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Abstract  

We explore mean-reverting arbitrage activities for international cross-listed stocks 

and develop a methodology to study the effect of information latency in high-

frequency trading. The high-frequency strategy is a hybrid between triangular 

arbitrage and pairs trading. The strategy can be generalized to multiple cross-listed 

stocks environments without additional restrictions. Market frictions such as trade 

costs, inventory control, and arbitrage risks are considered. We test the strategy 

with cross-listed stocks involving three exchanges in Canada and the United States 

in 2019. The annual net profit with the limit order strategy is around US$6 million. 

International latency arbitrage with market orders is not profitable with our data. 
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1. Introduction 

We study the profitability of mean-reverting arbitrage activities of international cross-listed 

stocks on two stock exchanges and a derivatives exchange which we apply to North American 

markets. The strategy is generalizable to a broader cross-listed universe. Our main research 

question is as follows: Is high-speed arbitrage profitable for High-Frequency Traders (HFTs) under 

strong competition, when all potential arbitrage costs and risks are considered? 

Stock exchanges in different countries often use distinct market microstructures, whereas 

many large public firms employ cross-border listing to reduce their cost of capital and increase 

their access to liquidity. The current market structure of stock exchanges in North America and 

Europe is very competitive, fragmented, and fast (Biais and Woolley, 2011; Jones, 2013; Goldstein 

et al., 2014; O’Hara, 2015; Wah, 2016). Changes in regulation, particularly the Regulation NMS 

in the US and the IIROC rules in Canada1, led to an increase in the number of trading venues, thus 

further fragmenting financial markets (Garriott et al., 2013; Chao et al., 2019). In 2019, there were 

more than twenty designated exchanges in North America. Further, competition related to trading 

fees, rebates, and colocation fees has increased significantly in recent years (Thomson Reuters, 

2019).  

The existence of multiple venues means that the price of a given asset need not always be the 

same across all venues for a very short period, opening the door to high-speed arbitrage across 

markets (O’Hara, 2015; Foucault and Biais, 2014). Given that this form of arbitrage can be done 

by creating portfolios that result from spatial arbitrage, traders must appraise intra-market liquidity 

 
1 Regulation NMS in the US: SEC Exchange Act Release No. 34-51808 (June 9, 2005). IIROC rules in Canada: CSE 
Trading Rules and the Universal Market Integrity Rules, of the Investment Industry Regulatory Organization of 
Canada (IIROC, 2015). See also The MiFID Directive in Europe: Directive 2004/39/EC of the European Parliament 
and of the Council of April 21, 2004 on markets in financial instruments. 
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and analyze the assets’ serial correlation. Nonetheles, serial correlation dissipates very quickly, 

which further increases the possibility of high-speed spatial arbitrage (Budish et al., 2015).  

In a market fragmentation context, traders need to search for liquidity across many venues in 

the same country or across countries. High speed can be crucial when there is strong competition. 

The ability of HFTs to enter and cancel orders very rapidly makes it hard for many traders to 

discern where liquidity really exists, which creates more opportunities for HFTs to exploit 

profitable trading opportunities. 

International latency arbitrage opportunities may also arise because of different market 

models used in local exchanges, different regulations, transient supply and demand shocks, and 

the arrival of new local information that generates asynchronous adjustments in asset prices. These 

additional arbitrage possibilities terminate either when an arbitrageur exploits the new opportunity 

or when market makers update their quotes to reflect the new information (Foucault et al., 2017). 

However, local market makers are not always harmonized in real time. High-speed international 

arbitrage may then benefit all market participants (those with and without high speed) by reducing 

inter-market bid-ask spreads, a measure of market quality (Hendershott et al., 2011; Riordan and 

Storkenmaier, 2012). As a result, HFTs may even become inter-market makers who provide 

liquidity with their arbitrage activities, as we demonstrate with our mean-reverting strategy.  

Whereas arbitrage forces should drive prices to attain an equilibrium, an exchange that acts 

as a price leader could attract a significant portion of order flow if the adjustment takes time. In 

this case, it is reasonable to assume that price discovery will tend to occur primarily in the original 

stock exchange of a cross-listed stock. For example, empirical evidence suggests that prices on 

Canadian and U.S. exchanges mutually adjust for Canadian-based cross-listed stocks (Eun and 

Sabherwal, 2003; Chouinard and D’Souza, 2003). 
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Considering a cross-country environment, we revisit latency arbitrage strategies, and propose 

a new model of international mean-reverting arbitrage with FX rate hedging. The present study is 

the first to examine stocks’ cross-country mean-reverting arbitrage with FX rate hedging. We 

adopt the perspective of a unique temporal frame of reference, which means that we synchronize 

the data feeds of exchange venues and explicitly consider the latency that comes from the 

transmission of information between them and the data processing time. This approach, coupled 

with the inclusion of trading costs and trading risks in our methodology, generates more realistic 

results than those obtained in previous studies.  

Our strategy is a hybrid between triangular arbitrage and pairs trading. It signals when the 

prices of cross-listed stocks deviate enough from their relative equilibrium that an economically 

viable arbitrage opportunity occurs. We construct a portfolio of synthetic instruments from pairs 

of cross-listed stocks of the same company traded on two exchanges and compute their relative 

spread (SPRD), defined as the ratio of the stock prices (our synthetic future) and a hedging position 

in the equivalent currency futures. The relative spread deviation resulting from a variation between 

the synthetic instrument and the hedging instrument is expected to be mean reverting. We analyze 

this intraday reverting behavior in detail for each pair of stocks between exchanges. Economically 

significant deviations of the relative spread from its target value could lead to arbitrage 

opportunities. We develop different arbitrage strategies to exploit these deviations and to 

demonstrate the potential profitability of mean-reverting arbitrage opportunities that exist between 

international exchanges.  

According to Foucault and Moinas (2019), empirical studies must consider the effect of 

trading speed on each component of bid-ask spreads separately. These components are adverse 

selection costs, inventory costs, and order processing costs. We consider adverse selection costs 
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via non-execution risk. Inventory costs are minimized by applying restrictions on the quantities 

traded and by precluding overnight positions. Order processing costs are considered via 

infrastructure and trading platform costs, and fees and rebates are also explicitly quantified. We 

then consider overnight positions to evaluate their effects on our results. 

HFT technologies provide speed and information superiority (Biais et al., 2015; Foucault and 

Moinsa, 2019), but they introduce various costs such as high technology costs, trading fees and 

colocation fees (Bongaerts and Achter, 2021; Andonov, 2021; Baron et al., 2019, and Shkilko and 

Sokolov, 2020). Potential important arbitrage profits or realized opportunity costs described in the 

literature are often based on strong (and sometimes unrealistic) assumptions about the functioning 

of financial markets. The most prevalent costs are latency costs, direct trading fees, rebates on 

trading fees, and trading platform, colocation and proprietary data feed costs. Moreover, the 

closing of positions is not always coherent with the market reality. Mean-reversion risk, execution 

risk, and non-execution risk are additional cost components that may affect arbitrage profits. We 

propose a methodology to introduce all the costs and adjust our algorithm performance 

accordingly.  

Given that high-frequency trading is very fast and competitive, the risk that the market will 

move between the time of observing an arbitrage opportunity and the time of the exchange 

receiving orders sent by a trader’s algorithm (i.e., execution risk when using market orders, non-

execution risk when using limit orders) is very hgh. Latency costs for the transmission and the 

processing of information may matter when exchanges are distant and assets quoted in different 

currencies are present. Moreover, because gains per trade for high-frequency traders are relatively 

small given their short holding periods, trading costs and rebates may be significant in the 

computation of net profits, especially when considering the enormous quantity of trades per day 
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that HFTs perform. The colocation and the proprietary data feed costs are also significant at many 

exchanges, although they have decreased due to recent competition between exchanges. The fact 

that all these potential costs were overlooked may have generated an undeniable overestimation of 

the latency arbitrage profitability presented in the literature (Wah, 2016, Budish et al., 2015, 

Tivnan et al., 2019 and Dewhurst et al., 2019, among others).  

As Chen, Da and Huang (2019) assert, the understanding of arbitrage activity in the empirical 

research is still limited. To our knowledge, we are the first to quantify the importance and the 

economic value of providing liquidity in the context of arbitrage while considering the limit order 

book (LOB) queue positions and limit orders instead of market orders exclusively. Our approach 

is consistent with the revisited HFT market maker definition proposed by O’Hara (2015): “HFT 

market making differs from traditional market making in that it is often implemented across and 

within markets, making it akin to statistical arbitrage.”2 Our mean-reverting strategy is a form of 

statistical arbitrage. 

We test the model across three North American exchanges during the first six months of 2019: 

the New York Stock Exchange (NYSE) and the Chicago Mercantile Exchange (CME) in the 

United States, and the Toronto Stock Exchange (TSX) in Canada. We also discuss how the strategy 

is generalizable without additional restrictions to a much larger trading universe. As Gagnon and 

Karolyi (2010) note, over 3,000 companies had two or more listings in 2008, highlighting the 

importance of international arbitrage in market equilibrium. Our results report a net annual profit 

of about C$8 million (US$6 million) for 2019 for this international arbitrage activity, with 36 

profitable cross-listed stocks that can be managed by one trader in a large trading firm. The 36 

profitable pairs of stocks were selected from the 74 potential cross-listed stocks by using a dynamic 

 
2 See also Rein et al. (2021) and Krauss (2017) on statistical arbitrage. 
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decision tree model from machine learning. The gross annual profit was about C$19 million, and 

the main difference between the gross and the net annual profits is explained by latencies in the 

transmission and processing of information, and the non-execution risk because we used limit 

orders. Trading fees were consequently not important, yet rebates were significant. We also show 

that international arbitrage opportunities with market orders are not profitable mainly due to 

transaction fees and the execution risk associated with latency. 

The rest of our paper is organized as follows. Section 2 presents the literature on arbitrage 

trading with high-frequency data. Emphasis is put on empirical studies that have estimated the 

profitability of this trading activity in an HFT environment. Section 3 outlines our strategy based 

on a mean-reverting model of arbitrage that can be executed with market orders or limit orders. 

We show the main differences between the two approaches with an emphasis on trading cost and 

rebates. Section 4 presents the methodology used to study the effect of information latency in HFT 

and how we consider the multiple arbitrage costs and risks associated with high-frequency 

arbitrage. Section 5 details the data from TSX, NYSE and CME and how it is managed. It also 

documents the real latency costs, as well as the trading fees and rebates, the colocation and the 

proprietary data feed costs at the TSX, i.e. the trading location used in the application of this paper. 

Section 6 is dedicated to our empirical results and Section 7 discusses the performance of our 

arbitrage strategy. Section 8 concludes the paper. 

2. Related literature 

Two main issues are at the heart of research on high-frequency trading (HFT): profitability 

and fairness in trading. Both are interconnected and require appropriate research approaches that 

are fundamental to understanding the behavior of trading participants and making adequate policy 
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recommendations when necessary. The structure of exchange markets has been radically 

transformed by new technology over the last 25 years. HFT is executed by extremely fast 

computers, and software programming for trading is often strategic. 

Liquidity and price discovery now arise in a more complex way, often owing to high speed. 

These changes have affected the market microstructure and the formation of capital in financial 

markets. They may also have reduced fairness between market participants, warranting new 

regulatory rules. However, conclusions on the private net benefits of high-frequency trading and 

its fairness are not always based on solid academic research, according to O’Hara (2015) and Chen 

et al (2019). In fact, the debate about the high-frequency trading arms race is still open (Foucault 

and Moinas, 2019; Aquilina et al, 2022). 

Academic interest in latency arbitrage is a relatively recent phenomenon, and available studies 

have investigated it from different angles. The idea that price dislocations exist in fragmented 

markets is not new. In fact, contributions from the 1990s highlighted the issue in the US, even 

when market fragmentation was not as prevalent as it is today (Blume and Goldstein, 1991; Lee, 

1993; Hasbrouck, 1995). More recent studies on that matter include Shkilko et al (2008) and Ding 

et al (2014). Soon after, other articles began mentioning the possibility for high-speed traders to 

exploit these market anomalies. Foucault and Biais (2014) and O’Hara (2015) both mention that 

HFTs can capitalize on latency arbitrage opportunities but they conclude that strong empirical 

evidence is still necessary. 

Hasbrouck and Saar (2013) are among the first to investigate trading activities within the 

millisecond environment. Menkveld (2014,  2016) analyzes the behavior of a HFT who is a market 

maker. He shows that the market maker reduces price variations for the same stock on different 

exchanges by doing arbitrage activities across trading venues. Budish et al (2015) document the 
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latency arbitrage opportunities between the CME and the NYSE from 2005 to 2011. They 

demonstrate that correlation between a pair of related assets breaks down as speed between quotes 

increases. They show that these breakdowns roughly yield an average of US$75 million a year 

from a simple latency strategy of arbitraging the spread of one pair of highly correlated assets: the 

S&P 500 exchange traded fund (ticker SPY) traded in New York and the S&P 500 E-mini futures 

contract (ticker ES) traded in Chicago. That pair of instruments had an average of 800 daily 

arbitrage opportunities during that period, and the authors notice that the arbitrage frequency tracks 

the overall volatility of the market, with a higher number of opportunities during the financial crisis 

in 2008, the Flash Crash on May 6, 2010, and the European crisis in summer 2011.  

Budish et al (2015) also find that the median ES-SPY arbitrage opportunities duration declines 

drastically from 97 milliseconds in 2005 to 7 milliseconds in 2011, which is explained by the high-

speed arms race led by HFT firms. The median profits per arbitrage opportunity remain relatively 

constant over time even though competition clearly reduced the duration of arbitrage opportunities. 

Budish et al (2015) mention the latency issue, but in a rather incomplete fashion. Their approach 

does not consider latencies such as the real information transportation cost between the two 

exchanges nor the information treatment time of a round trip. They may have overestimated the 

real profits generated by their trading strategy and underestimated the execution risk since they 

used market orders in their application. In their study, around 85% of latency arbitrage 

opportunities had a duration of less than 10 milliseconds in 2011. It is possible that this proportion 

has grown since then, given the technology developments since 2011. This emphasizes the 

importance of including new latency assumptions for our more recent period of analysis. Finally, 

as they mention, their strategy only considers bid-ask spread costs, whereas a richer estimate of 

arbitrage opportunities must also include, at least, exchange fees, and all latency costs. 
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Wah (2016) examines latency arbitrage opportunities on a larger scale for cross-listed stocks 

of the S&P 500 in eleven US stock exchanges in 2014. The strategy uses crossed market prices 

(i.e., when the bid price in an exchange is higher than the ask price in another exchange for the 

same stock) to locate arbitrage opportunities documented in MIDAS trades and quotes data from 

the SEC.3 Considering one infinitely fast arbitrageur operating on these eleven markets, the author 

estimates that arbitrage opportunity profits were US$3.03 billion in 2014 for the S&P 500 tickers 

alone. However, round trip information transportation and information treatment time are not 

considered in the profitability of the strategy, nor are the other trading costs (except for the bid-

ask spread cost, due to the use of market orders).  

Tivnan et al (2019) and Dewhurst et al (2019) also examine latency arbitrage on cross-listed 

stocks in the US National Market System, but with data in 2016 from MIDAS. These two studies 

consider actionable dislocation segments in their computations, i.e., latency arbitrage opportunities 

that last longer than the two-way travel time for a fiber optic cable between exchanges’ servers. 

At this trading speed, the transportation time assumption is especially important, even more so 

when exchanges are far apart, as in our application. Tivnan et al (2019) and Dewhurst et al (2019) 

have a more realistic approach when compared with Wah (2016) but they do not consider 

information treatment time, nor trading costs.  

3. Methodology 

3.1 Arbitrage process 

We propose an innovative hybrid approach involving pairs trading and triangular arbitrage 

for cross-listed stocks between two exchanges with differing currencies. In its simplest form, this 

 
3 MIDAS is the US Securities and Exchange Commission’s Market Information Data Analytics System. 
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approach is based on the identification of mean-reverting arbitrage opportunities from a basket of 

equities traded on their home exchange (noted as Exchange 1), their cross-listed peers at another 

exchange (noted as Exchange 2), and the currency-futures contract between the two currencies 

(noted as Currency 1 and Currency 2) for hedging purposes. This strategy also encompasses the 

simpler case where the two exchanges are using the same currency. That particular application 

does not require currency hedging, but still relies on the formulations provided in this paper. We 

will also discuss how the proposed stragtegy can be generalized to more than two exchanges and 

two currencies, thus expanding the overall tradeable universe.  

We first compute a synthetic instrument calculated as the ratio of the stock’s simultaneous 

prices at Exchange 2 and at Exchange 1 (the synthetic, henceforth) obtained from the combination 

of opposite positions of the same stock being traded on both exchanges. As for internationally 

cross-listed stocks, the stock prices share two underlying factors: the firm’s fundamental value and 

the exchange rate (Scherrer, 2018). Given that we use the same stock in the two exchanges, the 

idiosyncratic differences are minimal and should not affect the convergence in pairs trading, 

contrary to what is often observed with different stocks in the literature (Frazzini et al, 2018; 

Engelberg et al, 2009; Pontiff, 2006). 

Second, we hedge the synthetic with an opposite position in the currency future. Defining the 

relative spread (SPRD) as equal to the ratio of the synthetic over the currency future, we must test 

for the SPRD stationarity, a sine qua non condition for mean-reverting strategies. At equilibrium, 

SPRD must converge to a value close to 1.0 for each pair in all trading days, with very few 

exceptions. Spot and futures prices should diverge slightly, only by the basis value, which accounts 

for maturity differences in the two instruments.  
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As a distance criterion, we propose a non-parametric threshold rule adjusted for the strategies’ 

net costs in order to uncover economically relevant opportunities. This is an alternative to standard 

deviation multiples (Stübinger and Bredthauer, 2017; Gatev et al, 2006). The chosen distance 

approach is simple and transparent, and allows for large-scale empirical applications (Krauss, 

2017).  

As market makers on both exchanges might not be perfectly integrated, we have to consider 

the differences between the functioning of the microstructures. These sources of divergences may 

influence limit order books (depth, granularity, imbalance, and bid-ask spread) and marketable 

orders (trade intensity and potential directional or bouncing behavior).  

Data from geographically distant exchanges may be asynchronous. We propose a 

synchronization procedure to replicate an arbitrageur’s information processing lag. We implement 

a two-regime shift incurred by transport delays of information to and from the exchange servers, 

and we correct the timestamps for the exchanges’ processing time and matching delays. The 

synchronization is effective at Exchange 1’s colocation server. 

Our strategy does not hold overnight positions4. This prevents hedging overnight gap risk and 

tying up capital due to end-of-day margin requirements (Menkveld, 2014). This also avoids being 

forced to unwind positions due to margin squeezes (Brunnermeier and Pedersen, 2008). We use 

the exchanges’ appropriate trading fees and rebates to evaluate net arbitrage performances, as well 

as colocation and trading platform expenses. Details on these costs are provided in Table 1 of 

Section 6. 

