The testing procedure in this part relies primarily on the kernel density estimation 

technique, as detailed in Section 2.2. We begin by documenting how well kernel-based 

estimation fits our data. As mentioned above, the main advantage of the nonparametric 

approach is being unrestrictive about either the distribution of the data or the functional 

form of the density f. Therefore, all inferences are purely data driven. Figures 2.1 and 2.2 

display histograms for two continuous variables: borrower’s FICO score and LTV ratio. 

For comparison, histograms are augmented with curves of the nonparametric kernel-based 

estimator and that of parametric normal density function. From both figures, it is clear that 

kernel-based PDF fits the data in a better way. The LTV histogram suggests that mortgages 

with LTV ratios falling in the 75-80% interval are over-represented in our sample. The 

parametric normal density underestimates that proportion by 5.5% whereas the KDE 

provides good estimates. 



70 

 

 

6 Figure 2.1 - Kernel density fitting of the FICO score 

 

7 Figure 2.2 - Kernel density fitting of the LTV ratio 

Figure 2.3 highlights the key role of the smoothing parameter (i.e. bandwidth). It displays 

the KDE-based univariate density curve for different values of the bandwidth: high, 

optimal, and low. Given the fact that the smoothing bandwidth controls the size of the 
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neighborhood around a given point of estimation, it becomes obvious that failing to select 

the optimal bandwidth could be costly since it may result in over- or under-fitting.  

 

8 Figure 2.3 - Fitting of the KDE with multiple bandwidths 

We use the Maximum Likelihood Cross-Validation (MLCV) method to select the optimal 

bandwidth value. The results show that the optimal bandwidth values are 3.357 for the 

FICO score and 0.716 for the LTV based on the MLCV method. These values suggest a 

significant kernel density estimate because the bandwidths are higher than zero. We also 

include additional discrete binary control variables such as indicator variables for the ARM 

payment type, Balloon loan type, No/Low documentation, Subprime, and GSE conformity 

indicator. For all discrete variables, optimal bandwidth values are within the [0,1] interval 

which, according to Li and Racine (2007, 2008) and Racine (2008), indicates that variables 

are relevant to the model.29 

Unfortunately, the way to summarise the results of nonparametric models differs from that 

used to summarise the output of parametric tests. In fact, the nonparametric framework 

 

29 Li and Racine (2007, 2008) and Racine (2008) assert that the CV methods produce high bandwidth values 

for the irrelevant continuous variables and bandwidths close to 1 for irrelevant discrete variables. Interested 

readers could refer to the above contributions for additional details on bandwidth selection methods. 
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does not provide either estimated coefficients or marginal effects as parametric models do. 

Moreover, the bandwidths are not informative about changes in the conditional probability 

as the coefficients in the parametric models. As a solution, we utilize graphical 

representations to display our results where the borrower’s FICO score (continuous 

variable) is used as a support to display our results. Our choice is motivated by the fact that 

the FICO score is directly linked to both variables of interest (mortgage default, 𝑌, and 

originator’s MSR-selling decision, 𝑍). For instance, FICO is a direct measure of the 

borrower’s credit quality as it represents a natural measure of mortgage default which the 

originator may use to decide whether to sell or retain the underlying MSR. Hence, all plots 

consider the borrower’s FICO score as a support which we think makes our evidence 

emerges clearly. 

Figure 2.4 displays the conditional probability of mortgage default using the kernel density 

estimation (KDE) method. The term “conditional” means that the default probability is 

conditional on observed risk characteristics for both borrower and mortgage. The set of all 

conditioning variables is recorded at the time of the original underwriting. For comparison 

purposes, Figure 2.4 displays fitted values of a linear parametric model (Probit). The latter 

model suggests a statistically significant negative coefficient for FICO in a linear-imposed 

relationship. The KDE method corroborates this finding and suggests that the relationship 

could be non-monotonic in some parts of the data. 
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9 Figure 2.4 - Credit quality vs. conditional probability of default 

Now we turn to the core of the nonparametric test of asymmetric information. Figure 2.5 

displays the estimated conditional probability of mortgage default given all of the observed 

risk characteristics. In this plot, the conditioning set for the estimated probability is 

augmented with the mortgage originator decision (agent action) to sell the underlying MSR 

to another servicing company. In simple words, the plots, labelled “Switched” and “No 

Switched” refer to the probability of mortgage default conditional on the same set of 

control variables along with the originator’s decision to switch 𝑓(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 1) or not 

𝑓(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 0) the servicer of the deal. 30  

 

30 For the sake of exposition simplicity, we employ a restricted set of conditioning information in figure 2.5 

calculated as  𝑓(𝑦|𝑥𝐹𝐼𝐶𝑂 , 𝑧). The figure is created by pooling the conditional density point estimates across 

multiple FICO bins (each includes 25 FICO points). While this choice is arbitrary, the shapes of the plots do 

not change significantly if we use other bin counts (e.g. 50 or 20). The empirical test uses the complete set 

of conditioning variables (please refer to the header of Table 2.2). 
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10 Figure 2.5 - Credit quality vs. conditional probability of default 

Both curves show that mortgage default decreases as borrower’s credit quality improves. 

However, the plot displays a significant shift in the estimated default probability when the 

conditioning set accounts for the agent action to switch the servicing company. For 

illustration, mortgages granted for borrowers with an average FICO credit score of 550 

display an estimated likelihood of mortgage default of 40% (sample mean 37%) if the 

mortgage servicer was not switched. However, all other things are held constant, changing 

only the decision to switch the servicer of the deal increases the estimated probability of 

mortgage default by 10%. This 10% increase in the conditional probability of mortgage 

default is also, observed over all FICO score intervals. This evidence suggests that the 

decision to sell the servicing rights increases the mortgage default risk by almost 10%, 

with other characteristics are being held constant. Note that mortgages under consideration 

share almost many characteristics as they belong to the same FICO cohort. The only 

variable making difference between plots is the agent’s action to switch or not the servicer 

of the deal.  

Figure 2.5 also shows that this pattern is valid not only for low-quality borrowers but also 

for those with a superior credit quality. Although the expected default likelihood drops 
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significantly by almost 70% if we consider high-quality borrowers (FICO score above 

700), the default likelihood drops much further if the originator keeps the securitized 

mortgage on its servicing portfolio. For illustration, if we consider loans granted for 

borrowers with FICO scores higher than 750, the estimated conditional probability of 

default is about 19% if the originator sells the underlying MSRs while it is nearly zero if 

the latter keeps servicing the mortgage. 

These results are in line with those found using the Chiappori and Salanié (2000) method. 

The observably similar mortgages (i.e. granted for borrowers with similar credit risk) 

experience more defaults if the originator sells the underlying MSR to another servicer. 

As mentioned above, Su and Spindler (2013) demonstrate that, under the null hypothesis 

of independence, the test statistic 𝐷∗ (Equation 2.17) is asymptotically normally 

distributed. So, a natural way to conclude about our test would be to compare the centered 

and scaled value of the test statistic with the critical value of the distribution that follow if 

the null hypothesis were true (𝑁(0,1) in this case). However, since in this thesis we adopt 

a fully non-parametric testing procedure as we do not assume any distributional form, we 

use the bootstrap technique where the distribution of the test statistic is made-up unknown.  

The bootstrap procedure to calculate the test p-values can be summarized in three steps. 

First, we generate 𝐵 bootstrap samples (with replacement) which we denote as 

(𝑋𝑏
𝑐, 𝑋𝑏

𝑑 , 𝑌𝑏 , 𝑍𝑏) where the subscript 𝑏 denotes the 𝑏𝑡ℎ sample of data, 𝑏 =  {1…  𝐵}. Next, 

each bootstrap sample 𝑏 is used to estimate the conditional kernel density of mortgage 

default given all observed characteristics along with the originator’s MSR-selling decision 

to calculate the corresponding test statistic with the same Equation (2.17). Let 𝐷̂𝑏 denote 

the estimated test statistic using bootstrap sample 𝑏, the one-sided bootstrap p-value is 

given by: 

𝑝̂𝐵(𝐷̂∗) =
1

𝐵
∑ 𝐼(𝐷̂𝑏 < 𝐷̂∗)

𝐵

𝑏=1

                                       (2.19) 
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where 𝐼(·) is an indicator function and 𝐷̂∗ refers to the estimated test statistic as in Equation 

(2.17) obtained from the original sample (Fisher and Hall (1990) and MacKinnon (2009)). 

A key requirement for this testing procedure is that the bootstrap samples should satisfy 

the null hypothesis of independence. Therefore, our resampling procedure is corrected by 

resampling 𝑍𝑏 independently from the set (𝑋𝑏
𝑐 , 𝑋𝑏

𝑑 , 𝑌𝑏) which guarantees that 𝑌𝑏 and 𝑍𝑏 are 

independent by construction (so the resampled data verifies the null hypothesis of 

independence). 

However, there is a good reason to expect cross-section dependence across mortgages due 

to year of origination, regional housing market conditions, characteristics of the first 

servicer, movements in mortgage interest rates, and quality or reputation of the mortgage 

originator.31 So, an important extension of our test would be to modify our bootstrap 

experiment to adequately break up the cross-sectional dependence structure potentially 

present in the data. Consequently, we should independently resample 𝑋𝑐, 𝑋𝑑 , 𝑌 and 𝑍 in 

such a way to (i) break the link between 𝑍 and 𝑌 (resampling under the null) and (ii) break 

the cross-sectional dependence in 𝑋 or 𝑌.32  

The set of explanatory variables that we consider in our computation is FICO, LTV80, 

ARM, No/Low documentation, Balloon, GSE conforming, Subprime, and Prepayment 

Penalty. We again employ different inclusion combinations of control variables as we did 

in the previous analysis (see upper panel of Table 2.2) in order to show that our results are 

robust to the set of the conditioning variables. The total number of bootstrap replications 

is set to B = 1000. For all possible configurations, the bootstrap p-values are below the 5% 

statistical level which enables us to reject the joint null hypothesis of absence of 

asymmetric information, i.e. 𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 1) and 𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 0) being 

statistically different for every 𝑖 = {1,…𝑛}. 

 

31 I would like to deeply thank Prof. Simon Van-Norden for valuable suggestions regarding this issue. 

32 Since the form of our data consists of a cross-section (not a panel), no temporal dependence in the data 

should be worried about.  
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The rejection of the joint null hypothesis of (i) absence of asymmetric information and (ii) 

a correctly-specified set of conditioning variables can be interpreted as follows: The 

originating lender action to sell the servicing right of a given mortgage conveys an 

important piece of information that helps us predict the default likelihood of that mortgage. 

This affirmation holds even after taking into account all mortgage and borrower risk 

characteristics.  

2.4.2. Robustness checks: parametric models 

We provide additional support for our evidence based on parametric models. We begin 

with investigating the determinants of mortgage default using the Probit model. We recall 

the testing procedure in Dionne et al. (2001, 2015) who established the possibility of being 

able to interchange the role of 𝑌 and 𝑍 so that testing 𝐹(𝑌|𝑋, 𝑍) = 𝐹(𝑌|𝑋) is equivalent 

to testing 𝐹(𝑍|𝑋, 𝑌) = 𝐹(𝑍|𝑋). The latter equation means that the mortgage default does 

not provide useful information to predict the originator decision to switch the mortgage 

servicer. Dionne et al. (2001, 2015) state that verifying either equality is indicative of the 

conditional independence of 𝑌 and 𝑍 given a set 𝑋 of conditioning variables. 

Table 2.3 reports various inclusion configurations to control for (i) borrower and loan 

characteristics, (ii) general economic conditions, (iii) housing market conditions, (iv) bond 

market conditions, and (v) state legal structure. The estimated Probit regression is: 

Prob(Defaulti=1)= αi + β1.FICOi + β2.LTVi + β3.ARMi + β4.Ballooni + β5.NoLow_doci + 

β6.GSE_conformingi + β7.GDP_growth + β8.HPI_growth + β9.Interest_volatility + 

β10.Credit_spread + β11.Judicial + β12.SRR + ui                                                          (2.20) 

where the dependent variable, Default, is a dummy variable denoting whether a given 

mortgage i defaults (i.e. when the mortgage is labelled as +90 days delinquent), FICO is 

the borrower’s Fair Isaac Corporation score attributed at origination, LTV denotes the 

initial Loan-To-Value ratio, ARM abbreviates Adjustable-Rate Mortgages, Balloon 

denotes balloon payment-type, No/Low_doc indicates whether the originating lender 

collects any or a few of the required documentation, GSE_conforming denotes mortgages 
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that conform to the GSE lending guidelines, GDP_growth and HPI_growth are annual 

growth rates of the U.S. Gross Domestic Product and the House Price Index, respectively, 

Interetst_volatility refers to interest-rate volatility calculated as the volatility on the 1-Year 

Treasury Constant Maturity Rate over the 24 months before origination, Credit_spread is 

the yield difference between Moody's Aaa and Baa Corporate Bond Yields, Judicial 

indicates whether the state where the property is located requires judicial procedures to 

foreclose, and SRR stands for Statutory Right of Redemption and denotes if the state has 

statutory redemption laws. For variable construction and data sources, please refer to 

detailed descriptions in Table A1 in the Appendix. 

[Table 2.3 about here] 

All explanatory variables in Table 2.3 display the expected sign. Borrowers with good 

credit (high FICO scores) who afford large down payments (low LTV ratios) experience 

smaller default likelihood. Following the GSE prudent lending guidelines and collecting a 

sufficient amount of the required documentation significantly reduce the likelihood of 

mortgage default. Conversely, having an ARM and/or a balloon payment structure 

significantly increases the risk of default as the associated coefficients are positive and 

statistically significant. The Wald test and the Likelihood-ratio test statistics show that all 

coefficients are jointly statistically significant. 

To capture the potential effect of general economic conditions, we employ the annual 

growth rate of the U.S. real Gross Domestic Product (GDP) to proxy for overall economic 

growth. We employ the real GDP to adjust for inflation. Configurations II and IX suggest 

that the likelihood of mortgage default declines significantly when the economy is 

expanding, i.e. the GDP growth rate is positive. In the same way, the housing market 

conditions seem to exhibit a similar negative effect on mortgage default. The 

corresponding coefficients (see configurations III and IX) are negative and statistically 

significant at standard levels which means that bull housing periods are accompanied with 

low mortgage default rates. This result can be explained by the fact that homeowners’ 

equity stake in the property increases during bull housing periods which reduces the value 
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of exercising the termination option. We also examine the impact of bond market 

conditions on mortgage default using the interest rate volatility and the credit spread as 

measures of uncertainty and investors’ risk appetite, respectively. Both variables display a 

positive association with the mortgage default event, a result that looks plausible.  

The Table 2.3 regressions also control the state legal structure. The results suggest that 

states where judicial procedures are required to foreclose on a given mortgage witness 

lower default rates. The explanation is twofold. First, mortgagors are usually afraid of 

going to courts because they don’t like to be brought suit against so, they make more efforts 

effort to avoid such a scenario. Second, filing a court procedure to pursue a delinquent 

mortgagor is costly for the originator, both in terms of time and money, so he is to make 

more efforts to assist a delinquent mortgagor better than filling a foreclosing file and going 

to the judicial system to be paid back. Our second variable that controls the state legal 

structure is the presence of a statutory rights of redemption, or SRR, which exhibits a 

negative impact on default. It appears that lenders would be best off when assisting a 

delinquent borrower to repay rather than going to court which will allow the delinquent 

borrower an SSR period. Besides, the SRR period is usually set up to give the borrower a 

chance to pay back his/her obligation, where a negative sign appears.  

The parametric counterpart of the information asymmetry test consists primarily of 

scrutinizing the statistical link between the MSE-selling decision and the likelihood of 

mortgage default. An ordinary technique would consist of including the decision to switch 

the servicer as a control variable and estimating 𝐸[𝑌|𝑋, 𝑍] with the ordinary probit where 

𝑌 denotes mortgage default and 𝑍 the originator switching decision. In simple words, it 

would be straightforward to add the Switch_Servicer dummy variable as an additional 

regressor in Equation (2.20) and test for statistical significance of the corresponding 

coefficient. Presumably, a statistically significant positive coefficient should be interpreted 

as an evidence of existence of asymmetric information. However, such methodology 

would potentially be problematic as it suffers from various issues notably endogeneity, 

econometric misspecification, and simultaneity (Dionne et al., 2009, 2015).  
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The first potential endogeneity issue is the omitted variable bias. While our control is to 

assure a standard set of variables that have been documented in the existing literature to 

affect the mortgage default likelihood, the relation that we observe may be spurious if the 

regression omits any variable that affects both default and the decision to switch. For 

instance, the lender decision to sell MSR could be potentially correlated with unobservable 

risk characteristics of borrowers as well as of loans that default. The second possible 

endogeneity issue using the above-mentioned method is the reverse causality between 

mortgage default and the decision to switch the servicer since the causal relation between 

them could be bidirectional –also known as simultaneity. While the results suggest that the 

decision to switch the mortgage servicer is positively correlated with the likelihood of 

default, the (expected) likelihood of default itself may affect the probability that the 

originating lender will switch the servicer of the deal, in a reverse relationship. Generally, 

the endogeneity of Switch_Servicer would imply that 𝐸(𝑢|𝑋, 𝑆𝑤𝑖𝑡𝑐ℎ_𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑟) ≠ 0 in 

Equation (2.20) where 𝑢 is the error term and 𝑋 the set of explanatory variables defined 

above. Consequently, an estimated coefficient with a standard probit regression would be 

biased and inconsistent. 

As a solution, we employ three different parametric methods (i) two-stage instrumental 

variable probit to account for endogeneity, (ii)  two-stage estimation procedure proposed 

by Dionne et al. (2015) to account for econometric misspecification error and to correct 

for imposed linearity, (iii) bivariate probit to jointly estimate both outcomes in a system of 

simultaneous equations.33 The latter model does not permit to conclude about causality, 

however. 

In the first two models, the first-stage regression consists of estimating an ex-ante 

probability of mortgage default that the lender calculates based on a set of private 

information he obtains at the time of original underwriting. The second stage links the ex-

ante estimated probability of mortgage default with the decision to switch the servicer of 

 

33 Other recent parametric applications have been developed by Adams et al. (2009) and Crawford et al. 

(2018). These authors factored in the market conditions of the lending market to develop their tests; we do 

not do so in this research since we do not have access to the necessary information about market structure. 
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the deal. The procedure faces a challenge which is finding a valid instrument for Default. 

We should use, in particular, an instrument that is correlated with the default event but 

unrelated to the decision of the originating lender to switch the servicer. One candidate 

variable is the personal income level defined as an individual’s total earnings from wages, 

investment interest, and other sources. The intuition behind this is that the personal income 

variable mirrors the borrowers’ revenue –on aggregate– which is crucial in determining 

the default occurrence. On the one hand, the higher the personal income level is, the lower 

the probability that borrowers will miss monthly payments, i.e. the lower the probability 

of default. On the other hand, there is no reason to suspect that observing higher personal 

income levels should impact the lender’s choice to sell the servicing rights for a given loan 

or to hold on a servicing portfolio. We obtained the U.S. personal income data from the 

US. Bureau of Economic Analysis’ web site (www.bea.gov). 

Moreover, we consider the divorce rate as an additional instrument for Default. The 

divorce rate is an index calculated from the divorces granted in one year as the ratio of the 

number of marriages contracted then ended in divorce and the numbers of all marriages 

contracted in the same year, respectively. The divorce rate is commonly used as an 

indicator of social stress in the society. So, the idea here is that this ratio of marital 

breakdown could mirror both the social and financial stability of borrowers. That is, the 

greater the divorce rate in a population is, the more borrowers will be observed to be in 

difficulties to honor monthly payments on their debts, thus, more default frequencies 

should be observed. In the same way, there is no reason to suspect that observing higher 

divorce rates should impact the lender’s decision to switch the servicer or keep the right to 

service a given deal. The divorce rate is retrieved from the U.S. Census Bureau’ web site 

(www.census.gov).34 

 

34 We use instruments that consist of aggregate measures as we are in the impossibility to find individual-

level variables in our database that are not used by the originating lender in deciding whether to sell or not 

the underlying MSR (i.e. not correlated with the Switch_Servicer variable).    

file:///C:/Users/Helmi%20Jedidi/AppData/Roaming/Microsoft/Word/www.bea.gov
file:///C:/Users/Helmi%20Jedidi/AppData/Roaming/Microsoft/Word/www.census.gov
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The first two columns of Table 2.4 display the estimation results of the two-stage 

instrumental variable probit. The model could be formulated as follows: 

The 1st stage:  Prob(Defaulti=1)= αi + γ1.Incomei + γ2.Divorcei + β1.FICOi + β2.LTVi + 

β3.ARMi + β4.Ballooni + β5.NoLow_Doci + β6.GSE_Conformi + β7.GDPi + β8.HPIi + 

β9.Interest_voli + β11.Credit_sprdi + β11.Judiciali + β12.SRRi + ui                               (2.21) 

The 2nd stage:  Prob(Switch_Serviceri=1)= αi + θ1.Ê(Defaulti|Xi) + β1.FICOi + β2.LTVi 

+ β3.ARMi + β4.Ballooni + β5.NoLow_Doci + β6.GSE_Conformgi + β7.GDPi + β8.HPIi + 

β9.Interest_voli + β10.Credit_spreadi + β11.Judiciali + β12.SRRi + εi                           (2.22) 

The first stage regression estimates the mortgage default likelihood using Income and 

Divorce as instruments.35 We believe that both instruments should be correlated with 

mortgage default but uncorrelated with the decision to switch the mortgage servicer. The 

second-stage regression incorporates the expected likelihood of mortgage default as an 

explanatory variable to determine the decision of switching the servicer. 

[Table 2.4 about here] 

As expected, the first-stage regression shows that income is negatively correlated with 

mortgage default likelihood with a statistically significant coefficient at the 1% level. In 

contrast, the divorce rate is positively related to mortgage default suggesting that marital 

breakdown represents a key factor in determining mortgage default. All other coefficients 

have the expected sign similar to previous findings in Table 2.3. The first-stage regression 

provides an estimate of the likelihood of borrower default that the lender calculates based 

on his set of private information. In the second stage, the expected likelihood of default 

enters the equation as a control variable that explains the originator’s decision to switch 

the servicer of the deal. The results show a statistically significant positive coefficient 

 

35 We provide tests of the validity of these two instruments. The aggregate ratios of Income and Divorce 

should affect the probability of mortgage default. However, they should not significantly affect the originator 

decision to switch the mortgage servicer. Usual test with linear probability models rejects the Wu-Hausman 

test as well the weak instruments test. Results are available from the authors. 
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suggesting that the lender’s expectation of mortgage default positively influences his 

decision to switch the servicer of the deal; the higher the ex-ante expected probability of 

borrower default is (based on the originator’s private information), the higher the 

propensity to switch the servicer of the deal will be. 

This positive link is further confirmed after controlling for econometric misspecification 

via imposed linearity in the vein of Dionne et al. (2015). The authors point out that if we 

limit the form of the exogenous effect on the probability of switching the servicer to be 

linear (aXi+Defaultib), we may induce spurious conclusions since it is difficult to 

distinguish between the informational content of a decision variable, Switch Servicer, and 

an omitted nonlinear effect of the set of exogenous variables. So, the estimated coefficient 

can be, erroneously, statistically significant because potential nonlinear effects were not 

taken into account by the linear-imposed model. Dionne et al. (2015) suggest a pragmatic 

way of avoiding this difficulty and taking into account the potential nonlinear effects by 

considering a more general form of the second-step regression, Equation (2.22).: 

Prob(Switch_Serviceri=1)= αi + θ1.Defaulti + θ2.Ê(Defaulti|Xi) + β1.FICOi + β2.LTVi + 

β3.ARMi + β4.Ballooni + β5.NoLow_Doci + β6.GSE_Conformgi + β7.GDPi + β8.HPIi + 

β9.Interest_voli + β10.Credit_spreadi + β11.Judiciali + β12.SRRi + εi                          (2.23) 

Columns 3 and 4 of Table 2.4 show that the estimated coefficient on the the predicted 

default remains positive and statistically significant even after controlling econometric 

misspecification and potential nonlinearity. Again, the results suggest that the originator’s 

expected mortgage default provides useful information to predict his decision to switch the 

mortgage servicer.  

Our third method employs the bivariate probit to model both the default event and the 

decision to switch the servicer in a simultaneous framework. The bivariate probit model 

could be represented as follows: 
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• Prob(Defaulti=1)= αi + β1.FICOi + β2.LTVi + β3.ARMi + β4.Ballooni + β5.NoLow_Doci 

+ β6.GSE_Conformgi + β7.GDPi + β8.HPIi + β9.Interest_voli + β10.Credit_spreadi + 

β11.Judiciali + β12.SRRi + ε1i , 

• Prob(Switch_Serviceri=1)= αi + β1.FICOi + β2.LTVi + β3.ARMi + β4.Ballooni + 

β5.NoLow_Doci + β6.GSE_Conformgi + β7.GDPi + β8.HPIi + β9.Interest_voli + 

β10.Credit_spreadi + β11.Judiciali + β12.SRRi + ε2i 

• where E(ε1i)=E(ε2i)=0 ; Var(ε1i)=Var(ε2i)=1 ; Cov(ε1i,ε2i) =   ;  i= 1, 2, 3, ...., n     (2.24) 

The last two columns in Table 2.4 confirm the above findings of a positive association 

between the two variables. All explanatory variables remain statistically significant and 

preserve the expected sign. Most importantly, the results show a statistically significant 

correlation coefficient of 0.5965 (statistically significant at the 1% level) which confirms 

the positive relationship between mortgage default and the decision to switch servicer. 

Such results shed light on the existence of information asymmetry in the U.S. mortgage 

servicing market. 

For robustness purposes, we reproduce the parametric results using (i) a different definition 

of mortgage default and (ii) a different studying period. We use an alternative default 

definition that identifies a given mortgage in default when first becomes 60+ days 

delinquent (i.e. when first reported as the borrower having missed two or more monthly 

payments). We also consider a pre-crisis sampling period, going from January 2001 to 

December 2006 with the main objective to immune the empirical results from the potential 

effects of the financial crisis. As shown in the appendix (Tables A.2–A.7), our empirical 

results are robust to these alternatives observed in the literature. 

2.4.3. Two-stage nonparametric framework 

In the first part of the empirical analysis, we present the results of the nonparametric kernel 

density estimation technique. The main goal was to estimate the conditional CDF of 

mortgage default, 𝐹̂(𝑌|𝑋, 𝑍). Our results show a positive correlation between the decision 
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to switch the servicer of the deal and mortgage default. However, a positive relationship 

does not automatically indicate a causal relationship. In fact, a statistical association 

implies that variables occur concurrently whereas statistical causality implies that one 

variable embodies the cause of the other’s occurrence. Unfortunately, our results from the 

nonparametric kernel density estimation technique don’t let us draw conclusions about the 

causality between the originator’s decision to switch servicers and mortgage default. This 

is mainly due to the fact that KDE estimators are derived based on the concept of joint 

distribution which is commonly used to assess the probability of two or more events 

occurring together (i.e. occurring simultaneously). 

We now propose a fully nonparametric two-step instrumental variable estimation 

procedure to establish a causal relationship between the two variables of interest while 

considering any potential simultaneous effects. In recent econometric studies, two-step 

instrumental variable approaches have been widely used to provide consistent causal 

inferences in the presence of endogeneity and simultaneity. Instruments are correlated with 

the endogenous variable but should have no effect on the variable of interest, thus allowing 

researchers to explore the causal effect of the endogenous variable on the dependent 

variable. Similar to the parametric two-step regressions, we exploit the fact that we can 

interchange the roles of 𝑌 and 𝑍 and test 𝐹(𝑍|𝑋, 𝑌) = 𝐹(𝑍|𝑋) instead of testing 

𝐹(𝑌|𝑋, 𝑍) = 𝐹(𝑌|𝑋), as shown by Dionne et al. (2001, 2009, 2015). 

In the first step we perform a nonparametric estimation of the conditional density of 

mortgage default using instrumental variables, and in the second step we consider the 

nonparametric equivalent of the parametric second-stage regression. We are aware of the 

literature on nonparametric instrumental variable regressions. However, the 

implementation of such approach is ambiguous given that the literature proposes 

nonparametric regression models that are appropriate when both response and endogenous 

variables are continuous. This is not the case in our application because both variables of 

interest, 𝑌 and 𝑍, are binary. Recent contributions by Hall and Horowitz (2005), Darolles 

et al. (2011), and Horowitz (2011) establish straightforward estimators using 

nonparametric instrumental variables for continuous response and endogenous variables. 
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Das (2005) considers the case where the regressor X is discrete and the dependent variable 

is continuous. Recently, Centorrino and Florens (2019) proposed an instrumental variable 

approach to the nonparametric estimation of binary response models with endogenous 

variables. However, their application does not fully fit our application given that the 

endogenous regressor to be estimated in our first-stage regression is a binary variable. This 

significantly restricts our choice of appropriate nonparametric estimation methods. 

Consequently, our two-stage methodology primarily relies primarily on kernel density 

estimates. 

Our nonparametric two-stage instrumental variable estimation procedure for causal effects 

could be summarized as follows. In the first stage, we estimate the conditional density of 

mortgage default using the KDE technique as described in Section 2.2. The set of 

covariates includes exogenous independent variables (e.g. FICO score, LTV ratio, 

documentation status) along with our two instruments of mortgage default (income and 

divorce). The first-stage KDE estimation is represented as follows: 

𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) =

1
𝑛

∑ 𝐾(𝑋𝑖
𝑐, 𝑥𝑐). 𝐿(𝑋𝑖

𝑑, 𝑥𝑑). 𝐾(𝑉𝑖, 𝑣). 𝑙(𝑌𝑖, 𝑦, 𝛾𝑦)
𝑛
𝑖=1

1
𝑛

∑ 𝐾(𝑋𝑖
𝑐, 𝑥𝑐).𝑛

𝑖=1 𝐿(𝑋𝑖
𝑑 , 𝑥𝑑). 𝐾(𝑉𝑖, 𝑣)

        (2.25) 

where 𝐾(𝑉𝑖, 𝑣) = ∏ ℎ̂𝑛
−1𝑘ℎ(𝑉𝑖,𝑛, 𝑣𝑛)

2
𝑛=1  denotes the product kernel function for the 2-

dimensional vector of instrumental variables 𝑉𝑛, 𝑛 = {1,2}. 𝑣1 and 𝑣2 denote the 

evaluation points for instruments 𝑉1 and 𝑉2. Figures 2.6 and 2.7 show how the estimated 

conditional density function of mortgage default varies with the two instruments. 
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11 Figure 2.6 - Divorce rate vs. expected probability of mortgage default 

 

12 Figure 2.7 - Income level vs. expected probability of mortgage default 

In the second stage, we include the kernel-based estimator of mortgage default as a 

covariate while estimating the conditional density of the decision to switch mortgage 

servicers. To simplify notations, let 𝐷𝑒𝑓+  ≡ I(𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) > 𝜏∗) and 𝐷𝑒𝑓− ≡
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I(𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) ≤ 𝜏∗) define the events where the expected mortgage default 

probability is high and low, respectively. 𝐼(·) refers to an indicator function and 𝜏∗ is a 

fixed threshold, 𝜏∗ ∈ [0,1]. In our context, 𝐷𝑒𝑓+ and 𝐷𝑒𝑓− represent the originating 

lender expectations of mortgage default based on the set of information that it collects at 

the time of original underwriting. As mentioned above, the originator possesses a set of 

private information that enables it to gauge the mortgage borrower’s likelihood of financial 

distress. Thus, the originator considers its expectation of borrower default when deciding 

whether to sell the mortgage servicing right to a new servicer or to keep managing the 

mortgage. As stated above, this two-step instrumental variable estimation procedure allows 

us to 1) account for potential simultaneity effects, and 2) establish a causal relationship 

between mortgage default and the decision to switch servicers. 

Finally, we perform a proposed information asymmetry test where the statistic can be 

formulated as follows: 

𝑊∗ = 𝑠𝑢𝑝[𝐹̂(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓+) − 𝐹̂(𝑧𝑖|𝑥𝑖
𝑐, 𝑥𝑖

𝑑 , 𝐷𝑒𝑓−)]                      (2.26) 

The test can be performed using the nonparametric Kolmogorov–Smirnov (KS) test of the 

equality of distributions. In a two-sample environment, the test is designed to verify the 

null hypothesis that both samples are drawn from the same distribution, i.e. both samples 

have the same distributional shaping parameters. In the context of asymmetric information, 

the null hypothesis to be tested is that the shape of the conditional distribution of the 

decision to switch the servicer of the deal is independent from the mortgage default 

likelihood. Failing to reject the null hypothesis should be interpreted as indicative of a 

significant impact of the likelihood of mortgage default on the originator’s decision to 

switch the servicer of the deal.  