 
4 In our application, we also considered not closing opened positions at market close. But, because of the fast mean-
reversion time of the signals, and the fact that we stop opening new positions 15 minutes before market close (see 
Online appendix B for more practical considerations), overnight positions were very rare and small in volume. This 
modification did not significantly modify the strategy’s performance and is not further analyzed. 
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3.2 Relative spread 

Arbitrage opportunities are identified by constructing a relative spread (SPRD) equal to the 

ratio of the synthetic spread to the hedging instrument, the currency futures: 

𝛾 ≡
𝑆 , /𝑆 ,

𝑟
, 

where 𝛾  is the mathematical notation for SPRD value at time 𝑡, 𝑆 ,  and 𝑆 ,  are the cross-listed 

stock values at Exchange 1 and Exchange 2, and 𝑟  is the exchange rate computed from the 

currency hedging instrument’s value. We define simultaneous prices as prices from a unique time 

frame of observation that considers the information transportation and treatment time between 

trading venues, which is known as latency.  

We write: 

𝛾 , / ,   and  𝛾 , / ,  

as the time series of the short and long relative spreads, where the exponents 𝐵𝑖𝑑 and 𝐴𝑠𝑘 are the 

stock prices on the bid and ask side. 

3.3 Market order arbitrage strategy  

A potential arbitrage opportunity arises when the synthetic is not in equilibrium with the 

observable exchange rate at time 𝑡, that is when: 

𝛾 𝜏 ,  𝑖 ∈ 𝑆ℎ𝑜𝑟𝑡, 𝐿𝑜𝑛𝑔 , 

where τ  is the mean equilibrium value expected from the mean-reverting processes. The arbitrage 

opportunity ends when the equilibrium is restored at time 𝑡 𝑡 where 𝑡  is defined as: 

𝑡 ≡ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑠 | 𝛾 𝜏 ,  𝑖 ∈ 𝑆ℎ𝑜𝑟𝑡, 𝐿𝑜𝑛𝑔 . 

The synthetic is potentially overvalued when: 
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𝛾
𝑆 , /𝑆 ,

𝑟
𝜏 . 

In that case, since 𝛤  is assumed to be mean-reverting. This mispricing can be exploited 

by shorting 1/𝜏  shares of Exchange  2 stock, taking a long position of one share in Exchange 

1 counterpart (which means that we short the synthetic), and taking a long position in the currency 

future of the same value as the Exchange 2 stock position in order to hedge our position, all 

transactions at time 𝑡. Then, we must revert the three positions at time 𝑡  using market orders to 

lock the profit per Exchange 1 stock 𝑃  in Currency 1 at time 𝑡 :  

 𝑃 𝑆 , 𝑆 , 𝑆 , 𝑆 ,
, 1 𝑐 , 

where 𝑐  measures the trading costs in Currency 1. Assuming a liquid currency future with a 

low bid-ask spread, we can use the following approximation for the profitability of the positions: 

 𝑃 𝑆 , 𝑆 , 𝑆 , 𝑆 ,
, 1 𝑐  (1) 

where we have substituted 𝑟  with 𝑟 . Supposing a perfect hedge, we only buy a fraction of 

the currency futures of nominal 𝑁  (in Currency 2) that equals the amount invested in Exchange 

2 stock at time 𝑡. So only a fraction of the constant futures’ trading price is paid on this cost-per-

share basis. The trading costs paid for opening and closing our positions in Currency 1 at time 𝑡 , 

𝑐 , are approximated by: 

𝑐 2𝑐 2
𝑐

𝜏 𝑟
2
𝑐
𝑁

⋅
𝑆 ,

𝜏
 

where 𝑐  and 𝑐  are the constant per-share trading fees for market orders on Exchange 1 (in 

Currency 1) and Exchange 2 (in Currency 2) respectively, and 𝑐  is the per-contract trading costs 

(in Currency 1) with nominal 𝑁 . 
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When the three instruments return to equilibrium, the definition of 𝑡  implies that: 

𝑆 , /𝑆 ,

𝑟
𝜏 ⟹

𝑆 ,

𝜏 𝑟
𝑆 , . 

Using this last equality in (1), we get:  

𝑃
𝑆 ,

𝜏 𝑟
𝑆 , 𝑐 , 

which means that to generate a positive profit at time 𝑡 , we at least need to have: 

𝑃 0 ⇔
𝑆 ,

𝜏 𝑟
𝑆 , 𝑐  

and we can rewrite the last inequality as 

       𝛾
𝑟 𝑆 ,

𝑆 ,

𝑆 ,

𝜏 𝑟
𝑆 , 𝑐  

                                  𝛾 𝜏
𝑟 𝑆 ,

𝑟 𝑆 ,

𝑆 , 𝑐

𝑆 ,

,    

≡ 𝜅 .     2  

Equation (2) gives us a dynamic upper non-parametric threshold 𝜅  indicating when a 

short position in our relative spread (SPRD) is profitable because it is overvalued considering 

trading costs and bid-ask spreads when only market orders are used. This profitability holds when 

there is a return to equilibrium to close the positions. The same logic with opposite positions also 

holds when the synthetic is potentially undervalued, or when: 

𝛾
𝑆 , /𝑆 ,

𝑟
𝜏 . 

This results in a dynamic lower non-parametric threshold at which a long position in the 

synthetic is profitable considering trading costs and bid-ask spreads when market orders are used: 
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 𝛾 𝜏 ,

,

,

,

,    

≡ 𝜅   (3) 

where 𝑐 2𝑐 2 2 ⋅ , . 

Once again, the profitability of the strategy holds when there is a return to equilibrium to close 

the long position of SPRD. 

From equations (2) and (3), we have a set of two signals, 𝛾  and 𝛾 , where 𝛾

𝛾  ∀𝑡 (which implies that 𝜏 𝜏 ) in normal market conditions and with their 

respective dynamic non-parametric thresholds, 𝜅  and 𝜅 , where 𝜅 𝜏

𝜏 𝜅  ∀𝑡. 

The arbitrage strategy can be summarized as follows: 

• When 𝛾  crosses 𝜅  from below: short 1/𝜏  shares of 𝑆 , , long 𝑆 ,  and long the 

currency future for the same value as the one invested in Exchange 2 stock, 

• When 𝛾  crosses 𝜅  from above: long 1/𝜏  shares 𝑆 , , short 𝑆 ,  and short the 

currency future for the same value as the one invested in Exchange 2 stock, 

• Close the positions when the equilibrium is restored at 𝑡 . 

• Repatriate the profits generated at Exchange 2 to Exchange 1 whenever they cross 𝑁 . 

Finally, we add the per-share fixed colocation cost and proprietary data feed cost to compute 

net profit on a given period. 

3.4 Limit order arbitrage strategy 

We now switch to limit orders, as paying the bid-ask spread on the three instruments can be 

very costly. The strategy remains the same as with market orders. The main difference is in the 
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profitability equation used to find entry thresholds. The relative spread is potentially overvalued 

when: 

𝛾
𝑆 , /𝑆 ,

𝑟
𝜏 . 

In that case, we short SPRD at time 𝑡 and revert the three positions when the equilibrium of 

𝛤  is restored at time 𝑡 . This results in a profit in Currency 1 of: 

 𝑃 𝑆 , 𝑆 , 𝑆 , 𝑆 ,
, 1 𝑐 4  

per Exchange 1 stock, where 𝑐  has the same formulation as 𝑐 , but instead of 𝑐  and 𝑐  

being the per-share trading-costs for market orders, they are now per-share trading fees (or trading 

rebates) for using limit orders. 

Employing the same logic as previously used to obtain the non-parametric entry thresholds 

𝜅  and 𝜅 , we find that the dynamic upper threshold indicating a profitable short position 

in our relative synthetic spread using limit orders is given by: 

 𝛾 𝜏 ,

,

,

,

 

≡ 𝜅 , (5) 

and the dynamic lower non-parametric threshold for long positions in our relative synthetic spread 

using limit orders is given by: 

 𝛾 𝜏 ,

,

,

,

 

≡ 𝜅 . 6  

Notice that the term multiplying the equilibrium level in equation (2) is always greater than 

the multiplicative term in equation (5). This means that arbitrage opportunities are available at a 

lower level of 𝛾  with limit orders, and thus should be more frequent. This is true since limit 

orders greatly reduce the costs related to the strategy. The same observation can be made for the 
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long position non-parametric thresholds of equations (3) and (6): limit orders push the entry 

thresholds to a more easily attainable level compared with market orders. 

From equations (5) and (6), we have a set of two signals, 𝛾  and 𝛾  with their 

respective dynamic non-parametric thresholds, 𝜅  and 𝜅 . The arbitrage strategy can be 

summarized as follows: 

• When 𝛾  crosses 𝜅  from below: short 1/𝜏  shares of 𝑆 , , long 𝑆 ,  and long the 

currency future for the same value as the one invested in Exchange 2 stock, 

• When 𝛾  crosses 𝜅  from above: long 1/𝜏  shares 𝑆 , , short 𝑆 ,  and short the 

currency future for the same value as the one invested in the Exchange 2  stock, 

• Close the positions when the equilibrium is restored at 𝑡 . 

• Repatriate the profits generated at the Exchange 2 to the Exchange 1 whenever they cross 

𝑁 . 

3.5 Strategy at the portfolio level and aggregate hedging  

Consider a universe 𝛺 of 𝑁 cross-listed stocks on Exchange 1 and Exchange 2, |𝛺| 2𝑁. We 

wish to execute the cross-listed stocks arbitrage strategy defined in the previous sections, on every 

pair contained in that universe. This extension is applicable with both market orders and limit 

orders and is important for the application of the two previous strategies. 

Due to the development of our strategy, aggregating every position in a single portfolio offers 

a built-in hedging effect against movements of the exchange rate whenever positions are opened 

in both 𝛤  and 𝛤 , because the aggregated position in Exchange 2’s market is reduced 

compared to the sum of the absolute position of every independent portfolio for each pair. The 

hedge can be optimized with the use of currency futures. This section explores that extension. 
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Let us define 𝑣 , , 𝑣 ,  ∈ ℝ,𝑛 ∈ 1, … ,𝑁  the size of the position in the cross-listed stock 𝑛 

in both markets at time 𝑡. A position is long when the size is positive, a position is short when the 

size is negative, and the size is zero when no position is opened in the asset. Let us also define the 

total non-repatriated profits, in their respective currency, generated at Exchange 2 and the FX 

Exchange at time 𝑡 respectively by 𝐺 , , 𝐺 , ∈ ℝ. Hence, the portfolio’s exposures in Currency 

1 at Exchange 1, Exchange 2 and FX Exchange at time 𝑡 are respectively given by: 

𝑉 , 𝑣 , 𝑆 , ,

𝑉 , 𝑣 ,

𝑆 ,

𝑟
 
𝐺 ,

𝑟
,

 

𝑉 ,  
𝑣 ,
∗ 𝑁
𝑟

 𝐺 , ,          

where 𝑣 ,
∗ ∈ ℝ is the optimal position size in the currency futures at time 𝑡 that we are trying to 

obtain. The total value of the portfolio in Currency 1, 𝑉 , is given by: 

𝑉 𝑉 , 𝑉 , 𝑉 , . 

By taking a position in the currency future that is the inverse of the position in Exchange 2, 

we obtain:  

 𝑉 , 𝑉 , ⟺ 𝑣 ,
∗ 𝑟 , , , 7  

which results in a neutral aggregated position in Exchange 2’s market: 𝑉 , 𝑉 , 0. The 

portfolio’s value is now simply given by 𝑉 𝑉 , ⟹
, 0. The last equality supposes 

the mathematical independence of Exchange 1 stocks’ prices and the exchange rate. In the universe 

𝛺, a portfolio invested in cross-listed stock pairs that follows the proposed strategy for every pair 

achieves an optimal hedge against currency risk at any time 𝑡 when that portfolio has a neutral 
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aggregated position in Exchange 2’s currency. If the aggregated position in Exchange 2 stocks is 

not neutral, we can take a position of 𝑣 ,
∗  contracts in the currency future to get a perfect hedge. 

The hedging of the portfolio is done by rebalancing our position in the currency future to the 

optimal value, if necessary, whenever we open or close positions in pairs of cross-listed stocks, 

compared with the pair-wise strategy that requires taking the inverse position taken at Exchange 2 

at every arbitrage opportunity.  

3.6 Generalization of the strategy beyond two stock exchanges and a single exchange rate 

The proposed strategy and the formulated arbitrage signals can be applied to more general 

trading environments. Indeed, the arbitrage signals γ formulated in the last section can be computed 

for any cross-listed stock pair between any two stock exchanges and any currency for both stocks 

(shared or not) without any modification. The global tradeable universe for which the proposed 

strategy can be applied to is thus quite large, as discussed in the introduction. We now present 

different additional trading environements where the strategy can be applied. 

The first additional trading environment is when there are two stock exchanges with a 

single currency for the cross-listed stock’s pair. This can be done by setting 𝑟  𝑟  𝑟

1,∀𝑡 and ignoring the currency hedging instrument. The signals are thus solely based on the 

equilibrium between the two microstructures, which corresponds to the model of Budish et al. 

(2015): whenever a sudden jump occurs in one of the two stocks, the correlation between the stocks 

breaks down and an arbitrage opportunity potentially opens up. In our case, the arbitrage signals 

consider both the closing conditions and the trading costs associated with sending orders to seize 

the arbitrage opportunity. 

The second trading environment is when there are more than two stock exchanges and a 

single currency for the cross-listed stocks. Once again, this can be done by using the same 
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constraint on 𝑟  and ignoring currency hedging as previously discussed. But, a second constraint 

needs to be put in place to select which arbitrage opportunity to capture whenever multiple 

opportunities occur at the same time for the same stock and exchange. This is necessary since each 

stock can be part of more than two exchanges, so multiple cross-listed pairs can contain the given 

stock. In that case, only the cross-listed pair with signal γ that is the farthest from equilibrium τ is 

executed (i.e. the pair with the maximum expected profitability). This relates closely to the model 

of Wah (2016), but the author did not consider latency, inventory management, nor any trading 

cost. 

The final case is when there is more than two stock exchanges and multiple exchange rates 

hosted by any number of exchanges. The trading signals γ can be computed for every combination 

of cross-listed stocks pair and their applicable exchange rate. As in the previous case, multiple 

arbitrage opportunities can happen at the same time for the same stock at a single exchange. Again, 

only the pair with signal γ that is the farthest for its equilibrium τ is executed for that particular 

stock. To the best of our knowledge, this has not been studied in the litterature yet.  

Overall, by adding simple contraints to the proposed strategy, either on the obervable 

exchange rate 𝑟 , currency hedging, or on the selection of arbitrage opportunities computed by our 

signals γ, the strategy can be applied to any stock pair. 

4. Latencies, arbitrage costs, and arbitrage risks 

4.1 Latencies and arbitrage costs 

A factor of interest in this contribution is latency. In trading terms, latency refers to the time 

it takes for an agent to interact with the market. We follow closely Hasbrouck and Saar’s (2013) 

measure of latency based on three components: the time it takes for a trader to learn about an event, 
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generate a response, and have the exchange act on that response. (See also Foucault and Moinas, 

2019). We split that definition into two separate quantities so that we can have more granularity 

on the impact of latency on the high-frequency trading strategies.  

The first quantity of importance is the latency of a message from any exchange to Exchange 

1, which includes the one-way transportation time of the information to Exchange 1, and the 

information treatment time needed by the agent’s servers collocated at Exchange 1 and having 

access to a proprietary data feed. The second quantity of importance is the latency of a message 

from Exchange 1 to another exchange, which is comprised of the one-way transportation time of 

information from Exchange 1 to the receiving exchange, and the matching engine delay of that last 

exchange. 

Information treatment time refers to the timespan required to receive and analyze incoming 

information from the exchanges, followed by the decision to trade or not. Exchange server 

procedure considers information reception at the exchange gates, limit order book (LOB) 

positioning or matching of an incoming limit order (with the LOB) and issuing traders’ 

confirmation to the server gates. Round-trip latency measures the total latency delay for a message 

between two exchanges. 

We apply a two-regime model associated with normal and extreme market conditions based 

on quote and trade message intensity. The regime shifts, from the normal state to the extreme one, 

are often due to bursts in the events stream, phenomena well documented in the literature 

(Friederich and Payne, 2015; Menkveld, 2016; Egginton, et al., 2016; Dixon et al., 2019; Shkilko 

and Sokolov, 2020).  To help us recreate this behavior, we use a latency regime variable that varies 

depending on the number of messages a certain exchange received in the last millisecond on a per-

asset basis. This quantity is a good proxy of an exchange’s server traffic, which has a positive 
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relationship with computational delays occurring during the information treatment time and the 

matching engine time components of latency.  The normal regime generates a minimal, baseline, 

value of the latency that exists between two exchanges and a bonus on that minimal latency is 

added for the extreme regime. 

The latency regime variable for a given asset remains in its normal state up to a certain static 

threshold for the number of messages in a single millisecond for that asset, which we set as the 

95th percentile of its empirical distribution.  

Let us define 𝑞 % as the 95th percentile of the empirical distribution of the number of 

messages in one millisecond for asset 𝑖 and define 𝑞  the number of messages during the 

millisecond preceding and ending at message 𝑗 ∈ 1,𝑁  where 𝑁  is the total number of messages 

for asset 𝑖 during the full period. Let us also define 𝐿 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑒𝑥𝑡𝑟𝑒𝑚𝑒  the latency regime 

of asset 𝑖 at message 𝑗. Then, its value is computed as follows: 

𝐿
𝑛𝑜𝑟𝑚𝑎𝑙     𝑖𝑓 𝑞  𝑞 % 

𝑒𝑥𝑡𝑟𝑒𝑚𝑒   𝑖𝑓 𝑞  𝑞 %
 ∀𝑖, 𝑗. 

By adding the corresponding latency to the original exchange timestamp of every message, 

we can approximately synchronize the data feeds of geographically distant exchanges into a single 

point of observation (e.g. Exchange 1) as they would be in practice because of the natural and 

technological limits of information propagation. Our methodology emulates that relativistic effect 

so that what is observed by the trading algorithm at any point is a past state of markets. The same 

idea applies when the algorithm sends an order to a given exchange. We add the corresponding 

latency so that the agent does not interact immediately with that exchange. This makes it possible 

to study the influence of latency on the performance of high-frequency trading strategies. 
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4.2 Arbitrage risks 

4.2.1 Execution risk 

The choice between limit and market orders relies, in part, on the difference between non-

execution risk and execution risk (Mavroudis, 2019; Dugast, 2018; Liu 2009; Kozhan and Tham, 

2012; Brolley, 2020). To empirically solve this trade-off, we first evaluated our algorithm’s 

performance using market orders exclusively. As we will see, using only market orders leads to a 

negative economic value with our data in the sense that the cost of immediacy (conceding the bid-

ask spread) cannot be borne by the arbitrageur in the vast majority of trades. This high cost also 

results in a very low number of potential arbitrage opportunities, since the divergence of SPRD is 

rarely large enough to compensate it. This means that traders must always control for market 

conditions (Foucault and Moinas, 2019). We then constrained our algorithm to limit orders, except 

for the liquidation of positions to avoid overnight exposures. We also use marketable limit orders 

to offset unexecuted legs. There remain two additional risks. 

4.2.3 Non-execution risk 

We evaluate non-execution risk costs by managing the LOB queuing priorities. We mitigate 

the risk of non-execution by keeping dynamically our limit orders to the LOB’s level one. This is 

implemented conditional on the persistence of an expected profitable arbitrage. Otherwise, we 

liquidate positions, if any, by issuing marketable limit orders (Dahlström and Nordén, 2018). 

4.2.4 Mean-reversion risk 

Mean-reversion risk arises after initial positions are taken. It materializes when the circuit 

breaker timer is triggered. All arbitrage legs are then liquidated via marketable limit orders. As we 

will see, this risk is very low in our data since the processes 𝛤   and 𝛤 are stationary for 

almost all stocks and trading days. 



25 

5. Data, data synchronization, trading and quoting emulator, empirical 
latencies, and other trading costs 

5.1 Data 

We use LOB level one data and trade data that we obtained from: the TAQ NYSE OpenBook 

and the TAQ NYSE Trades historical data timestamped to the microsecond, the CME Market 

Depth FIX Canadian Dollar Futures historical data timestamped to the nanosecond, and Trades 

and Quotes Daily historical data from TMX Group timestamped to the nanosecond. All the data 

was timestamped at the respective exchanges, and span from January 7th, 2019 to June 28th, 2019, 

inclusively. We only selected dates where the three exchanges were opened, meaning that we 

eliminated every holiday from our sample.5 The timestamps were truncated and rounded to the 

nearest millisecond above so that potential microscopic errors in the timestamps do not affect the 

results. 

Overall, there are 120 trading days in our data set. We have access to 74 pairs of cross-listed 

stocks that were listed on both the TSX and the NYSE during at least two weeks of that period. 

Pairs where one of the stocks got de-listed from an exchange at any point were kept in the sample, 

but the strategy was only applied to periods where both stocks of the pair were listed and active. 

All cross-listed S&P/TSX 60 stocks are present in our sample during the six months. Table A2 of 

Online appendix A describes every available pair and Table A3 includes their aggregated statistics 

during the period of analysis.  

The time series of daily number of trades and quotes in the two exchanges for some pairs of 

stocks of interest are presented in Figure D1 of Online appendix D. The four rows of graphs in 

 
5 TSX: February 18th: Family Day; April 19th: Good Friday; May 20th: Patriot’s Day. 
NYSE and CME: January 21st: Martin Luther King Jr. Day; February 18th: President’s Day; April 19th: Good Friday; 
May 27th: Memorial Day. 
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Figure D1 present the trades and quotes data of some of the most often selected stocks for arbitrage. 

We do not observe any pattern between the number of trades and the number of quotes. The main 

differences seem to be related to the type of industry. 

We use the quarterly C/US futures listed on CME: 6CH9 expiring March 19, 2019; 6CM9 

expiring June 18, 2019; and 6CU9 expiring September 17, 2019. We do not use monthly futures 

because they have a smaller open interest. The continuous futures contract is created by 

concatenating the three futures’ data and by adjusting the LOB level one and trade prices of the 

consecutive contracts so that no jumps are artificially created. The concatenation dates are 

determined based on the daily transaction volume of consecutive futures. That is, whenever the 

futures contract with the farthest expiration date generates a significantly higher daily transaction 

volume than its predecessor and remains more actively traded, we switch to that futures’ trades 

and quotes for the continuous futures that we use in the strategy. In order to have a greater hedge, 

we employ the Micro C/US futures contract with a nominal of C$10,000, which we approximate 

by dividing the prices of our continuous futures by 10, because of its nominal of C$100,000. 

5.2 Data synchronization 

The strategy is launched each week, from Monday to Friday, starting at 9:30 am and ending 

at 4:00 pm Eastern Time when the three exchanges are all opened to continuous trading. Both the 

TSX and NYSE are in the Eastern Time zone, but the CME is in the Central Time zone, one hour 

behind. Hence, we add an hour to the time stamps of the CME data to synchronize the three 

exchanges’ clocks.  
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5.3 Trading and quoting emulator 

Our methodology and the different trading strategies are implemented in Deltix’s 

QuantOffice, a trading system suite used by multiple traders, which brings us closer to real trading 

practice. The Deltix trading suite allows us to replay the synchronized events of the three stock 

markets (level one LOB and trades) as they were obtained in streaming by traders. By handling 

these events and following our orders position in the queues, we can determine as realistically as 

possible the real-time performance that would have been obtained with our strategies. Note that a 

single ex-ante set of parameters was tested. This implementation makes it possible to consider 

trading fees and rebates, latency costs and other trading risks and costs presented above. It confirms 

the order status (creation, cancelation, or execution) just as it would have happened in streaming 

trading considering market frictions and ever-changing market states. Standard reports, such as a 

trade report and a performance report, are generated at the end of a strategy’s execution and these 

are used to compute our results.  

Moreover, we can manage the individual and aggregated positions, and calculate the 

respective Profit and Loss Reports (PnL) altogether with performance statistics. These PnLs 

represent the economic value of our arbitrage opportunities. Using our performance as a 

benchmark, we can evaluate the economic impact of latency risk by varying the aforementioned 

latency parameters. The general rules of the trading and quoting emulator on LOB level one data 

and information on how executions and non-executions occur are presented in Online appendix F. 

5.4 Empirical latencies and other costs 

Table 1 documents the 2019 latency costs, trading costs, rebates, colocation costs, and 

proprietary data feed (including a trading platform) costs used in this study. Orders and positions 

are managed at TSX’s colocation premises in Toronto (TSX, 2020). Information comes from the 
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TSX, the NYSE, and the CME. We address asynchronicities by adjusting the TSX timestamps 

based on round-trip transportation time, arbitrageur information processing delays, and exchanges 

matching engine delays presented in Table 2. Table 1 also documents the positive trading fees for 

the removers of liquidity and rebates for the providers. Colocation costs in Toronto are considered 

in our monthly portfolio performance estimations, as well as proprietary data feeds which enable 

some trading firms to receive updates from the exchange faster than other traders who do not pay 

for this service. 

Table 1. Arbitrage costs  

Definition Description Measurement In Deltix 

Information 
transportation time 
between exchanges 

Transportation time 
details: 
Toronto – Chicago:  
Fiber paths 
Toronto – New York: 
Microwave path 
(regular) 
Fiber path (extreme 
situations) 

See Table 2 
Adjusted raw dataset 
timestamp fed to 
Deltix 

Information treatment 
time 

Timespan required to 
receive and analyze 
incoming information 
from the exchanges, 
followed by the 
decision to trade or not. 

See Table 2 
Adjusted raw dataset 
timestamp fed to 
Deltix  

Exchange trading fees 

TSX member trading 
fees per share1 
 
NYSE Type A stocks 
per share2 
 
CME Globex C/US FX 
futures per contract3 

Removing: $0.0015 
Providing: ($0.0011) 
 
Removing: $0.00275 
Providing: ($0.00120) 
 
$100k notional value: 
$0.32 
$10k notional value (e-
micro): 0.04$ 

Applied to matched 
orders 

 

Colocation cost 
Colocation with 
exchange connectivity 
rates 

Half cabinet (21U, 3 
kw maximum): $5,250 
monthly 
Initial set-up fee: 
$5,250 one-time 

Included in monthly 
portfolios performance 
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Proprietary data feed 

TSX & Venture level 1 
Distribution 
Trading use case 
license 

$4,000 monthly 
Included in monthly 
portfolios performance 

 

1 https://www.tsx.com/resource/en/1756/tsx-trading-fee-schedule-effective-june-4-2018-en.pdf 
2 https://www.nyse.com/markets/nyse/trading-info/fees 
3 https://www.cmegroup.com/company/clearing-fees.html 

For both latency regimes, the latency to and from TSX is set as the sum of the intervals’ center 

of each of their components found in Table 2, for the respective market condition. We round 

latencies up to the closest integer.  

Table 3 details the empirical latencies used. Following the methodology introduced in Section 

4, our estimation of the empirical distribution of messages per millisecond  used a random sample 

of six weeks, where each sampled week came from a different month contained in our data.
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Table 2. Latencies1  

                    TRANSPORTATION      ARBITRAGEUR     TRANSPORTATION     MATCHING              TOTAL 
                     ONE WAY TO TSX          ONE WAY FROM TSX       ENGINE                    

Market  Exchanges Transportation Information Exchanges Transportation Exchange  Round-trip 
condition from–to time treatment from–to time server latency 

Normal TSX–TSX + 5 μs + 10–70 μs TSX–TSX + 5 μs + 100–300 μs 120–380 μs 

 
NYSE–TSX + 2.4 ms + 10–70 μs TSX–NYSE + 2.4 ms + 100–300 μs 4.91–5.17 ms 

 
CME–TSX + 5 ms + 10–70 μs TSX–CME + 5 ms + 1–5 ms 11.01–15.07ms 

Extreme TSX–TSX + 5–10 μs + 200–500 μs TSX–TSX + 5–10 μs 5–10 ms 5.21–10.52 ms 

 
NYSE–TSX + 4.8–9.6 ms + 200–500 μs TSX–NYSE + 4.8–9.6 ms 5–10 ms 14.80–29.7 ms 

CME–TSX + 5–10 ms + 200–500 μs TSX–CME + 5–10 ms 50–100 ms 60.20–120.50 ms 

 
1 Latencies are obtained following discussions with a major Canadian financial institution trading actively in Canada and in the United-
States. ms: millisecond; μs: microseconds. 

 

Table 3. Latencies used when testing the strategies, depending on the latency regime, the origin of the message and the exchange 
where the message is sent. 

Latency regime 
Exchanges 

from–to 
Latency 

Exchanges 
from–to 

Latency 

Normal 
TSX–TSX 

NYSE–TSX 
CME–TSX 

1 ms 
3 ms 
6 ms 

TSX–TSX 
TSX–NYSE 
TSX–CME 

1 ms 
3 ms 
8 ms 

Extreme 
TSX–TSX 

NYSE–TSX 
CME–TSX 

1 ms 
8 ms 
8 ms 

TSX–TSX 
TSX–NYSE 
TSX–CME 

8 ms 
15 ms 
83 ms 
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6. Empirical results 

We now present the statistical results of our study in three steps. We first compute the 

performance of the trading strategy of Budish et al (2015) applied to our data.6 The goal of this 

exercise is to isolate the importance of considering latencies, execution risk, and trading costs 

when evaluating the benefits of HFT arbitrage. It also serves as a benchmark to compare our 

trading strategies and test how previously proposed arbitrage strategies are profitable with our 

more recent data.  

We then present the results from our strategies. We show that arbitrage with market orders is 

not profitable, while arbitrage with limit orders provides positive profits when latencies, rebates, 

exchange fees, and non-execution risk are considered. Other conclusions are discussed. 

6.1 Budish et al (2015) contribution 

This contribution examines arbitrage opportunities between the two largest financial 

instruments that track the S&P 500 index, the SPDR S&P 500 exchange traded fund (ticker SPY) 

and the S&P 500 E-mini futures contract (ticker ES), using millisecond-level direct feed data from 

different stock exchanges and the Chicago Mercantile Exchange. The application is consequently 

very different from arbitrage trading of the same stock in two different exchanges but some 

comparisons with our research are important given that this article suggests strong modifications 

to the functioning of continuous HFT trading. The authors first demonstrate that the high 

correlation between the two securities observed from the bid-ask midpoints breaks down at very 

high-frequency time. This correlation breakdown creates technical arbitrage opportunities 

 
6 See Online appendix E for the analysis of the results obtained with Wah (2016) strategy. 
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estimated at approximately US$75 million of gross profit per year for the two securities alone on 

all markets where the SPY is traded (not only at the NYSE). Their period of analysis includes 

many high volatility periods such as the 2007-2009 financial crisis. For a more regular year like 

2005, the total gross profit is US$35 million.7 Verifying from Bloomberg that the share of the 

NYSE for this market is 25%, the annual gross profit for 2005 is US$8.75 million for the NYSE 

alone. These numbers represent gross profits because trading fees are not considered, nor are 

latencies and exchange fees. Only bid-ask spread costs are computed. 

The above numbers come from the following market environment: there is no arbitrageur 

entry in the market over the period considered and trading firm observes variations in the signal 

(perfectly correlated with the fundamental value of the stock) on the stock price with zero-time 

delay. There is zero latency in sending orders to the exchange and receiving updates from the 

exchange. This is a pure continuous trading environment with no asymmetric information and 

inventory costs where opened positions at an exchange can be immediately closed at another 

exchange with a different asset.  

The strategy of Budish et al (2015) is first implemented with their theoretical settings and 

minor modifications to adapt it to our data. In that sense, prices at the NYSE are continuously 

transferred to C$ following the C/US futures observed at the CME. In addition, we used two 

hypotheses employed in their model: there is an absence of latency and opened positions at an 

exchange can be immediately closed at another exchange, resulting in a trade. Table 4 Panel A 

presents the results obtained with our data and using the arbitrage strategy presented in Online 

appendix A.2 of their article with market orders only. The second column of Table 4 Panel A 

 
7 The CBOE Volatility Index (VIX) of the average closing price was equal to 12.81 in 2005, 32.69 in 2008, and 15.39 
in 2019.  
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presents the results that are obtained following as closely as possible their  theoretical framework. 

In the next two columns, latency is considered.  

Table 4. Panel A. Budish et al (2015) model with our 2019 data 

1 2 3 4 

Model Budish Original 
Budish Original - 
With 1x Latency 

Budish Original - 
With 3x Latency 

Latency multiplier 0 1 3 
Pair selection No No No 
Gross profit  $1,421,685.23 $998,328.25  $1,116,673.07  
Loss $0.00 -$11,492.18 -$18,696.78 
Trading fees -$75,167.39 -$57,973.82 -$67,232.10 
Trading rebates $0.00 $0.00 $0.00  
Total net profit $1,346,517.84 $928,862.25 $1,030,744.19 
Mean daily net profit $11,811.56 $8,147.91 $9,041.62 
Median daily net profit $1,968.76 $1,189.76 $1,219.35  
Mean daily net profit per 
pair, per day 

$110.95 $76.54 $84.93 

p-value Kolmogorov-
Smirnov test1 

 1.00 0.65 

1st most profitable day (date 
- profit) 

2019/01/28 
$184,196.22 

2019/01/28 
$121,108.28 

2019/01/28 
$127,578.22 

5th most profitable day (date 
- profit) 

2019/01/30 
$66,060.79 

2019/01/24 
$47,904.13 

2019/01/24 
$50,816.97 

1st most unprofitable day 
(date - profit) 

2019/06/24 
-$161.55 

2019/06/24 
-$450.32 

2019/06/03 
-$2,222.67 

5th most unprofitable day 
(date - profit) 

2019/05/31 
-$77.85 

2019/06/27 
-$340.18 

2019/06/24 
-$681.72 

Average time in trade2 00:00.0 00:00.0 00:00.0 
# net profitable trades  31,762 23,313 29,226 
# net unprofitable trades  1,176 1,336 1,817 
# trades  32,938 24,649 31,043 
% net profitable trades 96.43% 94.58% 94.15% 
Average volume per trade 345.63 352.77 326.16 
Average net profit per trade $40.88  $37.68  $33.20  
Average profit per net 
profitable trades 

$42.75  $40.75  $36.32  

Average profit per net 
unprofitable trades 

-$7.97 -$15.91 -$16.99 

1 H0: F(x) <= G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, 
respectively: p-value of 1.00 for no latency vs 1x latency and 0.65 for 1x latency vs 3x latency. 
2 HH: MM: SS. U: hours: minutes: seconds: fractions of a second.  
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We observe, in column 2 of Panel A, that gross profit is limited to C$1.4 million for six months 

of continuous trading or about C$2.8 million for a year, which is below the C$10.60 million 

(US$8.75) for the low volatility year of 2005 with their data. Many factors can explain the 

difference. The main difference is mostly related to the average daily trade volume of the assets. 

They document 800 daily arbitrage opportunities in their data, while in our data we have 200 daily 

arbitrage opportunities with their strategy for the 74 stocks.  

We also observe that introducing trading fees does not significantly affect the profitability in 

the second column, but some opportunities do not cover the trading costs. The main difference in 

profitability is obtained when we introduce latency. This effect is observed in the next two columns 

where the total net profitability drops by more than 30% when latency is introduced. The daily net 

profitability is statistically greater when latency is ignored (see p-values). This is mainly explained 

by the fact that true cross-markets occasions observed at a single geographical point last a shorter 

amount of time and some are now inexistant compared to a latency-free environment, thus 

decreasing the number of trades by around 25%. Captured arbitrage opportunities are also less 

profitable. Comparing the net profitability of colum 2 with that in column 3, we can observe that 

profits where indeed inflated in column 2 because of a simplified market environement. 

Another hypothesis was made in the strategy of Budish et al (2015): Exact opposite positions 

in different exchanges count as a trade and result in a null inventory in both accounts. The next 

panel of Table 4 (Panel B) does not use this simplified environment, meaning that positions can 

only be closed with an opposite position at the same exchange with the same stock. The second 

column does not include latency. The next two columns do.  
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Table 4. Panel B. Practical Budish et al (2015) model with our 2019 data 

1 2 3 4 

Model Budish Practical 
Budish Practical - 
With 1x Latency 

Budish Practical- 
With 3x Latency 

Latency multiplier 0 1 3 
Pair selection No No No 
Gross profit  $779,282.29 $441,466.25 $666,886.91  
Loss -$789,845.78 -$456,295.76 -$695,876.53 
Trading fees -$11,686.80 -$6,957.61 -$11,089.11 
Trading rebates $0.00 $0.00 $0.00  
Total net profit -$22,250.29 -$21,787.12 -$40,078.73 
Mean daily net profit -$195.18 -$191.12 -$351.57 
Median daily net profit -$5.11 -$44.00 -$49.72 
Mean daily net profit per 
pair, per day 

-$1.83 -$1.80 -$3.30 

p-value Kolmogorov-
Smirnov test1 

 0.18 0.80 

1st most profitable day 
(date - profit) 

2019/06/27 
$2,473.72 

2019/06/28 
$2,043.65 

2019/06/28 
$2,158.73 

5th most profitable day 
(date - profit) 

2019/06/20 
$1,219.50 

2019/06/21 
$292.03 

2019/06/20 
$233.39 

1st most unprofitable day 
(date - profit) 

2019/05/15 
-$9,698.68 

2019/05/15 
-$5,221.17 

2019/06/03 
-$7,570.36 

5th most unprofitable day 
(date - profit) 

2019/06/03 
-$1,718.65 

2019/05/21 
-$1,294.97 

2019/06/05 
-$2,132.83 

Average time in trade2 126.06:12:08 127.12:57:37 127.14:15:11 
# net profitable trades  974 702 961 
# net unprofitable trades  958 708 987 
# trades  1,932 1,410 1,948 
% net profitable trades 50.41% 49.79% 49.33% 
Average volume per trade 585.56 477.63 551.3 
Average net profit per trade -$11.52 -$15.45 -$20.57 
Average profit per net 
profitable trades 

$796.17 $625.62  $690.11  

Average profit per net 
unprofitable trades 

-$832.69 -$651.09 -$712.53 

Total Short Inventory 
Remaining @ Close (C$) 

$354,467,602.46 $276,237,299.21 $309,494,680.19 

Total Long Inventory 
Remaining @ Close (C$) 

$271,097,081.28 $211,074,656.88 $236,477,971.72 

1 H0: F(x) <= G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits without and with latency, 
respectively: 0.18 for no latency vs 1x latency and 0.8 for 1x latency vs 3x latency. 
2 D.HH: MM: SS. U: days.hours: minutes: seconds: fractions of a second. 
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We observe in Panel B  that the strategy does not generate any net profit when we abandon 

the hypothesis of a trade occuring when exact opposite positions are taken in two different 

exchanges. The net profitability is even more statistically reduced when latency is considered. 