Using either the entire sample or randomly selected subsamples, the KS test results enable 

us to reject the null hypothesis of distributional similarities, which confirms our main result 

of the presence of asymmetric information in the U.S. mortgage servicing market. For a 

better visualization, Figure 2.8 highlights the main result of the instrumental variable two-

stage testing procedure. The figure plots the conditional probability of switching the 
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servicer of the deal given the set of explanatory variables along with the originator’s 

expected default probability derived from private information. Formally, both lines on the 

figure represent 𝑓(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓+) and 𝑓(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓−) calculated over equally 

spaced FICO score intervals.  

 

13 Figure 2.8 - Instrumental-variable 2-stage nonparametric estimator of switching 

The above plot shows that the conditional probability of switching the servicer of the deal 

is a decreasing function of borrower quality. This confirms our previous results using the 

parametric models where the coefficient on the FICO score was negative and statistically 

significant (see Table 2.4). The plot shows divergence between the two lines, each is 

conditioned by the expected likelihood of mortgage default. For instance, the only 

conditioning variable that differs between the two lines is the agent’s expected probability 

of mortgage default (estimated in the first stage). Figure 12 suggests that when the expected 

default probability is high, 𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) > 𝜏∗, the corresponding probability of 

switching the servicer of the deal is much higher when the expected default probability is 
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low, 𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) ≤ 𝜏∗. In the figure, 𝜏∗ is set at 0.55. All other things are held 

constant, if the originating lender expects that a given borrower has a high probability of 

financial distress, it is more likely to sell the underlying servicing right to another servicer. 

However, originators tend to keep servicing mortgages granted for borrowers with a low 

expected probability of mortgage default. 

The vertical line on Figure 2.8 refers to a FICO score cut-off point of 660. This cut-off 

point represents a rule-of-thumb established by the GSE to control mortgage lending in the 

U.S. market. Following the GSE prudent lending guidelines, a borrower above the 660 

thresholds should be attributed a mortgage while borrowers falling below should have 

constrained funding. Keys et al. (2010) exploit a different cut-off point of 620 to 

investigate the ease of securitization. The authors document a clear shift in the 

securitization ease around their decision rule.  

Figure 2.8 delivers similar inferences to that by Keys et al. (2010). The figure shows a 

clear divergence in the conditional probability of switching the mortgage servicer given 

the expected probability (calculated at the first stage estimation) of default is high or low. 

Nevertheless, this low/high expected default divergence is more pronounced below the 660 

thresholds (left hand-side to the vertical line) than above the 660 cut off. This divergence 

shift could be explained by the significance of soft information between the two groups.  

Recall that mortgage originators decide whether or not to sell the MSRs based on both hard 

and soft information. Also, information asymmetry should be more pronounced in 

situations where the distinction between soft and hard information is critical. To better 

interpret Figure 2.8, let us use the FICO score as a proxy for hard information (without 

loss of generality) since it can be observed by a third party. However, high/low expected 

probability of mortgage default calculated in the first-stage kernel-based estimation 

contains both sources of information (hard and soft). 

On the one hand, mortgages granted for borrowers with a FICO score above the GSE 660 

rule-of-thumb naturally exhibit a low probability of mortgage default. We observe less 

discrepancy between hard and soft information. On the other hand, mortgages made for 
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borrowers falling below the 620 thresholds deliver clear discrepancies between hard and 

soft information. Indeed, these differences in the conditional probability of switching the 

servicer are the immediate results of asymmetric information i.e. the use of soft 

information by mortgage originators which they keep private. Therefore, we can conclude 

that originators are using soft information in their decision-making process to switch 

servicers more frequently when the likelihood of default is high and less frequently when 

the likelihood of default is low. 

The proposed two-step instrumental variable nonparametric testing procedure aims to 

establish a causal relationship between the agent decision variable 𝑍 and the outcome 𝑌. 

The results strongly suggest that the expected likelihood of mortgage default influences 

the originator decision to switch the servicer of the deal, which confirms our hypothesis 

that second-stage asymmetric information exists in the U.S. mortgage servicing market.  

2.5. Conclusion 

In this chapter, we test for asymmetric information in the non-agency mortgage servicing 

market in a nonparametric framework. Our empirical results document a significant 

positive association between the originator MSR-selling decision and the ex-post 

likelihood of default. The results show that the higher the propensity of switching the 

servicer of the deal, the higher the probability that the borrower misses consecutive 

monthly debt payments. We provide additional support for our findings using a battery of 

parametric tests. Our results are indeed valid after controlling for all observable risk 

characteristics, for econometric misspecification error, and for endogeneity issues using 

the instrumental variables two-stage estimation procedure. 

This significant link between the decision of the originator (agent action) and the mortgage 

default (output) could be explained according to two different theories: adverse selection 

or moral hazard. Both explanations are plausible at this stage.  
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On the one hand, according to adverse selection, originators could be using their private 

information about the creditworthiness of borrowers and the riskiness of mortgage 

contracts that they obtain at the time of original underwriting to adversely pass “lemons” 

(Ackerlof, 1970) with high default risk to the servicing market and retain low-default loans 

on their servicing portfolios. This view is mainly motivated by the discussion we 

elaborated in Chapter 1 Section 1.2.2 about how costly mortgage servicing becomes when 

the borrower defaults. Since servicing delinquent loans significantly reduces the 

profitability of the servicing activity, mortgage originators are found to sell the MSR of 

inferior-quality loans with high default expectations. Conversely, originators keep 

servicing high-quality loans expected to be profitable as long as the associated default risk 

is low. In this vein, our findings are consistent with the evidence of mortgage lenders 

possessing privileged information on the “true” likelihood of default, and exploiting this 

asymmetric information to pass the inherent credit risk to the secondary market 

participants through (i) removing the default risk from their balance-sheets by selling low-

quality mortgages to investors thanks to the securitization activity, at a first step,36 then (ii) 

selling the servicing rights of these securitized mortgages in order to further get away from 

any consequences of low-quality defaulting mortgagors. 

On the other hand, according to the moral hazard theory, originators could be making less 

effort than required in terms of screening applications and monitoring borrowers as soon 

as they know that the underlying MSR of a given loan they originate and securitize will be 

sold to another servicer. In other words, as long as the originator “knows” that a given 

mortgage he/she originates will be first securitized then the underlying MSR will be sold, 

it would have less incentives to expand the “optimal” effort to properly screen the borrower 

application then monitor the continuity of borrower payments over the mortgage term.  

Under either explanation, the behavior of mortgage originators could be motivated by loan 

sale (securitization) at a first stage, then, MSR sale at a second stage which places the 

 

36 The literature examining the occurrence of adverse selection in the securitization process is rich. See for 

example, Ambrose et al. (2005), Agarwal et al. (2012), Krainer and Landermark (2014), Keys et al. (2010), 

and Elull (2016), and to name a few. 



93 

 

originator far away from the borrower credit risk. Hence, it can be viewed that the sale of 

mortgage servicing right can provide the originating lender with means that enable him to 

drive further away from the default risk associated with his low-quality lending practices. 

Our empirical results reveal interesting and important conclusions related to the U.S. 

mortgage servicing market. We observe that information asymmetry between servicers 

influences the loan default probability significantly. The mortgage originator uses its 

private information advantage to sell more risky loans to the MSR-purchaser.  

This result has important consequences for the securitization market. Recent regulation has 

introduced a retention provision for banks that use securitization. Since December 2014, 

securitizers must keep an economic interest (retention) in the credit risk of the securitized 

assets (Morgan Lewis, 2018). Only the original creditor must keep the economic interest, 

which means that the risk retention cannot be allocated to a subsequent purchaser. It would 

be interesting to investigate how this new rule may have affected the type of information 

asymmetry effect that we have measured. 
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3 Table 2.1 - Commonly used kernel functions 

The table displays commonly used kernel functions for both continuous (Panel A) and discrete 

random variables (Panel B). A denotes the event when the observation Xi falls within the 

interval [x – h, x + h) and 1(A) refers to an indicator function taking on the value 1 if A is true 

and 0 otherwise.  

Panel A. Continuous variables 

Epanechnikov kernel: K(z)= 3/4 (1 - z²) x 1(A) 

Normal (Gaussian) kernel: K(z)= (2π)-1/2 exp(-z² /2) 

Quadratic kernel: K(z)= 15/32 (3 - z²)² x 1(A) 

Triangular kernel: K(z)= 1-|z| x 1(A) 

Uniform (naïve) kernel: K(z)= ½ x 1(A) 

Panel B. Discrete variables 

Aitchison and Aitken kernel: 𝑙(𝑋𝑖, 𝑥, 𝛾) =  
1 − 𝛾         if  Xi = x 

𝛾/(𝑐 − 1)  if  Xi ≠ x 

Aitken kernel: 𝑙(𝑋𝑖, 𝑥, 𝛾) = 
1   if  Xi = x 

𝛾   if  Xi ≠ x 
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4 Table 2.2 - Results of the Chiappori and Salanié non-parametric test 

The table reports the results of the Chiappori and Salanié (2000) non-parametric testing methodology. The 

overall sample includes 5,591,353 U.S. mortgages originated over the period from January 2000 to December 

2013. The mortgages have been securitized through the non-agency channel. The upper panel of the table 

reports 10 different configurations of the control variables. The table displays the number of variables 

included in each configuration as well as the resulting number of cells. KS p-value is the p-value of the 

Kolmogorov-Smirnov non-parametric test. 2
(1) crit. value is the theoretical value of the 2 distribution at 

the 5% significance level. Rejection rate provides the frequency of rejection of the null hypothesis of 

independence among all individual cells. S value is the sum of individual test statistics among all cells. 

Configuration I II III IV V VI VII IIX IX X XI 

FICO.660 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

LTV.80 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

ARM Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

No/Low doc. - Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Balloon - - Yes - - - Yes Yes Yes Yes Yes 

GSE Conf. - - - Yes - - Yes - - Yes - 

Subprime - - - - Yes - - Yes - - Yes 

Prep. penalty - - - - - Yes - - Yes Yes Yes 

# variables 3 4 5 5 5 5 6 6 6 7 7 

# cells (M) 8 16 32 32 32 32 64 64 64 128 128 

Method 1:            

KS p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method 2:            

2
(1) crit. value 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 

Rejection rate 0.75 1.00 0.81 0.92 1.00 0.91 0.75 0.81 0.83 0.73 0.83 

Method 3:            

2
(M) crit. value 15.51 26.30 46.19 46.19 46.19 46.19 84.82 84.82 84.82 124.34 124.34 

S value 6388.6 4491.4 6840.3 5577.2 4491.4 9638.9 7628.9 6840.3 11089.8 11230.5 11089.8 
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5 Table 2.3 - Results of the Probit model 

The table reports estimation results of the parametric Probit regressions. The sample includes 5,591,353 

mortgages originated over the period from January 2000 to December 2013. The dependent variable, Default, 

is a dummy variable denoting mortgage default (i.e. when a mortgage is labelled as +90 days delinquent). 

FICO score is the borrower’s Fair Isaac Corporation score attributed at origination. LTV ratio denotes the 

initial loan-to-value ratio. ARM stands for adjustable-rate mortgages. Balloon refers to balloon payment 

mortgages. No/Low doc. indicates whether the originator collected no/low-level documentation. GSE conf. 

denotes mortgages that conform to the GSE’s lending guidelines. GDP growth and HPI growth are growth 

rates of the U.S. Gross Domestic Product and the House Price Index, respectively. σ interest refers to interest-

rate volatility. Credit Spread is the yield difference between AAA and Baa bond indexes. State FE 

specification controls for state fixed effects using state dummies. Judicial indicates whether the state requires 

judicial procedures to foreclose on a mortgage. SRR stands for Statutory Right of Redemption and denotes 

states that have statutory redemption laws. The Pseudo R2 is expressed in percentage. Wald denotes the p-

value of the Wald test for the null hypothesis of all coefficients are jointly equal to zero. LR refers to p-value 

of the likelihood ratio test for the null hypothesis based on configuration II. The asterisks *, **, and *** refer 

to significance levels of 10%, 5%, and 1%, respectively. 

Configuration I II III IV V VI VII IIX IX 

A. Fundamental loan and borrower characteristics 

FICO score -0.0034*** -0.0034*** -0.0034*** -0.0034*** -0.0034*** -0.0034*** -0.0034*** -0.0034*** -0.0034*** 

LTV ratio 0.0169*** 0.0172*** 0.0170*** 0.0171*** 0.0169*** 0.0175*** 0.0170*** 0.0172*** 0.0179*** 

ARM 0.0980*** 0.1324*** 0.1290*** 0.1064*** 0.0866*** 0.0755*** 0.0940*** 0.0911*** 0.1206*** 

Balloon 0.6336*** 0.5681*** 0.5770*** 0.5887*** 0.6384*** 0.6373*** 0.6344*** 0.6264*** 0.4146*** 

No/Low doc. 0.3726*** 0.3742*** 0.3741*** 0.3707*** 0.3673*** 0.3602*** 0.3721*** 0.3690*** 0.3396*** 

GSE Conf. -0.1939*** -0.1914*** -0.1895*** -0.1920*** -0.1905*** -0.1959*** -0.1918*** -0.1910*** -0.1567*** 

B. Economic general conditions 

GDP growth  -14.808***       -1.9725*** 

C. Housing market conditions 

HPI growth   -3.4660***      -7.6275*** 

D. Bond market conditions 

σ interest    0.4669***     1.0679*** 

Credit spread    0.3561***    1.8900*** 

E. State legal structure 

State FE     Yes    

Judicial       -0.0464***  -0.0421*** 

SRR        -0.0868*** -0.0853*** 

Intercept 0.2878*** 0.6870*** 0.5697*** -0.1014*** 0.6244*** -0.1253*** 0.3277*** 0.3385*** 1.9433*** 

Pseudo R2 8.40 9.10 8.82 9.04 8.53 9.39 8.43 8.46 11.60 

Log-likelihood -3.37e+06 -3.35e+06 -3.36e+06 -3.35e+06 -3.37e+06 -3.34e+06 -3.37e+06 -3.37e+06 -3.25e+06 

Wald p-value         0.00 

LR p-value         0.00 



 

 

6 Table 2.4 - Results of the two-stage and bivariate Probit models 

The table reports the estimation results using three parametric approaches: the two-stage instrumental 

variable probit, the two-stage linear model (Dionne, La Haye, and Bergerès, 2015), and the bivariate probit. 

The sample includes 5,591,353 mortgages originated over the period from January 2000 to December 2013. 

Income and Divorce are instruments for the endogenous variable Default. Income is the annual growth rate 

of the U.S. household income. Divorce is the annual rate of divorce in the U.S. Pr(Default=1) denotes the 

predicted probability of default from the 1st stage probit regression. Ê(Default) denotes the predicted default 

from the 1st stage linear model. Default denotes mortgage default (i.e. is labelled as +90 days delinquent). 

Switch serv. denoting whether the originator switched the servicer of the deal. FICO score is the borrower’s 

Fair Isaac Corporation score attributed at origination. LTV ratio denotes the initial loan-to-value ratio. ARM 

abbreviates adjustable-rate mortgages. Balloon refers to balloon payment mortgages. No/Low doc. indicates 

whether the originator collected no/low documentation. GSE conf. denotes loans that conform to the GSE’s 

lending guidelines. GDP growth and HPI growth are the growth rates of the U.S. Gross Domestic Product 

and the House Price Index, respectively. σ interest refers to interest-rate volatility. Credit Spread is the yield 

difference between AAA and Baa bond indexes. Judicial denotes states that require judicial procedures to 

foreclose on a mortgage. SRR stands for Statutory Right of Redemption and denotes states that have 

statutory redemption laws. R2 is expressed in percentage and refers to the pseudo R2 for probit models and 

the adjusted R2 for Linear models. ρ is the estimated correlation coefficient for the bivariate Probit. The 

asterisks *, **, and *** refer to the significant coefficients at the 10%, 5%, and 1% significance levels, 

respectively. 

Model Two-stage IV Probit  DLB Linear Model  Bivariate Probit 

 1st stage 2nd stage  1st stage 2nd stage 2nd stage    

Dependent var. Default Switch serv.  Default Switch serv. Switch serv.  Default Switch serv. 

Instruments          

Income -0.0007***   -0.0002***      

Divorce 0.2896***   0.2104***      

Pr(Default=1)  0.5334***        

Ê(Default)     0.4871*** 0.1683***    

Default      0.3188***    

FICO score -0.0035***   -0.0011***    -0.0035*** -0.0001*** 

LTV ratio 0.0180*** 0.0029***  0.0051*** 0.0004*** 0.0004***  0.0180*** 0.0030*** 

ARM 0.1212*** -0.1867***  0.0430*** -0.0795*** -0.0795***  0.1184*** -0.1707*** 

Balloon 0.4129*** -0.0225***  0.1596*** -0.0525*** -0.0525***  0.4085*** 0.0582*** 

No/Low doc. 0.3395*** 0.1579***  0.1062*** 0.0437*** 0.0437***  0.3416*** 0.1699*** 

GSE Conf. -0.1537*** 0.0777***  -0.0432*** 0.0699*** 0.0699***  -0.1524*** 0.0020 

GDP growth -4.9640*** 4.4784***  -1.8759*** 3.5329*** 3.5329***  -1.9603*** -0.5005*** 

HPI growth -7.5731*** -5.8147***  -2.5375*** -0.8476*** -0.8476***  -7.5398*** -7.7918*** 

σ interest 0.9305*** 0.6387***  0.2736*** 0.0887*** 0.0887***  1.0688*** 0.8380*** 

Credit spread 1.9934*** 1.1789***  0.6298*** 0.0044*** 0.0044***  1.8957*** 1.9713*** 

Judicial -0.0425*** 0.0129***  -0.0129*** 0.0066*** 0.0066***  -0.0426*** 0.0018 

SRR -0.0844*** 0.0321***  -0.0267*** 0.0145*** 0.0145***  -0.0851*** 0.0321*** 

R2 11.7 38.0  13.8 31.2 38.2    

ρ        0.5965*** 

 



 

 

Chapter 3 

Machine Learning to test Information Asymmetry 

Abstract 

In this chapter, we rely on Machine Learning (ML) algorithms to test the evidence of 

asymmetric information in the mortgage servicing market. We deal with the same research 

question but using different, yet, sophisticated tools. Machine Learning algorithms are 

ideally suited for mortgage default predictions given their ability to process big datasets, 

identify complex patterns in the data, and handle possible nonlinear relationships within 

large feature sets. We begin by evaluating the out-of-sample predictive performance of 

five supervised ML algorithms: Decision Trees, Naïve Bayes, k-Nearest Neighbors, 

Support Vector Machines, and Random Forests. Each classification algorithm has a 

unique approach to process the information contained in the feature set as well as a distinct 

decision-making path. The results show that ML models constantly outperform the 

parametric logistic model regardless of the evaluation metric, the study period, or the 

output class imbalance scheme. The results also reveal that tree-based algorithms 

(Decision Trees and Random Forests) outperform other candidate ML models. Using 

feature importance evaluation techniques, we shed the light on how the originator’s 

decision to sell the mortgage servicing right (MSR) to another servicing company is 

critical in predicting mortgage default. The ML results strengthen our previous findings 

on the presence of second-stage asymmetric information in the U.S. market of mortgage 

servicing rights. 

Keywords: Mortgage servicing, default risk, asymmetric information, supervised 

machine learning, classification algorithms, nonparametric econometrics. 
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3.1. Introduction 

Over the past decades, Artificial Intelligence (AI) and Big Data have been changing the 

landscape of research methods. Due to rapid software development and data abundance, 

sophisticated computers are nowadays trained to mimic human level intelligence. One 

central field of Artificial Intelligence is Machine Learning (ML) which allows computers 

to “learn” from data. Machine Learning algorithms can infer sophisticated relationships 

from data, self-develop, and make predictions without being explicitly programmed by 

humans. 

As Machine Learning algorithms are becoming more and more sophisticated, their 

application has been vastly enlarged to cover a multitude of research fields. In this chapter, 

we contribute to the credit risk literature through using Machine Learning algorithms to 

predict the likelihood of mortgage default. To the best of our knowledge, this is the first 

study to examine the likelihood of mortgage default in the non-agency U.S. market using 

sophisticated Machine Learning algorithms. We show that Artificial Intelligence, and 

particularly SML modelling, has a lot to offer to the credit risk literature as it provides 

newer and advanced tools that we exploit in this field of research.  

This chapter is twofold. In the first part, we build a predictive model of mortgage default 

risk based on Machine Learning. Our first research question is: How much these advanced 

tools can help in predicting mortgage default in the non-agency market? In doing so, we 

train five ML algorithms each presenting a unique approach to process information 

contained in the feature set and a distinct decision-making path. The selected candidate 

ML models are: Decision Trees, Naïve Bayes, k-Nearest Neighbors, Support Vector 

Machines, and Random Forests. Machine Learning provides sophisticated tools that 

successfully handle huge data amounts, identify hidden patterns in data, and capture 

complex non-linear relationships in the features-attributes space. In the second part of this 

chapter, we rely on the novelty of Machine Leaning algorithms to readdress the 
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asymmetric information problem in the market for Mortgage Servicing Rights (MSR) in a 

principal-agent context. 

Our results show that Machine Leaning algorithms (notably tree-base algorithms) provide 

a clear contribution to the finance literature as they deliver higher out-of-sample 

classification performance than the widely used Logistic regression parametric model. 

Commonly used borrower and mortgage risk characteristics are found to provide more 

precise results in predicting mortgage default when they are properly processed with 

Machine Learning.  

In this chapter, we rely on Machine Learning to determine which features are most relevant 

to the making of a good prediction. Since our main goal is to investigate asymmetric 

information in a principal-agent context, we are interested in determining the relative 

informational importance of the agent action (MSR-sale) in predicting the outcome 

(mortgage default). Our knowledge of the importance of the decision variable valorized by 

ML algorithms permits to: (i) facilitate our understanding of the model decision-making 

process, (ii) shed light on the central role it plays in predicting mortgage default, and (iii) 

strengthen our motive to test for asymmetric information. The results show that the 

originator’s decision to sell the MSR is, indeed, the top-most important feature in 

determining the ex-post likelihood of mortgage default.  

The Machine Learning results corroborate our Chapter 2 findings based on a sequence of 

the Pearson's 2 test of independence (Chiappori and Salanié, 2000) and kernel density 

estimation techniques (Su and Spindler, 2013). The ML results show that observably 

similar mortgages (i.e. with comparable risk factors and granted for borrowers with similar 

credit scores) experience higher ex-post default risk if the mortgage originator sells the 

underlying servicing rights to a different servicing company. 

This chapter proceeds as follows. In Section 2, we review recent empirical studies on the 

added value of Machine Learning methods in predictive modeling of credit risk. In Section 

3, we introduce Machine Learning models while in Section 4 we present various 

performance evaluation metrics. Section 5 describes important data management 
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procedures appropriate to ML modelling. Section 6 provides the empirical results while 

Section 7 draws conclusions for this chapter. 

3.2. Literature review on Machine Learning applications in credit risk 

Artificial Intelligence and Machine Learning, in particular, have witnessed a spectacular 

development over the past decades. Various ML algorithms were originally developed by 

statisticians and computer scientists but nowadays their use has been spread to many new 

applications in a variety of fields. The finance area, in particular, represents a field where 

Machine Learning techniques provide a great potential with a wide range of applications 

such as algorithmic trading, wealth management, investment predictions, fraud detection, 

and, notably, risk management. Over the recent two decades, there has been a keen interest 

in investigating whether Machine Learning algorithms produce more accurate forecasts of 

financial distress than traditional methods. In this section, we provide a brief summary of 

the literature applying ML methods in risk management. In particular, we focus on recent 

empirical studies that have assessed the added value of Machine Learning methods in 

predictive modeling of default. 

Khandani et al. (2010) employ Machine Learning techniques to forecast consumer credit 

risk. The authors combine bank-account data with credit bureau data to construct a large 

database on U.S. credit card holders that span the period from January 2005 to April 2009. 

They develop a model for credit card holders’ delinquency based on the generalized 

classification and regression trees (CART) models first introduced by Breiman et al. 

(1984). The authors outline that CART models are able to detect nonlinear interactions 

between a large number of features in high-dimensional problems. Khandani et al. (2010) 

show that current credit bureau analytics are based on slowly varying consumer 

characteristics and therefore are not relevant in predicting credit card holders’ 

delinquencies. In contrast, the authors show that CART models provide highly precise out-

of-sample forecasts of consumer default and delinquencies. Moreover, Machine Learning 

models are found to be more powerful in capturing the time-varying dynamics of consumer 
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credit cycles and in yielding highly accurate forecasts of credit events 3-12 months in 

advance. The authors advocate that Machine Learning techniques are considerably more 

powerful models of consumer behavior than traditional statistic models due to their ability 

to handle non-linear, high-dimensional, and complex relationships. 

Butaru et al. (2016) have also recently applied Machine Learning models for predicting 

credit card delinquency using consumer account level data from six major U.S. financial 

institutions. The authors combine bank account data, credit bureau analytics, and 

macroeconomic variables to predict the card holders’ delinquencies during the 2009-2013 

period. The authors find that Decision Trees and Random Forests models consistently 

outperform the Logistic regression model in terms of classification rates regardless of the 

forecast horizon. For short term horizons, the authors report that the DT model tends to 

perform significantly well to forecast credit card delinquencies. However, Butaru et al. 

(2016) emphasize a substantial cross-sectional heterogeneity in classification accuracy 

across banks suggesting that no single credit risk forecast model can be applied to all six 

banks. Such results call for customized credit risk modeling to account for heterogeneity 

of credit card risk management practices across financial institutions. 

Baesens et al. (2003b), Huang et al. (2004), and Lessmann et al. (2015) provide an 

excellent survey on studies applying Machine Learning techniques for predictive modeling 

of consumer credit risk. Examples of works are by Baesens et al. (2003a), Ong et al. 

(2005), Li et al. (2006), Martens et al. (2007), Yu et al. (2008), Tsai and Wu (2008), Tsai 

et al. (2009), Bellotti and Crook (2009), Wang et al. (2011), Brown and Mues (2012), and 

Kruppa et al. (2013). These studies employ different Machine Learning models that vary 

regarding the learning process and quantity of the data used for default classification. 

However, there is a general consensus that Machine Learning algorithms outperform 

classical statistical models in forecasting credit risk for consumer loans and credit cards. 

Although this extensive research works on the added value of these new techniques in the 

field of credit card and consumer loan delinquency, little is known about how Machine 

Learning and Big Data are useful to predict mortgage default. This is somehow surprising 
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given the economic importance of the mortgage lending business. Although a couple of 

studies apply ML methods to predict mortgage default, the main focus was not the U.S. 

market. Thus, we are the first to fill this gap and examine the potential of Machine Learning 

models in predicting U.S. mortgage delinquency and default. 

Galindo and Tamayo (2000) analyze the performance of four Machine Learning algorithms 

(Probit regression, Decision Trees (CART), Neural Networks, and k-Nearest Neighbors) 

in predicting mortgage default using a large dataset of mortgage loans from a large 

commercial bank in Mexico. The authors report that the best model overall is a CART 

Decision Trees of 120 nodes trained on 2,000 instances as it produces the most accurate 

predictions of mortgage default with an average error rate of 8.3%. The next best 

performing model in predicting mortgage default is a Neural Network with 16 hidden 

nodes trained for 80 iterations which display an average error rate of 11.0%. Galindo and 

Tamayo (2000) find that the performance of the best k-Nearest Neighbor algorithm (with 

k = 24 neighbors) does not substantially differ from that delivered by the standard Probit 

regression model (average error rates of 14.9% and 15.1% for KNN and Probit models, 

respectively). The authors argue that the KNN’s inferior performance could be attributed 

to the relatively small size of the training dataset. For instance, the dimensionality of the 

dataset is relatively high which requires that large amounts of records should be needed to 

obtain better results. 

Feldman and Gross (2005) also utilize the nonparametric CART Decision Tree algorithm 

to analyze mortgage default with data on Israeli FRM issued during the 1993-1997 period. 

The CART predictive performance is compared to traditional methods such as linear 

logistic regression, nonparametric additive logistic regression, discriminant analysis, 

partial least squares classification, and neural networks. They find that borrowers’ features 

are the strongest predictors of mortgage default rather than mortgage contract features. 

Feldman and Gross (2005) also demonstrate that the higher (lower) the ratio of 

misclassification costs of bad risks versus good ones, the lower (higher) are the resulting 

misclassification rates of bad risks and the higher (lower) are the misclassification rates of 
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good ones. This is consistent with real-world rejection of good risks in an attempt to avoid 

bad ones. 

Fitzpatrick and Mues (2016) have conducted an empirical comparison of classification 

algorithms for mortgage default prediction. Using four large datasets on Irish owner-

occupier mortgages, the authors find that Machine Learning techniques (Boosted 

Regression Trees and Random Forests) significantly outperform Logistic Regression and 

other statistical models such as Penalised Logistic Regression and semi-parametric 

Generalized Additive Models. Fitzpatrick and Mues (2016) argue that the high 

performance of tree-based ML models could be attributed to their ability to capture 

variable interactions and to handle non-linear effects. They also advocate that tree-base 

ML models should be more widely used in credit risk applications to help identifying 

potential non-linear interaction that conventional logistic regression models fail to catch. 

Addo et al. (2018) have recently utilized Machine Learning models to predict European 

corporate loan default. The models are: Random Forests, Gradient Boosting and four 

versions of the deep learning Neural Networks models (two hidden layers and 120 neurons; 

three hidden layers each composed of 40 neurons; three hidden layers with 120 neurons 

each; NN model with hyperparameters tuned via Grid-Search). At a first step, the authors 

use a unified set of 181 features to fit predictive ML models then scrutinise the top 10 

important variables. They find that algorithms do not share the same top 10 features which 

they use to investigate the algorithms out-of-sample performance in a second step. Based 

on AUC and RMSE measures, they surprisingly find that algorithms based on artificial 

neural networks do not necessarily provide the desired out-of-sample performance. They 

also find that the use of more hyper-parameters, as in the grid deep learning model, does 

not outperform other models. More importantly, Addo et al. (2018) find that tree-based 

algorithms are best models for corporate default classification problems compared to deep 

learning models. 

Related studies by Atiya (2001), Shin et al. (2005), and Min and Lee (2005) applied 

Machine Learning algorithms (with an emphasis on Artificial Neural Networks) to the 
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problem of predicting corporate bankruptcies. The overall consensus is that Artificial 

Intelligence and, particularly, Machine Learning provide a valuable contribution for 

applications in credit risk management. 

3.3. Machine Learning models 

Machine Learning methods use sophisticated computer programs to mimic human level 

thinking skills. Typically, the process of learning involves (i) analysing the input data in 

order to learn hidden dependency patterns and (ii) building an analytical relationship which 

will be used to predict the output of unseen data. 

In the Machine Learning jargon, the process of learning is often categorised into three main 

groups: supervised learning, unsupervised learning, and reinforced learning. The basic 

distinction depends on the type of interferences involved during the learning process of 

machines. For supervised ML, a supervisor is involved as a “teacher” during the learning 

process. Supervised ML algorithms can learn relationships from labeled data and can make 

predictions for newly provided unlabeled data. Contrarily, unsupervised learning works 

without interfering with a supervisor who gives a feedback on the true output. Instead, 

unsupervised ML algorithms utilize sophisticated techniques to detect hidden patterns in 

unlabeled data by building clusters. Based on grouping strategies, new classification rules 

are created and a mapping function is learned by the algorithm to make data-driven 

predictions. In the latter category, the learning process is achieved through interacting with 

the environment. Learning methods falling into the reinforcement category usually employ 

a system of reward and punishment in a dynamic learning system. 