Column 3 of Panel B would be the closest results obtained by an HFT firm using the strategy 

during our data period. Another salient point is the very large accumulated inventory that needs to 

be managed. This is attribuable to the fact that price discovery primarily occurs on the Canadian 

exchange (Eun and Sabherwal, 2003; Chouinard and D’Souza, 2003). Coupled with a positive 

directional market like in our period, the jumps in prices happened most of the times on the bid 

side of the book for the Canadian stock first.8 This resulted in taking the same short TSX positions 

and long NYSE positions repeatedly, thus rarely closing previous positions to generate a trade. 

This shows the importance of inventory management and currency hedging in an international 

arbitrage context. Overall, by not considering practical trading aspects such as latency or real 

market functioning, Budish et al (2015) inflated latency arbitrage profitability. 

6.2 Our contribution with market orders 

Using the Augmented Dickey-Fuller test for stationarity, we obtain that both 𝛾  and 

𝛾  time series from January 7th 2019 to June 28th 2019 are stationary for almost all stocks 

in all trading days where the three exchanges are open at the same time, at a p-value of 1%, with 

continuous observation time. Details are presented in Table A.1 of Online appendix A. Given that 

the SPRD time series are stationary and exhibit strong mean-reversion, we define 𝜏 ,  𝑖 ∈

𝑆ℎ𝑜𝑟𝑡, 𝐿𝑜𝑛𝑔  as the equilibrium level of the mean-reverting processes 𝛤  with observations 

𝛾 .  

 
8 The only exception is TRQ which dropped by 25% in our period exhibiting an opposite trading behavior. 
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The main results from our strategy when using market orders are presented in Table 5. This 

strategy is not profitable because it is too expensive to obtain enough liquidity and orders are 

subject to execution risk (Loss line). Trading fees affect the profitability of this strategy because 

the arbitrageur consumes liquidity with market orders. Thus, following our theoretical strategy 

with market orders is hazardous, especially when latency is considered. Indeed, we also observe, 

in columns three and four, that increasing latency reduces the net profitability even more and this 

effect is largely significant in both columns (significant p-values). Finally, the utilization of future 

contracts increases the average trading time. Our small number of arbitrage opportunities, 

explained by the use of market orders, implies that intraday values of our realized profits do not 

vary sufficiently to modify our positions in the futures contracts that hedge these quantities. This 

results in positions in the futures that are only closed hours, or even days, after being opened. 

6.3 Our contribution with limit orders 

The most interesting results from our contributions are from limit orders where arbitrageurs 

mainly provide liquidity to the markets. In Table 6, we observe a gross profit of C$ 9.6 million 

with selected pairs of cross-listed stocks obtained with supervised machine learning from our 

universe of 74 possible pairs9 (see Online appendix C), and for six months of trading. Adding 

latency in the next columns affects the profitability of our strategy by reducing the net profits by 

about 25%. However, the percentage of net profitable trades is rather constant between the three 

columns. The profitability (unprofitability) between days of trading is also quite stable and using 

futures contracts for hedging the exchange risk does not increase the average time of trade very 

much because of the constant movement of our realized profits that are repatriated at every 

C$10,000 of gain or loss. The average volume per trade is quite low and stable and is similar to 

 
9 This method of pair selection was also applied to market orders. 
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that in Budish et al (2015), as can be seen in the second column of Table 4. We could have used 

larger volumes with higher probability of non-execution risk. We chose to be conservative to 

minimize the impact on the price discovery process. The annual colocation cost and proprietary 

data feed total cost in Toronto is $116,250. Consequently, international arbitrage of cross-listed 

stock is profitable with our proposed limit order strategy even when all latencies, costs and risks 

are considered. 

Therefore, the main question is the following: does a net annual profit of about C$8 million 

(US$6 million, column 3 Table 6, with real latencies and all costs) seem reasonable for this 

international arbitrage activity that can be managed by one trader in a large trading firm?  Note 

that Budish et al’s (2015) original model with market orders generated a gross annual profit of 

US$8.75 million from the NYSE in 2005 (C$10.60), in a year where the VIX was comparable to 

that of 2019. But their model made only about C$2 million of gross annual profit with our data in 

2019 because the market activity is much less intense with our selected cross-listed stocks than 

with their two very liquid financial assets. Moreover, as they claimed, their trading model was 

quite simple and they predicted that a more sophisticated one should generate higher profits, which 

we demonstrated here in an international context with limit orders. 

To eliminate the probability of back test overfitting (Bailey et al, 2014), we only tested one 

set of parameters for our strategies, which we deemed reasonable beforehand:  𝛽 0.05 (See 

Online appendix B). It is applied to every pair and every day of our data. Of course, the probability 

that this set of parameters is the optimal one for any pair and any day is close to zero, and if we 

had back tested the strategies multiple times, we could have selected the set that generated the 

greatest profitability and performance metrics of our portfolio. However, by using a single set of 

parameters fixed before any testing, and reporting the results generated by it, we ensure that our 



39 

findings are generalizable. Hence, the metrics that were shown in this section could be improved 

and our results thus offer a conservative, but reasonable, measure of the profitability of 

international arbitrage of cross-listed stocks between Canada and the US. 

Table 5. Results with market orders 

1 
Model 

2 
Market orders 

3 
Market orders 1 

4 
Market orders 2 

Latency multiplier 0 1 3 

Pair selection No No No 

Gross profit  $38,660.35 $41,508.69 $41,620.24 

Loss -$58,361.15 -$96,751.29 -$128,442.17 

Trading fees -$17,890.26 -$22,121.43 -$31,985.04 

Trading rebates $0.00 $0.00 $0.00 

Total net profit -$37,591.06 -$77,364.03 -$118,806.97 

Mean daily net profit -$329.75 -$678.63 -$1,042.17 

Median daily net profit -$18,24 -$207.53 -$595.92 

Mean daily net profit per 
pair, per day 

-$4.46 -$9.17 -$14.08 

p-value Kolmogorov-
Smirnov test1 

 1.00 1.00 

1st most profitable day 
(date - profit) 

2019/03/06 
$354.30 

2019/05/31 
$21.63 

2019/05/31 
$51.54 

5th most profitable day 
(date - profit) 

2019/06/21 
$196.92 

2019/06/17 
-$2.54 

2019/04/29 
-$94.49 

1st most unprofitable day 
(date - profit) 

2019/01/30 
-$4,053.94 

2019/01/16 
-$4,682.15 

2019/05/16 
-$4,692.79 

5th most unprofitable day 
(date - profit) 

2019/03/26 
-$2,095.20 

2019/01/29 
-$3,504.39 

2019/01/28 
-$3,785.02 

Average time in trade 
(excl. futures contracts)2 

00:06:34.41 00:06:37.83 00:04:42.15 

Average time in trade 
(incl. futures contracts)2 02:12:28.60 00:59:30.36 00:57:59.53 

# net profitable trades  1,284 1,092 1,590 

# net unprofitable trades 2,130 2,927 4,814 

# trades  3,414 4,019 6,404 

% net profitable trades 37,61% 27.17% 24.83% 

Average volume per trade 1,529.78 1,592.15 1,449.57 
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1 
Model 

2 
Market orders 

3 
Market orders 1 

4 
Market orders 2 

Average net profit per trade -$11.01 -$19.25 -$18.55 

Average profit per net 
profitable trades 

$26.46 $32.92 $21.99 

Average profit per net 
unprofitable trades 

-$33.60 -$38.71 -$31.94 

1 H0: F(x) <= G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, 
respectively: p-value of 1.00 for no latency vs 1x latency and 1.00 for 1x latency vs 3x latency. 
2 HH: MM: SS. U: hours: minutes: seconds: fractions of a second. 

 
Table 6. Results with limit orders 

1 
Model 

2 
Limit orders 

3 
Limit orders 1 

4 
Limit orders 2 

Latency multiplier 0 1 3 

Pair selection Yes Yes Yes 

Gross profit  $9,608,178.87 $8,641,338.63 $8,363,528.28 

Loss -$4,757,168.60 -$5,041,665.26 -$5,168,902.58 

Trading fees -$78,132.64 -$82,067.16 -$83,537.87 

Trading rebates $553,201.20 $476,071.01 $458,542.50 

Total net profit $5,326,078.83 $3,993,677.22 $3,569,630.33 

Mean daily net profit $46,719.99 $35,032.26 $31,312.55 

Median daily net profit $44,453.98 $33,756.44 $29,610.42 

Mean daily net profit per 
pair, per day 

$2,273.19 $1,704.51 $1,523.53 

p-value Kolmogorov-
Smirnov test1 

 1.00 1.00 

1st most profitable day (date - 
profit) 

2019/05/09 
$100,142.51 

2019/05/09 
$82,330.71 

2019/05/09 
$77,292.31 

5th most profitable day (date - 
profit) 

2019/05/13 
$78,509.62 

2019/06/20 
$58,157.95 

2019/05/07 
$53,633.28 

1st most unprofitable day 
(date - profit) 

2019/06/04 
$15,061.17 

2019/03/13 
$12,210.91 

2019/03/13 
$9,130.81 

5th most unprofitable day 
(date - profit) 

2019/03/18 
$22,810.62 

2019/03/18 
$15,997.46 

2019/03/18 
$13,349.39 

Average time in trade (excl. 
futures contracts)2 

00:01:29.51 00:01:39:10 00:01:41.22 
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1 
Model 

2 
Limit orders 

3 
Limit orders 1 

4 
Limit orders 2 

Average time in trade (incl. 
futures contracts) 

00:01:46.55 00:01:56.61 00:01:58.19 

# net profitable trades  1,063,897 930,388 892,772 

# net unprofitable trades  325,351 322,230 327,096 

# trades  1,389,248 1,252,618 1,219,868 

% net profitable trades 76.58% 74.28% 73.19% 

Average volume per trade 188.10 187.99 188.36 

Average net profit per trade $3.83 $3.19 $2.93 

Average profit per net 
profitable trades 

$9.51 $9.76 $9.84 

Average profit per net 
unprofitable trades 

-$14.71 -$15.78 -$15.94 

% trade using marketable 
orders 

16.42% 19.56% 20.50% 

1 H0: F(x) <= G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, 
respectively: p-value of 1.00 for no latency vs 1x latency and 1.00 for 1x latency vs 3x latency. 
2 HH: MM: SS. U: hours: minutes: seconds: fractions of a second. 

7. Trading strategy performance 

7.1 Statistics  

In this section, we present a more detailed view of the performance of the limit order mean-

reverting strategy in the real latency setting, presented in column 3 of Table 6. We define a 

captured arbitrage opportunity as an opportunity where the positions in a pair at TSX and NYSE 

are both opened and closed with limit orders following the arbitrage strategy described in Section 

3. This excludes arbitrage opportunities where a least one leg had to be closed by the stop-loss or 

the chronometer circuit breakers implemented for risk management.  

Figure 1 shows the mean daily number of captured arbitrage opportunities per ticker and the 

mean duration of the positions behind these opportunities. The number of captured arbitrage 

opportunities (Panel 1a) exhibits some daily fluctuations, but the quantity remains stationary over 
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the period. On average, there are 180 captured arbitrage opportunities per ticker per day. The mean 

duration, computed as the mean of the daily means of captured opportunity pairs, is about 122 

seconds (Panel 1b), and is also stationary during our period of analysis. Note that both quantities 

are anticorrelated (Pearson correlation coefficient: -0.923). This is because the strategy does not 

enter a new position when the previous one is still opened, this condition avoids building huge 

inventories which would involve, among others, significant price impact when ending arbitrage 

activities. Thus, a longer time to close both legs of the strategy directly leads to a lesser number of 

potential arbitrage opportunities to be captured. 
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Panel 1a: Mean daily number of captured arbitrage opportunities per selected pair 

 

Panel 1b: Mean duration in seconds per captured arbitrage opportunity over all selected pairs 

 
Figure 1. Captured arbitrage opportunities during the period of analysis 

Figure 2 shows the daily net profit measured as the average per captured arbitrage opportunity 

as well as the total realized net profit per day over the selected assets in the first six months of 

2019. The mean total daily realized net profit is C$67,369 (Panel 2a) and the mean net profit per 
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captured arbitrage opportunity is around C$19 (Panel 2b), in line with the expected high- frequency 

quoting activities. Per ticker, the daily mean is equal to C$3,411. 

Panel 2a: Total daily net profit from captured arbitrage opportunity over all selected pairs (C$) 

 

Panel 2b: Daily net mean profit per captured arbitrage opportunity (C$) 

 

Figure 2. Profitability of captured arbitrage opportunities during the period of analysis 

Figure 3 shows the empirical cumulative distribution function (CDF) of the net profit per 

captured arbitrage opportunity in C$. Based on this CDF, 99.7% of the captured arbitrage 
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opportunities are profitable. The median is around C$11, and the 99 percentile is around C$110. 

This confirms the theoretical validity of the strategy, meaning that when an arbitrage opportunity 

is perfectly captured with limit orders, it is almost guaranteed to be profitable. The remaining 0.3% 

of unprofitable captured arbitrage opportunities are obtained because we cannot always close the 

positions at the exact equilibrium value, as explained in Section 4. 

 

Figure 3. Empirical CDF of net profit per captured arbitrage opportunity (C$) 

7.2 Regression analysis 

To better understand the stylized facts affecting the daily net profitability of the strategy, we 

employ a regression analysis. Using standard variables such as the intraday volatility of the assets’ 

mid-price traded at exchange 𝑖 ∈ 𝑇𝑆𝑋,𝑁𝑌𝑆𝐸,𝐶𝑀𝐸  on day 𝑡 (𝑣𝑜𝑙 , ), the average bid-ask spreads 

(𝑠𝑝𝑟𝑒𝑎𝑑 , ), the total trading volumes (𝑡𝑟𝑎𝑑𝑒 , ), and the total quantity of messages resulting from 

the LOB level one updates (𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 , ), all in their respective currency, we want to explain the 

average net profitability of the selected pairs on day 𝑡 (𝑝𝑟𝑜𝑓𝚤𝑡𝑠 ). We compute every variable with 
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𝑖 ∈ 𝑇𝑆𝑋,𝑁𝑌𝑆𝐸  as the weighted mean of the stock-level variable in the selected pair on day 𝑡, 

where the weight accorded to a specific stock is the proportion of its daily traded value compared 

with the total traded value for every stock of the same exchange in our portfolio on that day (all in 

C$). Table 7 reports the descriptive statistics of these variables, and Table A5 reports their Pearson 

correlation coefficients. All variables are described in Table A4. 

Table 7. Descriptive statistics of variables used in the regression analysis to explain the daily net 
profit of the strategy with limit orders. 

Variable Mean Std. Dev. Min. Q1 Median Q3 Max. 

𝑝𝑟𝑜𝑓𝚤𝑡𝑠  3,411 1237 1,636 2,543 3,201 4,002 8,471 

𝑣𝑜𝑙   0.458 0.143 0.259 0.361 0.412 0.524 0.974 

𝑣𝑜𝑙   0.467 0.151 0.269 0.357 0.420 0.548 1.007 

𝑣𝑜𝑙   0.086 0.047 0.024 0.054 0.074 0.114 0.244 

𝑠𝑝𝑟𝑒𝑎𝑑   5.791 1.267 3.567 4.916 5.688 6.213 1.097 

𝑠𝑝𝑟𝑒𝑎𝑑   6.854 1.279 4.800 5.835 6.732 7.385 1.079 

𝑠𝑝𝑟𝑒𝑎𝑑   0.576 0.020 0.542 0.566 0.576 0.584 0.715 

𝑡𝑟𝑎𝑑𝑒   775,033 361,920 349,538 506,020 686,478 949,768 2,288,334 

𝑡𝑟𝑎𝑑𝑒   280,935 153,312 118,714 183,374 226,571 296,655 973,461 

𝑡𝑟𝑎𝑑𝑒   64,664 75,053 4,195 27,383 34,537 46,817 297,363 
 

59,136 13,474 35,229 48,619 58,494 67,034 94,736 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠   53,719 13,253 32,036 43,001 51,791 62,492 101,549 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠   192,958 55,922 66,246 150,944 186,874 223,187 346,698 

 Count      114 

 

The volatilities of the mid-price of cross-listed stocks have similar distributions on both 

stock exchanges. The same applies for the spread and the number of messages from LOB level 

one. On the other hand, the volume of trades at the TSX is almost three times greater than at the 

NYSE, which is expected from a portfolio composed entirely of Canadian stocks. 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠
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From Table A5, we observe a significant and positive relationship between the strategy’s 

profitability and the volatility of the markets. The bid-ask spread of the stocks is the variable that 

is the most highly and positively correlated with the profitability of the strategy, which is expected 

since the strategy uses limit orders. Finally, the numbers of updates of LOB level one are all 

statistically and positively correlated to the strategy’s profitability, which will be explained later 

in this section.  