In this dissertation, we focus on five supervised Machine Learning algorithms for 

classification task: Decision Trees, Naïve Bayes, Support Vector Machines, k-Nearest 

Neighbors, and Random Forests. To strengthen our findings, we rely on multiple learners 

with different learning schemes. Each algorithm provides also a unique approach to 

process the information contained in the feature set. Figure 3.1 presents a simple overview 

of the mapping functions of the supervised ML algorithms that we consider in our analysis. 
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a. Decision Trees                                                        b. Naïve Bayes 

  

c. k-Nearest Neighbors                                         d. Support Vector Machines 

14 Figure 3.1 - Illustration of Machine Learning models 

3.3.1. Decision Trees 

In Machine Learning, Decision Trees (DT) are tree-like flowcharts useful to explicitly 

represent a decision-making process in a very simple and intuitive manner. They could be 

visualized in the form of diagrammatic flowchart starting at a root node and constructed in 

a top-down manner. The if-then classification rules are commonly used to split parent 

nodes into child nodes based on a set of features. The bottom line of a decision tree is 

composed of leaf nodes where each represents a class of the outcome variable. The 

Decision Tree model is first proposed by Brieman et al. (1984) while several algorithms 
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are available to build decision trees such as the Classification and Regression Trees 

(CART) model (Breiman et al., 1984), ID3 (Quinlan, 1986), and C4.5 (Quinlan, 1993).37  

The basic idea behind DT algorithms consist in partitioning the data set into separate sub-

groups to increase data homogeneity. At each splitting node, the DT algorithm typically 

selects the feature that leads to the most homogenous sub-groups. Once the appropriate 

feature is selected, the DT algorithm breaks down the dataset into smaller homogeneous 

subsets, referred to as child nodes. The splitting procedure usually continues until there are 

no more branches that could be considered. Generally, a leaf (final) node is obtained when 

all instances in the node belong to a single output class or when no reduction in 

heterogeneity can be achieved by further splitting. In such framework, the final prediction 

of Decision Tree algorithms is made by walking the tree branches until arriving at a leaf 

node and the DT model final prediction is the leaf node class value. 

At each node of the tree, the algorithm selects the “best” feature to split the data on. This 

can be summarized in two steps. First, the data is split based on all candidate features. 

Then, the “best” splitting feature is that to deliver the most homogeneous sub-samples. In 

such setting, each split reduces uncertainty about the output class as each child node is 

more homogeneous (less diverse) than the parent node. In practice, two metrics are used 

to measure splitting quality: Gini index and Entropy.38  The Gini impurity measure (Gini 

1912, 1921) is calculated as the probability that instances in a resulting node fall into the 

same output class (i.e. pure node).  

Formally, suppose the output variable displays 𝐶 possible classes. Let 𝑝𝑖|𝑗 denotes the 

proportion of instances that belong to class 𝑖 in a particular node 𝑗, where  𝑖 ∈ {1,… , 𝐶}. 

The Gini impurity index could be formulated as follows: 

𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑗) = ∑ 𝑝𝑖|𝑗 (1 − 𝑝𝑖|𝑗) = 1 −𝐶
𝑖=1 ∑ 𝑝𝑖|𝑗 

2𝐶
𝑖=1                (3.1)  

 

37 All these algorithms are designed to build Decision Trees. However, they mainly differ in the splitting 

criteria used to partition data. For instance, CART uses the Gini index as a splitting criterion while ID3 and 

C4.5 employ the information gain and the information gain ratio, respectively.  

38 It is worthy to highlight that these measures are commonly used for classification tasks. In the case of 

regressions (when the output variable is continuous), other appropriate measures are used. 
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In simple words, 𝑝𝑖|𝑗 can be viewed also as the probability of correct classification. 

According to Equation 1, the Gini impurity index reaches its lowest value (zero) when all 

instances in a resulting node fall into the same output class (pure population). If the 

probability of misclassification (1 − 𝑝𝑖|𝑗) increases, the Gini impurity score increases, and 

the population becomes more “impure”. Hence, the Gini impurity index can be viewed as 

a cost function that should be minimized to reach a high-quality split.  

The second measure Entropy is first introduced by Claude Shannon in 1948 and is defined 

as the average rate at which information is produced by a stochastic source of data. The 

Entropy can be calculated using the formula below: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑝𝑖|𝑗  𝑙𝑜𝑔2 𝑝𝑖|𝑗
𝐶
𝑖=1                                       (3.2)  

where 𝑝𝑖|𝑗 represents the fraction of output class 𝑖 present in child node 𝑗, 𝑖 ∈ {1,… , 𝐶}. 

𝐶 refers to the total number of classes of the output variable. Generally, Entropy value 

equals to zero if 𝑝𝑖|𝑗 the probability of correct classification is zero (homogenous 

population). Contrary, if the probability of misclassification increases, the Entropy 

measure increases also. Therefore, the lower the Entropy the better the split. 

The information gain is an Entropy-based splitting criterion that consists of comparing the 

Entropy of the parent node with the weighted Entropy of the resulting child nodes 

(Quinlan, 1987). If the difference is positive, the splitting provides an added information 

value (gain). Therefore, at each node of the tree, the DT algorithm selects the feature that 

results in the highest information gain (child nodes displaying low average Entropy 

compared to their parent node).  

Regarding the choice between Gini or Information Gain, Raileanu and Stoffel (2004) argue 

that using either splitting criteria would result in almost identical conclusions as they find 

that the disagreement between the Gini Index function and the Information Gain function 

is constantly lower than 2%.  

3.3.2. Naïve Bayes 
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In Bayesian decision theory, Naïve Bayes (NB) is basically a simple probabilistic model 

derived from the Bayes' theorem. The model is labelled “naïve” due to an unrealistic 

assumption of conditional independence that underlies the model. In essence, the Naïve 

Bayes algorithm assumes that features variables are mutually independent given the class 

of the output variable (Friedman et al. 1997). In simple words, according to the NB model, 

the presence of a particular feature in a given output class is independent from the presence 

of another feature. 

Let 𝑦 denotes a discrete output variable with 𝐶 possible classes. Let 𝑃(𝑦 = 𝑖) the marginal 

probability of the output variable falling into a particular class 𝑖,  𝑖 ∈ {1,… , C}.  Let {𝑥𝑗}𝑗=1

𝑘
 

denotes the set of 𝑘 input features, where 𝑗 ∈ {1,… , 𝑘}. According to the Bayes' rule, we 

can formulate the following equation: 

𝑃(𝑦 = 𝑖|𝑥1, … , 𝑥𝑘) =
𝑃(𝑦=𝑖).𝑃(𝑥1, … , 𝑥𝑘|𝑦 = 𝑖)

𝑃(𝑥1,…,𝑥𝑘)
                        (3.3)  

The left-hand side of Equation (3) refers to the probability of output variable falling into 

class 𝑖 conditional on observing a given set {𝑥1, … , 𝑥𝑘} of features. Given the “naïve” 

assumption of feature independence: 𝑃(𝑥𝑗|𝑥1, … , 𝑥𝑗−1, 𝑥𝑗+1, … , 𝑥𝑘) = 𝑃(𝑥𝑗), and 

consequently, 𝑃(𝑥𝑗|𝑦 = 𝑖, 𝑥1, … , 𝑥𝑗−1, 𝑥𝑗+1, … , 𝑥𝑘) = 𝑃(𝑥𝑗|𝑦 = 𝑖). Therefore, the above 

equation could be rewritten as flows: 

𝑃(𝑦 = 𝑖|𝑥1, … , 𝑥𝑘) =
𝑃(𝑦=𝑖).∏ 𝑃(𝑥𝑗|𝑦 = 𝑖)𝑘

𝑗=1

∏ 𝑃(𝑥𝑗)
𝑘
𝑗=1

                          (3.4)  

Now, using the naïve condition of feature independence, the numerator of the right-hand 

side of the above equation is composed of two terms. The first term 𝑃(𝑦 = 𝑖) is the “prior” 

and denotes the overall probability of class 𝑖. The second term represents the conditional 

probability of each feature 𝑥𝑗 given that the dependent variable 𝑦 belongs to class 𝑖. Since 

all features are assumed to be independent of each other, this can be reduced to the product 

of the probabilities of all features {𝑥1, … , 𝑥𝑘} in the subset of instances where 𝑦 = 𝑖  which 

can be easily calculated by filtering the training dataset by output classes. 
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Therefore, every time a new instance is provided, the NB algorithm updates the posterior 

probability of each class based on the new set of features. From the inflow of labeled 

training data, the algorithm tries to learn and to build a relationship that best maps the input 

features into classes of the response variable. The Naïve Bayes classification algorithm 

identifies the class of the response variable by selecting the class with the highest 

probability. 

3.3.3. k-Nearest Neighbors 

The k-Nearest Neighbors (KNN) is an instance-based supervised classifier. It is considered 

as a non-parametric technique since it does not make any assumptions on the distribution 

of the underlying data. Therefore, it is widely used in problems involving no prior 

knowledge about the data distribution. 

The main idea behind 𝑘-Nearest Neighbors is based on feature similarity provided by 

distance functions. Based on the group of 𝑘 neighbors, a case is classified by majority of 

the neighbors’ votes. In other words, the output class of a given data point is simply the 

most common class label among its 𝑘 nearest neighbors. The earliest similar method is the 

condensed nearest neighbor (CNN) proposed by Hart (1968).  

The foremost step in the KNN algorithm is calculating the distance between the query 

instance (for which we are trying to predict the output class) and all other data points in 

the training set. Based on their distance to the query point, we select 𝑘 neighbors. At this 

step, we include only the 𝑘 closest training data points for which the distance is less than 

or equal to the 𝑘-th smallest distance. In other words, we sort the distance between the 

query instance and all training data points and determine the 𝑘-th minimum distance. In 

practice, there exist wide varieties of distance measures that can be used based on whether 

the feature is a continuous or a categorical variable.39 Finally, the 𝑘-Nearest Neighbors 

 

39 For continuous features, the most common distance measures are Euclidian, Manhattan, and Minkowski. 

In the case where the feature is categorical, the Hamming distance measure is commonly used. 
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algorithm makes output class prediction for the query data point based on majority vote of 

nearest neighbors.  

Formally, given a positive integer 𝑘 and an observed feature 𝑋 = 𝑥, the 𝑘-Nearest 

Neighbors algorithm estimates the conditional probability for a given class 𝑐 of the output 

variable 𝑦 using the formula given below: 

𝑃(𝑦 = 𝑐|𝑋 = 𝑥) =
1

𝑘
∑ 𝐼(𝑦𝑖 = 𝑐)𝑘

𝑖=1                                  (3.5)  

where 𝐼(𝑎) refers to an indicator function which equals to 1 if the argument 𝑎 is true 

and 0 if not. 

3.3.4. Support Vector Machines 

Support Vector Machines (SVM) is a discriminative classifier originally proposed by 

Vapnik (1998). The SVM algorithms mainly consist in drawing an optimal hyperplane that 

perfectly separates data points into categories. Essentially, instances falling on either side 

of the separating hyperplane are categorized into different classes.  

A hyperplane is defined as a decision boundary that classifies data points into different 

categories. In Machine Learning context, the dimension of the hyperplane depends 

exclusively on the number of features considered. Where 𝑁 features are considered in an 

analysis, the Support Vector Machine algorithm tries to draw the optimal separating 

hyperplane of dimension 𝑁 − 1.  

In algebraic geometry, a hyperplane in ℝ𝑛 space 𝑉 is defined as an (𝑛 − 1)-dimensional 

subspace of ℝ𝑛. In general, an “optimal” hyperplane is the one that maximises a margin. 

Technically, given a particular hyperplane, the margin is defined as the perpendicular 

distance between the hyperplane and the closest data point. Let's consider the Hyperplane 

𝐻0 defined in ℝ𝑛such that: 

𝒘⃗⃗⃗ T𝐱⃗ − 𝑏 = 0                                                       (3.6)  
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where 𝒘⃗⃗⃗ =  (

𝑤1

𝑤2

…
𝑤𝑛

) and 𝐱⃗ =  (

𝑥1

𝑥2

…
𝑥𝑛

) represent vectors of weight and inputs, respectively. 𝑏 

is a constant. So, by definition any data point with Cartesian coordinates satisfying the 

above equation lies on that hyperplane. Panel d of Figure 3.1 illustrates the Support Vector 

Machines algorithm applied to our mortgage default data. Since we are in a two-

dimensional space, the hyperplane 𝐻0 can be drawn as a line. Each dot in the figure 

represents a given training data point plotted in the LTV-FICO space. Each instance is 

defined with its LTV ratio (𝑥-axis) and its FICO score (𝑦-axis) coordinates. All training 

data points are labelled. So, blue dots represent training instances that did not default 

(Default = 0) while red dots represent instances in default (Default = 1).  

As displayed in Panel d of Figure 3.1, the hyperplane 𝐻0 perfectly divides the space into 

two distinct sub-spaces. Accordingly, data points are classified into two output class 

categories (Default and No-default) based on their position relative to the decision 

boundary. Obviously, the SVM algorithm classifies any data point falling on the right (left) 

side of the separating hyperplane 𝐻0 as (not) being in default. 

Let’s also consider two other hyperplanes 𝐻−1 and 𝐻+1 defined such that 𝒘⃗⃗⃗ T𝐱⃗ − 𝑏 = −1 

and 𝒘⃗⃗⃗ T𝐱⃗ − 𝑏 = +1, respectively, and are represented by the dotted red and blue lines in 

Figure 3.1 Panel d. Let’s also define 𝑑 + as the shortest distance to the closest red point 

and 𝑑 − as the shortest distance to the closest blue point. The margin of separation, 𝑚, is 

defined as the distance separating the hyperplane 𝐻0 and the closest data point for a given 

weight vector 𝒘⃗⃗⃗  and bias 𝑏. In geometry, the distance from a point 𝑥0 with vector of 

Cartesian coordinates 𝐱′⃗⃗⃗  = (𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0) to a hyperplane 𝐻0 is given by:  

|𝒘⃗⃗⃗ T𝐱⃗ −𝑏|

‖𝒘⃗⃗⃗ ‖
                                                                (3.7)  

In order to find the optimal hyperplane, the main objective of the SVM classification 

algorithm is to maximize the margin of separation as possible (or, equivalently, to 

minimize ‖𝒘⃗⃗⃗ ‖). 
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From Figure 3.1 Panel d, the margin 𝑚 separating both hyperplanes 𝐻−1 and 𝐻+1 is simply 

the sum of distances 𝑑 + and 𝑑 −. It's important to notice that only the data points that lie 

closest to the hyperplane (i.e. decision boundary) are relevant in defining the optimal 

hyperplane. Usually, these data points are referred to as the Support Vectors since they 

support the classification hyperplane. Thus, the optimal hyperplane that separates both 

classes of mortgage default will be the one with the largest margin, called the Maximal-

Margin hyperplane 

The framework in Support vector Machine algorithm is quite easy. The first step consists 

in plotting each data point in an 𝑁-dimensional space, where 𝑁 is number of features. The 

coordinates of each data point in the 𝑁-dimensional space are simply the corresponding 

values of each feature. The second step is to find the optimal hyper-plane frontier 

that perfectly categorizes the data points into two classes. 

The separating hyperplane is learned from training data using an optimization procedure 

that maximizes the margin. Maximizing the margin distance provides some reinforcement 

so that future data points can be classified with more confidence. 

3.3.5. Random Forests 

Random Forests (RF) algorithm belongs to ensemble methods defined as meta-algorithms 

used by researchers in order to improve the accuracy of single ML algorithms. The basic 

idea of ensemble methods is collecting decisions from multiple “weak” predictors trained 

independently on different random data subsets then combining results from models in 

order to produce an improved “strong” predictive performance. Thus, the ultimate 

objective is to achieve higher classification accuracy. In this setting, Random Forests 

algorithm makes predictions by combining the results from many Decision Trees grown 

on bootstrapped sub-samples, so is called “random” “forest” of trees (Breiman, 2001). The 

RF algorithm could be simplified by 3 main steps. First, 𝐵 subsets from the original sample 

are created using the bootstrap resampling technique. Then, individual Decision Trees are 

independently trained on each subset. Each DT algorithm is trained based on a randomly 
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selected subset of features. Finally, all DTs outcome predictions are averaged and the final 

RF prediction is given by:  

𝑓𝑎𝑔𝑔𝑟(𝑥) =
1

𝐵
 ∑ 𝑓𝑏(𝑥)𝐵

𝑏=1                                            (3.8)  

where 𝐵 refers to the total number of randomly drawn subsets of the original training data, 

with replacement. 𝑓𝑏(𝑥) refers to the output result obtained by training learning algorithm 

𝑓 on the subset 𝑏.  

The ultimate objective of Random Forest approach is to reduce the variance through 

averaging the ensemble's results, creating a majority-votes model. The RF technique 

proves that pooling predictions can incorporate much more knowledge than from any other 

individual model. In fact, each individual model brings its own background experience 

based on a particular set of features and instances. Once predictions are combined, much 

more accurate predictions are made. 

3.4. Performance evaluation metrics 

The out-of-sample performance of Machine Learning algorithms is assessed based on 

various evaluation metrics. Basically, all metrics are defined using four quantities: True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).40 

Accuracy — proportion of correctly predicted cases (Default and No-default). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                       (3.9)  

Precision — ratio of correctly predicted events (Default) to the total number of Positives.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                           (3.10)  

 

40 In our context of mortgage default: TP refers to cases where the algorithm correctly predicts default; TN 

refers to instances where the algorithm correctly predicts no-default; FP denotes cases where the algorithm 

erroneously predicts default; FN denotes mortgages for which the algorithm mistakenly predicts no-default. 
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Recall — ratio of correctly predicted events (Default) to the total number of Trues.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                             (3.11)  

F1 score — the Harmonic Mean between Precision and Recall. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                        (3.12)  

In simple words, Accuracy shows how precise is the classification of ML algorithms (either 

default or no-default). Precision tells how precise ML models are in predicting the positive 

outcome (default event) in particular which is highly useful where the cost of False 

Positives is high. Recall however is a good metric in circumstances where the cost 

associated with False Negatives is high. 

Area Under Curve (AUC) — measures the area under the Receiver Operating 

Characteristic (ROC) curve. The ROC is a probability curve that plots the False Positive 

rate 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 against the True Positive rate 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 at different points in the [0, 1] interval. 

Basically, the ROC curve depicts a trade-off between TPs (i.e. good classification) and FPs 

(i.e. cost of misclassification) where the best classification algorithm results in the upper 

left corner point with coordinates (FP = 0%, TP = 100%) in the ROC space. 

3.5. Data management 

3.5.1. Dealing with imbalanced output classes 

Class imbalance occurs if one class of the output variable does not include a sufficient 

number of observations, so categories are not approximately equally represented. Using a 

dataset with imbalanced classes is very common in real-world problems. Some examples 

of classic class imbalances might be the detection of email spams, cyber-attacks or 

financial frauds where the event of interest is infrequent. Quite the opposite, the no-event 

is very common and recurrent. The MBSData conveys a typical problem of class 
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imbalances since the positive outcome (i.e. mortgage default) is considered as unusual 

case, if we aggregate all U.S. borrowers.  

The foremost concern with highly imbalanced classes is the “accuracy paradox”. 

Accordingly, a humble classification model can achieve impressive accuracy levels by 

predicting the most common class without analysing any of the features (Valverde-

Albacete et al. (2013) and Valverde-Albacete and Peláez-Moreno (2014) provide a 

detailed discussion).41 Consequently, the evaluation metric choice with highly imbalanced 

classes remains crucial. 

Fortunately, the literature proposes several solutions which can be classed twofold. Some 

approaches aim to create balanced data sets by over-sampling the minority class with 

scarce observations (i.e. the default) while others consider under-sampling the majority 

class with many observations (i.e. the non-default). The first approach, over-sampling, 

consist primarily in adding more observations to the minority class while the second 

approach, under-sampling, consists of removing samples from the majority class. 

Following either approach leads to a data set with balanced classes though they differ in 

the used method. In this dissertation, we opt for the first approach as we are in favour for 

keeping observations rather than removing them which can cause loss of information. 

For the purpose of over-sampling the minority class, we utilize two of the most commonly 

known techniques: (i) random over-resampling and (ii) Synthetic Minority Oversampling 

TEchnique commonly abbreviated SMOTE. The first technique is very simple to 

implement as it consists primarily in duplicating randomly-selected observations from the 

minority class (default). Although simple to implement, this technique has a shortcoming 

since it can cause overfitting.  

The second over-sampling technique is proposed by Chawla et al. (2002). The authors 

introduce the Synthetic Minority Oversampling TEchnique (SMOTE) in which the 

minority class is over-sampled by creating synthetic instances rather than by resampling 

 

41 The “accuracy paradox” is also referred to as “metric trap” in other works. 
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with replacement. In particular, SMOTE consists in creating artificial observations in the 

minority class based on the features of instances that already exist. The implementation of 

SMOTE could be summarized in the following few steps. First, randomly pick an 

observation in the minority class then select the 𝑘-nearest neighbors. For each neighbor, 

take the difference between the feature vector of the instance under consideration and its 

neighbor. Multiply this difference by a random number between 0 and 1 and add a new 

point to the feature vector under consideration. This should be repeated for each feature 

and for every neighbor in the 𝑘-selected neighbors space. According to Chawla et al. 

(2002), this causes the creation of a random point along the line segment between two 

specific features. This way, the artificial instances are created between the randomly 

selected point and its 𝑘-nearest neighbors. As stated by the authors, the foremost advantage 

of SMOTE is that it generates synthetic data points by operating in “feature space” rather 

than in “data space”. Contrarily to the random oversampling technique that, essentially, 

increases the amount of similar data, the SMOTE technique aims to identify similar but 

more specific regions in the feature space in the minority class. Therefore, the synthetic 

oversampling technique effectively forces the minority class (default) to become more 

general. 

3.5.2. Cross-Validation and model selection 

Decades ago, researchers noticed that training and evaluating a classification algorithm on 

the same dataset would result in over-optimistic results (Larson 1931; Mosteller and 

Tukey, 1968; Stone, 1974; Geisser, 1975). Cross-Validation (CV) procedure appeared as 

a popular strategy for algorithm selection that avoids overfitting. The basic idea behind 

CV is to split the available data into two independent subsets. The first part is used for 

training each ML algorithm while the second is employed for testing the performance of 

each model. The algorithm delivering the highest performance is selected. Various data 

splitting schemes are proposed in the literature: hold-out (Devroye and Wagner, 1979), 

leave-one-out (Stone, 1974; Allen, 1974), leave-p-out (Shao, 1993), and k-fold (Geisser, 

1975), and .632+ bootstrap (Efron and Tibshirani, 1997), among many others.  
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Regardless of the splitting scheme, the cross-validation procedure is widely used due to 

the universality of its data splitting scheme. Only two basic assumptions are, notably, 

required for Cross-Validation procedures: (i) data are identically distributed, and (ii) 

training and testing subsets are mutually exclusive. Opsomer et al. (2001) and Arlot and 

Celisse (2010) show that the latter assumption can even be relaxed which raises the 

universality of CV procedures. Arlot and Celisse (2010) provide an excellent overview of 

CV procedures for model selection problems. 

3.5.3. Hyperparameters tuning and stratified k-fold Cross-Validation 

Hyperparameters represent the essence of every ML algorithm since they define the model 

properties such as its complexity, learning rate, and capacity. As hyperparameters define 

the internal architecture of ML models, each algorithm has its specific parameters that need 

to be learned from the data (e.g. minimum impurity decreases in DT, number of random 

trees in RF, number of neighbors in KNN, etc.). The main challenge arising with 

hyperparameters is that there are no predefined values. Indeed, “optimal” values of hyper-

parameters should be determined depending on the task as well as the dataset under 

consideration.42 In practice, Cross-Validation (CV) techniques are commonly used to 

select the optimal values of hyperparameters.  

𝑘-fold Cross-Validation is a popular technique widely used in Machine Learning to 

evaluate the performance of a ML algorithm using unseen data. This method is mainly 

useful in cases where data availability is limited. The procedure starts shuffling the dataset 

randomly. This first step guaranties an equal data spread among folds. The second step is 

splitting the available data into 𝑘 folds or groups. For each fold, take the remaining 𝑘 − 1 

groups as a training data set to fit the model with specific hyper-parameters and take the 

fold as a holdout data set used for testing model performance. 

 

42 “Optimal” hyperparameters are defined as the parameters that result in the highest classification 

performance of a given Machine Learning algorithm. 



125 

 

Figure 3.2 depicts a 5-fold Cross-Validation procedure. The available training data is split 

into 5 smaller sets. Each time, the model is trained using 4 folds and evaluated using the 

remaining part of the data to compute the classification accuracy measure. Then, the 

researcher selects the optimal hyper-parameters defined as the settings that deliver the 

highest predictive performance. This approach is generally computationally expensive but 

does not require too much data since partitioning the available data into three sets (training, 

validation, and testing) drastically reduces the number of samples which can be used for 

learning the model. 

 

15 Figure 3.2 - k-fold Cross-Validation illustration 

In this study, we select optimal hyperparameters in a stratified 10-fold cross-validation 

fashion using random-search. The stratified splitting scheme is used to ensure that folds 

are created while preserving the relative output class frequencies (default vs. no-default) 

so each partition is a good representation of the whole dataset (Refaeilzadeh et al., 2009). 

We employ k=10 folds as suggested by Eibe and Witten (2005) and Arlot and Celisse 

(2010) who argue that 10-fold stratified cross-validation is the appropriate method for 

evaluating classification techniques. It was documented also to deliver lower sample 

distribution variance compared to the standard hold-out cross-validation. 
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3.6. Empirical Results 

In this section, we present our empirical results. We first train Machine Learning models 

with labeled data and evaluate their out-of-sample predictive performance using unseen 

data. The main objective of this preliminary analysis is to identify which ML algorithm is 

the most powerful in predicting the likelihood of mortgage default in the U.S. market. 

Next, we pay particular attention to the decision of mortgage originators to sell MSR to 

another financial institution. We utilize feature importance evaluation techniques to shed 

the light on how the agent (lender) action (MSR-selling) represents a crucial information 

in predicting the output (default). Finally, we present the empirical results of the 

asymmetric information test. 

3.6.1. Optimal hyperparameters for Machine Learning algorithms 

We utilize five supervised Machine Learning models for binary classification: Decision 

Trees, Naïve Bayes, Support Vector Machines, k-Nearest Neighbors, and Random Forests. 

All ML models are trained using the same labeled data (70% of the sample) then tested on 

the same unseen data (30% of the sample). Optimal hyperparameters are selected in a 10-

fold stratified Random-Search Cross-Validation fashion. The Random-Search framework 

(with 100 iterations) is used to pick up the best hyperparameters combination which 

delivers the highest predictive performance as measured by ROC AUC. For Naïve Bayes 

and Support Vector Machines classification models, Grid-Search is rather applied due to a 

tightened range of parameters. Table 3.1 displays the optimal combination of 

hyperparameters values for ML algorithms. 

[Table 3.1 about here] 

Top panel of Table 3.1 shows that when a Decision Tree algorithm is trained with Gini 

index as splitting criterion, a minimum impurity decrease of 0.01, a maximum depth of 11 

nodes, a minimum of 6 samples to split an internal node, and 10 samples to define a leaf 

node, the DT model delivers the highest AUC score of 79.7. The Random Forest however 

considers the Entropy-based information gain as a splitting criterion. It uses an optimal 
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number of 100 randomly drawn Decision Trees to reach its maximum level of AUC 

measure. The k-Nearest Neighbors algorithm uses the Minkowski distance metric to select 

the 10 closest neighbors for which it attributes a uniform weight in order to vote for the 

most likely output class. Based on these hyperparameters, the KNN algorithm reaches its 

highest ROC AUC value of 72.9. 

Figure 3.2 depicts the learning curve for the Decision Tree algorithm. The plot shows the 

Cross-Validation ROC AUC measure (y-axis) using different data sizes (x-axis) for both 

training and testing data sets. 

 

16 Figure 3.2 - Learning curve for Decision Tree algorithm 

On the one hand, the curve shape unveils that the training AUC score is very high at the 

beginning and decreases as the size of the training set increases. On the other hand, the 

Cross-Validation testing score is very low at the beginning using small testing data sets. 

However, the ROC AUC score significantly increases as long as we increase the size of 

the testing data set. At a certain point, both scores reach a stable level that would not 

(de)increase as we increase the size of the data set. Note that both training and cross-

validation testing AUC scores are close and good at the end which reflects a good 

performance of the ML algorithm. 
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3.6.2. Out-of-sample performance of Machine Learning algorithms 

Table 3.2 displays out-of-sample classification measures for each candidate ML algorithm: 

Accuracy score, Precision, Recall, F1 score, and ROC AUC. All metrics are obtained with 

unseen data which has neither been utilized to train models nor to tune up hyperparameters. 

We primarily report out-of-sample performance measures to address overfitting which 

remains a fundamental concern for predictive models. Panel A of Table 3 displays 

classification measures using data with imbalanced output classes while panel B reports 

results using balanced classes. The features set includes the following loan-level 

characteristics: borrower FICO score, LTV ratio, adjustable-rate payment structure, 

balloon payment type, GSE conformity indicator, level of documentation collected, 

Judicial and Statutory Right of Redemption dummies to account for differences in state 

legal structures. All variables are recorded at the time of original underwriting. Please refer 

to Appendix A1 for details on variable definition and construction. All predictive models 

include both state and year fixed-effects to account for omitted variable bias due to 

unobserved heterogeneity over time and among states.   

 [Table 3.2 about here] 

We first highlight the effect of output class imbalances on ML predictions accuracy. 

Contrasting top and bottom panels of Table 3 shows that the accuracy score is adjusted 

downwards once output classes are rebalanced. This downward revision confirms that the 

accuracy score could be misleading for binary classification tasks where the output 

variable displays imbalanced classes. Akosa (2017) emphasizes that, in the presence of 

output class imbalances, accuracy measure may reveal more about the distribution of the 

output classes rather than the model classification performance. This result is not surprising 

since the accuracy score ignores misclassification of the no-event (negative) class. Given 

the potential sensitivity of classification metrics to output class imbalances, we report 

various classification measures with both imbalanced and balanced data sets to show that 

our results are insensitive to the choice of performance metric. Nevertheless, we consider 

the ROC AUC measure as the primary criteria to rank candidate models. Note that the 
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balanced class data is obtained from the bootstrap over-sampling technique for the 

minority class. Our conclusion remains unchanged with either bootstrap or synthetic over-

sampling (Chawla et al., 2002) techniques.43 

When comparing the out-of-sample performance of the candidate ML models, we first 

notice that tree-based algorithms (Decision Trees and Random Forest) clearly outperform 

the other candidate models. Second, we observe a certain competition within tree-based 

algorithms as they show close classification performance. These results hold according to 

either classification metrics and also using either balanced or imbalanced class datasets. 

For illustration, panel B of Table 3.2 shows that the Random Forest algorithm delivers the 

highest out-of-sample classification performance with an accuracy rate for mortgage 

default prediction of 72.0%, a recall rate of 70.4%, a harmonic mean (F1-score) of 71.5% 

and an area under the ROC curve of 79.8%. The Decision Tree classifier exhibits very 

close results. Then, the Support Vector Machines and the k-Nearest Neighbors algorithms 

are the next-best models in predicting mortgage default based on ROC AUC values of 

76.4% and 75.9%, respectively. Finally, the Naïve Bayes algorithm exhibits the worst 

predictive performance with a ROC AUC of 74.8%. The results show that the AUC for the 

RF algorithm is 5% better than the AUC of the NB model. In unreported results, breaking 

the sample by origination year shows that tree-based models always outperform all other 

binary classification methods. 

The relatively poor performance of the Naïve Bayes algorithm could be attributed to how 

it processes information contained in the feature set. For instance, this performance loss 

for the NB classifier could be attributed to the “naïve” assumption of feature independence. 

Indeed, the NB classifier naively assumes that observing a low FICO score is completely 

independent from observing an LTV score higher than 80%. Furthermore, the NB classifier 

neglects feature importance by attributing uniform weights to the ensemble of features. 

Accordingly, all features, whatever their weight in predicting to mortgage default, 

 

43 We provide results using the bootstrap minority over-sampling technique in order to keep tables traceable. 

Results using the synthetic over-sampling technique (proposed by Chawla et al., 2002) are almost identical 

and can be provided upon request. 
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contribute to NB accuracy in the same proportion. Clearly, both situations are unrealistic 

in our application. Besides, the Naïve Bayes results are found to be close to those of the 

Logistic regression which has an AUC of 75.0%. However, all other ML algorithms 

outscore the Logistic regression in predicting mortgage default based on any evaluation 

metric.  

In sum, Machine Leaning algorithms (notably tree-base algorithms) are found to provide 

certain contributions to the finance literature as they deliver out-of-sample classification 

performance that is higher than that by the commonly used Logistic regression model. 

Commonly used borrower and mortgage risk characteristics are found to provide more 

precise results in predicting mortgage default when they are properly processed with 

Machine Learning. While differences in predictive performance among Machine Learning 

algorithms may appear small, even slight improvements may result in significant revenue 

savings depending on the application context (Baesens et al., 2003b; Lessmann et al., 

2013, 2015). 

3.6.3. The informational content of the decision to switch servicer 

One of the core concepts in Machine Learning is determining which features are most 

relevant for making a good prediction. Since our main goal is to investigate asymmetric 

information in a principal-agent context, we are interested in determining the relative 

informational importance of the agent action (MSR sale) in predicting the outcome 

(mortgage default). Our knowledge of the importance of the decision variable valorized by 

ML algorithms permits to: (i) facilitate our understanding of the model decision-making 

process, (ii) shed light on the central role it plays in predicting mortgage default, and (iii) 

strengthen our motive to test for asymmetric information. 

3.6.3.1. Feature importance analysis 

In Decision Trees, the feature importance score is calculated as the decrease in node 

impurity weighted by the relative probability of that node. The latter is defined as the 

number of instances falling within that node to the total number of instances. Basically, 
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the importance score resumes how much each feature split improves purity within the 

growing tree. Generally, the higher the importance score, the more valuable the feature is 

within the decision-making process. Our implementation procedure to calculate feature 

importance follows the work by Hastie et al. (2005).  

Figure 3.3 depicts feature importance for the Decision Tree algorithm. The bar plot shows 

features ranked according to their relative importance (i.e. the percent importance of each 

feature relative to all the others). The plot shows that the mortgage originating lender 

decision to sell the servicing rights is the most important variable when the DT classifier 

categorizes mortgages into default and no-default. 

 

17 Figure 3.3 - Feature importance with Decision Tree 

The top panel of Table 3.3 provides the corresponding feature relative importance scores. 

The results suggest that the decision to switch the servicer of the deal has the highest 

relative importance (40%) when predicting mortgage default. Its relative importance is 

almost twice as important as the second-most relevant variable. The next most informative 

features for mortgage default appear to be the originating year and state as their relative 

importance represent 17.5% and 12.4%, respectively. This is not surprising since our data 

coverage spans the subprime crisis period where mortgage default upsurge dramatically, 

so the origination year variable is by definition somewhat strongly correlated with 
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mortgage default. Subsequently, FICO660, LTV80, and ARM indicators display 11%, 8%, 

and 7% relative importance to pure a decision tree, respectively.  

[Table 3.3 about here] 

Similarly, training a Random Forest classifier provides us with the average variable 

importance score which illustrates what variables are most relevant for growing the forest, 

on average. So, the measure reported here represents the decrease in node impurity from 

splitting on that variable, averaged across 100 randomly generated decision trees. Figure 

3.4 exhibits the average variable importance score while the bottom panel of Table 3.3 

reports the corresponding values. 

 

18 Figure 3.4 - Average feature importance with Random Forest 

The Random Forest classifier confirms that the decision to switch the mortgage servicer 

by selling the MSR is the most relevant variable in predicting mortgage default with an 

average importance score of 36.6% among the forest of 100 randomly created trees. The 

top 6 important features according to both Decision Tree and Random Forest algorithms 

are the mortgage switching decision, origination year and state, FICO score, LTV ratio, 

and ARM payment type. Beyond the sixth ranked variable, however, the two ML models 

do not share the same feature rankings. It is essential, here, to outline that these two models 
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use different information criteria. For instance, The Decision Tree algorithm uses the Gini 

Index as splitting criteria while Random Forest uses the Entropy-based information gain 

measure. Nevertheless, both models agreed upon the importance of the mortgage switching 

decision variable as being the top-most important variable in predicting the event of 

mortgage default in the U.S. market for mortgage servicing rights.  

3.6.3.2. Decision-making path 

In order to get more insights about the informational role of the MSR-selling decision in 

predicting mortgage default, we scrutinize the decision-making path of the Decision Tree 

algorithm as depicted in Figure 3.5.44 Looking at the topmost node of the decision tree 

(Node #0), we find that the decision to switch mortgage servicer splits the whole data into 

two smaller sub-sets according to whether the MSR have been sold or not. In simple words, 

the first question that the Decision Tree algorithm asks is: did the initial lender sell the 

mortgage servicing right to a second servicing institution? Based on the answer being true 

or false, the decision-making process to predict mortgage default follows two distinct paths 

(following Node #1 or Node #1536 in the tree). 

Examining Gini score values also highlights the informational importance of the MSR 

selling decision. As discussed above, the Gini score measures data purity at each node. 

Generally, the more Gini score gets closer to zero, the more the node becomes pure (i.e. 

includes instances that belong to the same output class, or homogenous). At the beginning 

of each decision tree, the Gini score is 1 (since we are using a data set with balanced output 

classes, so heterogeneity is at maximum). At the root node, when the split is made 

according to the decision to switch servicer, the Gini score drops from 1 to 0.5. So, the 

switching decision variable is the feature that produces the largest impurity decrease and 

results in the purest sub-samples among all possible candidate features (FICO, LTV,…). 

 

44 Note that we limit the depth of the decision tree into three levels for formatting concerns as it is quite 

impossible to plot the complete decision tree (with 11 levels in total). 
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19 Figure 3.5 - Decision-making process for the Decision Tree model 

Outcome class predictions of the Decision Tree algorithm are technically made by walking 

the branches of the tree from the root note until arriving at a leaf node using if-then 

classification rules. According to the decision tree, if the originating institution switches 

the servicer of the deal (i.e. the answer to Node #0 question is: True) then the next question 

the DT classifier asks is whether the mortgage was originated before 2005 or after (Node 

#1). Using 2005-origination-year as decision rule threshold reduces impurity by 0.03 (Gini 

impurity score slightly drops from 0.5 to 0.47). Based on the answer to Node #1 question, 

the subsequent child nodes consider the FICO score if True (Node #2) and LTV ratio if 

False (Node #867). On the other side, in the event where the initial lender does not switch 

the servicer of the deal (i.e. the answer to Node #0 question is: False), it appears that the 

ARM-payment indicator plays the next important role in predicting mortgage default as it 

appears at Node #1536). So, the next question that a decision tree algorithm asks is whether 

the payment type structure is ARM (Adjustable-Rate Mortgages) or FRM (Fixed-rate 

Mortgages). ARM indicator results in an impurity decrease from 0.5 to 0.38 Gini.  
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To sum up, according to the Decision Tree model, whether to switch or not the mortgage 

servicer appears to be a crucial question in determining the path of the decision-making 

process as this feature (i) appears at the root node of the decision-making path, and (ii) 

produces the largest impurity decrease among all candidate features widely considered in 

the literature to be key determinants of mortgage default in the U.S. market.  

3.6.3.3. Statistical evidence 

We now provide statistical evidence on the significant impact of the decision to sell MSR 

on model accuracy when predicting mortgage default in the U.S. market. The statistical 

measurement of feature importance was first introduced by Breiman (2001) for random 

forest models and later developed by Fisher et al. (2018a, 2018b). The methodology can 

be summarized as follows: we contrast the performance of three versions of ML predictive 

models for mortgage default. The first model is calibrated using information on borrower 

and mortgage (i.e. all variables that the mortgage originator collects at the time of original 

underwriting: borrower FICO score, LTV ratio…etc.) but ignores the originator MSR-

selling decision. The second model is calibrated using information on borrower and 

mortgage together with the originator decision to sell MSR but with shuffled values 

(permutation as first proposed by Breiman, 2001). The basic idea of this method is that 

shuffling observations of the switching variable makes an element of chance in the 

decision-making process. Therefore, if randomizing the decision variable leaves model 

performance unchanged, then it is considered as “unimportant” since the performance of 

the model does not depend on it. Contrary, if randomizing the decision decreases model 

performance, then one concludes that the decision is considered to be “crucial” since the 

model predictive power relies on it. Finally, the third model is calibrated with information 

on borrower and mortgage together with the originator decision to switch the servicer of 

the deal. In essence, comparing these different inclusion configurations sheds light on the 

informative power of the lender decision to sell the mortgage servicing rights over other 

risk characteristics commonly applied in the literature to predict mortgage default.  
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In order to measure the statistical significance of the shift in model performance, we use a 

variety of statistical tests. Basically, the existing literature proposes various statistical tests 

that compare several classification algorithms on a single dataset (see for example Demšar 

(2006), Trawiński et al. (2012), and Santafe et al. (2015), to name a few). Different 

statistical tests are proposed depending on the number of algorithms in comparison as well 

as on data availability. For the purpose of this study, we use the Friedman’s (1940) test to 

assess whether there are any statistically significant differences between the distributions 

of these different inclusion configurations. We also select the Wilcoxon Signed-Rank 

paired nonparametric test to assess the statistical significance of the paired differences. Our 

selected tests are nonparametric so that we do not make any restrictive distributional 

assumption about the underlying data. Other competitive parametric tests (e.g. Student 

paired test) are also performed and deliver identical conclusions. 

Table 3.4 reports the average out-of-sample performance measure for different ML 

algorithms with three variants of variable inclusion. The data set is balanced using the 

bootstrap minority-class over-sampling technique and includes 7,055,186 instances. The 

procedure consists in selecting 20 randomly drawn mutually exclusive subsamples of the 

data. This procedure is implemented after shuffling data points to break out any temporal 

dependencies. Panel A reports the average precision rate among all randomly created 

subsamples while panel B reports the average ROC AUC measure. The first column 

labeled “Exclude Switch” reports the average classification performance using a model 

configuration that excludes the decision to switch mortgage servicer. The next two 

columns, “Shuffle Switch” and “Include Switch”, both include the decision to switch the 

servicer switch decision while the first one includes shuffled values (permutation). 

Friedman labeled column refers to the Friedman’s (1940) test statistic. Last columns of 

the table report the average improvement in the evaluation metric along with the 

corresponding statistical significance. 

[Table 3.4 about here] 
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Both panels of Table 3.4 suggest a statistically significant difference among the three 

model configurations: exclude decision, shuffle decision, and include decision. For all ML 

algorithms and for both Precision and AUC metrics, the Friedman statistic is higher than 

the critical values which allows rejecting the null hypothesis of absence of statistical 

differences between groups i.e. sampled data in groups do not belong to the same 

distribution family. Therefore, we can state that, in general, the decision to sell or not the 

underlying servicing rights statistically impacts the classification performance of Machine 

Learning algorithms in predicting mortgage default. 

The Wilcoxon non-parametric test presents another statistical tool to address the statistical 

difference between these configurations. Considering the precision rate as a performance 

metric shows that the algorithm prediction precision statistically enhances once we include 

the switching decision. Top panel of Table 3.4 shows that the average Precision rate for 

the Decision Tree algorithm is 68.12% if the algorithm ignores the switching decision and 

68.06% if the decision variable is shuffled (enters the model with random values). 

However, once we consider the informational content of the originator’s decision to switch 

the servicer of the deal, the model’s precision rate increases to 72.93% with an average 

increase of 4.81% in model’s precision. According to the Wilcoxon test, this average shift 

in precision is statistically significant at the 1% level. Similar improvements in precision 

are also documented for Random Forest and 𝑘-Nearest Neighbors with an average 

precision shift of 5% and for Support vector Machines with a statistically significant 

improvement by 9% in model precision, everything else being equal. These findings are 

true also when considering the ROC AUC as a performance measure.   

In our discussion, we focused on precision rate rather than accuracy score since, in general, 

mortgage default event is of much importance than the no-event. So, originators have to 

predict default with higher precision and avoid dealing with defaulting mortgages rather 

than non defaulting ones. In our setting, true positives are much worse than false positives. 

In simple words, not switching the deal of a defaulting mortgage is much worse than 

switching the deal for a non-defaulting loan (from an originator’s point of view).  
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The key results are further presented in Figure 3.6 which depicts ROC curves using three 

configurations (i) exclude, (ii) shuffle, and (iii) include the decision to switch the servicer 

with the RF algorithm. ROC plots True Positive rates across a continuum cut-off of False 

Positive rates. It is clear from the graphic that the ROC curve gets tilted to the upper left 

corner of the graph once the switching decision is included which indicates that the 

underlying model is better at predicting mortgage default occurrence.  

 

20 Figure 3.6 - ROC Curves for different configurations 

Our results so far indicate that the originating lender decision to switch the servicer of the 

deal conveys a valuable piece of information that results in a statistically significant shift 

in the predictive power of Machine Learning algorithms when predicting mortgage default. 

Everything else being equal, considering or not this decision seems to be crucial in 

accurately determining the likelihood of mortgage default. 

3.6.4. Information asymmetry test 

We now apply the statistical test of information asymmetry in the mortgage servicing 

market using the added value of Machine Learning. We use the same hypotheses and test 

structure as in Chapter 2. 
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Recall that, given a set of 𝑛 i.i.d. randomly drawn observations {𝑌𝑖, 𝑍𝑖, 𝑋𝑖
𝑐, 𝑋𝑖

𝑑}𝑖=1
𝑛 , the 

information asymmetry test consisted in comparing two conditional CDF estimates: 

𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 1) and 𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 0). Recall that our test statistic is the following:   

𝑉∗ = ∑|𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 1) − 𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 0)|

𝑛

𝑖=1

            (3.13) 

Similar to Chapter 2, we use two methods to conclude about the test (i) the two-sample 

Kolmogorov–Smirnov (KS) nonparametric test and (ii) a bootstrap procedure in the vein 

of Fisher and Hall (1990) and MacKinnon (2009) to obtain the test one-sided p-values.  

For the first method, the KS test statistic is formulated as follows: 

𝑉𝐾𝑆 = 𝑠𝑢𝑝[𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 1) − 𝐹̂(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 0)]           (3.14)  

where 𝑠𝑢𝑝  refers to the supremum function.  

For the bootstrap technique, the one-sided bootstrap p-value is given by: 

𝑝̂𝐵(𝑉̂∗) =
1

𝐵
∑ 𝐼(𝑉̂𝑏 < 𝑉̂∗)𝐵

𝑏=1                                   (3.15)  

where 𝑉̂𝑏 denotes the estimated test statistic using bootstrap sample 𝑏 =  {1…  𝐵}, 𝐼(·) is 

an indicator function and 𝑉̂∗ refers to the estimated test statistic as in Equation (3.13) 

obtained from the original sample. 

Similar to non-parametric models, Machine Learning algorithms provide neither estimated 

coefficients nor marginal effects for the set of features as parametric models do. 

Unfortunately, algorithm optimal hyperparameters are not informative about the change in 

the conditional probability of the output variable as the coefficients in the parametric 

models. Consequently, we rely on graphical representations to display our main results 

where the borrower’s FICO continuous variable is used as support. Our choice is again 

motivated by the fact that FICO score is potentially correlated with both variables of 

interest (agent action and outcome).  
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Figure 3.7 displays the estimated conditional probability of mortgage default using the 

Random Forest algorithm.45 The blue solid curve depicts the estimated probability of 

mortgage default conditional on all observed covariates recorded at the time of original 

underwriting. The figure also distinguishes the estimated probability of mortgage default 

conditional on the agent’s action. Formally, the triangle-marked red curve corresponds to 

𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 1) while the circle-marked green line refers to 𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑧 = 0). In 

simple words, the curves refer to the estimated probability of mortgage default 𝑓(𝑦𝑖) 

conditional on a set of control variables (𝑥𝑖
𝑐 , 𝑥𝑖

𝑑) as well as the originator decision to switch 

(𝑧𝑖 = 1) or not (𝑧𝑖 = 0) the mortgage servicer, respectively.  

 

21 Figure 3.7 - Credit quality vs. conditional probability of mortgage default 

The plot reports similar findings to these in Figure 2.5 (See Chapter 2, Section 2.4.1.2). 

The curve shape suggests that the conditional probability of mortgage default is a 

 

45 Our results are robust to the choice of the machine Learning algorithm. Similar plots are obtained using 

other such as Decision Trees, Naïve Bayes, k-Nearest Neighbors, or Support Vector Machines. 
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decreasing function of the borrower’s credit quality. However, the plot depicts a significant 

shift in the estimated default likelihood once the sale of servicing rights is taken into 

account. Note that mortgages belonging to the same FICO score cohort share many 

characteristics. All other things held constant, when the originating lender decides to sell 

the underlying MSR, the estimated probability of mortgage default increases by about 

20%. This increase in the conditional probability of mortgage default is observed over all 

FICO score intervals.  

Again, this pattern is valid for both low- and high-quality borrowers. While the default 

likelihood is a decreasing function of the borrower’s credit quality, it is clear that it drops 

much further if the originator keeps the servicing rights rather than if sold to another 

servicing institution.  

The Kolmogorov–Smirnov test values are 0.6182 (DT), 0.6752 (NB), 0.7260 (KNN), 

0.8233 (SVM), and 0.6452 (RF). All test values enable us to reject the null hypothesis of 

the KS test stating that the empirical CDFs of the first and second sample are similar. 

Accordingly, the results suggest a statistically significant difference in the conditional 

density of mortgage default once we account for the servicer switch decision. We also 

come to the same conclusion using the bootstrap approach. With a total number of 𝐵 =

 1000 bootstrap replications, we find that bootstrap p-values are always below the 5% 

statistical level which enables us again to conclude the statistical significance of the test: 

i.e. 𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 1) and 𝐹̂(𝑦𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝑧𝑖 = 0) being statistically different.  

The above results are in line with those obtained in Chapter 2 using the Chiappori and 

Salanié’s (2000) method or the Kernel Density Estimation technique as in Su and Spindler 

(2013). The Machine Learning results corroborate our findings that suggest a positive 

relationship between the conditional probability of mortgage default and the originator’s 

decision to switch the servicer of the deal. In fact, we found that observably similar 

mortgages (i.e. with comparable risk factors and granted for borrowers with similar credit 

scores) experience higher default risk if the mortgage originator sells the underlying 

servicing rights to a new servicer. 
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3.6.5. Two-stage testing procedure 

We now propose an ML-driven two-stage instrumental variable estimation procedure to 

account for endogeneity and simultaneity between the MSR selling decision and mortgage 

default. The procedure is similar to the one described in Chapter 2, Section 2.4.3). In the 

first stage, we estimate the conditional probability of mortgage default using a set of 

covariates that includes exogenous independent variables (e.g. FICO score, LTV ratio, 

documentation status) along with two instruments for mortgage default (income growth 

and divorce rate). In the second stage, we include the ML estimator of the probability of 

mortgage default as a covariate while estimating the conditional probability of switching 

the mortgage servicer in a fashion similar to the parametric second-stage regression.  

Again, to simplify notations, let 𝐷𝑒𝑓+  ≡ I(𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) > 𝜏∗) and 𝐷𝑒𝑓− ≡

I(𝑓(𝑦|𝑥𝑐 , 𝑥𝑑 , 𝑣1, 𝑣2) ≤ 𝜏∗) define the events where the expected mortgage default is high 

and low, respectively. 𝐼(·) refers to an indicator function and 𝜏∗ is a fixed threshold, 𝜏∗ ∈

[0,1]. In simple words, 𝐷𝑒𝑓+ and 𝐷𝑒𝑓− represent the originating lender’s high and low 

expectations of mortgage default based on the set of information that it collects at the time 

of the original underwriting.  

After the two-stage estimation procedure is achieved, we perform a statistical test of 

information asymmetry where the statistic can be formulated as follows: 

𝑊∗ = ∑|𝐹̂(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓+) − 𝐹̂(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓−)|

𝑛

𝑖=1

                 (3.16) 

Similar to above, we use two methods to conclude about the test: the nonparametric two-

sample Kolmogorov–Smirnov (KS) test and the bootstrap procedure.  

First of all, we examine feature importance scores resulting from the Random Forest 

algorithm which are depicted in Figure 3.8 for the first-stage estimation and in Figure 3.9 

for the second-stage estimation.  
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22 Figure 3.8 - First-stage estimation feature importance for the RF model 

For the first-stage estimation, the mortgage originating year appears to be the most-

important predictor in foretelling the likelihood of mortgage default. The next-important 

predictors of mortgage default are borrowers’ FICO score and Loan-to-Value ratio. Such 

evidence is in line with the parametric regressions in Chapter 2. Regarding the two 

instruments for mortgage default, the divorce rate and the income growth rate exhibit an 

average importance score of 13% and 7%, respectively, which confirms that both 

instruments are indeed valuable in predicting mortgage default. 

For the second-stage estimation, the origination year also appears as the most influential 

feature in predicting servicer switch. However, most importantly, the expected probability 

of mortgage default estimated at a first stage appears to be the next-important feature in 

predicting servicer switch. In fact, the expected probability of mortgage default accounts 

for almost 30% of the precision of the second-stage estimation while predicting the 

mortgage originator decision to switch or not the servicer of the deal. 
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23 Figure 3.9 - Second-stage estimation feature importance for the RF model 

Regarding the statistical test, the Kolmogorov–Smirnov test vales are 0.5134 (DT), 0.2386 

(NB), 0.7260 (KNN), 0.8203 (SVM), and 0.5463 (RF) which enable us to reject the null 

hypothesis of distributional shape similarities between 𝐹̂(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓+) and 

𝐹̂(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓−). Moreover, the bootstrap approach also provides low p-values which 

again permit the rejection of the null hypothesis of distributional similarities. Failing to 

reject the null hypothesis should be interpreted as indicative of a significant impact of the 

expected likelihood of mortgage default (calculated at a first stage by the originating lender 

using private information obtained at the time of original underwriting) on the originator’s 

decision to switch the servicer of the deal. 

For a better visualization, Figure 3.10 highlights the main results from the two-stage 

instrumental variable ML-based testing procedure. The figure plots the conditional 

probability of switching the servicer of the deal given the set of explanatory variables along 

with the originator’s expected default probability. Formally, the red triangle-market and 

green circle-marked curves represent 𝑓(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓+) and 𝑓(𝑧𝑖|𝑥𝑖
𝑐 , 𝑥𝑖

𝑑 , 𝐷𝑒𝑓−) 

calculated over equally spaced FICO score intervals.  
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24 Figure 3.10 - Two-stage IV ML-based estimator of mortgage switching 

Figure 3.10 confirms the nonparametric findings (see Figure 2.8 in Chapter 2, Section 

2.4.3) that the conditional probability of switching the mortgage servicer is a decreasing 

function of borrower quality. This also confirms the parametric models results where the 

coefficient on the FICO score was negative and statistically significant (Chapter 2, Section 

2.4.2). The plot also shows a certain divergence between the two curves conditioned with 

respect to the expected likelihood of mortgage default. Recall that the only difference 

between both curves is that the first stage estimated default likelihood being superior or 

inferior to the threshold 𝜏∗ = 0.37, the sample-wise observed rate of mortgage default. 

Similarly, the graph could be interpreted as follows, all other things being held constant, 

if the originating lender expects a high probability of financial distress, it is more likely to 

sell the underlying servicing right to another servicer. However, originators tend to keep 

servicing mortgages granted for borrowers with a low expected probability of default. 

The rejection of the joint null hypothesis of absence of asymmetric information can be 

interpreted as follows: the ex-post likelihood of mortgage default influences the originator 
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decision to switch the servicer of the deal, which confirms our hypothesis that second-

stage asymmetric information exists in the U.S. mortgage servicing market. 

3.6.6. Cost-sensitive comparison of classification performance 

In this part, we analyze in more details the classification performance of ML models in 

predicting the likelihood of mortgage default (the positive outcome). We compare their 

performance to that provided by the non-parametric Kernel density Estimation and the 

baseline logistic model.  

In general, binary classification problems present two types of errors: False Positive (FP) 

and False Negative (FN). The former refers to cases where a negative instance is 

mistakenly classified as positive while the latter refers to positive instances erroneously 

identified as negative. In our context of mortgage default, False Positives are defined as 

predicted non-defaulting mortgages erroneously classified as defaulter. Inversely, False 

Negatives are defined as predicted defaulting mortgages mistakenly labeled as non-

defaulter. Naturally, the misclassification cost of making one error type is different from 

the cost of making the other error. 

In practice, the performance evaluation approaches fall into two main categories: 

numerical and graphical. Examples of numerical methods are the accuracy score, 

precision, recall, F1-measure, and area under the Receiver Operating Characteristic (ROC) 

curve. Examples of graphical performance evaluation methods include ROC curves, 

Precision-Recall (PR) curves, Detection Error Trade-off (DET) curves, and Cost curves. 

Drummond and Holte (2004) state that graphical methods are especially useful when there 

exists an uncertainty about either the misclassification costs or the class distribution. For 

instance, the graphical methods depict the classification performance of a given model 

across a range of operating points while numerical approaches provide a single metrical 

value (which usually represents the average performance across a set of operating points).46 

 

46 Operating points refer to a set of possible combinations of misclassification costs and class distributions. 
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ROC curves are commonly used to visualize the performance of binary classifiers. 

Basically, a ROC curve plots the True Positives as a function of the False Positives 

according to different model settings. One attractive feature of ROC curves is allowing 

researchers to easily compare the performance of multiple classification models. 

Nevertheless, ROC curves do not take into consideration the implications of 

misclassification costs (Drummond and Holte, 2004). Besides, Drummond and Holte 

(2006) advocate that cost curves directly depict performance and performance differences 

(on y-axis) while ROC curves do not. Therefore, in this chapter, we opt for the cost curve 

to examine whether Machine Learning models perform better than the standard logistic 

model.  

3.6.6.1. Cost curves construction 

The cost curves evaluation technique was first introduced in Drummond and Holte (2000). 

In order to construct cost curves, we need to recall a key classification concept which is 

the confusion matrix. In a binary classification problem, the confusion matrix (i.e. 

contingency table) depicts four quantities: TP, TN, FP, and FN. True Positives (TP) and 

True Negatives (TN) are the number of correctly predicted events and no-events, 

respectively. False Positives (FP) refers to the number of incorrectly predicted events while 

False Negatives (FN) designates incorrectly predicted no-events. Generally, a single 

confusion matrix produces a single point in the ROC space (𝑥 =  𝐹𝑃𝑅;  𝑦 =  𝑇𝑃𝑅). One 

classification model (as represented by a point in the 2-dimensional ROC space) dominates 

another if it displays a higher TP rate at a given FP rate.  

The 𝑥-axis of a cost curve represents the operating points denoted 𝑃𝐶(+) and consists of 

a combination of the above-mentioned misclassification costs and the output class 

distribution. The 𝑃𝐶(+) can be formulated as following: 

𝑃𝐶(+) =
𝑝(+)𝑐(−|+)

𝑝(+)𝑐(−|+) +  𝑝(−)𝑐(+|−)
                                (3.17) 



148 

 

where 𝑐(−|+) denotes the cost of misclassifying a positive event as negative (i.e. False 

Negative) while 𝑐(+|−) denotes the cost of misclassifying a negative event as positive 

(i.e. False Positive). 𝑝(+) denotes the probability of the positive event and 𝑝(−)  =  1 −

 𝑝(+). 𝑃𝐶(+) values range between 0 and 1.  

In our context of mortgage default (the positive outcome), 𝑐(−|+) refers to the 

misclassification cost of identifying defaulting loans as non-defaulting, a.k.a. bad-risk 

misclassification cost. In the same vein, 𝑐(+|−) refers to the misclassification cost of 

identifying non-defaulting loans as defaulting.  

Given the documented positive relationship between the likelihood of mortgage default 

and the originator’s decision to sell the underlying MSR, the latter misclassification cost, 

𝑐(+|−), is considered as an opportunity cost. This can be explained as follows: if the 

originator estimates that the ex-post probability of financial distress of a given borrower is 

high, he/she decides to sell the underlying MSR to another servicing company. 

Accordingly, the originator receives the MSR price and declines earning all future cash 

flows associated with holding the MSR. Since, it consists of a False Positive (i.e. the loan 

actually will not default), the originator would be better off retaining the servicing rights 

and earning all future cash flows than selling the underlying MSR. Therefore, we refer to 

𝑐(+|−) as an opportunity cost.    

In this setting, we consider that cost curves are ideally suited to our research question as 

they directly link the classification performance to a function of misclassification costs and 

class distribution. The 𝑦-axis of a cost curve plot is the normalized expected cost (𝑁𝐸𝐶) 

that can be expressed as following: 

𝑁𝐸𝐶 =  𝐹𝑁𝑅 ∗ 𝑃𝐶(+) +  𝐹𝑃𝑅 ∗ (1 −  𝑃𝐶(+))                       (3.18) 

where FNR and FPR denote the false negative and false positive rates, respectively. The 

normalized expected cost values range between 0 and 1. 



149 

 

As shown by Drummond and Holte (2006), ROC curves and cost curves are 

mathematically related as there is a point-line duality between them. Figure 3.11 illustrates 

the concept of point-line duality between ROC curves and cost curves. Accordingly, a 

single point in the 2-dimensional ROC space can be represented by a line in the cost space 

and vice versa (Drummond and Holte, 2006). For illustration, the triangular red point with 

(𝐹𝑃𝑅 =  0.4, 𝑇𝑃𝑅 = 0.8) coordinates in the ROC space is represented by the red line with 

the following coordinates (𝑃𝐶(+) = 0, 𝑁𝐸𝐶 = 𝐹𝑃𝑅) and (𝑃𝐶(+) = 1, 𝑁𝐸𝐶 = 1 − 𝑇𝑃𝑅). 

 

25 Figure 3.11 - ROC curves and Cost curves point/lines duality 

Figure 3.12 further illustrates how each ROC point becomes a line in cost space. So, the 

convex hull of the points in ROC space corresponds to the lower envelope of the lines in 

cost space (as indicated by the solid blue line in the graph). Naturally, the ROC curve 

allows researchers to identify potential optimal classification models that dominate others 

but without committing to a specific performance measure. For instance, ROC visual 

inspection do not show what could be the error rate if (i) the misclassification costs were 

not equal or (ii) the two classes were not equally likely. 

Contrariwise, cost curves were intended to allow researchers observing how the 

classification performance varies across a full range of possible operating points, 𝑃𝐶(+). 
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For illustration, when misclassification costs are equal and the two classes are equally 

likely (i.e. 𝑐(−|+) = 𝑐(+|−) and 𝑝(+) = 𝑝(−), so 𝑃𝐶(+) = 0.5), the cost curves show 

that the normalised expected cost is roughly 0.25 (see right panel of Figure 3.12). It can 

also be seen that the performance increases (NEC decreases) when 𝑃𝐶(+) < 0.1 and 

𝑃𝐶(+) > 0.9. 

 

26 Figure 3.12 - ROC curves and Cost curves 

3.6.6.2. Cost-sensitive performance analysis 

Figure 3.13 depicts the ROC curve of the three approaches we used to predict the 

likelihood of mortgage default and, in a second step, the likelihood of switching the 

servicer of the deal: (i) the parametric Logistic model, (ii) the non-parametric (Kernel 

Density Estimation) model, and (iii) the Machine Learning (Random Forest) model. 
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27 Figure 3.13 - ROC curves and AUC values 

From Figure 3.13, it is clear that Machine Learning beats both the non-parametric KDE 

model and the parametric logit regression. For instance, the AUC value of the Random 

Forest model is 75.25% while the AUC for the KDE and Logit models are both about 66%. 

The AUC differential between ML model and the two other candidates is almost 10%. 

Note that all three models are trained and tested using identical training and testing 

datasets.  

So according to the above graph, it is clear that Machine Learning (in particular Random 

Forest) dominates both the non-parametric model and logistic regression as it delivers a 

higher predictive ability. However, as outlined by Drummond and Holte (2004, 2006), 

ROC cannot show what could be the error rate if (i) the misclassification costs were not 

equal or (ii) the two classes were not equally likely.  

Figure 3.14 displays the cost curve for our three candidate models where the Normalized 

Expected Cost (NEC) is plotted against multiple probability cost 𝑃𝐶(+) configurations. 
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28 Figure 3.14 - Cost curves for candidate models 

Let 𝜇 denote the misclassification cost ratio, so 𝜇 =  𝐶(+|−): 𝐶(−|+). Consequently, 

Equation 3.17 can be reformulated as follows: 

𝑃𝐶(+) =
𝑝(+)

𝑝(+) +  𝑝(−) ∗ 𝜇 
                                           (3.19) 

which in fact represents the x-axis of the cost curve in Figure 3.14. According to Equation 

3.19, if we specify the misclassification cost ratio 𝜇 we can easily estimate 𝑃𝐶(+) given 

that 𝑝(−)  =  1 − 𝑝(+). In our application, 𝑝(+), the probability of the positive event is 

set to the mortgage default rate observed in the sample (36%). Therefore, 𝑝(−) equals to 

64%. So, when 𝜇 =  1, i.e. the costs of misclassifying a defaulting and a non-defaulting 

mortgage are the same, or 𝐶(+|−)  =  𝐶(−|+), Equation 3.19 implies that 𝑃𝐶(+) = 0.36. 