As expected, the pairs of same variables on the TSX and NYSE exchanges are highly 

correlated. To reduce potential multicollinearity, we combine each pair of equity variables into 

one variable by using the mean of the respective TSX and NYSE variable values, thus creating the 

variables 𝑣𝑜𝑙 , , 𝑠𝑝𝑟𝑒𝑎𝑑 , , 𝑡𝑟𝑎𝑑𝑒 ,  and 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 , . The linear regression 

model is written as follows, for day 𝑡 ∈ 1,2, … ,114 : 

𝑝𝑟𝑜𝑓𝑖𝑡𝑠𝑡  𝑏0  𝑏1𝑣𝑜𝑙𝐶𝑀𝐸,𝑡 𝑏2𝑣𝑜𝑙𝑠𝑡𝑜𝑐𝑘𝑠,𝑡 𝑏3𝑠𝑝𝑟𝑒𝑎𝑑𝐶𝑀𝐸,𝑡  𝑏4𝑠𝑝𝑟𝑒𝑎𝑑𝑠𝑡𝑜𝑐𝑘𝑠,𝑡

 𝑏5𝑡𝑟𝑎𝑑𝑒𝐶𝑀𝐸,𝑡  𝑏6𝑡𝑟𝑎𝑑𝑒𝑠𝑡𝑜𝑐𝑘𝑠,𝑡   𝑏7𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐶𝑀𝐸,𝑡

 𝑏8𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑠𝑡𝑜𝑐𝑘𝑠,𝑡  𝜀𝑡, 

where 𝜀 ~𝑁 0,𝜎 ,∀𝑡. The regression coefficients are obtained by ordinary least squares, and the 

covariance matrix is estimated with the heteroskedasticity and autocorrelation consistent approach 

of Newey-West. Table 8 summarizes the regression results. 
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Table 8. OLS linear regression for the average daily net profitability of the limit order strategy 
with Newey-West covariance matrix estimation  

Variable Coefficient p-value 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -3,823.011 0.202 

𝑣𝑜𝑙   -2,533.717 0.103 

𝑣𝑜𝑙   695.229 0.284 

𝑠𝑝𝑟𝑒𝑎𝑑   -1,817.241 0.723 

𝑠𝑝𝑟𝑒𝑎𝑑   791.142 0.000 

𝑡𝑟𝑎𝑑𝑒   0.001 0.518 

𝑡𝑟𝑎𝑑𝑒   -0.002 0.009 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠   0.003 0.139 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠   0.069 0.000 

𝐴𝑑𝑗.  𝑅   0.662  

𝐹 𝑠𝑡𝑎𝑡  22.570  

 

As the regression suggests,  the number of LOB level one update messages, the size of the 

spread and the trading volume of the stocks contribute significantly to the daily net profits 

generated for our portfolio of cross-listed stock pairs. These results are consistent with our machine 

learning pair selection methodology (See Online appendix C for more details). A larger spread for 

the stocks is directly beneficial to our limit order strategy, which can be explained by equations 

(4), (5) and (6). Together, these equations tell us that a larger spread lead to a higher profit for any 

given arbitrage opportunity and that the profitable arbitrage opportunities are thus more frequent 

for days with larger spreads. As for the number of messages, the result is intuitive because a higher 

level one activity generally increases the likelihood of our active limit orders to be filled, or 

cancelled because of our risk management circuit breakers in the case where the prices deviate 

from our limit orders’ prices. Hence, the more messages we observe, the faster our orders can be 

executed or canceled and the faster the strategy can move on to the next opportunity (which was 
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observed in Figure 1), as opposed to days when markets are quieter and limit orders can remain in 

the LOB for longer periods of time. Lastly, a larger trading volume contributes negatively to our 

profitability, especially at the NYSE. The higher latency to that exchange prevents us from reacting 

very rapidly compared to other participants collocated at the NYSE. Thus trades occurring before 

our limit orders included in the LOB (or even before the information was analyzed by our 

algorithm) can cause the mispricing to dissipate. 

7.3 Profitability 

Figure 4 shows the net cumulated profits over the entire period on a trade basis. There is 

minimal intraday drawdown, and as was shown in Figure 2 (Panel a), the net daily profits are 

stationary, which explains the quasi linearity of the function in Figure 4. 

 

Figure 4. Net cumulated profits (C$) on a trade basis over the entire period 

Figure 5 presents the daily maximum of net aggregated positions taken at each exchange for 

our portfolio of selected pairs. The maximum net open position in absolute value is around 

C$453,000 at the TSX, C$465,000 at the NYSE, and C$590,000 at the CME, meaning that an 

investment of C$1,000,000 to cover the margins is more than enough. Note that only a margin of 
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US$1,100 per C/US futures contract is needed at the CME. Given the annual net profit of C$8 

million  generated by the strategy in 2019, this results in an annual net return of 700%. When 

considering management fees of 5%, the annual net return is 660%. 

 

Figure 5. Maximum daily net aggregated long and short positions of the selected pairs portfolio at 
the three exchanges 
 
 

Figure 6 shows the empirical CDF of the needed aggregated net margin in C$. This margin at 

time 𝑡 can be expressed as follows: 

𝑀  𝑉 ,  𝑉 ,
𝐺 ,

𝑟
 
1,100
𝑟

𝑉 ,
𝐺 ,

𝑟
 100,000 . 

where 𝑉 , ,𝑉 ,  and 𝑉 ,  are the portfolio exposure in C$ in their respective exchange. 

Once again, we can see that a capital of C$1,000,000  always covers the margins in the three 

exchanges, while C$185,000 covers 80% of the needed margins at any time, meaning that the high 

levels of aggregated positions are transitory.  
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Figure 6. Empirical CDF of the needed aggregated net margin in C$ 

 

The annualized Sharpe ratio computed from the daily returns and the margin of C$1 million 

is 51.04 (48.5 when considering management fees). It is very high, but our daily profits are 

perfectly comparable to the trading profits of HFTs found in Baron et al (2014). Our result is 

mainly explained by the very low volatility of the profits as seen in Figures 3 and 5. Also the 

Deflated Sharpe Ratio proposed by Bailey and López de Prado (2014) is approximately equal to 

1. This very high value is mainly explained by the fact that we did not resort to multiple back 

testing trials, generating an absence of variance across the trials and a quasi null likelihood of a 

false discovery. 

8. Conclusion 

We study the profitability of mean-reverting arbitrage activities of international cross-listed 

stocks on two stock exchanges and a derivatives exchange with a novel trading strategy that is 
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generalizable to a broader cross-listed universe. The theoretical strategy signals when the prices of 

cross-listed stocks deviate enough from their relative equilibrium that an economically viable 

arbitrage opportunity occurs. We apply the model to North American markets during the first six 

months of 2019, namely to the New York Stock Exchange (NYSE) and the Chicago Mercantile 

Exchange (CME) in the United States, and the Toronto Stock Exchange (TSX) in Canada. 

This paper is the first to examine stocks’ cross-country mean-reverting arbitrage. We work 

with a unique temporal frame of reference, meaning that we synchronize the data feeds from the 

exchange venues by explicitly taking into account the latency that comes from the transmission of 

information between the exchanges and the information processing time. We also consider all 

potential arbitrage trading costs. We show that mean-reverting arbitrage is profitable with order 

book transactions and queuing priorities. We consider the obtained profits as reasonable when 

compared with previous contributions in the literature. In previous studies, the profitability of 

latency arbitrage is often overestimated by not considering both the practical aspects of arbitrage 

trading and the market frictions in their applications. International latency arbitrage with market 

orders is not profitable with our data.  

Our original goal was not to contribute to the normative discussion about the effect of 

continuous HFT on the general welfare of financial markets. Rather, it was to replicate the precise 

behavior of a trading firm to provide a better estimate of the arbitrage market functioning with 

high-frequency trading. Our research highlights the high-frequency arbitrageur's economic 

incentive to act as a liquidity provider and the importance of considering real market frictions in 

HFT research. Our results could be useful to improve the understanding of the complex nature of 

high-frequency trading. Our model can be deployed in a real-time environment by institutional 

investors, professional arbitrageurs, market makers,  hedgers, and regulators. Our approach 
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provides a contemporary understanding of an economically viable arbitrage approach that helps 

restore equilibrium in financial markets. 

Arbitrage activities are very useful to restore equilibria in markets when price distortions are 

observed. These activities are usually carried out by the largest traders under strong competition. 

These traders provide the markets with liquidity and are remunerated for this activity. Are the 

profits they earn too high? The results of this study do not provide a conclusive answer to this 

question, but we have demonstrated that large traders can make positive profits under fair trading 

conditions. 

Another issue often discussed in the literature is the costly race for high-speed trading. This 

race is almost over because the realized observed speeds for information transmission between 

exchanges by the largest traders have reached their physical limits when compared with the speed 

of light (Anova, 2022). The same observation can be made for information processing, where the 

inter-server latency is converging to the propagation delay of light (Thomas et al., 2018). It is not 

clear how additional regulation that targets speed reduction could improve economic welfare in 

current markets.  

Finally, do these arbitrage activities affect long-term investors who are not involved in 

arbitrage activities, which represent the vast majority of stock investors? We do not have sufficient 

data to answer this question, but our discussions with investors and traders seem to confirm that 

the effect is small. This issue warrants additional quantitative research. 

 

 

Acknowledgements 

Financial support from SSHRC Canada, Canada Foundation for Innovation, Canada First Research 
Excellence Fund, and IVADO is acknowledged. We thank Claire Boisvert and Mohamed Jabir for their 
competent support to this research project. 
  



54 

References  

Ait-Sahalia, Y., Saglam, M., 2017. High frequency market making. SSRN Electronic Journal. 

Aquilina, M., Budish, E., O’Neill, P., 2022. Quantifying the high-frequency trading “arms race”. 
The Quarterly Journal of Economics 137, 493–564. 

Bailey, D.H., Borwein, J.M., Lopez de Prado, M., Zhu, Q.J., 2014. Pseudo-mathematics and 
financial charlatanism: The effects of backtest overfitting on out-of-sample performance. 
Notices of the American Mathematical Society 61, 458-471. 

Bailey, D. H., López de Prado, M., 2014. The deflated Sharpe ratio: Correcting for selection bias, 
backtest overfitting, and non-normality. Journal of Portfolio Management 40, 94–107. 

Baron, M., Brogaard, J., Hagstromer, B., Kirilenko, A., 2019. Risk and return in high-frequency 
trading. Journal of Financial & Quantitative Analysis 54, 993-1024. 

Baron, M., Brogaard, J., Kirilenko, A., 2014. The trading profits of high frequency traders. 
Unpublished working paper, Princeton University, University of Washington, Massachusetts 
Institute of Technology. 

Biais, B., Foucault, T., Moinas, S., 2015. Equilibrium fast trading. Journal of Financial Economics 
116, 292-313. 

Biais, B., Woolley, P., 2011. High frequency trading. Working paper. Toulouse School of 
Economics, University of Toulouse. Toulouse, France. 

Blume, M., Goldstein, M.A., 1991. Differences in execution prices among the NYSE, the 
regionals, and the NASD. Available at SSRN: https://ssrn.com/abstract=979072 or 
http://dx.doi.org/10.2139/ssrn.979072. 

Brogaard, J., Carrion, A., Moyaert, T., Riordan, R., Shkilko, A., Sokolov, K., 2018. High 
frequency trading and extreme price movements. Journal of Financial Economics 128, 253-
265. 

Brolley, M., 2020. Price improvement and execution risk in lit and dard markets. Management 
Science 66, 863-886. 

Brunnermeier, M. K., Pedersen, L. H., 2008. Market liquidity and funding liquidity. The Review 
of Financial Studies 22, 2201-2238.  

Budish, E., Cramton, P., Shim, J., 2015. The high-frequency trading arms race: Frequent batch 
auctions as a market design response. The Quarterly Journal of Economics 130, 1547-1621. 

Chao, Y., Chen, Y., Mao, Y., 2019. Why discrete price fragments U.S. stock exchanges and 
disperses their fee structures. The Review of Financial Studies 32, 1068-1101. 

Chen, H., Chen, S., Chen, Z., Li, F., 2019. Empirical investigation of an equity pairs trading 
strategy. Management Science 65, 370-389.  



55 

Chen, Y., Da, Z., Huang, D., 2019. Arbitrage trading: The long and the short of it. The Review of 
Financial Studies 32, 1608-1646.  

Chouinard, E., D’Souza, C., 2003. The rationale for cross-border listings. Bank of Canada Review, 
Winter, 23-30. 

Conrad, J.S., Wahal, S., 2020. The term structure of liquidity provision. Journal of Financial 
Economics 136, 239-259. 

Dahlström, H., Nordén, L.L., 2018. The determinants of limit order cancellations. Mimeo, 
Stockholm Business School, Sweden. 57 p. 

DeltixLabs, 2020. The Deltix product suite: Features and benefits. Retrieved Feb. 25, 2021 at: 
https://www.deltixlab.com/products/.  

Dewhurst, D.R., Van Oort, C.M., Ring IV, J.H., Gray, T.J., Danforth, C.M., Tivnan, B.F., 2019. 
Scaling of inefficiencies in the U.S. equity markets: Evidence from three market indices and 
more than 2900 securities. arXiv:1902.04691v2 [q-fin.TR]. 

Ding, S., Hanna, J., Hendershott, T., 2014. How slow is the NBBO? A comparison with direct 
exchange feeds. The Financial Review 49, 313-332. 

Dixon, M.F., Polson, N.G., and Sokolov, V.O., 2019. Deep learning for spatio-temporal modeling: 
Dynamic traffic flows and high frequency trading. Applied Stochastic Models in Business and 
Industry 35, 788-807. 

Dugast, J., 2018. Unscheduled news and market dynamics. The Journal of Finance 73, 2537-2586. 

Engelberg, J., Pengjie G., Jagannathan, R., 2009. An anatomy of pairs trading: The role of 
idiosyncratic news, common information and liquidity. Third Singapore International 
Conference on Finance. 

Eun, C.S., Sabherwal, S., 2003. Cross-border listings and price discovery: Evidence from U.S.-
listed Canadian stocks. The Journal of Finance 58, 549-575. 

Foucault, T. and Biais, B., 2014. HFT and market quality. Bankers, Markets & Investors 128, 5-
19. 

Foucault, T., Kozhan, R., Tham, W.W., 2017. Toxic arbitrage. The Review of Financial Studies 
30, 1053-1094. 

Foucault, T., Moinas, S., 2019. Is Trading Fast Dangerous? In: W. Mattli (Ed.) Global Algorithmic 
Capital Markets: High Frequency Trading, Dark Pools, and Regulatory Challenges, Oxford 
University Press. 

Frazzini, A., Israel, R., Moskowitz, T.J., 2018. Trading costs. SSRN Electronic Journal. 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3229719. 

Friederich, S., Payne, R., 2015. Order-to-trade ratios and market liquidity. Journal of Banking & 
Finance 50, 214-223. 



56 

Gagnon, L.J., Karolyi, G.A., 2010. Do International Cross-Listings Still Matter? Evidence On 
Financial Globalization and Crises, Thorsten Beck, Sergio Schmukler, Stijn Claessens, eds., 
Elsevier North-Holland Publishers.  

Garriott, C., Pomeranets, A., Slive, J., Thorn, T., 2013. Fragmentation in Canadian equity markets 
(white paper). Bank of Canada Review. Ottawa, Canada. 

Gatev, E., Goetzmann, W.N., Rouwenhorst, K. G., 2006. Pairs trading: Performance of a relative-
value arbitrage rule. The Review of Financial Studies 19, 797-827. 

Goldstein, M., Kumar, P., and Graves, F.C., 2014. Computerized and high frequency trading. The 
Financial Review 49, 177-202. 

Krauss, C., 2017. Statistical arbitrage pairs trading strategies: Review and outlook. Journal of 
Economic Surveys 31, 513-545. 

Hasbrouck, J. and Saar, G., 2013. Low-Latency Trading. Journal of Financial Markets 16, 646-
679. 

Hasbrouck, J., 1995. One security, many markets: Determining the contributions to price 
discovery. The Journal of Finance 50, 1175-1199. 

Hendershott, T., Jones, C., and Menkveld, A., 2011. Does algorithmic trading improve liquidity? 
The Journal of Finance 66, 1-33. 

Jones, C.M., 2013. What do we know about high-frequency trading? Columbia Business School 
Research Paper. No. 13-11. 

Kozhan, R., Tham, W.W., 2012. Execution risk in high-frequency arbitrage. WBS Finance Group 
Research Paper no 179. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2030767. 

Krauss, C., 2017. Statistical arbitrage pairs trading strategies review and outlook. Journal of 
Economic Surveys 31, 513-545.  

Lee, C.M.C., 1993. Market integration and price execution for NYSE-listed securities. The Journal 
of Finance 48, 1009-1038. 

Liu, W.M., 2009. Monitoring and limit order submission risks. Journal of Financial Markets, 12, 
107-141. 

Mavroudis, V., 2019. Market manipulation as a security problem. Working paper, University 
College London. 

Menkveld, A.J., 2016. The Economics of high-frequency trading: Taking stock. Annual Review 
of Financial Economics 8, 1-24. 

Menkveld, A.J., 2014. High-frequency traders and market structure. Financial Review 49, 333-
344.  

Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and 
autocorrelation consistent covariance matrix. Econometrica 55, 703–708. 



57 

O'Hara, M., 2015. High frequency market microstructure. Journal of Financial Economics 116, 
257-270.  

O'Hara, M., 2016. Something for Nothing: Arbitrage and Ethics on Wall Street. W.W. Norton et 
Company. 

Pontiff, J., 2006. Costly arbitrage and the myth of idiosyncratic risk. Journal of Accounting and 
Economics 42, 35-52.  

Rein, C., Rüschendorf, L, Schmidt, T., 2021. Generalized statistical arbitrage concepts and related 
gain strategies. Mathematical Finance 31, 563-594. 

Riordan, R., Storkenmaier, A., 2012. Liquidity and price discovery. Journal of Financial Markets 
15, 416-437. 

Scherrer, C.M., 2018. Information processing on equity prices and exchange rate for cross listed 
stocks. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3247594. 

Shkilko, A., Sokolov, K., 2020. Every cloud has a silver lining: Fast trading, microwave 
connectivity, and trading costs. The Journal of Finance 75, 2899-2927. 

Shkilko, A.V., Van Ness, B.F., Van Ness, R.A., 2008. Locked and crossed markets on NASDAQ 
and the NYSE. Journal of Financial Markets 11, 308-337. 

Stübinger, J., Bredthauer, J., 2017. Statistical arbitrage pairs trading with high-frequency data. 
International Journal of Economics and Financial Issues 7, 650-662.  

Tassel, P.V., 2020. The law of one price in equity volatility markets. Federal Reserve Bank of New 
York, Staff Reports, no. 953.  

Tivnan, B.F., Dewhurst D.R., Van Oort, C.M., Ring IV, J.H., Gray, T.J., Koehler, M.T.K., 
McMahon, M.T., Slater, D., Veneman, J., Danforth, C.M., 2019. Fragmentation and 
inefficiencies in US equity markets: Evidence from the Dow 30. arXiv:1902.04690v3 [q-
fin.TR]. 

Thomson Reuters, 2019. https://www.reuters.com/article/us-usa-exchanges-idUSKBN25H23K.  

TSX, 2020. Co-Location Fee Schedule. https://www.tsx.com/resource/en/1756/tsx-trading-fee-
schedule-effective-june-4-2018-en.pdf.  

Wah, E., 2016. How prevalent and profitable are latency arbitrage opportunities on U.S. stock 
exchanges? Available at SSRN: https://ssrn.com/abstract=2729109 or 
http://dx.doi.org/10.2139/ssrn.2729109.  



58 

Online appendices 
Appendix A. Additional tables 

Table A1. Number of days where the Augmented Dickey-Fuller test for non-stationarity is rejected at p 
=1% for 𝛤  and 𝛤 . The test was applied on the daily time series of 𝛤  and 𝛤  between 9:32 
am and 4:00 pm ET. 

TSX Ticker | NYSE Ticker Short Long TSX Ticker | NYSE Ticker Short Long 

ABX | GOLD 0 0 IMG | IAG 0 0 

AEM | AEM 0 0 JE | JE 1 0 

AGI | AGI 0 0 K | KGC 0 0 

AQN | AQN 0 0 KL | KL 0 0 

ATP | AT 3 5 LAC | LAC 0 2 

BAM.A | BAM 0 0 MFC | MFC 0 0 

BB | BB 0 0 MG | MGA 0 0 

BCB | COT 0 0 NEXA | NEXA 4 2 

BCE | BCE 0 0 NOA | NOA 1 0 

BMO | BMO 0 0 OR | OR 0 0 

BNS | BNS 0 0 OSB | OSB 0 0 

BTE | BTE 0 0 PD | PDS 0 0 

BXE | BXE 6 12 PPL | PBA 0 0 

CAE | CAE 0 0 PVG | PVG 0 0 

CCO | CCJ 0 0 QSR | QSR 0 0 

CLS | CLS 0 0 RBA | RBA 0 0 

CM | CM 0 0 RCI.B | RCI 0 0 

CNQ | CNQ 0 0 RFP | RFP 0 0 

CNR | CNI 0 0 SEA | SA 0 0 

CNU | CEO 4 19 SHOP | SHOP 0 0 

CP | CP 0 0 SJR.B | SJR 0 0 

CPG | CPG 0 0 SLF | SLF 0 0 

CVE | CVE 0 0 STN | STN 1 2 

ECA | ECA 0 0 SU | SU 0 0 

EDR | EXK 0 0 T | TU 0 0 

ELD | EGO 0 0 TA | TAC 0 0 

ENB | ENB 0 0 TD | TD 0 0 

ERF | ERF 0 0 TECK.B | TECK 0 0 

FNV | FNV 0 0 THO | TAHO 0 0 
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TSX Ticker | NYSE Ticker Short Long TSX Ticker | NYSE Ticker Short Long 

FR | AG 0 0 TRI | TRI 0 0 

FTS | FTS 0 0 TRP | TRP 0 0 

FVI | FSM 0 0 TRQ | TRQ 1 1 

G | GG 0 0 UFS | UFS 0 0 

GIB.A | GIB 0 0 VET | VET 0 0 

GIL | GIL 0 0 WEED | CGC 0 0 

GOOS | GOOS 0 0 WPM | WPM 0 0 

HBM | HBM 0 0 YRI | AUY 0 0 

Note: Since we observe a low number of days where 𝛤  and 𝛤  are not stationary, the mean-
reversion risk is minimal in our strategy for almost all pairs. Even though that risk is very low, our risk 
management strategy still implements circuit breakers with a timer and a stop-loss to capture the most 
arbitrage opportunities as possible.  
 

Table A2. List of available cross-listed stocks with the TSX ticker and NYSE ticker counterpart. Also 
included are the company’s name, economic sector and S&P/TSX 60 membership status. 

TSX Ticker NYSE Ticker Company Sector S&P/TSX 60 

ABX GOLD  Barrick Gold Corp. Materials Yes 

AEM AEM 
Agnico Eagle Mines 

Ltd. 
Materials Yes 

AGI AGI Alamos Gold Inc. Mining No 

AQN AQN 
Algonquin Power & 

Utilities Corp. 
Clean Technology No 

ATP AT Atlantic Power Corp. Clean Technology No 

BAM.A BAM 
Brookfield Asset 
Management Inc. 

Financials Yes 

BB BB Blackberry Ltd. Information Technology Yes 

BCB COT Cott Corp. 
Consumer Products & 

Services 
No 

BCE BCE BCE Inc. Telecommunication Services Yes 

BMO BMO Bank of Montreal Financials Yes 

BNS BNS Bank of Nova Scotia Financials Yes 

BTE BTE Baytex Energy Corp. Oil & Gas No 

BXE BXE 
Bellatrix Exploration 

Ltd. 
Oil & Gas No 

CAE CAE CAE Inc. Technology No 

CCO CCJ Cameco Corp. Energy Yes 

CLS CLS Celestia Inc. Technology No 



60 

TSX Ticker NYSE Ticker Company Sector S&P/TSX 60 

CM CM 
Canadian Imperial 
Bank of Commerce 

Financials Yes 

CNQ CNQ 
Canadian Natural 

Resources Ltd. 
Energy Yes 

CNR CNI 
Canadian National 
Railway Company 

Industrials Yes 

CNU CEO CNOOC Ltd. Oil & Gas No 

CP CP 
Canadian Pacific 

Railway Ltd. 
Industrials Yes 

CPG CPG 
Crescent Point Energy 

Corp. 
Energy Yes 

CVE CVE Cenovus Energy Inc. Energy Yes 

ECA ECA Encana Corp. Energy Yes 

EDR EXK 
Endeavour Silver 

Corp. 
Mining No 

ELD EGO Eldorado Gold Corp. Mining No 

ENB ENB Enbridge Inc. Energy Yes 

ERF ERF Enerplus Corp. Oil & Gas No 

FNV FNV Franco-Nevada Corp. Materials Yes 

FR AG 
First Majestic Silver 

Corp. 
Mining No 

FTS FTS Fortis Inc. Utilities Yes 

FVI FSM 
Fortuna Silver Mines 

Inc. 
Mining No 

G GG Goldcorp Inc. Materials Yes 

GIB.A GIB CGI Group Inc. Information Technology Yes 

GIL GIL 
Gildan Activewear 

Inc. 
Consumer Discretionary Yes 

GOOS GOOS 
Canada Goose 
Holdings Inc. 

Consumer Products & 
Services 

No 

HBM HBM 
HudBay Minerals 

Inc. 
Mining No 

IMG IAG IAMGold Corp. Mining No 

JE JE 
Just Energy Group 

Inc. 
Utilities & Pipelines No 

K KGC Kinross Gold Corp. Materials Yes 

KL KL 
Kirkland Lake Gold 

Ltd. 
Mining No 

LAC LAC 
Lithium Americas 

Corp. 
Mining No 
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TSX Ticker NYSE Ticker Company Sector S&P/TSX 60 

MFC MFC 
Manulife Financial 

Corp. 
Financials Yes 

MG MGA 
Magna International 

Inc. 
Consumer Discretionary Yes 

NEXA NEXA 
Nexa Resources 

S.A. 
Mining No 

NOA NOA 
North American 

Construction Group 
Industrial Products & 

Services 
No 

OR OR 
Osisko Gold 

Royalties Ltd. 
Mining No 

OSB OSB Nordbord Inc. 
Industrial Products & 

Services 
No 

PD PDS 
Precision Drilling 

Corp. 
Industrial Products & 

Services 
No 

PPL PBA 
Pembina Pipeline 

Corp. 
Utilities Yes 

PVG PVG 
Pretium Resources 

Inc. 
Mining No 

QSR QSR 
Restaurant Brands 
International Inc. 

Consumer Discretionary Yes 

RBA RBA 
Ritchies Bros. 

Auctioneers Inc. 
Industrial Products & 

Services 
No 

RCI.B RCI 
Rogers 

Communication 
Inc. 

Telecommunication 
Services 

Yes 

RFP RFP 
Resolute Forest 
Products Inc. 

Industrial Products & 
Services 

No 

SEA SA Seabridge Gold Inc. Mining No 

SHOP SHOP Shopify Inc. Technology No 

SJR.B SJR 
Shaw 

Communications 
Inc. 

Telecommunication 
Services 

Yes 

SLF SLF 
Sun Life Financials 

Inc. 
Financials Yes 

STN STN Stantec Inc. 
Industrial Products & 

Services 
No 

SU SU Suncor Energy Inc. Energy Yes 

T TU Telus Corp. 
Telecommunication 

Services 
Yes 

TA TAC TransAlta Corp. Utilities & Pipelines Yes 

TD TD 
Toronto-Dominion 

Bank 
Financials Yes 

TECK.B TECK 
Teck Resources 

Ltd. 
Materials Yes 
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TSX Ticker NYSE Ticker Company Sector S&P/TSX 60 

THO TAHO 
Tahoe Resources 

Inc. 
Mining No 

TRI TRI 
Thomson Reuters 

Corp. 
Consumer Discretionary Yes 

TRP TRP TransCanada Corp. Energy Yes 

TRQ TRQ 
Turquoise Hill 
Resources Ltd. 

Mining No 

UFS UFS Domtar Corp. 
Consumer Products & 

Services 
No 

VET VET 
Vermilion Energy 

Inc. 
Oil & Gas No 

WEED CGC 
Canopy Growth 

Corp. 
Life Sciences No 

WPM WPM 
Wheaton Precious 

Metals Corp. 
Mining No 

YRI AUY Yamana Gold Inc. Mining No 
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Table A3. Aggregated statistics of every pair from January 7th, 2019 to June 28th, 2019. # Trades is the total number of trades. # Quotes is the total 
number of quote messages. Volatility is the annualized standard deviation of the daily returns computed from close prices. Min., Mean, Median and 
Max. prices are respectively the minimum, empirical mean, empirical median and maximum trade prices during that period. All prices are in local 
currency. 

TSX Ticker |  NYSE Ticker # Trades # Quotes Volatility Min. Price Mean Price Median Price Max. Price 

ABX | GOLD 1355455 | 411552 12609016 | 16754385 0.3 | 0.31 15.37 | 11.52 20.63 | 15.77 20.64 | 15.77 21.67 | 16.44 

AEM | AEM 712143 | 245409 11968871 | 9549364 0.23 | 0.24 51.39 | 38.72 66.73 | 50.99 66.73 | 50.99 69.13 | 52.5 

AGI | AGI 342922 | 114855 3003641 | 7242356 0.4 | 0.42 4.89 | 3.68 7.82 | 5.98 7.83 | 5.99 8.25 | 6.27 

AQN | AQN 454837 | 46109 3530170 | 2506458 0.12 | 0.12 13.5 | 10.13 15.87 | 12.13 15.88 | 12.13 16.6 | 12.54 

ATP | AT 33558 | 23008 373750 | 653362 0.34 | 0.35 2.97 | 2.23 3.13 | 2.39 3.13 | 2.39 4.01 | 3.01 

BAM.A | BAM 690629 | 252633 12662244 | 15994647 0.12 | 0.13 52.49 | 39.35 62.41 | 47.68 62.4 | 47.68 65.06 | 48.72 

BB | BB 482209 | 154435 4813106 | 6724215 0.36 | 0.37 9.31 | 7.1 9.74 | 7.44 9.75 | 7.45 13.74 | 10.29 

BCB | COT 171235 | 115407 3257388 | 5107512 0.28 | 0.26 16.9 | 12.73 17.35 | 13.27 17.33 | 13.27 21.06 | 15.92 

BCE | BCE 829443 | 142454 7381944 | 12112698 0.1 | 0.11 53.05 | 39.75 59.47 | 45.43 59.5 | 45.44 62.75 | 47.14 

BMO | BMO 927212 | 141737 8251253 | 9050862 0.11 | 0.13 88.92 | 66.65 98.76 | 75.45 98.76 | 75.45 106.51 | 79.34 

BNS | BNS 1170563 | 151151 11897780 | 16543643 0.1 | 0.12 68.29 | 50.58 70.23 | 54.28 70.22 | 54.27 75.93 | 57.61 

BTE | BTE 351485 | 45578 2114183 | 3694628 0.58 | 0.59 1.9 | 1.42 2.01 | 1.54 2.02 | 1.54 3.13 | 2.32 

BXE | BXE 4760 | 724 18630 | 59042 0.87 | 0.74 0.48 | 0.35 0.62 | 0.47 0.62 | 0.46 0.74 | 0.55 

CAE | CAE 357585 | 42689 2499568 | 2888853 0.27 | 0.27 24.99 | 18.74 35.07 | 26.79 35.1 | 26.81 36.86 | 27.42 

CCO | CCJ 457592 | 139670 4065374 | 13566637 0.24 | 0.25 13.42 | 9.92 13.86 | 10.6 13.9 | 10.62 17.12 | 13.03 

CLS | CLS 163847 | 61588 1530011 | 2468489 0.42 | 0.42 8.26 | 6.17 8.93 | 6.82 8.93 | 6.83 13.08 | 9.96 

CM | CM 898170 | 112553 9389778 | 8047186 0.14 | 0.16 12.85 | 74.37 102.67 | 78.44 102.67 | 78.45 115.07 | 87.35 

CNQ | CNQ 1679058 | 376524 17383323 | 37749573 0.27 | 0.29 33.76 | 25.33 35.13 | 26.85 35.15 | 26.86 42.56 | 31.76 

CNR | CNI 885761 | 207348 7133075 | 6098839 0.13 | 0.14 100.34 | 75.18 120.61 | 92.12 120.64 | 92.11 127.96 | 95.08 

CNU | CEO 156 | 41310 1936032 | 1056232 0.23 | 0.25 203.96 | 154.96 223.75 | 170.96 223.7 | 170.85 255.18 | 193.52 

CP | CP 294566 | 130121 3407525 | 4345765 0.16 | 0.17 239.65 | 179.68 306.01 | 233.77 305.76 | 233.56 318.75 | 241.2 

CPG | CPG 726046 | 101013 4085865 | 8280375 0.6 | 0.62 3.24 | 2.44 4.31 | 3.3 4.32 | 3.3 5.98 | 4.45 

CVE | CVE 1125554 | 186950 8954509 | 17429240 0.33 | 0.35 9.62 | 7.24 11.46 | 8.75 11.46 | 8.75 14.26 | 10.6 

ECA | ECA 1349297 | 395043 10526262 | 20763317 0.43 | 0.45 6.12 | 4.56 6.61 | 5.05 6.61 | 5.05 10.35 | 7.7 
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TSX Ticker |  NYSE Ticker # Trades # Quotes Volatility Min. Price Mean Price Median Price Max. Price 

EDR | EXK 77642 | 47413 785259 | 2389713 0.46 | 0.47 2.27 | 1.69 2.69 | 2.06 2.7 | 2.06 3.84 | 2.85 

ELD | EGO 376622 | 117803 3826242 | 6586161 0.74 | 0.76 3.36 | 2.52 7.55 | 5.77 7.55 | 5.77 7.65 | 5.82 

ENB | ENB 1838436 | 310091 15384861 | 21529655 0.18 | 0.18 43.74 | 32.76 46.92 | 35.85 46.92 | 35.85 51.22 | 38.04 

ERF | ERF 458784 | 111965 4590223 | 10576424 0.38 | 0.4 8.76 | 6.54 9.88 | 7.54 9.86 | 7.54 13.1 | 9.73 

FNV | FNV 440300 | 136221 4644852 | 4540514 0.2 | 0.2 90.2 | 67.97 110.48 | 84.38 110.49 | 84.41 114.36 | 86.87 

FR | AG 267277 | 133209 3895094 | 10620884 0.43 | 0.44 6.67 | 5.02 10.19 | 7.79 10.19 | 7.79 10.7 | 8.12 

FTS | FTS 632431 | 89824 5855287 | 6557030 0.08 | 0.09 44 | 33.03 51.61 | 39.44 51.62 | 39.43 52.95 | 40.09 

FVI | FSM 192403 | 72897 1263078 | 2316467 0.43 | 0.44 3.22 | 2.39 3.74 | 2.85 3.74 | 2.86 5.55 | 4.18 

G | GG 559098 | 489352 5158992 | 13485393 0.28 | 0.28 12.46 | 9.38 15.08 | 11.31 15.08 | 11.31 15.74 | 11.8 

GIB.A | GIB 407242 | 80116 3157513 | 3061503 0.12 | 0.12 80.5 | 60.41 100.18 | 76.55 100.16 | 76.56 104.24 | 78.05 

GIL | GIL 388478 | 127055 4230021 | 5849583 0.16 | 0.16 40.38 | 30.42 50.4 | 38.52 50.4 | 38.51 52.95 | 39.55 

GOOS | GOOS 504696 | 370437 7196994 | 5321814 0.64 | 0.65 42.38 | 31.67 50.17 | 38.37 50.12 | 38.36 79.89 | 59.96 

HBM | HBM 468047 | 93531 3035588 | 4150247 0.41 | 0.43 6.1 | 4.52 7.07 | 5.4 7.08 | 5.41 10.42 | 7.83 

IMG | IAG 330380 | 136225 2828060 | 7338150 0.59 | 0.59 3.08 | 2.28 4.38 | 3.35 4.38 | 3.35 5.24 | 3.96 

JE | JE 126472 | 26532 725152 | 664006 0.41 | 0.42 4.16 | 3.1 5.57 | 4.26 5.59 | 4.28 5.76 | 4.34 

K | KGC 459455 | 204849 3423667 | 5137030 0.36 | 0.37 4.04 | 3.01 5.09 | 3.89 5.1 | 3.89 5.28 | 4 

KL | KL 809303 | 265465 5883847 | 8194945 0.38 | 0.38 32.75 | 24.78 55.72 | 42.57 55.67 | 42.54 57.99 | 44.04 

LAC | LAC 79010 | 19548 554294 | 409145 0.55 | 0.56 3.98 | 3 5.17 | 3.95 5.19 | 3.96 6.43 | 4.89 

MFC | MFC 1055980 | 146708 9309901 | 20560263 0.18 | 0.2 19.65 | 14.73 23.83 | 18.2 23.82 | 18.2 25.18 | 18.7 

MG | MGA 707903 | 225565 8590471 | 8690419 0.25 | 0.27 57.34 | 42.51 65.24 | 49.85 65.29 | 49.87 76.11 | 56.92 

NEXA | NEXA 1965 | 33607 876459 | 421816 0.41 | 0.37 11 | 8.24 12.85 | 9.76 12.93 | 9.74 17.05 | 12.77 

NOA | NOA 65976 | 27325 698430 | 698192 0.33 | 0.35 11.99 | 8.98 14.13 | 10.79 14.14 | 10.8 18.37 | 13.63 

OR | OR 301144 | 108305 3337488 | 3325920 0.33 | 0.33 11.29 | 8.51 13.55 | 10.35 13.56 | 10.36 16.08 | 12.08 

OSB | OSB 298421 | 48770 2157883 | 2327255 0.37 | 0.37 26.31 | 19.46 32.33 | 24.7 32.34 | 24.71 39.96 | 30.45 

PD | PDS 275432 | 65425 1716199 | 7079878 0.58 | 0.6 2.2 | 1.65 2.43 | 1.86 2.43 | 1.87 4.05 | 3 

PPL | PBA 725753 | 164168 8752195 | 16892003 0.14 | 0.15 41.9 | 31.46 48.38 | 36.95 48.32 | 36.92 50.65 | 37.93 

PVG | PVG 357774 | 145260 4959405 | 12922001 0.48 | 0.49 8.85 | 6.65 13.1 | 10.01 13.11 | 10.02 13.69 | 10.4 
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TSX Ticker |  NYSE Ticker # Trades # Quotes Volatility Min. Price Mean Price Median Price Max. Price 