Now, when 𝜇 =  2, the misclassification of a non-defaulting mortgage as defaulting is 

estimated to be twice costly as misclassifying a defaulting loan as non-defaulting. From 

Equation 3.19, the corresponding 𝑃𝐶(+) then equals to 0.219. When μ = 5 and 10, the 

corresponding PC(+) are 0.101 and 0.053, respectively. So, the x-axis points ranging from 

0 to 1 in Figure 3.19 reflect a wide range of misclassification cost ratios 𝜇, where (0 <

 𝜇 <  1). 
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To cover multiple scenarios, Figure 3.14 is augmented with 5 dashed vertical lines at 

𝑃𝐶(+) = {0.006, 0.101, 0.360, 0.738, 0.982} which correspond to the following 

misclassification cost ratio values 𝜇 = (100, 5, 1,
1

5
,

1

100
). As stated in Drummond and 

Holte (2006), if we are interested in a given particular misclassification cost ratio, say μ = 

5, we should choose the classification model with the minimal normalized expected cost 

(on the y-axis).  

Now, in the case where the opportunity cost is inferior to the bad-risk misclassification 

cost, i.e. 𝐶(+|−) < 𝐶(−|+) or μ < 1,47 the region under investigation is to the right of the 

dotted vertical line at 𝑃𝐶(+) = 0.36. So, the cost region 𝑃𝐶(+) > 0.36 could be labeled 

“bad-risk adverse” as the cost of misclassification a bad risk is superior to the opportunity 

cost. Intuitively, in such environment, banks attempt to minimize the number of bad-risk 

borrowers that the classification model identifies them as non-defaulting. Therefore, 

originators in this region prefer default classification models that minimize the False 

Negative rate.  

Inversely, the cost region 𝑃𝐶(+) > 0.36 could be labeled “opportunistic adverse” as the 

opportunity cost is higher than to the bad-risk misclassification cost. In such environment, 

mortgage originators would be better off holding bad risk mortgages than losing any 

opportunity cost. Therefore, originators in this region prefer default classification models 

that minimize the False Positive rate. 

Figure 3.14 reveals that Random Forest Machine Learning algorithm minimizes the overall 

misclassification cost as it delivers the smallest area under the cost envelope boundary. 

Moreover, the Figure suggests that the RF model is superior to both candidate models 

(non-parametric KDE and logistic regression) among the entire range of misclassification 

cost regions. So the results suggest that Machine Learning classification algorithm beats 

 

47 In other words, 𝑐(+|−) the misclassification cost of identifying non-defaulting loans as defaulting is 

inferior than 𝑐(−|+) the misclassification cost of identifying defaulting loans as non-defaulting.  
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all other candidates in terms of minimizing the bad-risk classification cost (region 

𝑃𝐶(+)  <  0.36) and the opportunistic cost (region 𝑃𝐶(+) >  0.36). 

Looking back at Figure 3.14, in the region 𝑃𝐶(+)  <  0.36, the non-parametric and logistic 

regression provide almost identical costs; in the in the region 𝑃𝐶(+) >  0.36, however the 

logistic regression shows a slight superior classification performance over the non-

parametric estimation technique. Nevertheless, both of them perform worse than the RF 

algorithm. The vertical difference between the Random Forest and other model lines 

reflects the difference between their normalized expected costs at a specific operating 

point. For instance, at a 𝑃𝐶(+)  =  0.5, the vertical difference (NEC) is almost 10%. In 

our context, an improvement of 10% in terms of classification costs is considerable 

especially when considering the large number of mortgages that a bank issues and the 

significant size of the mortgage market.  

At both ends of the x-axis of Figure 3.14, where 𝑃𝐶(+) gets closer to 0 or 1, it seems to 

be clear that all three classification models cannot outperform the trivial classifier 

(identified by the 45-degree dashed bold lines). This can be explained by the fact that, in 

extreme circumstances with extremely costly environments, all mortgages should simply 

be assumed to be default free (with extreme opportunity costs) or to default (with extreme 

default costs). 

Figure 3.15 depicts the Normalized Expected Cost (NEC) versus the bad-risk 

misclassification cost. Here, the x-axis represents the value if the cost of erroneously 

classifying a defaulting mortgage as non-default. Again, the figure reveals that Machine 

Learning outperforms the two other models as it delivers a lower normalized cost. Note 

that fixing 𝐶(+|−) at 1 does not constrain our results to be generalised (see for example 

Hernández-Orallo, et al. (2011) and Lessmann et al. (2015)). However, for highly costly 

environments, using either model will deliver similar results as the gap between the cost 

lines decrease.  
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29 Figure 3.15 - Cost curves vs. bad-risk misclassification cost 

3.7. Conclusion 

This chapter contributes to the applied econometrics literature by using Machine Leaning 

algorithms to predict the likelihood of mortgage default and to detect the presence of 

asymmetric information. We show that Machine Leaning algorithms provide valuable 

contribution to the finance literature as they deliver better results than Logistic regression 

models. Our results show that, among all candidate ML algorithms, tree-based algorithms 

show superior performance that is superior than those of the other models. Our results also 

suggest that initial lender's decision to sell the underlying MSRs and switch the servicer of 

the deal plays a key role in predicting mortgage default. According to Random Forest 

algorithm, the switching variable accounts for 34.5% of model accuracy, on average, when 

predicting mortgage default. According to the Decision Tree algorithm, the switching 

decision appears to be a crucial question in determining the decision-making path as it 

appears at the root node of the algorithm and produces the largest impurity decrease among 

all features. Our results suggest that the mortgage originator decision to switch the servicer 

of the deal significantly improves the Machine Learning algorithm precision in predicting 
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the event of mortgage default. Everything else being equal, including or not this decision 

seems to be crucial in determining the likelihood of mortgage default.  
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7 Table 3.1 - Tuned hyper-parameters for Machine Learning algorithms 

This table displays optimal hyper-parameters of the Machine Learning algorithms. The Hyper-parameter 

tuning procedure is conducted using stratified 10-fold Cross-Validation Random-Search procedure using the 

training data set. For Naïve Bayes and Support Vector Machines algorithms, we use Grid-Search instead due 

to the tightened range of hyper-parameters. Each iteration uses the ROC AUC as evaluation metric of the 

default/no-default classification performance. 

Algorithm Hyper-parameter value 

Decision Tree 

Split Criterion: Gini index 

Min. impurity decrease: 0.01 

Max. depth of a tree: 11 

Min. number of samples required to split an internal node: 6 

Min. number of samples required to be at a leaf node: 10 

 

 Naïve Bayes 

Feature distribution: Multivariate Bernoulli  

Smoothing parameter: 0.1 

Model learning: Learn prior class probabilities. 

k-Nearest Neighbors 

Number of neighbors: 10 

Weights: Uniform 

Distance metric: Minkowski  

Support Vector Machines 

Kernel: Linear 

Fit intercept: True 

Loss function: Squared Hinge 

Penalty: L2 

 

 

Random Forest 

Split Criterion: Entropy 

Min. impurity decrease: 0.01 

Number of trees in the forest: 100 

Bootstrap samples: True 

Max. depth of a tree: 15 

Min. number of samples required to split an internal node: 10 

Min. number of samples required to be at a leaf node: 2 
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8 Table 3.2 - Out-of-sample performance of Machine Learning algorithms 

This table reports performance metrics for five machine learning algorithms using out-of-sample (unseen) 

data. The classification metrics are: accuracy score, precision rate, recall rate, F1 score, and Area Under 

Curve (AUC) ROC. All metrics are reported in percentage. The sample includes U.S. mortgages originated 

then securitized through the private-label channel over the period from January 2000 to December 2013. The 

output variable, Default, is a binary variable denoting whether a mortgage defaults (when a mortgage is 

labelled as +90 days delinquent) so classes are: “default” and “no-default”. Panel A reports results using the 

original data set with imbalanced output classes. The data set includes 5,591,353 instances where 37% belong 

to the default class and 63% to the non-default. Panel B reports results using a class- rebalanced data set 

using the bootstrap minority over-sampling technique. The balanced data set includes 7,055,186 observations 

with equally distributed default classes. 

 Accuracy Precision Recall F1 AUC 

Panel A. Imbalanced Data 

Decision Tree 74.5 70.4 53.1 60.6 79.7 

Naïve Bayes 72.3 69.0 45.5 54.8 74.8 

k-Nearest Neighbors 71.4 63.7 52.5 57.5 72.9 

Support Vector Machines 70.2 61.5 50.2 55.3 75.3 

Random Forest 74.5 70.4 53.2 60.6 79.8 

Panel B. Balanced Data 

Decision Tree 72.0 72.7 70.4 71.5 79.7 

Naïve Bayes 67.3 67.2 67.6 67.4 74.8 

k-Nearest Neighbors 69.0 71.3 64.2 67.6 75.9 

Support Vector Machines 67.4 73.3 55.3 63.0 76.4 

Random Forest 72.0 72.7 70.4 71.5 79.8 
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9 Table 3.3 - Feature Importance by Decision Tree and Random Forest algorithms 

This table reports the feature importance score using Decision Tree (Panel A) and the average feature 

importance score using Random Forest algorithm (Panel B). Variables are ranked from most to least relevant. 

The data set includes U.S. mortgages originated then securitized through the private-label channel over the 

period from January 2001 to December 2006. The output variable, Default, is a binary variable denoting 

whether a mortgage defaults.  

Panel A. Decision Tree 

Variable Importance 

Switch servicer 0.3949 

Origination year 0.1746 

State 0.1239 

FICO660 0.1057 

LTV80 0.0825 

ARM 0.0685 

No/Low doc. 0.0166 

Balloon 0.0138 

Judicial 0.0086 

SRR 0.0068 

GSE conforming 0.0036 

Panel B. Random Forest (N trees = 100) 

Variable Average Importance 

Switch servicer 0.3656 

Origination year 0.2130 

FICO660 0.0985 

LTV80 0.0921 

State 0.0908 

ARM 0.0432 

Balloon 0.0357 

GSE conforming 0.0213 

No/Low doc. 0.0196 

SRR 0.0120 

Judicial 0.0077 
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10 Table 3.4 - Out-of-sample performance shifts 

This table reports the average performance measure for five Machine Learning algorithms in out-of-sample. 

The data set includes U.S. mortgages originated then securitized through the private-label channel over the 

period from January 2000 to December 2013. The output variable, Default, is a binary variable denoting 

whether a mortgage defaults (i.e. when a mortgage is labelled as +90 days delinquent). The classes of the 

output variable are default and no-default. The data set was balanced using the bootstrap minority-class over-

sampling technique. The rebalanced data set includes 7,055,186 instances. Panel A reports the average 

precision rate while panel B reports the average Area Under ROC Curve (AUC). All metrics are in 

percentage. The first column labeled Exclude Switch reports the average classification performance using a 

model configuration that excludes the decision to switch mortgage servicer. The next two columns, Shuffle 

Switch and Include Switch, both consider the decision to switch the mortgage servicer as a model feature 

while the first one includes a version with shuffled values (permutation). Friedman refers to the Friedman’s 

(1940) test statistic with the null hypothesis that at least one of the three configurations is statistically 

different from the two others. Improv. denotes the average improvement in the evaluation metric. The 

asterisks *, **, and ***, denote significance for the Wilcoxon Signed-Rank paired test at 10%, 5%, and 1% 

statistical levels, respectively. 

 Exclude 

Switch 

Shuffle 

Switch 

Include 

Switch 

Friedman Improv. 

(3) – (1) 

Improv. 

(3) – (2) 

Panel A. Precision        

Decision Tree 68.12 68.06 72.93 31.60 4.81*** 4.86*** 

Naïve Bayes 60.45 60.45 67.26 37.62 6.81*** 6.81*** 

k-Nearest Neighbors 66.46 66.68 71.66 30.02 5.20*** 4.98*** 

Support Vector Machines 64.42 64.42 73.45 40.00 9.02*** 9.02*** 

Random Forest 68.03 68.02 73.04 30.40 5.02*** 5.03*** 

Panel B. AUC       

Decision Tree 74.57 74.54 79.11 40.01 4.53*** 4.57*** 

Naïve Bayes 66.27 66.27 74.83 30.41 8.57*** 8.56*** 

k-Nearest Neighbors 70.48 70.51 75.57 30.40 5.10*** 5.07*** 

Support Vector Machines 71.94 71.93 76.09 30.10 4.15*** 4.16*** 

Random Forest 74.57 74.53 79.12 40.00 4.55*** 4.58*** 

 



 

 

Chapter 4 

A Markov Regime-Switching Modelling of the Performance of 

Canadian International Mutual Funds  

Abstract 

In this chapter, we provide a comprehensive empirical analysis of the performance of a large 

sample of Canadian international equity mutual funds over the period 1988-2013. Using a Markov 

regime-switching modelling, we find that international fund managers exhibit superior security 

selection skills during recession periods. On the other hand, fund managers are not able to 

outperform the world portfolio in expansion. Our results also show that fund managers are actively 

reducing their fund’s beta during bear market states and increasing their fund’s exposure during 

bull market states. Our results provide strong support for the fact that traditional static performance 

measures understate the value added by active fund managers in recessions, when economic 

uncertainty reins and investors’ marginal utility of wealth is very high.  

Keywords: Performance measurement, international mutual funds, security selection, market 

timing, Markov regime-switching, Bootstrap. 
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4.1. Introduction 

Due to financial liberalization and development of investment vehicles such as 

International Mutual Funds, retail investors with limited means are now able to invest 

internationally. Investing in such funds is expected to provide greater portfolio 

diversification and higher returns for maintaining the same risk level. 

Several studies have examined the performance of internationally diversified mutual funds 

(see Table 4.1 for a survey). Cumby and Glen (1990) report that the fifteen U.S-based 

international mutual funds in their sample did not outperform their international 

benchmark. Studies by Eun et al. (1991), Droms and Walker (1994), Gallo and Swanson 

(1996), Detzler and Wiggins (1997), Redman et al. (2000), and Tkac (2001) find little 

evidence of significant superior performance for U.S-based international mutual funds 

using both local and international market indices. Most of these early papers not only rely 

on the unconditional Jensen (1968) alpha measure but they examine relatively small 

samples of international funds (15 in Cumby and Glen, 1990, to 37 in Gallo and Swanson, 

1996). Moreover, the commonly used unconditional performance metrics suffer from 

potential biases if, for example, fund managers practice market timing. 

[Table 4.1 about here] 

Subsequent studies use conditional fund performance measures that assume that managers 

use strategies that can be replicated using public information such as interest rates and 

dividend yields. Fletcher (1999) finds no evidence of an average significant superior 

performance for 85 internationally diversified U.K. unit trusts using the conditional Jensen 

performance measures. Fletcher and Marshall (2005) report corroborating findings for 

international U.K. equity unit trusts using the stochastic discount factor methodology. 

Ismailescu and Morey (2012) study the effects of redemption fees on the risk-adjusted 

performance of the U.S.-based international equity funds commonly used by market timers 

and report that redemption fees are a material drag on performance. 
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These studies evaluate the mutual fund risk-adjusted performance using single-regime 

models. In such setting, the performance appraisal is restricted to the average return 

performance during the time period under consideration. However, the early bearish period 

in 1990s and the recent financial crisis have reminded us of cyclical pattern in financial 

markets. Due to cyclical movements in the investment environment featured by bear-bull 

market alternations, the Markov Regime-Switching (hereafter we refer to as MRS) 

modeling have attracted much attention in the past few years. The Markov Regime-

Switching model has been successfully implemented in economics and finance. Notably, 

Maheu and McCurdy (2000) use MRS model to classify stock returns into a high return 

stable regime and a low-return volatile state. Regarding mutual funds analysis, Kosowski 

(2011) show that the traditional unconditional performance measures understate the value 

added by active U.S. domestic fund managers in recessions, when investors’ marginal 

utility of wealth is very high. Turtle and Zhang (2012) report alphas that change with global 

bull and bear markets using a regime-switching approach with fixed and time-varying 

transition probabilities to assess the performance of U.S.-based international mutual funds.  

The interest in using state-dependent performance measures is twofold. First, it allows us 

to account for the time-varying aspect of the information set underlying fund manager’s 

investment decisions. For instance, the manager’s investment decision-making process 

merely relies on the stream of information which is widely recognized to be contingent on 

the regime of the economy, e.g. may vary during recessions and expansions. Second, fund 

managers my implement dynamic trading strategies based on style drifts and benchmark 

timing skills, which depend on their expectations of future market fluctuations and 

macroeconomic conditions. This implies that fund risk exposures as well as their risk 

profile are time-varying and depend on the state of the economy. 

Yet, none in the literature has focused on cyclical patterns in the performance of 

internationally diversified mutual funds. Thus, our main objective is an attempt to fill this 

gap in the ongoing literature by incorporating the Markov Regime-Switching approach 

into international asset pricing models. Motivated by the absence of an investigation of 

Canadian internationally-oriented mutual funds, our second objective is to examine 
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security selection and market timing performance for a large sample of Canadian 

international equity mutual funds. To highlight the importance of these funds, we note that 

the aggregate assets under management (AUM) of internationally diversified Canadian 

equity mutual funds was over $12 billion in September 2009. Since internationally-

diversified funds are supposed to be less sensitive to domestic market fluctuations as their 

investors consider worldwide diversification, our third objective is to test whether actively 

managed international Canadian mutual funds provide effective diversification benefits to 

investors in a market that is relatively small (about two or three percent of the global equity 

value). This is an important issue if we are to understand better the systematic risk of these 

funds and therefore their attractiveness as vehicles for diversification on an international 

scale.  

Last but not least, a major contribution of this chapter is implementing a residual-only 

bootstrap procedure in the vein of Kosowski et al. (2006) based on the Markov regime-

switching modelling in order to compute corrected p-values. We implement a such 

procedure since individual stocks may exhibit significant higher moments (i.e., skewness 

and kurtosis) and varying levels of autocorrelations in their return time-series due to, for 

example, the implementation of dynamic strategies by fund managers. Furthermore, non-

normality in benchmark returns may result in co-skewness in individual stock returns. In 

this context, Kosowski et al. (2006) argue that non-normality in the alphas of individual 

mutual funds is translated into non-normality in the distribution of cross-section mutual 

funds alphas. Thus, a sample of individual funds with heterogeneous levels of risk over 

time can result in fatter (or thinner) tails of the cross-sectional distribution of alphas than 

those of a normal distribution due to their higher (lower) probability of being located in 

the extreme tails of the cross-sectional distribution of alpha estimates. So, the originality 

of this analysis remains in combining the Kosowski et al. (2006) residual-only bootstrap 

approach that deal with the above problems with the Markov regime-switching analysis 

where each estimation parameter is state-dependent.  

The remainder of this chapter is organized as follows. Section 2 provides a brief summary 

of the literature on performance appraisal of internationally diversified mutual funds. 
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Section 3 presents the various security selection and market timing measures as well as the 

Markov Regime-Switching framework. We also provide details on the bootstrap 

methodology that accounts for fund inter-dependencies. In section 4, the sample, data, and 

variables are described. Section 5 reports and discusses our empirical results while Section 

6 concludes. 

4.2. Literature review on mutual fund performance evaluation 

In this section we briefly summarize the main empirical findings of studies that evaluate 

the performance of internationally diversified mutual funds. Due to the lack of works 

examining international Canadian mutual funds, we present the main results for U.S. funds 

and U.K. trusts. Please refer to Table 4.1 for a thorough survey. 

Cumby and Glen (1990) examine the performance of 15 U.S-based international mutual 

funds for the 1982-1988 period using the Jensen index, a positive period weighting 

methodology proposed by Grinblatt and Titman (1989), the Morgan Stanley Capital 

International World index (MSCI), and an equal-weighted portfolio of Eurocurrency 

deposits. The authors find little evidence of a statistically significant security selection 

ability for international fund managers and a negative market-timing ability.  

Eun et al. (1991) report that the majority of the 19 international mutual funds they study 

outperform the local market index but not the MSCI World index over the period of 1977-

1986. They show that U.S. international mutual funds provide effective diversification 

benefits to U.S. investors based on bilateral complementarities analyses of the national 

U.S. index and each of the international funds in the sample. 

Droms and Walker (1994) employ a cross-sectional/time series regression methodology to 

evaluate the performance of 30 U.S. international mutual funds over the period 1981-1990. 

They report that fund performance is roughly comparable to that of the national (S&P500) 
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and world (MSCI World) indexes but poorer than the EAFE index.48 The authors also find 

that international fund performance is unrelated to fund characteristics such as asset size, 

expense ratio, and portfolio turnover.  

Gallo and Swanson (1996) evaluate the performance of 37 U.S.-based international mutual 

funds over the 1985-1993 period. They utilize two models: (i) an international two-index 

model (MSCI world index and the D131 Dollar index, a trade-weighted currency index of 

131 countries) and (ii) the International Arbitrage Pricing Theory (IAPT) two-factor 

model. The authors report that 15 of 37 U.S-based international mutual outperform the 

MSCI World index over the 1985-1993 period and that their managers, on average, exhibit 

neutral selection skills. 

Detzler and Wiggins (1997) reject the efficiency of the MSCI World index over the 1985-

1994 period based on 35 global funds. They report that only two mutual funds reveal 

superior selection ability based on both the Jensen (1961) alpha and the positive period 

weighting methodology. The authors find that including international funds to the domestic 

portfolio as proxied by the Wilshire 5000 index significantly increase the Sharpe ratio.  

Redman et al. (2000) report results for U.S. international mutual funds that differ 

substantially according to the examination period and to the fund category (world, foreign, 

European, Pacific, and international). They find that over the overall period U.S.-based 

international funds outperform the national U.S. market as proxied by the Vanguard Index 

500 and an equally weighted portfolio of mutual funds investing only in securities issued 

by U.S. companies. 

The above studies not only concentrate on a relatively small number of U.S.-based 

international mutual funds but the majority of them rely on unconditional one-factor 

performance measures which might lead to biased inferences. Subsequent studies explore 

the impact of publicly available conditioning information.  

 

48 EAFE index is the MSCI Europe, Australasia, and the Far East (EAFE) index that covers non-U.S. and 

Canadian equity markets.  
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Fletcher (1999) utilizes a relatively larger sample composed of 85 internationally 

diversified U.K. unit trusts with North American investment objectives over the 1985-1996 

period. Using unconditional and conditional fund performance measures, he finds that the 

majority of trusts deliver negative abnormal performance versus two benchmarks (the 

S&P500 along with U.S. government bond indexes) that becomes less negative with the 

addition of instrumental variables that capture changing economic conditions. Also, the 

author reports no significant performance persistence using the league table methodology, 

and no significant relationship between abnormal performance and trust size, and initial or 

ongoing annual trust charge. The results by Fletcher (1999) are consistent with market 

efficiency in that unit trusts do not possess private information to outperform the market. 

Later, Fletcher and Marshall (2005) report similar performance for 282 international equity 

U.K. unit trusts for the 1985-2000 period using the stochastic discount factor methodology. 

With the residual-only bootstrap approach of Kosowski et al. (2006), they find that the 

best ranked trust exhibits no significant superior performance and the poorest trust reveals 

statistically significant underperformance whose magnitude increases with movement 

along the left tail and whose significance is greater using the t-statistic versus the alpha 

distribution. 

Other studies use the differential performance between local and foreign mutual funds to 

measure the benefits of international diversification. Based on a performance examination 

of 299 Swedish funds for the 1993-1998 period against both a single- and a five-index 

model, Engström (2003) reports poor selection abilities of fund managers. For instance, he 

finds that the average performance of focusing funds (geographically smaller investment 

universe) is 7% higher than that of regional funds and that diversification benefits for 

Swedish investors is higher from European than Asian funds. 

Otten and Bams (2007) find no significant differences in alphas of U.S. funds (locals) and 

U.K. funds that invest in the U.S. market (foreigners) using local market indexes as 

benchmarks for the period of 1990-2000. They find that foreigners face significant 

information disadvantages in the large companies’ market due to co-movements between 
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U.S. and U.K. markets and the home bias of U.K. managers as manifested in their greater 

exposure to U.K. cross-listed firms but not due to the Dollar/Pound exchange rate. 

It is worthy to note that no previous study has examined the performance of Canada-based 

international mutual funds. So, this chapter aims to fill this knowledge gap about 

international stock-picking skills and market timing ability of Canadian fund managers. It 

also investigates whether these investment vehicles provide local investors with 

diversification benefits on an international scale. 

4.3. Methodology 

4.3.1. Security selection measures 

We apply various measures of mutual fund performance that have been proposed in the 

previous literature. We briefly describe the multi-factor models where the estimated alpha 

coefficient is a proxy for mutual fund manager’s security selection ability. Let Rit denote 

the return on fund i (i= 1, …, N) at date t (t= 1, …, T) and Rft the return on a risk-free asset 

at date t. Let Fjt denote the return vector on the jth risk factor (j= 1, …, K) believed to drive 

the variations of fund returns at date t. The standard multi-factor models can be expressed 

using the following general representation: 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡  = 𝛼𝑖 + ∑ 𝛽𝑖,𝑗 𝐹𝑗,𝑡
𝑘
𝑗=1 + 𝜀𝑖,𝑡                        (4.1) 

where αi measures the abnormal performance of fund i and βij represents the risk exposure 

of fund i to the common risk factor j. The Jensen (1968) alpha is computed using the excess 

return on the market index as the only risk factor. The Fama and French (1993) model 

includes the SMB and HML as additional risk factors to control for size and value effects, 

respectively. Later, Carhart (1997) supplements the model with a fourth factor, the 

momentum MOM. Since we focus on the performance of internationally diversified funds, 

we also consider the currency exchange risk factor to control for currency valuation risk.  

4.3.2. Market timing measures 



176 

 

Several methods have been proposed in the literature to evaluate the market timing ability 

of fund managers. Treynor and Mazuy (1966) added a quadratic term to the Jensen (1968) 

one-factor model to test for market timing skills. They argue that good market timers, 

based on their market returns forecast, would hold a greater proportion of the market 

portfolio when they anticipate high market returns and a smaller proportion when the 

anticipated return is low. Therefore, the fund excess return has a nonlinear function of the 

market excess return as following:  

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡) + 𝛾𝑖(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡)
2 + 𝜀𝑖,𝑡            (4.2) 

where γi is the Treynor and Mazuy’s (1966) market timing measure for fund i. A 

statistically significant positive value of γi would imply high market timing skills by fund 

managers. 

Our second market timing measure is proposed by Henriksson and Merton (1981). The 

timing measure describes fund managers as having to forecast periods in which stocks, in 

aggregate, outperform risk-free assets (Rmt > Rft) or when risk-free assets outperform stocks 

(Rmt < Rft). The two up- and down-market periods are captured using a dummy variable 

regression: 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡) + ɵ𝑖. 𝐷𝑡(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡 > 0) + 𝜀𝑖,𝑡        (4.3) 

Where Dt is a dummy variable equals to one if the market excess return at date t is positive 

and to zero otherwise. In the Henriksson and Merton’s (1981) specification, ɵi captures 

fund i manager’s market timing skills and a statistically significant positive (negative) 

estimate identifies good (poor) market timing ability. 

4.3.3. Markov Regime-Switching framework 

The above-mentioned static models restraint all regression coefficients to be state-

independent, i.e. the coefficients are constant regardless the current state of the economy 

(recession versus expansion economic regimes). Instead of using static security selection 

and market timing measures, we allow them to vary conditional on the lagged change in 
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the Composite Leading Index (CLI), a macro economic indicator commonly used to 

forecast the state of the economy. 

The interest in using state-dependent performance measures is twofold. First, it allows us 

to account for the time-varying aspect of the information set underlying fund manager’s 

investment decisions. For instance, the manager’s investment decision-making process 

merely relies on the stream of information which is widely recognized to be contingent on 

the regime of the economy, e.g. may vary during recessions and expansions. Second, fund 

managers my implement dynamic trading strategies based on style drifts and benchmark 

timing skills, which depend on their expectations of future market fluctuations and 

macroeconomic conditions. This implies that fund risk exposures as well as their risk 

profile are time-varying and depend on the state of the economy. 

We rely on Kosowsky (2011) framework and use a Markov regime-switching approach to 

account for time-varying information flow being available to fund managers and 

underlying their investment decision-making process. We apply the Markov Regime-

Switching (MRS) modelling to our sample of international Canadian mutual funds in order 

to examine regime-specific security selection and market timing abilities. We now briefly 

describe the MRS specification applied to equations 4.1, 4.2, and 4.3, which forms the 

basis for our empirical analysis. 

We assume that the financial market regimes follow a Markov chain with a finite number 

of regimes, K, and use a latent variable St (S= 1, …, K) to denote the state of the market at 

date t. For Markov Regime-Switching models, the transition of states is stochastic i.e. the 

time of transition from one state to another and the duration between changes in state is 

random. However, the dynamics behind switching from one state to another are known 

and are driven by a transition probabilities matrix, P. This matrix controlling the switching 

probabilities can be represented as following:  

                                                                                         (4.4) 

 

 p11 … p1k 

P = …
 

… …
 

                        pk1 … pkk 
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where pij ≡ p(ϕt-1) ≡ Prob{St = j | St-1 = i ; ϕt-1 } denotes the probability of switching from 

state i at time t-1 to state j at time t. ϕt-1 refers to the information set available to fund 

managers at time t-1. For MRS models, the transition probabilities matrix is of greater 

interest. For instance, for a two-state process (K=2), p11 denotes the probability of staying 

in state 1 in the next period given that the process is currently in state 1. Likewise, p22 

denotes the probability of remaining in state 2 in the next period. Values close to 1 are 

indicative of a persistent process, i.e., the process is expected to stay in a given state for a 

long time period. Usually these regime transition probabilities are assumed to be constant 

over time (Billio et al. (2013), among others) but it is also possible to vary over time as 

suggested by Kosowski (2011) and Mero (2016). In this vein, we let the transition 

probabilities matrix to vary over time conditional on the lagged change in the Composite 

Leading Index (CLI), a macro economic indicator commonly used to forecast the state of 

the economy. We also follow Perez-Quiros and Timmermann (2001) and Kosowski (2011) 

and restrict the constant in the transition probability generating function to be zero, as 

following: 

𝑝𝑖𝑗,𝑡 ≡  Ф(𝑎𝑖𝑗 + Δ𝐶𝐿𝐼𝑖𝑗,𝑡−2 . 𝑏𝑖𝑗)                                         (4.5) 

𝑠. 𝑡.  𝑎𝑖𝑗 = 0 

where Ф(∙) is the cumulative normal density function, ΔCLIij,t-2 is the two-months lagged 

change in the state variable CLI, and bij is a parameter to be estimated along with the other 

model parameters. This approach allows distinguishing between expansion and recession 

periods with transition probabilities being endogenously determined by the data and 

closely related to changes in the CLI commonly used to forecast the state of the economy. 

Omitting the constant in the transition probability generating function guarantees a 

straightforward link between changes in the state variable (ΔCLI) and our data. The length 

and the occurrence of the recession/expansion periods is not chosen arbitrary ex ante but 

is rather determined by the data. 

By combining the static security selection and market timing measures discussed above 

with the Markov Regime-Switching specification, we could define various measures 
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where each risk factor has a regime-specific estimated coefficient, variance, and 

covariance with mutual fund return under consideration. Thus, the above-mentioned multi-

factor asset pricing models coupled with Markov Regime-Switching modelling could be 

represented as following: 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑖,𝑆𝑡 + ∑ 𝛽𝑖,𝑗,𝑆𝑡𝐹𝑗,𝑡
𝑘
𝑗=1 + 𝜀𝑖,𝑆𝑡                      (4.6) 

Where αi,St is the state-dependent abnormal performance measure of fund i in state St. 

Similarly, βij,St represents the state-dependent loading of fund i on the common risk-factor 

j in state St. 

4.3.4. Bootstrap analysis on extreme funds 

It is widely recognized that individual stocks may exhibit significant higher moments (i.e., 

skewness and kurtosis) and varying levels of autocorrelations in their return time-series 

due to, for example, the implementation of dynamic strategies by fund managers. Fletcher 

and Marshall (2005) examine the significance of international trusts in the left and right 

tails of the cross-sectional alpha distribution. They find that the best ranking trust has no 

significant superior performance while the poorest trust reveals a statistically significant 

underperformance whose significance is greater using the distribution of t-statistics rather 

than the alphas. 

Furthermore, non-normality in benchmark returns may result in co-skewness in individual 

stock returns. Kosowski et al. (2006) argue that non-normality in the alphas of individual 

mutual funds is translated into non-normality in the distribution of cross-section mutual 

funds alphas. Thus, a sample of individual funds with heterogeneous levels of risk over 

time can result in fatter (or thinner) tails of the cross-sectional distribution of alphas than 

those of a normal distribution due to their higher (lower) probability of being located in 

the extreme tails of the cross-sectional distribution of alpha estimates. Therefore, 

Kosowski et al. (2006) introduce a new bootstrap approach to deal with this problem that 

does not require the imposition of an ex-ante parametric distribution. They show that their 

approach improves statistical inference by correcting for the under-rejection (over-
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rejection) of the null of no performance ability in the absence of the bootstrap, and that 

their alpha t-statistics controls for differential risk-taking across funds. 