QSR | QSR 470727 | 255245 6007156 | 5078923 0.22 | 0.21 71.83 | 53.84 90.68 | 69.29 90.67 | 69.28 93.28 | 70.46 

RBA | RBA 110642 | 79826 2151942 | 2558254 0.18 | 0.18 42.64 | 31.87 43.74 | 33.41 43.74 | 33.41 49.85 | 37.90 

RCI.B | RCI 705107 | 191170 5570214 | 5263925 0.16 | 0.16 65.4 | 48.68 70.04 | 53.54 70.05 | 53.54 73.82 | 55.91 

RFP | RFP 8157 | 52024 1004058 | 1093796 0.44 | 0.44 8.04 | 6.03 9.13 | 6.99 9.25 | 7.08 12.80 | 9.66 

SEA | SA 65739 | 57074 1567849 | 1442803 0.41 | 0.41 14.74 | 10.95 17.66 | 13.50 17.66 | 13.5 20.10 | 15.24 

SHOP | SHOP 318277 | 405448 5354211 | 4998081 0.37 | 0.38 185.2 | 138.74 389.59 | 297.37 389.96 | 297.74 446.40 | 338.91 

SJR.B | SJR 472788 | 111248 4124435 | 6200442 0.13 | 0.14 25.29 | 18.97 26.61 | 20.33 26.61 | 20.33 28.10 | 21.07 

SLF | SLF 793187 | 175893 7900086 | 14513600 0.16 | 0.17 44.74 | 33.51 54.11 | 41.34 54.1 | 41.34 55.97 | 41.76 

STN | STN 127841 | 4530 774649 | 689458 0.14 | 0.16 29.97 | 22.51 31.35 | 23.95 31.36 | 23.96 33.68 | 25.12 

SU | SU 1535134 | 353457 17683883 | 57905722 0.20 | 0.21 38.64 | 28.96 40.79 | 31.17 40.8 | 31.17 46.50 | 34.86 

T | TU 619142 | 111636 5611749 | 7265649 0.09 | 0.11 44.51 | 33.37 48.33 | 36.92 48.33 | 36.94 51.22 | 38.28 

TA | TAC 290829 | 34737 1611785 | 1531971 0.30 | 0.30 5.78 | 4.35 8.40 | 6.43 8.41 | 6.44 10.14 | 7.61 

TD | TD 1479643 | 216189 14119272 | 36534277 0.11 | 0.13 67.33 | 50.57 76.34 | 58.33 76.35 | 58.33 77.58 | 58.86 

TECK.B | TECK 928365 | 326145 12283636 | 19162216 0.32 | 0.34 26.15 | 19.41 29.97 | 22.9 29.96 | 22.90 34.31 | 25.74 

THO | TAHO 54648 | 34374 402457 | 1300237 0.30 | 0.32 4.54 | 3.43 4.94 | 3.75 4.94 | 3.75 5.18 | 3.93 

TRI | TRI 402214 | 143245 4255310 | 5270140 0.14 | 0.14 62.92 | 47.15 84.11 | 64.25 84.1 | 64.25 88.97 | 67.26 

TRP | TRP 1107841 | 245069 9958583 | 20378966 0.11 | 0.12 51.23 | 38.4 64.64 | 49.38 64.63 | 49.39 66.93 | 50.46 

TRQ | TRQ 235612 | 91315 1223615 | 2755322 0.51 | 0.52 1.51 | 1.12 1.61 | 1.23 1.61 | 1.24 2.84 | 2.17 

UFS | UFS 52684 | 144294 4057849 | 2763647 0.31 | 0.31 48.04 | 36.11 57.54 | 44.46 57.54 | 44.46 70.88 | 53.89 

VET | VET 604493 | 110319 4984108 | 5249017 0.28 | 0.30 26.54 | 19.79 28.29 | 21.61 28.28 | 21.61 36.83 | 27.48 

WEED | CGC 1828075 | 606702 13002523 | 8134021 0.54 | 0.56 37.25 | 28.01 52.97 | 40.44 52.84 | 40.37 70.98 | 52.73 

WPM | WPM 622933 | 258698 9502407 | 20797947 0.25 | 0.26 24.75 | 18.55 31.38 | 23.98 31.37 | 23.98 33.85 | 25.24 

YRI | AUY 337374 | 159634 2226240 | 4512850 0.43 | 0.44 2.41 | 1.79 3.33 | 2.54 3.33 | 2.55 3.78 | 2.88 
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Table A4. Variable definitions and symbols 

Variable name (units) Symbol Variable definition and construction* 

Daily average net profits per selected pair (C$) 𝑝𝑟𝑜𝑓𝚤𝑡𝑠  

∑

| |
, where 𝑝𝑟𝑜𝑓𝑖𝑡𝑠  is the net profits in C$ 

generated by the pair of cross-listed stocks 𝑛 on day 𝑡, and 
|𝑃 | is the cardinality of the set of selected pairs on that day 
from our machine learning methodology, i.e. the number of 

selected pairs. Non-selected pairs have 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 ∙ 0. 

Intraday mid-price volatility of TSX stock (%) 𝑣𝑜𝑙 ,  

∑ , ,

∑ ,

, where 𝑣𝑜𝑙 ,  is the percentage ratio of 

standard deviation to the average of the mid-price series of 
cross-listed stock 𝑛 at the TSX on day 𝑡. 

Intraday mid-price volatility of NYSE stock (%) 𝑣𝑜𝑙 ,  

∑ , ,

∑ ,

, where 𝑣𝑜𝑙 ,  is the percentage ratio 

of standard deviation to the average of the mid-price series 
of cross-listed stock 𝑛 at the NYSE on day 𝑡. 

Average intraday mid-price volatility for TSX-NYSE 
(%) 

𝑣𝑜𝑙 ,  
𝑣𝑜𝑙 , 𝑣𝑜𝑙 ,

2
 

Intraday mid-price volatility of CME futures (%) 𝑣𝑜𝑙 ,  
Percentage ratio of standard deviation to the average of the 
mid-price series of the CADUS futures on day 𝑡. 

Daily average bid-ask spread of TSX stock (bps) 𝑠𝑝𝑟𝑒𝑎𝑑 ,  

∑ , ,

∑ ,

, where 𝑠𝑝𝑟𝑒𝑎𝑑 ,  is the arithmetic 

mean of the bid-ask spread series in bps of the cross-listed 
stock 𝑛 at the TSX on day 𝑡. 

Daily average bid-ask spread of NYSE stock (bps) 𝑠𝑝𝑟𝑒𝑎𝑑 ,  

∑ , ,

∑ ,

, where 𝑠𝑝𝑟𝑒𝑎𝑑 ,  is the 

arithmetic mean of the bid-ask spread series in bps of the 
cross-listed stock 𝑛 at the NYSE on day 𝑡. 

Average bid-ask spread for TSX-NYSE (bps) 𝑠𝑝𝑟𝑒𝑎𝑑 ,  
𝑠𝑝𝑟𝑒𝑎𝑑 , 𝑠𝑝𝑟𝑒𝑎𝑑 ,

2
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Variable name (units) Symbol Variable definition and construction* 

Daily average bid-ask spread of CME futures (bps) 𝑠𝑝𝑟𝑒𝑎𝑑 ,  
Arithmetic mean of the bid-ask spread series of the CADUS 
futures on day 𝑡. 

Daily trading volume of TSX stock (shares) 𝑡𝑟𝑎𝑑𝑒 ,  

∑ , ,

∑ ,

, where 𝑡𝑟𝑎𝑑𝑒 ,  is the trading volume 

of the cross-listed stock 𝑛 at the TSX on day 𝑡. 

Daily trading volume of NYSE stock (shares) 𝑡𝑟𝑎𝑑𝑒 , , 
∑ , ,

∑ ,

, where 𝑡𝑟𝑎𝑑𝑒 ,  is the trading 

volume of the cross-listed stock 𝑛 at the NYSE on day 𝑡. 

Average daily trading volume for TSX-NYSE (shares) 𝑡𝑟𝑎𝑑𝑒 ,  
𝑡𝑟𝑎𝑑𝑒 , 𝑡𝑟𝑎𝑑𝑒 ,

2
 

Daily trading volume of CME futures (contracts) 𝑡𝑟𝑎𝑑𝑒 ,   Total volume of CADUS futures contracts traded on day 𝑡. 

Daily number of level one messages for TSX stock 
(scalar) 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,  

∑ , ,

∑ ,

, where 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,  is the number 

of level one messages for the cross-listed stock 𝑛 at the TSX 
on day 𝑡. 

Daily number of level one messages for NYSE stock 
(scalar) 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,  

∑ , ,

∑ ,

, where 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,  is the 

number of level one messages for the cross-listed stock 𝑛 at 
the NYSE on day 𝑡. 

Average daily number of level one messages for TSX-
NYSE (scalar) 

 

  
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,

2
 

Daily number of level one messages for CME futures 
(scalar)  

Total number of level one messages for the CADUS futures 
on day 𝑡 

 

*A cross-listed stock 𝑛 listed at exchange 𝑖 has a daily traded value on day 𝑡 of 𝑤 , ∑ 𝑣 , 𝑆 ,
,  for 𝑄 ,  the number of trades at that exchange 

for that stock on that day resulting from the limit order strategy, 𝑣 ,  the volume of the trade and 𝑆 ,  the value of the stock when the trade ended. 

Note that 𝑄∙,
∙ 0 for every non-selected pair on day 𝑡.  

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,  

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ,
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Table A5. Pearson correlation matrix of the variables used in the regression analysis. Bold values are statistically different from 0. 

 𝑝𝑟𝑜𝑓𝚤𝑡𝑠 𝑣𝑜𝑙  𝑣𝑜𝑙   𝑣𝑜𝑙   𝑠𝑝𝑟𝑒𝑎𝑑   𝑠𝑝𝑟𝑒𝑎𝑑   𝑠𝑝𝑟𝑒𝑎𝑑   𝑡𝑟𝑎𝑑𝑒   𝑡𝑟𝑎𝑑𝑒  𝑡𝑟𝑎𝑑𝑒  𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠  𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠  𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑝𝑟𝑜𝑓𝚤𝑡𝑠 1.000 0.474 0.490 0.134 0.613 0.669 -0.114 0.031 0.228 0.118 0.344 0.228 0.394 

𝑣𝑜𝑙   1.000 0.983 0.290 0.462 0.471 0.007 0.242 0.607 0.025 0.354 0.249 0.150 

𝑣𝑜𝑙    1.000 0.322 0.432 0.447 0.010 0.263 0.609 0.019 0.390 0.287 0.180 

𝑣𝑜𝑙     1.000 0.117 0.140 0.244 0.021 0.133 0.167 0.157 0.125 0.258 

𝑠𝑝𝑟𝑒𝑎𝑑      1.000 0.932 -0.137 -0.315 0.160 0.126 -0.197 -0.304 0.180 

𝑠𝑝𝑟𝑒𝑎𝑑       1.000 -0.092 -0.165 0.191 0.117 -0.097 -0.190 0.237 

𝑠𝑝𝑟𝑒𝑎𝑑        1.000 0.017 -0.052 -0.090 0.066 0.101 -0.351 

𝑡𝑟𝑎𝑑𝑒         1.000 0.742 -0.054 0.702 0.688 -0.033 

𝑡𝑟𝑎𝑑𝑒          1.000 0.026 0.630 0.516 -0.005 

𝑡𝑟𝑎𝑑𝑒           1.000 -0.014 -0.060 0.209 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠            1.000 0.845 0.170 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠             1.000 0.192 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠              1.000 
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Appendix B. Practical considerations for strategy implementation  

The equilibrium value of the relative spread, 𝜏 ,  𝑖 ∈ 𝑆ℎ𝑜𝑟𝑡, 𝐿𝑜𝑛𝑔  can be computed a 

posteriori at the end of the day. However, in practice, these quantities need to be known in real 

time to find the arbitrage opportunities. To account for overnight basis adjustment, a simple 

approximation could be the sample average of the 𝛤  process during the first minutes of a trading 

day before starting the strategy. We eliminated the first two minutes of each trading day to let the 

prices converge to their daily equilibrium level. 

The approximation is then used as the first value of 𝜏  when the strategy starts. From that 

starting point, the approximation is following a running average of 𝛾  at every LOB level one event 

in one of the three exchanges for a given stock and currency futures. Note that the strategy needs 

a constant equilibrium value from the opening trades to the closing trades, meaning that the 𝜏 s are 

not updated when positions are still opened for a given pair. 

The strategy assumes that the synthetic spreads return exactly to equilibrium at their 

respective time 𝑡 . Because of market frictions (mainly discrete stock prices), there is a null 

probability that the synthetic spreads would converge exactly to 𝜏  at any time, so bounds around 

equilibrium are necessary to close the positions. To solve this issue, we add another parameter 𝛽

0 that controls when the processes are near enough to their respective equilibrium to close the 

positions within reasonable bounds. The practical definition of 𝑡  becomes:  

𝑡 , ≡ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑠 | 𝛾 ∈ 𝜏 𝛽 𝜏 𝜅 , 𝜏 𝛽 𝜏 𝜅   

for the process 𝛤  with the market order-based strategy, 

𝑡 , ≡ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑠 | 𝛾 ∈ 𝜏 𝛽 𝜅 𝜏 , 𝜏 𝛽 𝜅 𝜏  

for the process 𝛤  with the market order-based strategy, 

𝑡 , ≡ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑠 | 𝛾 ∈ 𝜏 𝛽 𝜏 �̃� , 𝜏 𝛽 𝜏 �̃�  
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for the process 𝛤  with the limit order-based strategy, and  

𝑡 , ≡ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑠 | 𝛾 ∈ 𝜏 𝛽 �̃� 𝜏 , 𝜏 𝛽 �̃� 𝜏  

for the process 𝛤  with the limit order-based strategy.  

The smaller the 𝛽, the nearer the processes need to be to equilibrium to close the positions and the 

closer the practical strategy gets to the theory.  

The volumes sent to the market by the strategy are round lots because of the higher costs 

related to sending odd lot orders, meaning that the minimum volume that can be used in our 

strategy is 100 stocks on both stock exchanges. To capture as much of the arbitrage opportunities 

as possible without heavily impacting the price discovery processes, we dynamically determine 

the orders’ volume following the first level volumes available in the LOB of the exchanges for a 

given pair of stocks. The orders’ volume sent on both markets is limited by the less active one, 

since for one stock in Exchange 1’s market, we take a position of 1 𝜏 stocks in Exchange 2’s 

market. We have observed that 𝜏  does not deviate far enough from 1 to send a different number 

of lots in both markets for the same arbitrage opportunity. Therefore, the implemented strategy 

sends the same volumes to both stock exchanges. 

Let us define 𝑣 ,  as the median of the volume on the first LOB level on 𝑠𝑖𝑑𝑒 ∈

𝐵𝑖𝑑,𝐴𝑠𝑘  in 𝑚𝑎𝑟𝑘𝑒𝑡 ∈ 1, 2  based on the last 500 LOB level one updates preceding time 𝑡.10 

Then, the volume sent to both markets at time 𝑡 for any cross-listed stock, 𝑣 , is computed as either: 

𝑣 100max min
𝑣 ,

100
,
𝑣 ,

100
, 1  

or:  

 
10 We tested the robustness of the strategy with respect to the median volume computation by using 250, 1000 and 
2500 LOB updates. The profitability did not significantly change. 
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𝑣 100max min
𝑣 ,

100
,
𝑣 ,

100
, 1  

depending on whether market or limit orders are used, and whether a long or short position is 

opened or closed in SPDR. 

As mentioned previously, we use currency futures to hedge our position from currency risk. 

The optimal position in that instrument is given by equation (7) at any time during the strategy’s 

execution. To follow that position as closely as possible, we employ the Micro C/US futures 

contract with a nominal of C$10,000, which we approximate by dividing the prices of our 

continuous futures by 10, because of its nominal of C$100,000.  

Let 𝑣 ,  ∈ ℤ be the number of currency futurs contracts needed at time 𝑡 which best 

approximates the position size theoretically needed at the FX Exchange at that time, 𝑣 ,
∗ , without 

under-hedging the aggregated position in Exchange’s 2 market. We compute its value as: 

𝑣 ,  
𝑣 ,
∗  𝑖𝑓 𝑣 ,

∗ 0

𝑣 ,
∗  𝑖𝑓 𝑣 ,

∗ 0 
,∀𝑡. 

Because of high nominal value of the futures, we cannot perfectly hedge Exchange 2’s 

positions. In the market order strategy, only market orders are used to follow as much as possible 

𝑣 ,   during the strategy’s execution. In the limit order strategy, limit orders are sent to the top-

of-the book prices, or canceled, or updated at every market event modifying 𝑣 ,   to achieve the 

same goal. Latency makes it more complicated to get exactly a volume of 𝑣 ,   at all times.11  

To mitigate the mean-reversion risk and the non-execution risk, specifically for the limit order 

strategy, a timer of 15 minutes is used to cancel any order and close any position resulting from 

 
11 Trading the hedging instrument does not directly lead to significant losses or gains but is necessary to mitigate 
currency risk in both strategies. Slippage of market orders for the hedging instrument is insignificant to the profitability 
of the strategy. Slipping does not occur with limit orders, but the non-execution risk can generate a non-optimal 
hedging position, even more so when latency is considered. 
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opening a position in the synthetic spread (SPRD) using marketable limit orders. The timer starts 

when the orders are sent to the markets and ends only when the orders are filled, and the positions 

are closed. Along the same vein, stop-losses are also implemented so that if the prices in the LOB 

level one diverge drastically from pending limit order prices, these orders would be canceled, and 

any opened position would be closed with marketable limit orders. No new positions are opened 

15 minutes before market close. 

Even though the strategy is built to be theoretically profitable for every pair, the cross-listed 

stocks’ characteristics could lead to unprofitable trades. To determine how the underlying factors 

of a profitable pair differ from the ones of a non-profitable pair, we resort to supervised learning. 

The resulting machine learning algorithm allows us to predict the future profitability of our pairs, 

thus enabling dynamic pair selection and optimizing the strategy’s performance by filtering out 

potentially non-profitable pairs. 

Specifically, we utilize a decision tree algorithm, because of its interpretability. We apply this 

non-parametric model to predict if a given pair will be profitable in the next period based on the 

data in previous periods. We treat this problem as a dynamic binary classification task where the 

output of the model at each period is either profitable or unprofitable for each pair in the universe 

Ω during the next period. See Appendix C for more details on the pair selection method using the 

decision tree algorithm. 
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Appendix C. Decision tree learning for recurrent pair selection 

For 𝑇 the number of days in our data, 𝒯 1, 2, . . . ,𝑇 , the daily indices, and 𝑘 ∈ ℤ /  the 

period length at which we recurrently select pairs in Ω, we do pair selection every 𝑘 days 

throughout our data, beginning after two periods, because the first two periods are needed for the 

first decision tree to be trained. Set 𝑀 , with the model training day indices ℳ

2𝑘, 3𝑘, … ,𝑀𝑘 ⊂  𝒯. Define 𝑿 , ∈𝒯 , 𝑿 , ∈ 𝓧 ⊆ ℝ  the multivariate stochastic process of the 

𝑑 daily features with time series 𝒙 , ∈𝒯 and 𝛱 , ∈𝒯 .  𝛱 , ∈ ℝ is the net daily profit process 

of pair 𝑝 ∈ 1,2, … ,𝑛  with time series 𝜋 , ∈𝒯, where 𝜋 ,  includes the gross profit, loss, and 

trading rebates and fees in Canadian dollars resulting from the strategy’s execution on pair 𝑝 

during day 𝑡. 