In line with Kosowski et al. (2006), we implement a residual-only bootstrap procedure to 

compute corrected p-values for each fund based on a residual-only resampling approach 

that generates 1,000 bootstrapped alpha coefficients under the null hypothesis of no 

abnormal performance ability, and where the fund’s ranking is based on either the 

estimated performance measure or the estimated t-statistics of the selection performance 

estimates. The main contribution of this chapter resides in incorporating the bootstrap 

methodology in the Markov regime-switching framework. This would allow us accounting 

for fund-level inter-dependencies while considering non-linearities in fund returns. 

Implementation details of the bootstrap procedure are presented in Appendix B. 

4.4. Data 

4.4.1. Mutual funds sample 

Our data provider is the Fundata Canada Inc. database. We select all Canadian mutual 

funds designated as international equity funds that have exist during the period from 

January 1st, 1988 to December 31st, 2013. We restrict attention to mutual funds with the 

following geographic investment objectives: Global, International, Europe, Asia Pacific, 

and Asia Pacific ex-Japan. Global mutual funds invest in both domestic and international 

stocks while International funds are restricted to only investing in international stocks. So, 

the investment universe of International funds excludes Canadian securities.  

Since many funds offer multiple share classes on the same underlying fund, we aggregate 

monthly returns by value-weighting the different share classes’ total assets under 

management. We dismiss funds with “index” and “ETF” indications as they mainly consist 

of passive investment vehicles tracking indexes. We also exclude mutual funds offered in 

US$. These screenings leave us with a final sample of 1,856 international Canadian equity 

mutual funds. We provide all detailed steps of the sample construction procedure in 
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Appendix C. We also report the observation counts in the sample at different construction 

stages. 

Table 4.2 illustrates survival and mortality for the sample of Canadian international mutual 

funds. The study period is split into 13 two-year sub-periods. At the end of each sub-period, 

the table counts entries and exits of mutual funds into the sample. It displays the number 

of entering funds, exiting (both terminated and merged) and surviving (still in existence at 

the period end). The table also reports the attrition and mortality rates. The table shows 

that fund entries reached its peak in the 2000-2003 period with 548 newly entered funds 

(about 30% of sample), a period marked by economic expansion fueled by the Dot-Com 

bubble. Regarding fund disappearance, Table 4.2 characterizes the 2000s decencies as 

periods with the highest death rates where fund mortality rates reached 64% and 33% 

during the early-2000s recession and late-2000s Financial Crisis, respectively. Scrutinizing 

our dataset shows that about 60% of dead funds are from the Global and International 

geographic investment objectives. 

[Table 4.2 about here] 

We extract the net asset values per share, dividend payments, and total assets for all funds 

that have exist during the 1988-2013 sampling period to construct equal-weighted and 

value-weighted portfolios of funds. We also form equal- and value-weighted portfolios of 

surviving funds only. All monthly returns include all distributions, are adjusted for splits, 

and calculated in $CAN. To examine the performance of individual funds, we require 

funds to have a minimum of 36 consecutive monthly return observations during the 

sampling period. Therefore, our sample is reduced to 1,512 funds in the individual fund 

analysis.  

Panel A of Table 4.3 displays summary statistics for individual funds as well as for fund 

portfolios. The table reports the average, standard deviation and various quantiles of the 

cross-sectional distribution of different return parameters (mean, standard deviation, 

minimum, first quintile, median, third quintile, and maximum). The table also provides 

results of the Jarque-Bera test for the null hypothesis that fund returns follow a normal 

https://en.wikipedia.org/wiki/Dot-com_bubble
https://en.wikipedia.org/wiki/Dot-com_bubble
https://en.wikipedia.org/wiki/Late-2000s_financial_crisis
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distribution and of the augmented Dickey-Fuller test for unit root with a drift and trend 

specification.  

[Table 4.3 about here] 

Based on panel A, the average cross-sectional monthly excess return is 0.67%. The 

standard deviation of excess returns varies from 0.01 to 0.16. Extreme monthly excess 

returns range between -30.36% and 36.96%. Based on the Jarque-Bera normality test 

statistics, 48% of the individual funds have normally distributed cross-sectional returns at 

the 5% significance level. According to the augmented Dickey-Fuller test, we are able to 

reject the null hypothesis of unit root for almost 98% of individual funds. Summary 

statistics for excess returns on the equally and value-weighted portfolios including all 

funds and surviving only funds are reported in Panel B of Table 4.3. The average monthly 

returns for the equally and value-weighted portfolios are 0.80% and 0.32%, respectively. 

4.4.2. Benchmarks, risk factors and state variables 

Monthly excess returns of mutual funds are computed using the 1-month Canadian 

Treasury-bill rate as a proxy for the risk-free asset. Historical T-bill rates are retrieved from 

the Canadian Socio-Economic Information Management System (CANSIM) database. 

Our proxy for the world market portfolio is the Morgan Stanley Capital International 

(MSCI) World Index, a broad global equity benchmark that represents large and mid-cap 

equity performance across 23 Developed Markets (DM) countries.49  

We construct the international version of the Fama and French (1993) size factor, SMB, 

as the difference in returns on the MSCI World Small Cap Index and the MSCI World 

Large Cap Index. These indexes capture small (large) cap representation across 23 DM 

countries. Our international HML factor is computed as the return differential between the 

 

49 The MSCI World Index covers approximately 85% of the free float-adjusted market capitalization in each 

of the following 23 DM countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Germany, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, 

Spain, Sweden, Switzerland, the UK and the US. Additional details are in https://www.msci.com/world.  

file:///C:/Program%20Files%20(x86)/MATLAB/MATLAB%20Production%20Server/R2015a/help/econ/adftest.html%23bta7rpp
https://www.msci.com/world
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MSCI World Value Index and the MSCI World Growth Index. The former (latter) captures 

large and mid-cap securities exhibiting overall value (growth) style characteristics across 

the 23 DM countries. Regarding the international momentum factor, MOM, our 

methodology follows Breloer et al. (2014). For each month, we proceed by sorting all 23 

Developed Markets MSCI country indices according to their average monthly returns in 

the past six months. Then we construct two portfolios: winners and losers. Winners 

portfolio includes the top 10 ranked returns while the latter includes the bottom 10. 

Therefore, we build the momentum factor as the return differential between winners and 

losers portfolios.50 All MSCI indexes are retrieved from MSCI’s website 

(www.msci.com). 

Additionally, since we are investigating abnormal performance of internationally 

diversified funds, we include a foreign exchange risk factor in our asset pricing models to 

account for potential currency fluctuations during the 25-years studying period. Our proxy 

for the CA$ exchange risk factor is the excess return on the Canadian-dollar effective 

exchange rate index (CERI). CERI is a weighted average of bilateral exchange rates for 

the Canadian dollar against the currencies of Canada's major trading partners.51 The CERI 

monthly data is obtained from Bank of Canada’s website (www.bankofcanada.ca).   

As discussed above, fund managers may implement dynamic trading strategies based on 

their expectations of future market fluctuations and macroeconomic conditions. In order 

to account for the time-varying aspect of the information flow underlying the fund 

manager’s investment decisions, we let the Markov Regime-Switching probabilities to 

vary over time conditional on the lagged change in the Canadian Composite Leading Index 

(CLI). This index is a macro economic indicator commonly used to forecast the state of 

 

50 For robustness, we consider two momentum strategies (6/1) and (1/1) i.e. ranking is based on either the 

last 6 months returns or the last 1 month. Our results (coefficients sign, magnitude and their statistical 

significance) are robust to the choice of either momentum strategy. 

51 The six foreign currencies included in the CERI are the U.S. dollar, the European Union euro, the Japanese 

yen, the U.K. pound, the Chinese yuan, and the Mexican peso. Before 1996, the South Korean won was part 

of the index, but the Chinese yuan was not. For additional details please refer to the Bank of Canada link: 

http://www.bankofcanada.ca/rates/exchange/ceri/.  

http://www.msci.com/
http://www.bankofcanada.ca/
http://www.bankofcanada.ca/rates/exchange/ceri/
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the economy. It resumes the performance of 10 Canadian economy components that 

signals changes in the business cycle (notably, the approach of turning points that see the 

economy move into recession or recovery) and periods of faster and slower economic 

growth.52 Panels C and D of Table 4.3 presents descriptive statistics and autocorrelations 

of the benchmark, the different risk factors and their cross-correlations. 

4.5. Empirical results 

4.5.1. Markov regime-switching specification 

– Optimal number of regimes: We first start the analysis by determining the optimal 

number of regimes in the Markov regime-switching framework. Several papers rely on the 

log-likelihood function and/or information criteria –e.g. Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC)– to compare the goodness-of-fit of 

Markov switching models with different regime specifications. Table 4.4 displays values 

of the AIC and BIC for different numbers of regimes. The results show that the minimum 

information criterion value, either AIC or BIC, occurs for Markov switching models with 

two regimes. Therefore, we adopt a two-regime specification in the Markov regime-regime 

framework. 

[Table 4.4 about here] 

– Regime characteristics and transition probabilities: Once determining the optimal 

number of regimes, we closely investigate each regime separately. The regime 

characteristics, the transition probability matrix and other regime parameters are illustrated 

in Table 4.5. It reports regime volatility, average excess return, average duration, total 

 

52 According to The Conference Board of Canada’s website, the Canadian Composite Leading Index is 

formed of the following components. The housing index, the U.S. leading indicator, the money supply, the 

stock market, the average workweek in manufacturing, new orders for durable goods, the Conference Board 

of Canada’s Index of Consumer Confidence, commodity prices, claims received for Employment Insurance, 

and finally the spread between the interest rate for private versus government short-term borrowing. 

Additional details could be found in http://www.conferenceboard.ca/reports/cdnleadingindicator/about-

cli.aspx.   

http://www.conferenceboard.ca/reports/cdnleadingindicator/about-cli.aspx
http://www.conferenceboard.ca/reports/cdnleadingindicator/about-cli.aspx
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number of months, and the transition probability matrix. The first two columns of Table 

4.5 show that regime 1 is characterised by higher volatility and lower excess return when 

compared with regime 2. For illustration, the average excess return of the equal-weighted 

(EW) and value-weighted (VW) portfolios of all funds are -0.64% and -1.08% in regime 

1 where the volatility is about 0.14%. On the other hand, in regime 2, characterized by low 

volatility (0.07%, the half of what regime 1 exhibits), the average monthly return of EW 

and SW portfolios increase to reach 2.03% and 1.56%, respectively.  

The bottom rows of Table 4.5 display results for the MSCI World index which provide us 

with the first insights about the correlation between our international fund returns and the 

World Index. The table shows that negative returns by fund portfolios mostly occurred in 

the same regime where the World portfolio records poor returns which is characterized by 

high volatility. Conversely, in regime 2 where volatility is low, the world portfolio exhibits 

also positive excess returns of 1.36%.  

[Table 4.5 about here] 

Empirically, different volatility values in each regime represent different levels of 

uncertainty regarding the goodness-of-fit of the model in each state of the world. One could 

expect that the bear market state (recession) would be more volatile than the bull market 

state (expansion). We therefore label regime 1 with high volatility as “recession” and 

regime 2 with low volatility as “expansion”. Examining the average excess returns in 

column 2 further corroborates our interpretation. In fact, all excess returns are found to be 

negative on average during recession regime and positive during expansion where a 

positive trend of financial prices generally occurs. 

The next 2 columns of Table 4.5 display duration for each of the two regimes. Results 

show that funds were in regime 1 (recession) for about 150 months for an average duration 

of 1.92 years. On the other hand, funds were in expansion regime for 162 months for a 

duration of 2.04 years, on average. The duration results negate the fact that mutual funds 

stayed in one regime most of the time, or ever for a long period.  
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The switches between regimes are further investigated through the transition probability 

matrix reported in the last two columns of Table 4.5. Probabilities p1,1 and p2,2 refer to the 

probabilities of regime i=1 (i=2) at date t-1 remaining in the same regime 1 (2) at date t, 

where high probabilities of remaining in the same regime designate regime persistence. 

Likewise, the probability p1,2 (p2,1) denotes the probability of switching from regime i=1 

(i=2) at time t-1 to regime 2 (1) at time t. Results of the EW portfolio show there is a 

52.16% probability that recession regime will stay for longer and 47.84% probability that 

it will switch to the expansion regime. Contrariwise, the expansion regime has a 49.00% 

probability to persist and 51.00% to shift into a recessionary regime. The VW portfolio of 

funds reveals similar finding. For instance, there is a 52.02% probability of remaining in a 

recession (and thus, a 47.98% probability of switching to an expansion state) and 48.89% 

probability of expansion staying in itself (and therefore, a 51.11% probability of shifting 

to recession). Therefore, one can conclude that regimes are unstable. The probabilities of 

remaining in the same regime and that of switching regime are fairly close. Moreover, the 

average duration of each regime is relatively short (±2 years) while their total time length 

is almost close.  

A graphical representation of the regime probabilities is presented in Figure 4.1. At a first 

glance, it is clear that the Markov regime-switching model is able to capture the periods 

containing major economic crises, notably, the early bearish periods in 1990s, the 

September 11 attacks in 2001, and the 2007-2008 financial crisis. The graph also displays 

the ex post recession dummy variable developed by the National Bureau of Economic 

Research (NBER) Business Cycle Dating Committee. The graph provides additional 

support for the above conclusion. Scrutinizing Figure 4.1 shows: (i) there are several spikes 

or switches between recessionary and expansionary regimes during the studying period, 

(ii) these switches are of relatively shorter duration most of the time.  
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30 Figure 4.1 - Regime probabilities 53 

A close examination of spikes of regime 1 (recession) shows they correspond to periods 

when several financial distress events have occurred worldwide. For example, switches to 

regime 1 coincides with the early 1990s Recessions, the Asian financial crisis in 1997, the 

Dot-Com collapse in 2000, the September 11 attacks in 2001, the London bombings in 

2005, the Global financial crisis 2007-2008, the European sovereign debt crisis from 2010 

through 2012. The events captured by the Markov regime-switching model have occurred 

in the U.S. and worldwide, implying that the performance of internationally diversified 

Canadian mutual funds is sensitive to the worldwide market condition. These events could 

explain the negative returns reported in Table 4.5 occurring in the recessionary regime. 

4.5.2. Security selection skills 

We begin our analysis by examining the security selection ability of equal- (EW) and 

value-weighted (VW) portfolios including all funds (both surviving and non-surviving 

funds that exist at any time during the study period). Table 4.6 reports regime-dependent 

security selection measures (alpha in percent per month) across various multi-factor 

models using the Markov regime-switching specification. To make our contribution 

 

53 The NBER recession indicator is retrieved from The Federal Reserve Bank of St. Louis website: 

https://fred.stlouisfed.org/release?rid=242.  

https://en.wikipedia.org/wiki/2010_European_sovereign_debt_crisis
https://fred.stlouisfed.org/release?rid=242
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emerges clear, we will be comparing the Markov regime-switching estimation results with 

those of the standard linear regression model. 

 [Table 4.6 about here] 

Examining the results of Table 4.6 shows that the EW portfolio including all existing 

Canadian international mutual funds exhibits a positive and statistically significant alpha 

in recession but insignificant negative alpha in expansion. These findings hold among all 

multi-factor models. For illustration, the monthly alpha of the EW portfolio of all funds is 

1.16%, 1.06%, 0.67%, and 0.98% in recession regime according to the 1-, 3-, 4-, and 5-

factor models, respectively. All coefficients are statistically significant at the 1% 

significance level. 

Nevertheless, during expansion the abnormal performance significantly deteriorates, on 

average. It seems that fund managers are not able to outperform the world index as the 

estimated monthly security selection measures decreases to -0.17%, -0.03%, 0.12%, and -

0.02%, respectively. But neither coefficient is statistically significant at standard levels. 

If we use the standard ordinary least squares (OLS) regression, all multi-factor models 

show that international fund managers are not able to outperform the benchmark as all 

estimated alpha values are negative and statistically significant at standard levels. For 

example, the alpha coefficient equals to -0.20% and -0.13% using the 1- and 3- factor 

models, respectively. Our results suggest that the negative abnormal performance by 

international mutual fund managers widely documented in the previous literature could be 

regime specific. It seems that mutual fund managers are able to deliver significant 

abnormal performance in the bear market state; a period commonly characterized by higher 

uncertainty and downward trending in stock prices.  

Regarding the market risk factor, the second row of Table 4.6 shows that the MSCI World 

index has a statistically significant positive coefficient in both regimes regardless the 

multi-factor specification. This suggests that Canadian international mutual funds are 

sensitive to the worldwide market conditions in both regimes, bear and bull. Nevertheless, 
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breaking-down the positive coefficient on the market risk factor into regime-specific 

components reveal interesting results. The estimated market beta coefficient βm,S=1 is 

constantly inferior than βm,S=2 among all multi-factor specifications. In other words, mutual 

funds are found to be less sensitive to worldwide market conditions during recession than 

during expansion. These findings could be interpreted as fund managers reducing their 

fund’s beta during bear market conditions and increasing their fund’s worldwide exposure 

during bull market conditions. These results might indicate that if the fund managers are 

actively adjusting their fund’s market beta, then they had more success during recessions 

than during expansions, resulting in net superior performance in recessionary periods. 

We further examine the variation of the additional risk-factor loadings between recession 

and expansion periods. The loading on the Fama and French (1993) size factor is very 

stable in recession and expansion periods as the results show a statistically significant 

negative premium by small caps over big caps in both states of the economy. Regarding 

the HML factor, the results show that fund portfolios have negative loadings on the book-

to-market factor during recession periods and positive loadings during expansion. Both 

results are statistically significant at the 1% level using the 5-factor model. Unlikely, the 

Carhart (1997) MOM factor is neither statistically significant while the coefficient shows 

negative loadings during recessions and positive loadings during expansions.  

Last but not least, we investigate the loading on the foreign exchange risk factor. The 

results reveal that fund returns are indeed sensitive to fluctuations of the Canadian Dollar 

during both recession and expansion regimes. For instance, the loading on the exchange 

risk factor rises in magnitude during expansion and becomes statistically significant at the 

1% level. This may be described as evidence of greater sensitivity of fund returns to the 

CERI defined a weighted average of bilateral exchange rates for the Canadian dollar 

against the currencies of Canada's most important trading partners. This is not surprising 

since our sample is composed mainly by mutual funds investing primarily on an 

international scale where currency fluctuations of the Canadian Dollar represents a primary 

concern for fund managers.  
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To further investigate selectivity skills by Canadian international fund managers, we 

closely examine the cross-section of individual security selection measures across regimes. 

To be considered, mutual funds are required to have at least 36 consecutive monthly return 

observations. The same Markov Regime-Switching framework, risk factors, and state 

variable are used as in the portfolio examination. Table 4.7 displays summary statistics of 

the cross-sectional security selection performance for all individual funds during recession 

and expansion regimes. Panels 1-5 show results of the five performance models 

incorporated into a Markov regime-switching framework.  

[Table 4.7 about here] 

Regarding volatility, the first two columns of Table 4.7 provide additional evidence that 

regime 1 labeled as recessionary regime, or bear market state, is characterized by higher 

volatility. The average innovation volatility is about 0.101% in recession while averages 

only 0.029% during expansions according to the 1-Factor model using the MSCI World 

index as the single risk factor. According to the international 5-factor model, volatility 

averages 0.066% and 0.016% during recessions and expansions, respectively.  

Regarding the cross-section of individual fund performance, the estimation results in Table 

4.7 corroborate our previous inferences established in the fund portfolios investigation. For 

instance, our results illustrate that international fund managers performed much better 

during recession than during expansion. These findings are factual among all security 

selection models.  

According to the 4- and 5-factor models, the cross-sectional average selectivity measure is 

0.662% and 0.833% during recession (the median is 0.148% and -0.188%). Scrutinizing 

the cross-sectional distribution shows that 60% of sampled funds (915 funds) are able to 

outperform the market portfolio while the remaining (597 funds) are not. We also found 

that 324 funds exhibit statistically significant positive selectivity measures at 5% 

significance levels (179 are significantly negative). In addition, the Bonferroni p-value is 

able to reject the hypothesis that security selection measures across all funds are jointly 
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equal to zero at the 1% level.54 Therefore, it is clear that, during poor market conditions, 

sampled mutual funds are able to earn positive abnormal returns, evidence of superior 

security selection skills by fund managers. On the other hand, during bull market 

conditions, fund managers do not seem to exhibit good skills as better as those recorded 

during recession. For instance, the cross-sectional average selectivity measure takes on 

smaller values (0.014% and 0.278% per month according to the four- and five-factor 

models, respectively). The respective median security selection measures become negative 

(-0.132% and -1.188%, respectively). The skewness (untabulated) of the selectivity 

distributions is constantly negative during recession which indicates that alpha 

distributions are skewed left. At a 5% significance level, the number of significant worst 

funds (625, from a total of 972 underperforming funds) is much higher than the number of 

significant best funds (266, from a total of 540 outperformers) which explains the inferior 

cross-sectional average security selection performance.  

Our findings show a predominance of skilled fund managers that, on average, rise the 

security selection performance of mutual funds during recession. On the other hand, during 

expansion, our results document a predominance of poorly performing funds revealing 

inferior security selection abnormal performance. In addition, a closer examination of the 

cross-sectional distribution of individual selectivity measures reveals that the 

underperforming funds significantly deviate more than the outperforming funds during 

expansionary than during recessionary market conditions. 

4.5.3. Market timing ability 

We now focus on the market timing ability of the managers of international Canadian 

mutual funds. We first examine the overall timing skills using equal- and value-weighted 

portfolios that include both surviving and non-surviving funds over the study period. Panel 

A of Table 4.8 displays results of the Treynor and Mazuy’s (1966) timing measure while 

 

54 The Bonferonni p-value is computed as the smallest individual p-value times the total number of funds in 

the group. The p-value is referred to the null hypothesis that all performance measures across N sampled 

funds are jointly equal to zero. This represents a conservative joint test that at least one fund in the group 

exhibits statistically significant abnormal performance. 
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panel B shows results of the Henriksson and Merton’s (1981) measure. Both models use 

the Markov regime-switching specification. 

[Table 4.8 about here] 

According to the Treynor and Mazuy model, mutual fund managers exhibit negative 

market timing skills in both regimes. The gamma timing coefficient is negative in both 

states of the economy but is statistically significant in expansion periods only. For 

illustration, the gamma value in expansion periods is -1.74 and -2.03 for EW and VW 

portfolios including all funds, respectively. If we restrict attention to surviving funds only, 

the gamma coefficient value is -1.63 and -1.84 for EW and VW portfolios of surivors, 

respectively. All coefficients are statistically significant at the 1% level. The Treynor and 

Mazuy (1966) statistically significant quadratic term suggests that fund excess returns have 

a nonlinear function of the market return. Thus, based on market excess returns forecast, 

fund managers are holding a lower proportion of the market portfolio when they anticipate 

high market returns and a larger proportion when the anticipated return is low which could 

be resumed in poor market timing skills. 

On the other hand, the evidence about market timing skills is not that clear based on the 

Henriksson and Merton (1981) measure. For instance, the EW portfolio of all funds 

displays a statistically significant positive gamma coefficient in recession period 

suggesting that fund managers are good market timers in bear market conditions. However, 

the quadratic term is negative and statistically significant in expansion period indicating 

that managers are poor market timers which is in line with the Treynor and Mazuy model. 

Regarding these results, one cannot conclude about market timing skills of fund managers 

using the portfolio analysis based on the Henriksson and Merton model. 

Table 4.9 reports market timing measures for individual funds (funds are required to have 

a minimum of 36 consecutive monthly return observations to be considered in the 

analysis). The table gives the average and the standard deviation of the cross-sectional 

estimated market timing measures using Markov Regime-Switching specification.  
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[Table 4.9 about here] 

According to the Treynor and Mazuy, managers of Canadian international mutual funds 

are, on average, poor market timers. This result holds for both states of the economy: bear 

and bull markets. For illustration, the cross-sectional average Treynor-Mazuy quadratic 

term is negative in both states of the economy (-2.317 in recession and -1.405 in expansion 

regime). The median value is -2.242 and -1.373 in recession and expansion, respectively). 

Investigating the cross-sectional distribution of the gamma coefficient in recession shows 

that 80% of sampled funds (1,242 funds) are poor market timers while the remaining 20% 

(270 funds) are not. Regarding the statistical significance, only 51 funds (less than 3% of 

the overall sample) exhibit a statistically significant positive quadratic term while 513 

display significant negative coefficients. The Bonferonni test p-value rejects the null 

hypothesis that the timing measures across N funds are jointly equal to zero. 

In expansion periods, the results do not show a significant shift in managerial market 

timing skills as only 100 funds exhibit statistically significant positive gamma coefficients 

at 5% significance levels while 588 are significantly negative. Therefore, it is clear that, 

during both poor and good market conditions, sampled mutual fund managers show 

negative (poor) market timing skills. 

4.5.4. International diversification benefits 

We now examine whether actively managed Canadian international mutual funds provide 

investors with effective diversification benefits compared with the local market. To do so, 

the local Canadian equity market index (S&P/TSX Composite index) is used as the market 

factor in the Markov regime-switching framework. The model can be expressed as follows: 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑖,𝑆𝑡 + 𝛽𝑖,𝑆𝑡(𝑅𝑆&𝑃/𝑇𝑆𝑋,𝑡 − 𝑅𝑓,𝑡) + 𝜀𝑖,𝑆𝑡                (4.7) 

where αi,St is the state-dependent abnormal performance measure of fund i in state St. 

Similarly, βi,St represents the state-dependent loading of fund i on the local S&P/TSX 

Composite index in state St. Table 4.10 reports the alpha performance measure (expressed 
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in percent per month) for the equal- and value-weighted portfolios including all funds as 

well as surviving-only funds.  

 [Table 4.10 about here] 

The results show that, during recession regime, all estimated alpha coefficients are 

negative but statistically insignificant (except for the Surviving EW portfolio). However, 

during the expansion regime, characterized by lower volatility and higher average returns, 

international Canadian mutual funds exhibit statistically significant abnormal performance 

when compared to the domestic Canadian S&P/TSX index. For instance, the results show 

positive monthly abnormal performance of 1.459%, 0.746%, 0.912%, and 0.696% during 

expansion regime for the overall EW, overall VW, Surviving EW, and Surviving VW 

portfolios, respectively. All coefficients are statistically significant at the 1% significance 

level. The equally weighted portfolio of funds realizes better performance than the value-

weighted one, either for all funds or for surviving funds only.  

Again, if we compare the Markov-regime specific alpha coefficients to those estimated 

using a regime-free OLS regression, interesting findings emerge. Both equal- and value-

weighted portfolios of funds constantly fail to outperform the local equity index. The OLS 

alpha coefficients are -0.227% (overall EW), -0.218% (overall VW), -0.075% (survivors 

EW), and -0.092% (survivors VW) which negates the existence of international 

diversification benefits. However, allowing the coefficients to be state-dependent in a 

Markov regime-switching framework shows that international diversification benefits are 

also state-dependent. International Canadian mutual funds are able to deliver 

diversification benefits to Canadian investors in expansion periods as abnormal 

performance is positive and statistically significant at 1% level.   

Scrutinizing the market risk factor loadings shows that international mutual fund returns 

are positively correlated with the S&P/TSX returns, as all coefficients are positive and 

statistically significant among all fund portfolios in both regimes. Breaking down the 

coefficients into regime-specific loadings reveal that the performance of international 

funds is more sensitive to variations in the local Canadian market during recessions rather 
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than expansions. These results might be explained by the fact that the household investor’s 

sentiment is more sensitive to his country specific (local) bear market conditions rather 

than worldwide (remote) market conditions.  

The cross-section of individual funds alphas (untabulated) suggests similar findings that 

the majority of Canadian international mutual funds are not able to outperform the 

domestic equity index in the recessionary state of economy. The average monthly 

underperformance measure is -0.563% per month. The number of individual funds that 

exhibit abnormal performances that surpass that of the local market is significantly lower 

than funds that underperform the local index. Therefore, our results indicate that there is 

no evidence that active international funds, individually or as a group, provide effective 

global diversification for Canadian investors during recessions. However, during 

expansion, these investment vehicles could deliver superior diversification benefits for 

local investors. 

4.5.5. Bootstrap tests on extreme funds 

We examine the statistical significance of extremely ranked mutual funds (i.e. located in 

the extreme tails of the cross-sectional performance distribution) in more details using the 

bootstrap approach. This helps us to successfully identify fund managers with superior 

skills by accounting for individual fund cross-dependencies and for sampling variation 

effects. We implement the bootstrap approach to compute individual fund corrected one-

tailed p-values. For each fund, we implement a residual-only resampling approach to 

generate 1,000 bootstrapped security selection measures (alphas) and its t-statistics under 

the null hypothesis of no abnormal security selection performance (i.e. imposing a null 

alpha coefficient once constructing the artificial time-series of fund excess returns). The 

security selection ability is estimated using the five-factor benchmark. Implementation 

details of the bootstrapped p-values of extreme funds are presented in Appendix B. 

Table 4.11 illustrates bootstrap tests on extreme ex-post ranked funds for security selection 

skills in the left and right tails of the cross-sectional distribution. Panel A reports results 

for the recession period while panel B reports results for the expansion period. Each panel 
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provides the cross-sectionally one-tailed bootstrapped p-values. For comparison, we also 

report the one-tailed parametric p-values based on standard critical values of the t-statistics 

of the fund alphas. Besides, the bottom row of each panel illustrates the fund lifetime 

(measured by the number of monthly return observations) at different points of the cross-

sectional distribution. This may reflect the relation between the fund performance (the 

location of the fund in the segments of the cross-sectional distribution) and the fund age 

(older/newer). 

[Table 4.11 about here] 

Panel A of Table 4.11 shows that, in recession regime, the top best ranked funds in the 

entire population exhibit a statistically significant superior security selection skills 

according to the bootstrapped p-values. When moving to the center of the cross-sectional 

distribution, we find that all point estimates demonstrate statistically significant abnormal 

performance using the bootstrap approach although the parametric p-value is not 

significant. Specifically, all mutual funds ranging between the top 40% and 1% percentiles 

of the right tail exhibit statistically significant superior security selection ability at 5% 

level. For illustration, the top 40% and 10% percentiles include statistically significant 

positive alphas of 0.36% and 1.51% per month.  

In contrast, many mutual funds in the left tail (including the top worst funds) exhibit 

statistically insignificant selectivity performance at 10% level. For instance, funds in the 

20%, 5%, 1% percentiles of the alpha cross-section exhibit statistically insignificant poor 

selectivity talents at 5% significance level. These results confirm our previous findings of 

significant superior selectivity ability of the sampled funds during recession periods. 

Furthermore, when investigating the location of newer/older funds at different segments 

of the cross-sectional distribution, we find that older funds are mainly concentrated in the 

center of the performance distribution. Besides, we find that the top three best funds have 

an average lifetime length of seven years. Conversely, newer funds (an average lifetime of 

only three years) are found to be located in the extreme left tail of the cross-sectional 

distribution. These outcomes imply that newer funds exhibit poor security selection 
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performance. In contrast, older funds are found to exhibit more stability and much better 

stock picking skills. 

Regarding the performance of funds during the expansion regime, the bootstrap results 

confirm our previous findings that fund managers do not exhibit superior security selection 

skills in bull market conditions. 

The bootstrapped p-values in the top 40%, 20%, 10%, and 1% percentile strongly reject 

the null hypothesis of statistically significant positive alphas. On the contrary, only the 

20% percentile fund is the exception that exhibit statistically insignificant 

underperformance (at 10% level) among the left tail. Thus, it is clear that the left tail of the 

alpha distribution of international Canadian international mutual funds contains a 

substantial number of worst funds that exhibit statistically significant poor security 

selection skills according to the bootstrapped p-values. Besides, the three worst ranked 

funds exhibit statistically significant negative alphas. These findings go in parallel with 

our previous results of superior selection skills by international fund managers during 

recession periods. These results are also corroborated using the t-statistics ranking 

technique (untabulated).  

Furthermore, when investigating the relation between fund performance and fund age, we 

find that all older funds seem to be concentrated in the center and the right tail of the cross-

sectional performance distribution. Besides, we locate that the average lifetime of the three 

best funds are six years. Similar to previous results, newer funds (an average lifetime of 

less than five years) are located in the extreme left tail of the security selection performance 

distribution. 

4.6. Conclusion 

In this chapter we focus on cyclical patterns in the performance of internationally 

diversified mutual funds by incorporating the Markov Regime-Switching approach into 

international asset pricing models. The examination of the security selection ability shows 
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that the negative abnormal performance by international mutual fund managers widely 

documented in the previous literature is regime specific. Our results show that mutual fund 

managers are able to deliver significant abnormal performance in the bear market state; a 

period commonly characterized by higher uncertainty and downward trending in stock 

prices. Our portfolio examinations provide strong evidence that the security selection 

performance of these funds is sensitive to the selected pricing model and to the regime. 