Let us also define 𝑌 , ∈ℳ , 𝑌 , ∈ 𝒴 ≡ 1, 1 , the profitability class process of pair 𝑝, 

with time series 𝑦 , ∈ℳ where 𝑦 , 1 when the pair 𝑝 is unprofitable and 𝑦 , 1 when 

that same pair is profitable during 𝑡 | 𝑚 𝑘 1 𝑡 𝑚 . The time series is computed as 

follows: 

𝑦 ,  
1 𝑖𝑓 ∑ 𝜋 , 0

    1 𝑖𝑓 ∑ 𝜋 , 0
,∀𝑝,𝑚. 

The decision tree’s goal is to try to learn a series of 𝑀 1 functions 𝐻 :𝓧 → 𝒴,  where each 

one maps the features of all the pairs in 𝑡 | 𝑚 2𝑘 1 𝑡 𝑚 𝑘  to their respective 

profitability class during 𝑡 | 𝑚 𝑘 1 𝑡  𝑚  for all 𝑚 ∈ ℳ. To do so, we use the arithmetic 

mean of the daily features’ time series as inputs to the model. Hence, the set of training examples 

for the decision tree at time 𝑚 is given by: 

∑ 𝒙 , ,𝑦 ,  ,
∑ 𝒙 , ,𝑦 ,  , … ,

∑ 𝒙 , , 𝑦 ,   ,∀𝑚.  
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Based on that set, the decision tree tries to find 𝐻  using Gini’s impurity criterion and 

information gain. To avoid overfitting issues, we limit the algorithm to a maximum depth of 2. 

The resulting classification function, 𝐻 , is then used to predict the profitability of each pair in 

the next interval 𝑡 | 𝑚 1 𝑡  𝑚 𝑘  from the most recent features: 

𝐻
∑ 𝒙 , 𝑦 , ,∀𝑝,𝑚. 

Hence, we can select the set of pairs that will be traded throughout the next interval, which 

are given by: 

𝑃 ≡  𝑗 | 𝑦 , 1, 1 𝑗 𝑛 , ∀𝑚. 

The decision tree is completely retrained only on the corresponding training examples at each 

𝑚 ∈ ℳ, so that only local patterns are used in the prediction of the pairs’ profitability. Note that 

we cannot launch the pair selection method until 𝑡 2𝑘, because the first 𝑘 days are used to 

generate the features, and the following 𝑘 days are used to compute the profitability of the pairs. 

Together, these features and profitability values form the first set of training examples on which 

we train the first decision tree at 𝑡 2𝑘. 

The daily features computed at the TSX and NYSE are the: 

▪ bid-ask spread’s arithmetic mean, 

▪ total trading volume, 

▪ ratio of the number of trades per quotes, 

▪ coefficient of variation of the mid-price, 

▪ the total number of trades and quotes, 

▪ and a measure of the previous period’s profitability, 

with 𝑘 3 days. 
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The profitability prediction accuracy of the decision tree at time 𝑚 ∈ ℳ,𝐴 , is computed as 

follows: 

𝐴
∑ 𝑰

, ,

𝑛
,∀𝑚  

where 𝑰
, ,

 1   𝑖𝑓 𝑦 , 𝑦 ,  
0   𝑖𝑓 𝑦 , 𝑦 ,

, the indicator function. 

 

Figure C1. Profitability of prediction accuracy 𝐴 ,∀𝑚 ∈ ℳ of the dynamic decision tree approach from 
January 15th to June 20th, 2019, computed every 𝑘 3 days.  

From Figure C1, we observe that our methodology predicts that the next three days of each 

pair will be profitable at an average of 92% accuracy. We also observe that the predicted accuracy 

does not vary very much in our period of analysis. This process is repeated until the end of our 

data. Figure C2 presents the selected pairs in time for our portfolio. We observe that only 36 pairs  

pairs (in green) were selected at least one time.
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Figure C2. Predicted profitability of each pairs in time generated by our dynamic decision tree-based approach from January 15th to June 28th, 2019: 
𝑦 , ,∀𝑝 ∈ 1,2, … , 74 ,∀𝑚 ∈ ℳ . The selected pairs in time, 𝑃 , are in green, non-selected pairs are in red, and pairs where at least one stock is de-listed 
are in yellow. About 36 pairs were selected by the model at least one time.
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Figures C3 to C5 represent the decision trees learned for pair selection at the beginning of our 

period of analysis at 2019-01-15, in the middle period at 2019-03-29, and towards the end at 2019-

06-13, respectively. Each rectangle in a tree is a node with the best rule that minimizes the Gini 

impurity of the corresponding child nodes. A rule is a criterion that splits the feature space into 

distinct subspaces. Feature vectors that fall within one of the resulting subspaces are then passed 

to the corresponding child node. Feature vectors that respect the interval specified by the rule in a 

node continue to the bottom left, and if they do not, they continue to the right until they arrive to 

a leaf where the prediction takes place. The learned rules are the first line of each non-leaf node. 

Leaves have no rule and are located at the bottom of the trees. The prediction made at the leaves 

is the most predominant class in the node’s sub data set, where the number of instances of each 

class is given by the vector “value.” 

To determine the pair selection variables, well-established stylized facts are dynamically fed 

ex-ante into a decision tree using three days of high-frequency data. We restrict the information 

set to variables from tick trades and limit order level one and the target is our strategy’s daily 

profitability class for each pair. The tree learning is done after markets close and is used during 

the three following intraday activities. Most of the time, two conceptually appealing stylized facts 

drive the pair selections: the bid-ask spread, an important component of endogenous liquidity 

providers profitability (Brogaard et al, 2018; Ait-Sahalia, 2017) and the number of messages, 

tightly linked to liquidity (Hendershott et al, 2011; Hasbrouck and Saar, 2013). The three decision 

trees below exemplify a recurring decision tree structure. The pair selection methodology based 

on them generates more than satisfactory results, given their out-of-sample high profitability 

prediction accuracy and the excellent stability in the performance through time (See Figure C1). 



78 

This confirms that the features selected by the decision trees are reliable predictors of the 

profitability of each pair traded. 

 

 

Figure C3. Tree for portfolios profitability on 2019-01-15 
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Figure C4. Tree for portfolios profitability on 2019-03-29 
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Figure C5. Tree for portfolios profitability on 2019-06-13 
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Appendix D. Daily number of trades and quotes for four pairs of cross-listed stocks.  

The first company in Panel A, CNOOC, focuses on the exploitation, exploration and 

development of crude oil and natural gas in offshore China. It has barely any trades over the period, 

especially on the TSX. However, it received a decent amount of first level quotes on both 

exchanges with a bit more activity on the TSX. The second company, the Canadian Pacific 

Railway (CP), gets a fair amount of trading activity on both exchanges with a slight edge on the 

TSX. Both exchanges receive a comparable number of first level quotes for that Canadian 

company, which are about the double of CNOOC. The third company, Shopify, a Canadian e-

commerce firm, has a similar trades and quotes profile on both exchanges. Both are higher than 

those of CP. The final company, Canopy Growth, a Canadian cannabis producer, has the highest 

number of trades and quotes on both exchanges and TSX leads in both quantities.  
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Panel A: Daily number of trades and quotes for TSX:CNU and NYSE:CEO 

 

Panel B: Daily number of trades and quotes for TSX:CP and NYSE:CP 
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Panel C: Daily number of trades and quotes for TSX:SHOP and NYSE:SHOP 

 

Panel D: Daily number of trades and quotes for TSX:WEED and NYSE:CGC 

 

Figure D1. Daily number of trades and quotes for four pairs of cross-listed stocks 

 

  



84 

Appendix E. Wah (2016) study 

We repeat the experiments done in Section 6 for Budish et al. (2015), but with the strategy 

of Wah (2016). Once again, it is implemented with the observed theoretical settings and minor 

modifications to adapt it to our data. Prices at the NYSE are continuously transferred to C$ 

following the C/US futures observed at the CME. In addition, we used two hypotheses employed 

in the model: there is an absence of latency and opened positions at an exchange can be 

immediately closed at another exchange, resulting in a trade. There is a small nuance in the case 

of Wah (2016): MIDAS data is recorded at a single point of observation, meaning that the effect 

of latency on information observation is already considered. There still remains the latency of the 

orders. Table E1 Panel A presents the results obtained on our data with the strategy of Wah (2016). 

The second column of Table E1 Panel A presents the results that are obtained following as closely 

as possible the respective theoretical framework that cannot be replicated in pratice. In the next 

two columns, latency is considered. 

Table E1 Panel A. Wah (2016) study with our 2019 data 

1 2 3 4 

Model Wah Original 
Wah Original 

With 1x Latency 
Wah Original 

With 3x Latency 
Latency multiplier 01 1 3 
Pair selection No No No 
Gross profit $4,677,764.64 $4,625,043.07 $4,305,331.72 
Loss $0.00 -$282,933.09 -$308,364.36 
Trading fees -$2,674,499.10 -$2,832,777.28 -$2,721,234.00 
Trading rebates $0.00 $0.00 $0.00 
Total net profit $2,003,265.54 $1,509,332.70 $1,275,733.36 
Mean daily net profit $17,572.50 $13,239.76 $11,190.64 
Median daily net profit $17,083.02 $12,782.75 $10,672.95 
Mean daily net profit per 
pair, per day 

$237.47 $178.92 $151.22 

p-value Kolmogorov-
Smirnov test2 

 1.00 1.00 
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1st most profitable day 
(date - profit) 

2019/01/17  
$35,222.68 

2019/01/17 
$30,985.29 

2019/01/17 
$29,793.92 

5th most profitable day 
(date - profit) 

2019/01/30  
$27,788.04 

2019/01/30 
$23,643.17 

2019/05/07 
$19,803.40 

1st most unprofitable day 
(date - profit) 

2019/04/11 
$6,013.47 

2019/06/17  
$1,470.35 

2019/04/11 
$502.20 

5th most unprofitable day 
(date - profit) 

2019/04/05  
$7,843.25 

2019/04/15  
$4,424.84 

2019/06/20 
$3,535.60 

Average time in trade3 00:00.0 00:00.0 00:00.0 

# net profitable trades 158,647 154,718 155,543 

# net unprofitable trades 49,703 76,095 79,131 

# trades 208,350 230,813 234,674 

% net profitable trades 76.14% 67.03% 66.28% 

Average volume per trade 2366.07 2,380.48 2,249.33 

Average net profit per trade $9.61 $6.54 $5.44 

Average profit per net 
profitable trades 

$15.71 $15.96 $14.89 

Average profit per net 
unprofitable trades 

-$9.83 -$12.61 -$13.14 

1 Latency for receiving information from MIDAS is included. Other latencies are not considered by the 
author. 
2 H0: F(x) <= G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, 
respectively: p-value of 1.00 for no latency vs 1x latency and 1.00 for 1x latency vs 3x latency. 
3 HH: MM: SS. U: hours: minutes: seconds: fractions of a second. 

Wah (2016) utilizes direct-feed data from MIDAS, a platform at the U.S. Securities and 

Exchange Commission (SEC) that provides access to order and quote messages on all U.S. stock 

exchanges. Cross-market arbitrage opportunities are analyzed from 11 U.S. equities exchanges. 

The author assumes there is a single infinitely fast latency arbitrageur. When the arbitrageur detects 

a latency arbitrage opportunity, the strategy is to submit market orders to the exchanges involved 

in the cross-market arbitrage opportunity. The data used by Wah (2016) includes market orders 

for the 495 tickers of the S&P 500 from January 1, 2014 to December 31, 2014. Latency arbitrage 
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opportunities across these exchanges were observed to happen very frequently during that year 

and they generated a profit exceeding US$3.03 billion to the infinitely fast latency arbitrageur.12  

When we look at column 2 of Panel A, the results of the original model with our data generate 

a gross profit of C$4.7 million for 74 stocks in two exchanges for six months.13 If we extend these 

results to eleven exchanges with 495 stocks over one year, this generates about C$0.76 billion 

(US$0.58) in the year 2019.14 

The main difference with Wah’s original study can be explained by the characteristics of the 

stocks in the two studies and by the relative sizes of the exchanges. To have a comparable market 

environment to Wah (2016), when generating the C$0.76 billion result we assumed there is only 

one very fast arbitrageur in colocation in only one exchange and trading in the 11 exchanges. If 

we extend the possibility that the trading activities are generated by the very fast arbitrageur in 

colocation in the eleven markets, we obtain about C$3.8 billion (US$2.9) in annual gross profits 

($0.7*5)15, which is fairly close to the US$3 billion reported in the paper. We also observe, in 

column 2 of Panel A, that the trading cost represent more than half of the gross profit generated 

by the strategy. Only around 76% of the abitrage opportunities cover the trading costs. In that 

sense, Budish et al.’s (2015) approach allows to better select arbitrage opportunities. This is also 

true when conparing average net profit per trades between these two strategies. 

Assuming an infinitely fast arbitrageur cannot correspond to any known trading application 

in the real world. In the next columns, latency is incorporated in the trading enviroment. This 

 
12 46 tickers from the Russell 2000 were also studied but their profits are not included in the $3.03 billion result. 
13 In this section we do not use the futures contracts for hedging the exchange rate. We do however use the exchange 
rate updates continuously to obtain pure variations in stock prices between Toronto and NY exchanges. 
14 ($4,677,764.64 × (495/74) × 11 × (252/114) = $760,852,059.40). 
15 Here we assume the arbitrageur exploits 55 links between the exchanges even if she receives information at one 
single observation point. A better approximation should consider the real volumes of arbitrage between the exchanges. 
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results in a statistically significant (see p-values) decrease of 25% in net profitability. The drop in 

profitability is even greater at 36% when latency is tripled from the based value. Once again, this 

demonstrates the importance of latency in HFT trade profitability. Ignoring this practical aspect 

inflates the reported profits. 

As in Budish et al. (2015), Wah (2016) considers that a trade occcurs when two opposite 

positions are taken in different exchanges. We abandon this hypothesis, meaning that an opposite 

position at the same exchange has to be taken in order to lead to a trade. The results generated by 

this last strategy in this more practical market enviroment are presented in Table E1 Panel B. 

Table E1 Panel B. Practical Wah (2016) study with our 2019 data 

1 2 3 4 

Model Wah Practical 
Wah Practical 

With 1x Latency 
Wah Practical 

With 3x Latency 

Latency multiplier 01 1 3 
Pair selection No No No 
Gross profit  $343,498.69 $337,486.65  $380,996.00  
Loss -$350,969.16 -$346,625.18 -$393,820.69 
Trading fees -$5,906.46 -$5,811.90 -$6,877.05 
Trading rebates $0.00 $0.00 $0.00  
Total net profit -$13,376.93 -$14,950.43 -$19,701.74 
Mean daily net profit -$117.34 -$131.14 -$172.82 
Median daily net profit -$30.39 -$29.40 -$40.99 
Mean daily net profit per 
pair, per day 

-$1.59 -$1.77 -$2.34 

p-value Kolmogorov-
Smirnov test2 

 0.97 0.99 

1st most profitable day 
(date - profit) 

2019/06/28 
$2,447.42 

2019/06/28 
$2,673.73 

2019/06/28 
$2,462.57 

5th most profitable day 
(date - profit) 

2019/06/25 
$243.73 

2019/06/25 
$177.66 

2019/06/25 
$273.35 

1st most unprofitable day 
(date - profit) 

2019/05/15 
-$4,254.55 

2019/05/15 
-$4,728.90 

2019/05/16 
-$2,931.57 

5th most unprofitable day 
(date - profit) 

2019/04/05 
-$728.58 

2019/06/23 
-$922.47 

2019/06/03 
-$1,350.77 

Average time in trade3 118.17:19:47 119.05:04:35 122.17:30:38 
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# net profitable trades  513 498 728 
# net unprofitable trades  527 512 756 
# trades  1,040 1,010 1,484 
% net profitable trades 49.33% 49.31% 49.06% 
Average volume per trade 549.21 556.50 448.69 
Average net profit per trade -$12.86 -$14.80 -$13.28 
Average profit per net 
profitable trades 

$665.73  $673.80  $520.00  

Average profit per net 
unprofitable trades 

-$673.43 -$684.58 -$526.80 

Total Short Inventory 
Remaining @ Close 

$4,705,786,414.13 $4,693,771,499.50 $4,643,810,959.12 

Total Long Inventory 
Remaining @ Close 

$3,587,847,145.39 $3,578,678,416.90 $3,540,608,627.73 

1 Latency for receiving information from MIDAS is included. Other latencies are not considered by the 
author. 
2 H0: F(x) <= G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, 
respectively: p-value of 1.00 for no latency vs 1x latency and 1.00 for 1x latency vs 3x latency. 
3 D.HH: MM: SS. U: days.hours: minutes: seconds: fractions of a second. 

The outcomes obtained by the strategy of Wah (2016) in Panel B lead to the same observations 

that were previously made based on Budish et al’s (2015) results in Section 6: the strategy does 

not generate any net profit. Profits statistically decrease whenever latency is introduced in the 

testing environement. A great inventory has also been accumulated during the six months, even 

more so than Budish et al (2015), for the same reasons. Overall, by not considering practical 

trading aspects such as latency or real market functioning, Wah (2016) inflated latency arbitrage 

profitability. 
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Appendix F. Server rules and execution occurrences 

1. Each limit order has a standing quantity that must be executed before the order is executed. 

2. That standing quantity is computed from the following steps: 

2 a. If the limit order’s price of a buy/sell order is equal to the best bid/ask price, the order’s 

standing quantity becomes the current best bid/ask volume. 

2.b If the limit price of a buy/sell order is below/above the best bid/ask price, the order’s 

standing quantity is undefined. In that instance, the trading and quoting emulator waits 

for the limit order’s price to be equal to the best bid/ask price and it sets the standing 

quantity according to 2.a. 

2.c If the limit order’s buy/sell price is above/below the best bid/ask price, the order is filled. 

2.d If the standing quantity has been defined for a limit order, it can only be changed for a 

future execution. 

3. A limit order can be executed by a trade occurring at the limit order’s price. The standing 

quantity must be executed first. If it has been executed completely, then the limit order can be 

executed. If the remaining trade size is not large enough to fill the limit order’s size, then a 

partial filling occurs. Limit orders with an undefined standing quantity cannot be executed by 

a trade. 

4. A limit order can be executed when the best ask/bid price becomes lower/greater than the 

buy/sell limit order’s price. This also holds for limit orders with undefined standing quantities.  

5. A limit order is filled when the best bid/ask price becomes lower/greater than the buy/sell limit 

order’s price, regardless of its standing quantity. This also holds for limit orders with undefined 

standing quantities.  
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The the trading and quoting emulator is conservative in some regards, especially considering 

the static standing quantity that must be executed before the corresponding limit order, because it 

ignores cancelations decreasing that quantity after the order has been placed, which follows from 

rules 1 and 2.a. Also, whenever a limit order is placed deeper than LOB level 1 and its price 

becomes the top of the book after some time, the limit order is put at the end of the queue of all 

the orders also at the new level 1 regardless of its actual position in that queue, which follows from 

rules 2.a and 2.b. 