The events captured by the Markov regime-switching model have occurred in the U.S. and 

worldwide, implying that the performance of internationally diversified Canadian mutual 

funds is sensitive to the worldwide market condition. Our results also show that fund 

managers are actively reducing their fund’s beta during bear market states and increasing 

their fund’s exposure during bull market states. Our results provide strong support for the 

fact that traditional static performance measures understate the value added by active fund 

managers in recessions, when economic uncertainty reins and investor’s marginal utility 

of wealth is very high.  
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11 Table 4.1 - Selection of studies on mutual funds with an international objective 

This table provides a brief overview on the main empirical studies that examine the performance of international mutual funds. In this table, > refers to outperform; 

Div. refers to diversification; Int. refers to international; Perf. refers to performance (selection ability unless indicated otherwise); PPWM refers to the positive 

period weighted measure of Grinblatt and Titman (1989); MSCI-W refers to Morgan Stanley Capital International World index; and Sign. refers to significant. 

Study Sample Performance & Diversification 

Cumby and Glen (1990) 15 U.S. Int.; 1982-

1988 

Jensen alpha; PPWM. None against MSCI-W & E-W portfolio Eurocurrency deposits; Sign. - timing 

Eun et al. (1991) 19 Int.; 1977-1986 Jensen alpha. Perf. > local index (majority of funds); not MSCI-W. Div. benefits for U.S. investors 

Droms and Walker 

(1994) 

30 U.S. Int., 1981-

1990 

cross-sectional/time series regression methodology. Perf. ≈ S&P500 & MSCI-W; Perf. < EAFE. No load 

fund perf. unrelated to fund characteristics (e.g., asset size, expense ratio, & portfolio turnover). 

Gallo and Swanson 

(1996) 

37 U.S. Int., 1985-93 Perf. for 15 > MSCI-W; on average, neutral Perf. 

Detzler and Wiggins 

(1997) 

35 global, 1985-1994 Jensen alpha; PPWM.  Perf. > for 2 funds. Sign. increase Sharpe ratio adding a fund to Wilshire 5000. 

Fletcher (1999) 85 U.K. 

NorthAmerican, 

1985-1996 

Majority with perf. < S&P500 & S&P500 + small stock + U.S. government bond indexes. Improves with 

conditioning. No sig. Perf. persistence using league table methodology. No sign. relation between 

performance and trust size and annual trust charge (initial or ongoing) 

Redman et al. (2000) 5 portfolios of U.S. 

Int., 1985-1994  

Sharpe & Treynor indexes & Jensen alpha. Full period: Perf. > Vanguard Index 500 & E-W portfolio of 

domestic funds. Perf.  differs by sub-period & fund category (world, foreign, European, Pacific, and Int.) 

Tkac (2001) All U.S. Int. in 

CRSP; 1990-1999 

Sharpe index & Jensen alpha.  Those well-diversified: large % perf. > their passive MSCI benchmarks. 

Not the case for regional, country or emerging market funds.  

Engström (2003) 299 Swedish, 1993-

1998 

1- & 5-factor benchmark. Overall perf. < benchmarks. Explained by fees for European but not Asian 

funds. Size of investment universe affects perf. for Asian but not European fund.  Higher div. benefits 

from European versus Asian funds. 

Fletcher and Marshall 

(2005) 

282 U.K. equity, 

1985-2000 

No sign. Perf. Best and poorest fund exhibit no sign. perf. and sign. < perf., respectively, using residual-

only bootstrap approach of Kosowski et al. (2006) 

Otten and Bams (2007) U.S. & U.K. invested 

in U.S., 1990-2000 

Use local market index benchmarks. No sign. perf. differences. Foreigners face significant information 

disadvantages in large firm market due to co-movements between U.S. and U.K. markets and to U.K.-

manager home bias as manifested in greater exposure to U.K. cross-listed firms but not due to the 

Dollar/Pound exchange rate. 

Turtle and Zhang (2012) U.S, April 1989 to 

March 2009 

MSCI-W. E-W portfolios of 2190 domestic, 499 developed market, and 37 emerging market funds.  Perf. 

differs between global bull & bear markets using regime-switching approach with fixed & time-varying 

transition probabilities. 

Ismailescu and Morey 

(2012) 

157 U.S. Int., Q3 

2003 to Q4 2006 

Sharpe & Jensen alpha. Event study methodology. Sign. perf. increase with introduction of a redemption 

fee because it lowers cash holdings.  

2
0

1
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12 Table 4.2 - Survival and mortality of mutual funds 

The table illustrates survival and mortality for a sample of 1,856 mutual funds for the period from January 1988 to 

December 2013. The study period is split into 13 two-year sub-periods. At the end of each sub-period, the table counts 

entries and exits of mutual funds into the sample. The table reports the number of entry funds, exiting funds (terminated 

and merged) and survived funds (still in existence at the period end). The attrition rate is the ratio of exiting funds to 

the total number of all existing funds at the sub-period end. The mortality rate is the complement of the surviving rate 

(the number of survived funds divided by the number of all existing funds at the period end). 

Years 88-89 90-91 92-93 94-95 96-97 98-99 00-01 02-03 04-05 06-07 08-09 10-11 12-13 

Entry 49 11 42 78 68 206 355 193 110 212 401 128 3 

Exit 

Terminated - 1 0 0 18 13 38 104 42 44 39 57 65 

Merged - 0 0 0 0 0 6 42 187 42 43 120 86 

Total - 1 0 0 18 13 44 146 229 86 82 177 151 

Year end 49 59 101 179 229 422 733 780 661 787 1106 1057 909 

Attrition (%) - 1.7 0.0 0.0 7.9 3.1 6.0 18.7 34.6 10.9 7.4 16.7 16.6 

Survived 28 34 49 67 98 171 259 345 400 524 822 907 909 

Mortality (%) 42.9 42.4 51.5 62.6 57.2 59.5 64.7 55.8 39.5 33.4 25.7 14.2 0.0 
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13 Table 4.3 - Descriptive statistics for mutual fund returns, risk factors, and state variable 

The table displays summary statistics for monthly excess returns on individual funds, portfolios, risk factors, and the 

state variable for the period from January 1988 to December 2013. Panel A displays descriptive statistics for individual 

funds (with a minimum of 36 consecutive monthly observations) while Panel B displays descriptive statistics for the 

equal- and value-weighted portfolios of all existing funds. Panel C reports summary statistics for monthly excess 

returns on the MSCI World index and returns on the SMB, HML, MOM, CERI, and CLI. Panel D presents cross-

correlations between the risk factors. The descriptive statistics are mean, standard deviation, minimum, first quartile, 

median, third quartile, maximum, first- and twelfth-order autocorrelations in monthly returns. JB. is the p-value of the 

Jarque-Bera test for the null hypothesis that the returns follow a normal distribution. ADF. is the p-value of the 

augmented Dickey-Fuller test for unit root with a drift and trend specification. For panel A, JB. and ADF. represent 

the percentage of funds for which one could reject the null hypothesis at the 5% level.  

Panel A. Descriptive statistics for individual funds 

Statistic Mean S.D. Min. Q1 Median Q3 Max. ρ1 ρ12 JB. ADF. 

Average 0.0067 0.0424 -0.1143 -0.0178 0.0083 0.0342 0.1113 0.2109 0.0164 52.04 98.37 

Std. Dev. 0.0223 0.0168 0.0429 0.0178 0.0219 0.0318 0.0735 0.1683 0.1104   

Minimum -0.0301 0.0001 -0.3036 -0.0865 -0.0384 0.0001 0.0001 -0.2399 -0.3852   

Q1 0.0000 0.0344 -0.1386 -0.0251 0.0011 0.0258 0.0680 0.1177 -0.0464   

Median 0.0032 0.0396 -0.1109 -0.0180 0.0059 0.0294 0.0850 0.1934 0.0148   

Q3 0.0068 0.0460 -0.0871 -0.0110 0.0100 0.0337 0.1169 0.2687 0.0710   

Maximum 0.2716 0.1643 0.0000 0.2464 0.2945 0.3378 0.3698 0.9371 0.7611   

Panel B. Descriptive statistics for fund portfolios 

Portfolio Mean S.D. Min. Q1 Median Q3 Max. ρ1 ρ12 JB. ADF. 

Overall EW 0.0080 0.0336 -0.1195 -0.0115 0.0116 0.0316 0.0893 0.1647 0.0287 0.00 0.00 

Overall VW 0.0032 0.0351 -0.1211 -0.0158 0.0067 0.0264 0.0936 0.1390 0.0144 0.00 0.00 

Panel C. Descriptive statistics for benchmark, risk factors, and state variable 

MSCI World 0.0047 0.0416 -0.1175 -0.0204 0.0065 0.0333 0.1215 -0.0640 0.1032 0.21 0.00 

SMB -0.0011 0.0615 -0.2027 -0.0374 -0.0039 0.0311 0.2314 -0.4091 0.1102 0.00 0.00 

HML 0.0001 0.0201 -0.0714 -0.0100 -0.0004 0.0097 0.0796 0.1358 -0.0567 0.00 0.00 

MOM -0.0012 0.0308 -0.1000 -0.0190 -0.0022 0.0188 0.1886 -0.0699 -0.0803 0.00 0.00 

CERI -0.0030 0.0157 -0.0952 -0.0135 -0.0031 0.0068 0.0558 0.2735 -0.0019 0.00 0.00 

CLI -0.0116 0.3869 -1.3222 -0.2167 -0.0217 0.2002 1.2719 0.9609 -0.4100 0.00 0.34 

Panel D. Correlation matrix of benchmark, risk factors, and state variable 

 MSCI SMB HML MOM CERI CLI      

MSCI World 1 0.7093 -0.0881 -0.0197 -0.0929 0.2063      

SMB  1 -0.1419 -0.0710 -0.1176 -0.0309      

HML   1 -0.0977 0.0270 -0.0104      

MOM    1 -0.0063 0.0286      

CERI     1 0.2766      

CLI      1      

file:///C:/Program%20Files%20(x86)/MATLAB/MATLAB%20Production%20Server/R2015a/help/econ/adftest.html%23bta7rpp
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14 Table 4.4 - Information criterion and regime selection 

The table displays values of the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) for 

different regime numbers in a univariate Markov regime-switching framework. Overall EW and Overall VW refer to 

the equal-weighted and value-weighted fund portfolios of all 1,856 mutual funds that exist during the period from 

January 1988 to December 2013. K refers to the number of states. µ is the monthly average excess return over each 

regime. S is the state indicator. 

 # States µS=1 µS=2 µS=3 µS=4 BIC AIC 

Overall EW K = 2 0.0154 -0.0095 - - -1251.2 -1228.7 

K = 3 0.0157 -0.0246 0.0016 - -1242.1 -1197.2 

K = 4 0.0144 -0.0135 0.0481 -0.0226 -1236.9 -1162.0 

Overall SW K = 2 0.0094 -0.0208 - - -1220.0 -1197.5 

K = 3 0.0099 -0.0155 -0.0248 - -1218.7 -1173.8 

K = 4 0.0200 -0.0280 -0.0122 -0.0212 -1204.5 -1129.6 

MSCI World  K = 2 0.0113 -0.0017 - - -1111.2 -1088.8 

K = 3 0.0104 -0.0050 0.0763 - -1107.0 -1062.1 

K = 4 0.0238 0.0036 -0.0054 -0.0061 -1096.2 -1021.4 
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15 Table 4.5 - Regime probabilities and duration 

The table shows the Markov Regime-Switching transition probabilities and regime characteristics in a univariate 

framework. Overall EW and Overall VW refer respectively to the equal-weighted and value-weighted fund portfolios 

including all funds that have exist during the 1988-2013 sampling period. p1,1 and p2,2 refer to the probabilities of 

staying in regime 1 and 2, respectively. p1,2 (p2,1) is the probability of switching to regime 2 (1) while being initially 

in regime 1 (2). Average duration is the average length of each regime expressed in number of years. # Months is the 

total number of months for each regime. Mean ER. and Volatility are the portfolio average monthly excess return and 

the residual variance over each regime, respectively. 

 
p1,1 p1,2 Average 

duration 
# Months Mean ER. Volatility 

p2,1 p2,2 

Overall EW 
Regime 1 0.52 0.51 2.04 150 -0.0064 0.0013 

Regime 2 0.48 0.49 1.92 162 0.0203 0.0007 

Overall VW 
Regime 1 0.52 0.51 2.05 153 -0.0108 0.0014 

Regime 2 0.48 0.49 1.92 159 0.0156 0.0007 

MSCI World  
Regime 1 0.53 0.52 2.06 160 -0.0047 0.0022 

Regime 2 0.47 0.48 1.90 152 0.0136 0.0012 
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16 Table 4.6 - Security selection measures of fund portfolios  

The table reports security selection measures for portfolios of funds over the period from January 1988 to December 

2013. Panel A displays results for the overall equally weighted portfolio while panel B provides results for the value-

weighted portfolio. Portfolios of funds include both surviving and non-surviving funds that exist at any time during 

the study period. Each panel provides estimates of the portfolio security selection measure (alpha in percent per month) 

across various performance models. Figures in parentheses denote the standard errors of the estimates. The asterisks 

*, **, and *** refer to the significant alphas at the 10%, 5%, and 1% significance levels, respectively. 

Panel A. Equally weighted portfolio of funds 

 1-Factor 3-Factor 4-Factor 5-Factor 

 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

α (%) 
1.1560 *** 

(0.00) 

-0.1710 

(0.00) 

1.0576 *** 

(0.00) 

-0.0278 

(0.00) 

0.6668 *** 

(0.00) 

0.1179 

(0.00) 

0.9843 *** 

(0.00) 

-0.0159 

(0.00) 

βMSCI 
0.6045 *** 

(0.05) 

0.7236 *** 

(0.03) 

0.6679 *** 

(0.09) 

0.8597 *** 

(0.06) 

0.7733 *** 

(0.06) 

0.8678 *** 

(0.05) 

0.7500 *** 

(0.05) 

0.8968 *** 

(0.04) 

βSMB   
-0.1016 * 

(0.05) 

-0.0963 *** 

(0.03) 

-0.0911 ** 

(0.04) 

-0.1549 *** 

(0.03) 

-0.0808 ** 

(0.03) 

-0.1473 *** 

(0.03) 

βHML   
-0.2006 * 

(0.12) 

0.0981 

(0.07) 

-0.2745 *** 

(0.08) 

0.2620 *** 

(0.08) 

-0.2488 *** 

(0.08) 

0.1816 *** 

(0.05) 

βMOM     
-0.0816 

(0.06) 

-0.0108 

(0.04) 

-0.0727 

(0.05) 

0.0210 

(0.04) 

βCERI       
0.1920 * 

(0.11) 

0.4184 *** 

(0.06) 

σ²ε 0.0245 0.0240 0.0235 0.0208 0.0339 0.0112 0.0283 0.0080 

L.L. 839.24 851.16 848.92 873.33 

AIC -1662.47 -1678.32 -1669.84 -1714.65 

BIC -1632.53 -1633.41 -1617.44 -1654.76 

 

Panel B. Value weighted portfolio of funds 

 1-Factor 3-Factor 4-Factor 5-Factor 

 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

α (%) 
0.6577 *** 

(0.00) 

-0.4734 *** 

(0.00) 

0.5859 *** 

(0.00) 

-0.6691 *** 

(0.00) 

0.5761 *** 

(0.00) 

-0.6853 *** 

(0.00) 

0.6368 *** 

(0.00) 

-0.6226 *** 

(0.00) 

βMSCI 
0.5257 *** 

(0.05) 

0.8292 *** 

(0.04) 

0.6642 *** 

(0.06) 

0.9568 *** 

(0.05) 

0.6725 *** 

(0.06) 

0.9554 *** 

(0.05) 

0.7299 *** 

(0.07) 

0.9398 *** 

(0.04) 

βSMB   
-0.0948 ** 

(0.04) 

-0.1272 *** 

(0.04) 

-0.0982 ** 

(0.04) 

-0.1297 *** 

(0.04) 

-0.0749 * 

(0.04) 

-0.1485 *** 

(0.04) 

βHML   
-0.0588 

(0.09) 

0.1998 *** 

(0.08) 

-0.0714 

(0.10) 

0.1952 ** 

(0.08) 

-0.1273 

(0.09) 

0.2450 *** 

(0.07) 

βMOM     
-0.0579 

(0.08) 

-0.0310 

(0.05) 

-0.0539 

(0.06) 

-0.0189 

(0.05) 

βCERI       
0.2537 * 

(0.14) 

0.3395 *** 

(0.08) 

σ²ε 0.0382 0.0181 0.0362 0.0141 0.0359 0.0142 0.0347 0.0112 

L.L. 812.11 826.21 827.07 841.36 

AIC -1608.21 -1628.42 -1626.14 -1650.72 

BIC -1578.27 -1583.50 -1573.74 -1590.83 
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17 Table 4.7 - Security selection ability of individual funds 

The table reports security selection measures for individual funds over the period from January 1988 to December 

2013. Funds are required to have a minimum of 36 consecutive monthly return observations to be considered in the 

individual analysis. The total number of funds is 1,512 funds. The Markov Regime-Switching specifications are based 

on the 1-factor model (Panel A), 3-factor (Panel B), 4-factor (Panel C), and the 5-factor (Panel D) abnormal 

performance models. Each panel gives the average and the standard deviation of the cross-sectional estimated 

volatility and security selection measure (α in percent per month). It also includes the Best and Worst funds (Min. and 

Max.) with the median cross-sectional measure. Further, each panel counts the number of funds with positive and 

negative alphas (denoted n+ and n-, respectively). n+
5% and n-5% denote the corresponding number of funds with 

statistically significant positive and negative alpha at the 5% significance level, respectively. Bonf. p-val. Stands for 

the Bonferonni test p-value of the null hypothesis that the selectivity measures across N funds are jointly equal to zero. 

 Volatility Alpha distribution (%) Performance Bonf. 

p-val.  Mean S.D. Mean S.D. Min. Median Max. n+ n+
5% n- n-

5% 

Panel A. 1-Factor model 

Regime 1 0.101 0.190 0.517 3.547 -13.019 -0.036 31.771 730 386 782 434 0.00 

Regime 2 0.029 0.042 0.234 2.194 -4.607 0.009 31.363 760 482 752 464 0.00 

Panel B. 3-Factor model 

Regime 1 0.081 0.148 0.533 3.798 -46.686 0.026 33.018 772 393 740 392 0.00 

Regime 2 0.022 0.040 0.070 2.028 -5.757 -0.141 30.388 635 391 877 601 0.00 

Panel C. 4-Factor model 

Regime 1 0.076 0.142 0.662 3.608 -4.144 0.076 31.586 823 390 689 327 0.00 

Regime 2 0.019 0.036 0.014 2.023 -6.467 -0.132 31.550 613 356 899 592 0.00 

Panel D. 5-Factor model 

Regime 1 0.066 0.122 0.833 3.568 -3.084 0.148 31.754 915 324 597 179 0.00 

Regime 2 0.016 0.031 0.276 11.683 -4.466 -0.188 47.719 540 266 972 625 0.00 
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18 Table 4.8 - Market timing ability of fund portfolios  

The table reports measures for fund portfolios over the period from January 1988 to December 2013. Panel A displays 

results of the Treynor and Mazuy’s (1966) timing measure while panel B shows results of the Henriksson and Merton’s 

(1981) measure. Each panel provides estimates of the timing measure across various portfolios. Overall portfolios 

include both surviving and non-surviving funds that have exist at any time over the study period. Surviving portfolios 

include only survivors. EW and VW stand for equally weighted and value-weighted formed portfolios, respectively. 

Figures in parentheses denote the standard errors of the estimates. The asterisks *, **, and *** refer to the significant 

alphas at the 10%, 5%, and 1% significance levels, respectively. 

Panel A. Trerynor-Mazuy measure 

 Overall EW Overall VW Surviving EW Surviving VW 

 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

γ 
-0.5355 

(0.82) 

-1.7371 *** 

(0.49) 

-0.2105 

(0.99) 

-2.0270 *** 

(0.49) 

-0,4493 

(0.92) 

-1,6292 *** 

(0.45) 

-0,9251 

(0.11) 

-1,8398 *** 

(0.53) 

σ²ε 0.0247 0.0218 0.0317 0.0245 0,0242 0,0219 0,0462 0,0159 

L.L. 846.49 819.20 849.36 811.40 

AIC -1672.98 -1618.39 -1678.73 -1602.79 

BIC -1635.55 -1580.96 -1641.30 -1565.36 

 

Panel B.  Henriksson-Merton measure 

 Overall EW Overall SW Surviving EW Surviving SW 

 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

γ 
0.0112 *** 

(0.00) 

-0.0107 ** 

(0.00) 

0.0093 

(0.01) 

-0.0086 * 

(0.01) 

-0,0102 ** 

(0.00) 

0,0085 * 

(0.00) 

0,0075 

(0.01) 

-0,0083 

(0.01) 

σ²ε 0.0238 0.0236 0.0343 0.0211 0,0237 0,0235 0,0367 0,0218 

L.L. 843.56 813.56 848.44 805.49 

AIC -1667.12 -1607.12 -1676.88 -1590.98 

BIC -1629.69 -1569.69 -1639.45 -1553.55 
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19 Table 4.9 - Market timing ability of individual funds 

The table reports market timing measures for individual funds over the period from January 1988 to 

December 2013. Funds are required to have a minimum of 36 consecutive monthly return observations to be 

considered in the individual analysis. The total number of funds is 1,512 funds. The Markov Regime-

Switching specifications are based on the Treynor and Mazuy’s (1966) (Panel A) the Henriksson and 

Merton’s (1981) market timing measures. Each panel gives the average and the standard deviation of the 

cross-sectional estimated volatility and market timing measure γ. It also includes the Best and Worst funds 

(Min. and Max.) with the median cross-sectional measure. Further, each panel counts the number of funds 

with positive and negative gammas (denoted n+ and n-, respectively). n+
5% and n-5% denote the corresponding 

number of funds with statistically significant positive and negative gamma at the 5% significance level, 

respectively. Bonf. p-val. Stands for the Bonferonni test p-value of the null hypothesis that the timing 

measures across N funds are jointly equal to zero. 

 Volatility Gamma distribution Performance Bonf. 

p-val.  Mean S.D. Mean S.D. Min. Median Max. N+ n+
5% N- n-

5% 

Panel A. Treynor-Mazuy 

Regime 1 0.091 0.164 -2.317 4.116 -35.022 -2.242 28.219 270 51 1242 513 0.00 

Regime 2 0.025 0.042 -1.405 3.522 -31.636 -1.373 27.777 376 100 1136 588 0.00 

Panel B. Henriksson-Merton 

Regime 1 0.096 0.175 -0.001 0.034 -0.391 -0.002 0.277 696 182 816 147 0.00 

Regime 2 0.026 0.040 0.007 0.033 -0.365 0.009 0.370 1028 461 484 134 0.00 
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20 Table 4.10 - Diversification benefits for international funds 

The table reports diversification benefits for the sample of 1,856 international mutual funds over the period 

from January 1988 through December 2013. Panel A displays results for portfolios of funds while panel B 

reports results for individual funds. Overall portfolios include both surviving and non-surviving funds that 

have exist at any time over the study period. Surviving portfolios include only survivors. EW and VW stand 

for equally weighted and value-weighted formed portfolios, respectively. Beta coefficient is estimated using 

excess returns on the Canadian domestic S&P/TSX index. Figures in parentheses denote the standard errors 

of the estimates. The asterisks *, **, and *** refer to the significant alphas at the 10%, 5%, and 1% 

significance levels, respectively. 

 Overall EW Overall VW Surviving EW Surviving VW 

 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

α (%) 
-0.1809 

(0.00) 

1.4596 *** 

(0.00) 

-0.0147 

(0.00) 

0.7463 *** 

(0.00) 

-0,7477 ** 

(0.00) 

0,9120 *** 

(0.00) 

-0,0975 

(0.00) 

0,6961 *** 

(0.00) 

βS&P/TSX 
0.6501 *** 

(0.06) 

0.4762 *** 

(0.05) 

0.7061 *** 

(0.05) 

0.4081 *** 

(0.05) 

0,6261 *** 

(0.06) 

0,4864 *** 

(0.05) 

0,7085 *** 

(0.05) 

0,3758 *** 

(0.05) 

σ²ε 0.0511 0.0376 0.0698 0.0274 0,0505 0,0373 0,0696 0,0285 

L.L. 745.11 727.42 747.61 724.70 

AIC -1474.22 -1438.84 -1479.22 -1433.39 

BIC -1444.28 -1408.90 -1449.28 -1403.45 
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21 Table 4.11 - Bootstrap tests on extreme fund alphas 

The table illustrates bootstrap tests on extreme ex-post ranked funds for security selection skills in the left and right tails of the cross-sectional distribution. 

The security selection ability is estimated using the five-factor benchmark model. The employed regional benchmarks are outlined in the paper text. The 

bootstrap approach is implemented using 1,000 residual-only resamples under the null hypothesis of no abnormal security selection performance. Panel A 

reports fund alphas in recession while panel B reports alphas in the expansion regime. The Boot. p-val. denotes the cross-sectional bootstrapped p-values. For 

comparison, each panel gives the parametric p-values based on standard critical values of the t-statistics of fund alphas. The bottom row (l.l.) includes the 

fund lifetime length at different tail segments (measured by the number of monthly return observations). 

 Left Tail  Right Tail 

 Worst 2nd 3rd 1% 5% 10% 20% 30% 40% Med. 40% 30% 20% 10% 5% 1% 3rd 2nd Best 

Panel A. Recession Regime 

alpha  -3.10 -4.14 -3.65 -2.47 -1.68 -1.27 -0.78 -0.45 -0.12 0.14 0.36 0.61 0.92 1.51 3.66 22.05 30.62 30.69 31.75 

Boot. p-val. 0.00 0.14 0.00 0.15 0.11 0.00 0.18 0.00 0.01  0.05 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 

p-val. 0.01 0.02 0.02 0.03 0.04 0.13 0.30 0.01 0.41  0.14 0.14 0.21 0.25 0.03 0.01 0.06 0.03 0.00 

l.l. 40 38 38 59 44 37 36 153 41  153 86 86 36 86 81 103 86 68 

Panel B. Expansion Regime 

alpha  -4.47 -2.88 -2.88 -2.42 -1.75 -1.34 -0.87 -0.56 -0.32 -0.18 0.03 0.27 0.62 1.09 1.77 7.91 25.00 27.98 47.73 

Boot. p-val. 0.00 0.00 0.04 0.00 0.00 0.10 0.15 0.00 0.00  0.12 0.00 0.08 0.07 0.00 0.11 0.00 0.00 0.00 

p-val. 0.00 0.03 0.04 0.00 0.08 0.01 0.03 0.26 0.18  0.45 0.16 0.05 0.10 0.07 0.02 0.03 0.03 0.00 

l.j. 46 51 52 41 36 83 91 51 52  56 105 112 122 54 65 86 56 68 

2
1

2
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Conclusion 

The general conclusion of this dissertation is that the decision to switch the mortgage 

servicer via selling the underlying MSR unveils an asymmetric information problem in the 

U.S. market as it delivers a crucial piece of information for predicting mortgage default. 

Two main candidate theories could explain our results. First, according to the adverse 

selection theory, originators possessing superior information obtained at the time of 

original underwriting about the expected mortgage default could adversely sell MSRs for 

low quality mortgages and keep good-quality mortgages on its servicing portfolio. Second, 

according to the moral hazard theory, the fact that MSRs will be sold to another entity 

could reduce the mortgage originator effort in terms of screening applicants and 

monitoring borrowers. In either case, the decision appears to play a central role in mortgage 

default.  

Overall, this dissertation contributes to increase our understanding of the mortgage 

servicing business. This work answered some questions and triggered new ones. It is the 

author’s expectation that this dissertation will trigger future questions on how to make the 

mortgage servicing market more efficient and how to design mortgage servicing contracts 

to efficiently reduce information asymmetry between the contracting parties. 

In future works, it is straightforward to estimate the dollar value of Mortgage Servicing 

Rights contracts and incorporate it in the analysis as a conditioning variable. Besides, it is 

crucial to exploit the temporal dynamics in the relationship between servicers to separate 

adverse selection from moral hazard. Last but not least, we can estimate the dollar amount 

of the added value of Machine Learning algorithms. 
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Appendix A 

22 Table A1 - Variable definition and source 

Name Type Description Source 

Switch Servicer Binary Denotes the decision of the originating lender to sell or to retain the mortgage servicing right of a given loan. 

Takes the value of 1 if the originator decides to sell the underlying MSR and 0 if the he retains the MSR and 

continues servicing the loan.  

MBSData 

Default Binary Denotes mortgage default. Takes the value of 1 if the borrower of a given mortgage misses three or more 

consecutive monthly payments (i.e. when the mortgage status is first labeled as 90+ days delinquent). 

MBSData 

FICO score Continuous The borrower’s FICO score created and calculated by the Fair Isaac Corporation. It measures the credit quality 

of borrowers by taking into account individual’s payment history, length of credit history, current level of 

indebtedness, and types of credit used by the borrower.  

MBSData 

FICO660 Binary Takes the value of 1 if the borrower’s FICO score is above 660 and 0 otherwise. In general, a FICO score above 

660 indicates that the individual has a good credit history.  

MBSData 

LTV Continuous The Loan-To-Value ratio calculated as the percentage of the first-lien mortgage to the total value of the property. 

It is one of the key risk factors used by U.S. lenders when qualifying borrowers for a mortgage. A high LTV 

ratio mirrors a loan with low down payment for which the borrower has little equity stake in the property.  

MBSData 

LTV80 Binary Takes the value of 1 if the LTV ratio is equal or higher than 80%. MBSData 

DTI Continuous The Debt-To-Income ratio calculated as the fraction of monthly mortgage payments to the borrower’s monthly 

income. DTI measures the borrower’s ability to honor periodic debt payments as it compares debt payments to 

the borrower’s income. 

MBSData 

No/Low doc. Binary Takes the value of 1 if the documentation level is labelled “missing” or “low”, and 0 otherwise. No- or Low-

documentation mortgages designate loans for which the lender did not gathered a sufficient level of information 

on the borrower’s reliability and credit worthiness.  

MBSData 

2
1

4
 

 

http://en.wikipedia.org/wiki/Lien
http://en.wikipedia.org/wiki/Mortgage_law
http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Lenders
http://en.wikipedia.org/wiki/Borrower
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ln Amount Continuous The natural logarithm of the initial balance of the mortgage. Does not include neither interest nor taxes nor fees. MBSData 

Interest Continuous The interest rate initially applied at the time of original underwriting. Higher interest rates usually reflect loans 

granted for borrowers with inferior credit quality, which increase their monthly debt payments.  

MBSData 

ARM Binary Takes the value of 1 if the loan type is Adjustable-Rate Mortgage and 0 if Fixed-Rate Mortgage. ARM indicates 

whether the interest rate of a given mortgage is fluctuation over time based on a benchmark index plus an 

additional spread, called an ARM margin. 

MBSData 

ARM margin Continuous A fixed component added to the interest rate for ARM mortgages. The margin is constant throughout the lifetime 

of the mortgage while the benchmark index fluctuates over time according to general market conditions. 

MBSData 

Balloon Binary Takes the value of 1 if the mortgage has a balloon payment structure, 0 otherwise. Balloon mortgagors make 

only interest payments during the lifetime of the loan. At the term end, the borrower repays the entire principal 

at once. 

MBSData 

GSE 

conforming 

Binary Takes the value of 1 if the lender follows the GSEs’ lending guidelines and 0 otherwise. Following the GSEs’ 

recommendations, we classify a mortgage as conforming if the borrower’s FICO score is above 660 and the loan 

amount was below the conforming loan limit in place at time of origination and the LTV is either less than 80% 

or the loan has private mortgage insurance in the case that the LTV ratio is above 80%. Since conforming loans 

meet the GSE lending standards, the conforming dummy variable indicates whether the mortgage was eligible to 

be sold to the GSEs at origination. 

MBSData 

Subprime Binary Denotes subprime mortgages. A mortgage is labelled “Subprime” at origination if the borrower’s FICO score is 

lower than 580 or the LTV ratio is higher than 90%. 

MBSData 

Prime Binary Denotes prime mortgages. A mortgage is considered as “Prime” if the borrower’s FICO score is higher than 660 

and the LTV ratio is lower than 80%. 

MBSData 

Prep. Penalty Binary Equals to 1 if the mortgage contract includes a prepayment penalty clause, and 0 otherwise. Accordingly, the 

borrower will pay a penalty if he chooses to pre-pay the loan within a certain time period. The penalty is based 

on the remaining mortgage balance and the number of months worth of interest. 

MBSData 

Purchase Binary Takes the value of 1 if the loan purpose is labeled “Purchase” a property, and 0 otherwise. MBSData 

2
1

5
 

 

https://financial-dictionary.thefreedictionary.com/interest
https://financial-dictionary.thefreedictionary.com/Repayment
https://financial-dictionary.thefreedictionary.com/principal
http://en.wikipedia.org/wiki/Government-sponsored_enterprise
http://www.investopedia.com/terms/m/mortgage.asp
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Refin. cash-out Binary Equals to 1 if the loan is granted for the purpose to refinance an existing loan with “cash-out”. A cash-out 

refinance mortgage is a new loan in which the amount is greater than the existing mortgage amount, which will 

be refinanced. Since the borrower refinances for more than the amount owed, he/she takes the difference in cash. 

MBSData 

Refin. no cash-

out 

Binary Equals to 1 if the loan is granted for the purpose to refinance an existing loan with “no-cash-out”. A no-cash-out 

refinance mortgage is a new loan in which the amount is equal or lower than the existing mortgage amount. The 

main purpose of such loans is usually to lower the interest rate charge on the loan. 

MBSData 

Service fee Continuous The servicing fee that the servicer of the deal charges as a compensation for costs he bears. It is expressed as a 

fixed percentage of the declining balance of the mortgage.  

MBSData 

Age at default Continuous The age-at-default is measured as the total number of months since origination when the default is first recorded. MBSData 

Default N Binary Denoting the fraction of mortgages that default within N months since origination. MBSData 

Income Continuous The annual growth rate of personal income, which is defined as an individual's total earnings from wages, 

investment interest, and other sources. The seasonally unadjusted U.S. real disposable (after deducting tax) 

personal income data is retrieved from the US. Bureau of Economic Analysis’ web site. 

bea.gov 

Divorce Continuous The annual divorce rate calculated as the ratio of the number of marriages contracted and ended in divorce and 

the numbers of all marriages contracted in the same year. The divorce rate is commonly used as an indicator of 

social stress in the society. The seasonally unadjusted divorce rate is retrieved from the U.S. Census Bureau’ 

web site. 

census.gov 

GDP growth Continuous The annual growth rate of the U.S. Real Gross Domestic Product. The real GDP is collected from the Federal 

Reserve Bank of St. Louis’ web site. 

stlouisfed.org 

HPI growth Continuous The annual growth rate of the House Price Index for the U.S. We use the seasonally unadjusted purchase-only 

HPI index retrieved from the Federal Reserve Bank of St. Louis’ web site. 

stlouisfed.org 

σ interest Continuous The interest rate volatility calculated as the volatility on the 1-Year Treasury Constant Maturity Rate over the 24 

months before origination. The monthly seasonally unadjusted treasury rate is collected from the Federal 

Reserve Bank of St. Louis’ web site. 

stlouisfed.org 

Credit spread Continuous The yield spread between AAA and Baa bond indexes. It is calculated as the interest rate difference between 

Moody's Aaa and Baa Corporate Bond Yields. Both variables are seasonally unadjusted recorded on a monthly 

basis and retrieved from the Federal Reserve Bank of St. Louis’ web site. 

stlouisfed.org 

2
1

6
 

 

https://www.investopedia.com/terms/i/interestrate.asp
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Judicial Binary Takes the value of 1 if the state laws require judicial procedures to foreclose on a mortgage, and 0 if not. The 

variable is compiled based on information from the National Center for State Courts’ web site. 

ncsc.org 

SRR Binary Stands for Statutory Right of Redemption and takes the value of 1 if the state has statutory redemption laws. The 

variable is compiled based on information from the National Center for State Courts’ web site. 

ncsc.org 

2
1
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23 Table A2 - Probit results using +60 days definition 

The table reports estimation results of the parametric Probit regressions. The sample includes 5,591,353 

mortgages originated over the period from January 2000 to December 2013. The dependent variable, Default, 

is a dummy variable denoting mortgage default (i.e. when a mortgage is labelled as +60 days delinquent). 

FICO score is the borrower’s Fair Isaac Corporation score attributed at origination. LTV ratio denotes the 

initial loan-to-value ratio. ARM stands for adjustable-rate mortgages. Balloon refers to balloon payment 

mortgages. No/Low doc. indicates whether the originator collected no/low-level documentation. GSE conf. 

denotes mortgages that conform to the GSE’s lending guidelines. GDP growth and HPI growth are growth 

rates of the U.S. Gross Domestic Product and the House Price Index, respectively. σ interest refers to interest-

rate volatility. Credit Spread is the yield difference between AAA and Baa bond indexes. State FE 

specification controls for state fixed effects using state dummies. Judicial indicates whether the state requires 

judicial procedures to foreclose on a mortgage. SRR stands for Statutory Right of Redemption and denotes 

states that have statutory redemption laws. The Pseudo R2 is expressed in percentage. Wald denotes the p-

value of the Wald test for the null hypothesis of all coefficients are jointly equal to zero. LR refers to p-value 

of the likelihood ratio test for the null hypothesis based on configuration II. The asterisks *, **, and *** refer 

to significance levels of 10%, 5%, and 1%, respectively. 

Configuration I II III IV V VI VII IIX IX 

A. Fundamental loan and borrower characteristics 

FICO score -0.0036*** -0.0036*** -0.0036*** -0.0035*** -0.0036*** -0.0036*** -0.0036*** -0.0036*** -0.0037*** 

LTV ratio 0.0164*** 0.0166*** 0.0165*** 0.0165*** 0.0164*** 0.0168*** 0.0165*** 0.0166*** 0.0173*** 

ARM 0.0773*** 0.1117*** 0.1087*** 0.0858*** 0.0660*** 0.0587*** 0.0735*** 0.0713*** 0.1010*** 

Balloon 0.6303*** 0.5647*** 0.5731*** 0.5852*** 0.6350*** 0.6368*** 0.6310*** 0.6240*** 0.4114*** 

No/Low doc. 0.3740*** 0.3758*** 0.3758*** 0.3721*** 0.3687*** 0.3631*** 0.3736*** 0.3709*** 0.3417*** 

GSE Conf. -0.1844*** -0.1817*** -0.1798*** -0.1825*** -0.1810*** -0.1871*** -0.1823*** -0.1819*** -0.1475*** 

B. Economic general conditions 

GDP growth  -14.788***       -1.8866*** 

C. Housing market conditions 

HPI growth   -3.5125***      -7.6803*** 

D. Bond market conditions 

σ interest    0.4624***     1.0581*** 

Credit spread    0.3491***    1.8732*** 

E. State legal structure 

State FE     Yes    

Judicial       -0.0447***  -0.0412*** 

SRR        -0.0752*** -0.0737*** 

Intercept 0.5435*** 0.9450*** 0.8307*** 0.1598*** 0.8735*** 0.1316*** 0.5821*** 0.5876*** 2.1942*** 

Pseudo R2 8.50 9.19 8.92 9.12 8.62 9.43 8.52 8.54 11.60 

Log-likelihood -3.41e+06 -3.39e+06 -3.40e+06 -3.39e+06 -3.41e+06 -3.38e+06 -3.42e+06 -3.42e+06 -3.30e+06 

Wald p-value         0.00 

LR p-value         0.00 
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24 Table A3 - Probit results using 2001-2006 period 

The table reports estimation results of the parametric Probit regressions. The sample includes 5,086,938 

mortgages originated over the period from January 2001 to December 2006. The dependent variable, Default, 

is a dummy variable denoting mortgage default (i.e. when a mortgage is labelled as +90 days delinquent). 

FICO score is the borrower’s Fair Isaac Corporation score attributed at origination. LTV ratio denotes the 

initial loan-to-value ratio. ARM stands for adjustable-rate mortgages. Balloon refers to balloon payment 

mortgages. No/Low doc. indicates whether the originator collected no/low-level documentation. GSE conf. 

denotes mortgages that conform to the GSE’s lending guidelines. GDP growth and HPI growth are growth 

rates of the U.S. Gross Domestic Product and the House Price Index, respectively. σ interest refers to interest-

rate volatility. Credit Spread is the yield difference between AAA and Baa bond indexes. State FE 

specification controls for state fixed effects using state dummies. Judicial indicates whether the state requires 

judicial procedures to foreclose on a mortgage. SRR stands for Statutory Right of Redemption and denotes 

states that have statutory redemption laws. The Pseudo R2 is expressed in percentage. Wald denotes the p-

value of the Wald test for the null hypothesis of all coefficients are jointly equal to zero. LR refers to p-value 

of the likelihood ratio test for the null hypothesis based on configuration II. The asterisks *, **, and *** refer 

to significance levels of 10%, 5%, and 1%, respectively. 

Configuration I II III IV V VI VII IIX IX 

A. Fundamental loan and borrower characteristics 

FICO score -0.0034*** -0.0033*** -0.0034*** -0.0033*** -0.0034*** -0.0034*** -0.0034*** -0.0034*** -0.0035*** 

LTV ratio 0.0169*** 0.0169*** 0.0168*** 0.0172*** 0.0169*** 0.0170*** 0.0170*** 0.0170*** 0.0178*** 

ARM 0.0978*** 0.1157*** 0.1028*** 0.1191*** 0.0820*** 0.0824*** 0.0942*** 0.0930*** 0.0885*** 

Balloon 0.6464*** 0.6156*** 0.6361*** 0.5640*** 0.6522*** 0.6571*** 0.6469*** 0.6412*** 0.4378*** 

No/Low doc. 0.3444*** 0.3476*** 0.3455*** 0.3398*** 0.3375*** 0.3379*** 0.3440*** 0.3417*** 0.3064*** 

GSE Conf. -0.1921*** -0.1946*** -0.1928*** -0.1834*** -0.1869*** -0.1979*** -0.1902*** -0.1901*** -0.1474*** 

B. Economic general conditions 

GDP growth  -8.4588***       11.941*** 

C. Housing market conditions 

HPI growth   -0.7645***      -6.5539*** 

D. Bond market conditions 

σ interest    0.6250***     1.4068*** 

Credit spread    0.4258***    1.8676*** 

E. State legal structure 

State FE     Yes    

Judicial       -0.0413***  -0.0402*** 

SRR        -0.0621*** -0.0545*** 

Intercept 0.2735*** 0.4876*** 0.3351*** -0.2557*** 0.6864*** -0.1608*** 0.3083*** 0.3090*** 1.1864*** 

Pseudo R2 8.22 8.41 8.24 9.37 8.42 9.21 8.24 8.25 11.50 

Log-likelihood -3.03e+06 -3.03e+06 -3.03e+06 -2.99e+06 -3.03e+06 -3.00e+06 -3.03e+06 -3.03e+06 -2.92e+06 

Wald p-value         0.00 

LR p-value         0.00 
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25 Table A4 - Probit results using 2001-2006 period and +60 days definition  

The table reports estimation results of the parametric Probit regressions. The sample includes 5,086,938 

mortgages originated over the period from January 2001 to December 2006. The dependent variable, Default, 

is a dummy variable denoting mortgage default (i.e. when a mortgage is labelled as +60 days delinquent). 

FICO score is the borrower’s Fair Isaac Corporation score attributed at origination. LTV ratio denotes the 

initial loan-to-value ratio. ARM stands for adjustable-rate mortgages. Balloon refers to balloon payment 

mortgages. No/Low doc. indicates whether the originator collected no/low-level documentation. GSE conf. 

denotes mortgages that conform to the GSE’s lending guidelines. GDP growth and HPI growth are growth 

rates of the U.S. Gross Domestic Product and the House Price Index, respectively. σ interest refers to interest-

rate volatility. Credit Spread is the yield difference between AAA and Baa bond indexes. State FE 

specification controls for state fixed effects using state dummies. Judicial indicates whether the state requires 

judicial procedures to foreclose on a mortgage. SRR stands for Statutory Right of Redemption and denotes 

states that have statutory redemption laws. The Pseudo R2 is expressed in percentage. Wald denotes the p-

value of the Wald test for the null hypothesis of all coefficients are jointly equal to zero. LR refers to p-value 

of the likelihood ratio test for the null hypothesis based on configuration II. The asterisks *, **, and *** refer 

to significance levels of 10%, 5%, and 1%, respectively. 

Configuration I II III IV V VI VII IIX IX 

A. Fundamental loan and borrower characteristics 

FICO score -0.0036*** -0.0036*** -0.0036*** -0.0035*** -0.0036*** -0.0036*** -0.0036*** -0.0036*** -0.0037*** 

LTV ratio 0.0163*** 0.0164*** 0.0163*** 0.0166*** 0.0163*** 0.0163*** 0.0164*** 0.0165*** 0.0172*** 

ARM 0.0775*** 0.0954*** 0.0826*** 0.0986*** 0.0619*** 0.0660*** 0.0740*** 0.0735*** 0.0694*** 

Balloon 0.6409*** 0.6099*** 0.6303*** 0.5582*** 0.6465*** 0.6543*** 0.6414*** 0.6367*** 0.4336*** 

No/Low doc. 0.3452*** 0.3486*** 0.3465*** 0.3407*** 0.3383*** 0.3402*** 0.3448*** 0.3431*** 0.3080*** 

GSE Conf. -0.1820*** -0.1845*** -0.1827*** -0.1733*** -0.1769*** -0.1885*** -0.1803*** -0.1803*** -0.1382*** 

B. Economic general conditions 

GDP growth  -8.4972***       11.542*** 

C. Housing market conditions 

HPI growth   -0.7942***      -6.5161*** 

D. Bond market conditions 

σ interest    0.6198***     1.3822*** 

Credit spread    0.4142***    1.8360*** 

E. State legal structure 

State FE     Yes    

Judicial       -0.0391***  -0.0388*** 

SRR        -0.0502*** -0.0428*** 

Intercept 0.5317*** 0.7481*** 0.5958*** 0.0110 0.9336*** 0.1011*** 0.5649*** 0.5605*** 1.4420*** 

Pseudo R2 8.31 8.49 8.32 9.43 8.49 9.25 8.32 8.33 11.51 

Log-likelihood -3.08e+06 -3.07e+06 -3.08e+06 -3.04e+06 -3.07e+06 -3.04e+06 -3.08e+06 -3.08e+06 -2.97e+06 

Wald p-value         0.00 

LR p-value         0.00 
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26 Table A5 - Two-stage Probit results using +60 days definition 

The table reports the estimation results using three parametric approaches: the two-stage instrumental 

variable probit, the two-stage linear model (Dionne, La Haye, and Bergerès, 2015), and the bivariate probit. 

The sample includes 5,591,353 mortgages originated over the period from January 2000 to December 2013. 

Income and Divorce are instruments for the endogenous variable Default. Income is the annual growth rate 

of the U.S. household income. Divorce is the annual rate of divorce in the U.S. Pr(Default=1) denotes the 

predicted probability of default from the 1st stage probit regression. Ê(Default) denotes the predicted default 

from the 1st stage linear model. Default denotes mortgage default (i.e. is labelled as +60 days delinquent). 

Switch serv. denoting whether the originator switched the servicer of the deal. FICO score is the borrower’s 

Fair Isaac Corporation score attributed at origination. LTV ratio denotes the initial loan-to-value ratio. ARM 

abbreviates adjustable-rate mortgages. Balloon refers to balloon payment mortgages. No/Low doc. indicates 

whether the originator collected no/low documentation. GSE conf. denotes loans that conform to the GSE’s 

lending guidelines. GDP growth and HPI growth are the growth rates of the U.S. Gross Domestic Product 

and the House Price Index, respectively. σ interest refers to interest-rate volatility. Credit Spread is the yield 

difference between AAA and Baa bond indexes. Judicial denotes states that require judicial procedures to 

foreclose on a mortgage. SRR stands for Statutory Right of Redemption, and denotes states that have statutory 

redemption laws. R2 is expressed in percentage and refers to the pseudo R2 for probit models and the adjusted 

R2 for Linear models. ρ is the estimated correlation coefficient for the bivariate Probit. The asterisks *, **, 

and *** refer to the significant coefficients at the 10%, 5%, and 1% significance levels, respectively. 

Model Two-stage IV Probit  DLB Linear Model  Bivariate Probit 

 1st stage 2nd stage  1st stage 2nd stage 2nd stage    

Dependent var. Default Switch serv.  Default Switch serv. Switch serv.  Default Switch serv. 

Instruments          

Income -0.0006***   -0.0002***      

Divorce 0.3028***   0.2069***      

Pr(Default=1)  0.5197***        

Ê(Default)     0.4443*** 0.1183***    

Default      0.3260***    

FICO score -0.0037***   -0.0012***    -0.0037*** -0.0001*** 

LTV ratio 0.0174*** 0.0030***  0.0051*** 0.0007*** 0.0007***  0.0174*** 0.0030*** 

ARM 0.1018*** -0.1840***  0.0371*** -0.0749*** -0.0749***  0.1005*** -0.1712*** 

Balloon 0.4097*** -0.0194***  0.1557*** -0.0435*** -0.0435***  0.4053*** 0.0582*** 

No/Low doc. 0.3416*** 0.1590***  0.1087*** 0.0472*** 0.0472***  0.3431*** 0.1696*** 

GSE Conf. -0.1446*** 0.0785***  -0.0426*** 0.0676*** 0.0676***  -0.1434*** 0.0015 

GDP growth -4.7726*** 4.3899***  -1.8273*** 3.5229*** 3.5229***  -1.8682*** -0.5094*** 

HPI growth -7.6137*** -5.8278***  -2.5897*** -0.9331*** -0.9331***  -7.6081*** -7.7881*** 

σ interest 0.9214*** 0.6408***  0.2792*** 0.1016*** 0.1016***  1.0572*** 0.8377*** 

Credit spread 1.9721*** 1.1882***  0.6366*** 0.0236*** 0.0236***  1.8768*** 1.9701*** 

Judicial -0.0416*** 0.0122***  -0.0130*** 0.0062*** 0.0062***  -0.0410*** 0.0019 

SRR -0.0729*** 0.0294***  -0.0233*** 0.0118*** 0.0118***  -0.0743*** 0.0326*** 

R2 11.7 38.0  14.1 31.2 38.6    

ρ        0.6190*** 
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27 Table A6 - Two-stage Probit results using 2001-2006 period 

The table reports the estimation results using three parametric approaches: the two-stage instrumental 

variable probit, the two-stage linear model (Dionne, La Haye, and Bergerès, 2015), and the bivariate probit. 

The sample includes 5,086,938 mortgages originated over the period from January 2001 to December 2006. 

Income and Divorce are instruments for the endogenous variable Default. Income is the annual growth rate 

of the U.S. household income. Divorce is the annual rate of divorce in the U.S Pr(Default=1) denotes the 

predicted probability of default from the 1st stage probit regression. Ê(Default) denotes the predicted default 

from the 1st stage linear model. Default denotes mortgage default (i.e. is labelled as +90 days delinquent). 

Switch serv. denoting whether the originator switched the servicer of the deal. FICO score is the borrower’s 

Fair Isaac Corporation score attributed at origination. LTV ratio denotes the initial loan-to-value ratio. ARM 

abbreviates adjustable-rate mortgages. Balloon refers to balloon payment mortgages. No/Low doc. indicates 

whether the originator collected no/low documentation. GSE conf. denotes loans that conform to the GSE’s 

lending guidelines. GDP growth and HPI growth are the growth rates of the U.S. Gross Domestic Product 

and the House Price Index, respectively. σ interest refers to interest-rate volatility. Credit Spread is the yield 

difference between AAA and Baa bond indexes. Judicial denotes states that require judicial procedures to 

foreclose on a mortgage. SRR stands for Statutory Right of Redemption, and denotes states that have statutory 

redemption laws. R2 is expressed in percentage and refers to the pseudo R2 for probit models and the adjusted 

R2 for Linear models. ρ is the estimated correlation coefficient for the bivariate Probit. The asterisks *, **, 

and *** refer to the significant coefficients at the 10%, 5%, and 1% significance levels, respectively. 

Model Two-stage IV Probit  DLB Linear Model  Bivariate Probit 

 1st stage 2nd stage  1st stage 2nd stage 2nd stage    

Dependent var. Default Switch serv.  Default Switch serv. Switch serv.  Default Switch serv. 

Instruments          

Income -0.0012***   -0.0004***      

Divorce 3.8303***   1.3157***      

Pr(Default=1)  0.6350***        

Ê(Default)     0.3639*** 0.0550***    

Default      0.3089***    

FICO score -0.0035***   -0.0011***    -0.0035*** -0.0001*** 

LTV ratio 0.0181*** 0.0004***  0.0050*** 0.0002*** 0.0002***  0.0179*** 0.0031*** 

ARM 0.0926*** -0.2652***  0.0328*** -0.0912*** -0.0912***  0.0866*** -0.2397*** 

Balloon 0.4051*** -0.0681***  0.1604*** -0.0403*** -0.0403***  0.4340*** 0.0663*** 

No/Low doc. 0.2985*** 0.0895***  0.0904*** 0.0296*** 0.0296***  0.3079*** 0.1282*** 

GSE Conf. -0.1384*** 0.0823***  -0.0376*** 0.0550*** 0.0550***  -0.1427*** 0.0196*** 

GDP growth 7.5664*** 16.7512***  1.8333*** 7.3254*** 7.3254***  11.7905*** 18.9797*** 

HPI growth -3.3490*** -5.6139***  -1.1534*** -0.8432*** -0.8432***  -6.4116*** -6.9225*** 

σ interest 0.5626*** 1.0320***  0.1439*** 0.2578*** 0.2578***  1.3962*** 1.3139*** 

Credit spread 1.7920*** 1.6191***  0.5576*** 0.1905*** 0.1905***  1.8542*** 1.9820*** 

Judicial -0.0420*** 0.0109***  -0.0127*** 0.0062*** 0.0062***  -0.0410*** 0.0088*** 

SRR -0.0525*** 0.0467***  -0.0162*** 0.0161*** 0.0161***  -0.0545*** 0.0553*** 

R2 12.1 38.0  14.0 30.4 37.3    

ρ        0.6004*** 
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28 Table A7 - Two-stage Probit results using 2001-2006 period and +60 days definition 

The table reports the estimation results using three parametric approaches: the two-stage instrumental 

variable probit, the two-stage linear model (Dionne, La Haye, and Bergerès, 2015), and the bivariate probit. 

The sample includes 5,086,938 mortgages originated over the period from January 2001 to December 2006. 

Income and Divorce are instruments for the endogenous variable Default. Income is the annual growth rate 

of the U.S. household income. Divorce is the annual rate of divorce in the U.S Pr(Default=1) denotes the 

predicted probability of default from the 1st stage probit regression. Ê(Default) denotes the predicted default 

from the 1st stage linear model. Default denotes mortgage default (i.e. is labelled as +60 days delinquent). 

Switch serv. denoting whether the originator switched the servicer of the deal. FICO score is the borrower’s 

Fair Isaac Corporation score attributed at origination. LTV ratio denotes the initial loan-to-value ratio. ARM 

abbreviates adjustable-rate mortgages. Balloon refers to balloon payment mortgages. No/Low doc. indicates 

whether the originator collected no/low documentation. GSE conf. denotes loans that conform to the GSE’s 

lending guidelines. GDP growth and HPI growth are the growth rates of the U.S. Gross Domestic Product 

and the House Price Index, respectively. σ interest refers to interest-rate volatility. Credit Spread is the yield 

difference between AAA and Baa bond indexes. Judicial denotes states that require judicial procedures to 

foreclose on a mortgage. SRR stands for Statutory Right of Redemption, and denotes states that have statutory 

redemption laws. R2 is expressed in percentage and refers to the pseudo R2 for probit models and the adjusted 

R2 for Linear models. ρ is the estimated correlation coefficient for the bivariate Probit. The asterisks *, **, 

and *** refer to the significant coefficients at the 10%, 5%, and 1% significance levels, respectively. 

Model Two-stage IV Probit  DLB Linear Model  Bivariate Probit 

 1st stage 2nd stage  1st stage 2nd stage 2nd stage    

Dependent var. Default Switch serv.  Default Switch serv. Switch serv.  Default Switch serv. 

Instruments          

Income -0.0012***   -0.0004***      

Divorce 3.7299***   1.3072***      

Pr(Default=1)  0.5789***        

Ê(Default)     0.3292*** 0.0136***    

Default      0.3156***    

FICO score -0.0038***   -0.0012***    -0.0037*** -0.0001*** 

LTV ratio 0.0174*** 0.0001**  0.0049*** 0.0004*** 0.0004***  0.0172*** 0.0031*** 

ARM 0.0734*** -0.2599***  0.0269*** -0.0881*** -0.0881***  0.0690*** -0.2402*** 

Balloon 0.4015*** -0.0562***  0.1566*** -0.0329*** -0.0329***  0.4295*** 0.0663*** 

No/Low doc. 0.3003*** 0.0931***  0.0929*** 0.0319*** 0.0319***  0.3090*** 0.1280*** 

GSE Conf. -0.1294*** 0.0791***  -0.0370*** 0.0531*** 0.0531***  -0.1337*** 0.0191*** 

GDP growth 7.3051*** 16.9002***  1.8576*** 7.4274*** 7.4274***  11.4314*** 18.9506*** 

HPI growth -3.4066*** -5.7247***  -1.1831*** -0.9145*** -0.9145***  -6.4057*** -6.9189*** 

σ interest 0.5607*** 1.0537***  0.1501*** 0.2713*** 0.2713***  1.3720*** 1.3126*** 

Credit spread 1.7675*** 1.6508***  0.5631*** 0.2088*** 0.2088***  1.8242*** 1.9798*** 

Judicial -0.0406*** 0.0102***  -0.0125*** 0.0058*** 0.0058***  -0.0388*** 0.0089*** 

SRR -0.0409*** 0.0438***  -0.0125*** 0.0144*** 0.0144***  -0.0435*** 0.0558*** 

R2 12.0 38.0  14.2 30.4 37.7    

ρ        0.6230*** 
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Appendix B: Implementation of the Bootstrap Procedure 

In this section, we detail the bootstrap procedure based on the Markov regime-switching five-

factor fund performance model. 

First, for each fund i {𝑖 = 1, … , 𝑁}, we run the Markov regime-switching regression assuming 

two states of the economy (𝑆𝑡 = 1, 2) and a time-varying transition probability matrix 𝑝̂𝑖𝑡, 𝑡 =

{1,… , 𝑇}. Subsequently, we save all estimated state-dependent coefficients 

{𝛼̂𝑖,𝑠𝑡 , 𝛽̂1,𝑖,𝑠𝑡 , 𝛽̂2,𝑖,𝑠𝑡 , 𝛽̂3,𝑖,𝑠𝑡 , 𝛽̂4,𝑖,𝑠𝑡 , 𝛽̂5,𝑖,𝑠𝑡}, the t-statistic of the alpha estimate, 𝑡𝛼̂𝑖,𝑠𝑡
, the time-series 

of the estimated residuals, 𝜀𝑖̂,𝑡, the state-dependent regime volatility, 𝜎̂𝑖,𝑠𝑡, as well as the TVTP 

matrix, 𝑝̂𝑖,𝑡. 

Second, we draw B samples with replacement from the saved funds residuals from the first 

step, generating then B time-series of resampled residuals {𝜀𝑖̂,𝑡
𝑏 , 𝑡 = 𝜏1

𝑏 , … , 𝜏𝑇
𝑏}, where 𝑡 =

𝜏1
𝑏 , … , 𝜏𝑇

𝑏 are the time reordering in the bootstrap experiment and b is an index for the bootstrap 

number (𝑏 = 1000).  

Third, for each bootstrap iteration b, we construct time-series of the monthly excess returns for 

fund i by imposing null true performance (αi,St = 0) in both states of the economy (i.e. recession 

and expansion). 

𝑟𝑖,𝑠𝑡,𝑡
𝑏 = 𝛽̂1,𝑖,𝑠𝑡𝑟𝑚,𝑡 + 𝛽̂2,𝑖,𝑠𝑡SMB𝑡 + 𝛽̂3,𝑖,𝑠𝑡HML𝑡 + 𝛽̂4,𝑖,𝑠𝑡MOM𝑡 + 𝛽̂5,𝑖,𝑠𝑡EXCH𝑡 + 𝜀𝑖,𝑠𝑡,𝑡

𝑏  

The dynamics of the switching from one regime to another is controlled by the original time-

varying transition probability matrix 𝑝̂𝑖,𝑡 as calculated using Equation (4.5). Thus, the simulated 

time-series of the monthly excess returns for fund i is conditional on the current state of the 

economy given by the original TVTP at each date t (t = 1, …, T).55 

By construction, using the original benchmark regression model, the resulting artificial time-

series of fund excess returns has a true performance measure that is equal to zero in both states 

of the economy. We draw a cross-section of bootstrapped alphas by repeating the above steps 

across all N funds. We obtain the cross-sectional distributions of the alpha estimates {𝛼̂𝑖,𝑠𝑡
𝑏 , 𝑖 =

 

55 Many thanks go to prof. Simon Van Norden for thoughtful comments on our bootstrap procedure. 
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1, … , 𝑁} and the corresponding t-statistics {𝑡α̂𝑖,𝑠𝑡

𝑏 , 𝑖 = 1,… ,𝑁} by repeating this for all bootstrap 

iterations (b = 1,…, 1000).  

For a given bootstrap iteration b, we rank the regime-dependent cross-sectional distribution of 

the alpha estimates (𝛼̂1
𝑏 , 𝛼̂2

𝑏 , … , 𝛼̂𝑁
𝑏 ) and of the t-statistics of these estimates (𝑡α̂1

𝑏 , 𝑡α̂2

𝑏 , … , 𝑡α̂𝑁

𝑏 ) 

from the minimum or worst value (𝛼̂𝑚𝑖𝑛
𝑏 ; 𝑡min

𝑏 ) to the maximum or best value (𝛼̂𝑚𝑎𝑥
𝑏 ; 𝑡max

𝑏 ).  

This step is performed for all iterations (b = 1,…, 1000) to obtain cross-sectional distributions 

of all ranked funds including the best and worst funds as well as the 2nd, 3rd, 4th, 5th, 10%, 20%, 

30%, and 40% percentiles in the left and right tails of the distribution.  

Finally, the bootstrapped p-values are obtained by comparing the originally ranked 

performance estimates (or the t-statistics) with the corresponding ranked performance 

estimates (or t-statistics).  It is crucial to estimate individual p-values by accounting for the 

complex fund cross-dependencies and for the possible violation of the fund return normality 

assumption. We estimate a two-sided equal-tailed test bootstrap p-value for fund i using the t-

statistic ranking method as following: 

𝑝̂𝑖 =  2.𝑚𝑖𝑛 (
1

𝐵
∑𝐼

𝐵

𝑏=1

{𝑡̂𝑖
𝑏 > 𝑡̂𝑖} ,

1

𝐵
∑ I

𝐵

𝑏=1

{𝑡̂𝑖
𝑏 < 𝑡̂𝑖}) 

where I is a (1,0) indicator variable. 
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Appendix C: Sample construction procedure 

The table details the sample construction procedure. It reports the observation counts for the 

fund sample at different stages of construction. We start with all equity funds reported in the 

Fundata data base that have exist during the time period between January 1988 and December 

2013. We restrict attention to mutual funds with the following geographic investment 

objectives: Global, International, Europe, Asia Pacific, and Asia Pacific ex-Japan. We exclude 

mutual funds offered in US$. Also excluded are index and ETF funds. 

 Selection criteria 
# observations 

dropped 

Total # 

observations 
# Funds 

1 Original sample - 476 869 6 351 

2 Select geographic objectives 169 917 306 952 3 759 

3 Select sampling period 2 795 304 157 3 759 

4 Remove funds offered in US$ 32 828 271 329 3 389 

5 Exclude Index and ETF funds 9 500 261 829 3 282 

6 Delete mid-month dividend distributions 12 197 249 632 3 282 

7 Delete duplicate monthly observations 31 249 601 3 282 

8 Remove funds with all missing NAVPS 226 249 375 3 280 

9 Remove funds with a single NAVPS 18 249 357 3 262 

10 Remove fragmented NAVPS history 52 249 305 3 262 

11 Filling missing observations (+291) 249 596 3 262 

12 Adjust NAVPS for Split operations 0 249 596 3 262 

13 Compute Net Returns and Flows 0 249 596 3 262 

14 Delete 1st return observation (missing) 3 262 246 334 3 262 

15 Remove zero-return funds 889 245 445 3 214 

16 Merge share classes 98 331 147 114 1 856 

 


