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Résumé 

Cette Thèse propose trois articles à propos de la Microstructure du marché. Dans cet 

objectif, nous avons trois articles différents et complémentaires. 

Le premier chapitre développe la mesure du risque de haute-fréquence: la Valeur à 

Risque Intra-journalière (LIVaR) avec liquidité-ajustée. Notre objectif est de considérer, 

de façon explicite la dimension de la liquidité endogène, associée avec la grandeur des 

ordres. En reconstruisant le carnet d’ordre de Deutsche Börse, les changements de 

rendements sans friction et les changements de rendements actuels sont modélisés 

conjointement. Ce modèle aide à identifier les mouvements des rendements actuel et 

sans friction; et aussi pour quantifier le risque relié à la prime de liquidité, qui peut 

compter jusqu'à 35% du risque total, dépendamment de la grandeur de l'ordre. Notre 

modèle peut non seulement être utilisé pour identifier l'impact du risque de la liquidité 

sur le risque total, mais aussi pour avoir une estimation de Valeur à Risque pour le 

rendement actuel pour un moment précise dans la journée. 

Chapitre 2 analyses si les informations intégrées dans le carnet d'ordres à haute 

fréquence permettent de prédire la dynamique des prix et la direction des transactions. 

Pour ce faire, nous reconstruisons les 20 premiers niveaux d’un carnet d'ordres (à 

chaque milliseconde) des actions échangées dans le système électronique Xetra de la 

Bourse de Francfort. Ensuite, nous construisons différentes variables qui résument les 

dimensions différentes des informations intégrées dans le carnet d'ordres, tels que la 

profondeur, la pente, la convexité d'achat et de vente et différents ratios. En suivant le 

modèle proposé par Hasbrouck (1991), nous estimons un système linéaire d’un vecteur 

autorégressif (VAR) qui inclut le rendement de milieu de la fourchette, la direction des 

transactions et une variable d’information de carnet d'ordres. Consistent avec le modèle 

théorique sur le marché avec un carnet d'ordres, nous constatons que l'état du carnet 

d'ordres peut prédire, à court terme, le rendement de milieu de la fourchette et la 

direction des transactions. En revanche, certains variables qui résument les informations 

des niveaux plus hauts du carnet d'ordres ont également des effets cumulatifs importants 

à long terme sur le rendement de milieu de la fourchette et la direction des transactions. 
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Par conséquent, la réalisation complète de ces effets prend du temps. Finalement, par un 

simple exercice de transactions à haute fréquence, nous démontrons qu'il est difficile 

d'obtenir des gains économiques de la relation entre les variables du carnet d'ordres et le 

rendement de milieu de la fourchette à cause des coûts de transaction. 

Le troisième chapitre se concentre sur la liquidité ex-ante qui est intégrée dans le carnet 

d'ordre et ses mouvements. En utilisant les données reconstruites du carnet d’ordre du 

Système de transactions Xetra, nous utilisons un modèle de décomposition pour 

chercher l'impact de la durée de la transaction, de la durée de la côte, et autres variables 

exogènes sur  le changement de liquidité ex-ante. Dans ce modèle, le facteur de la durée 

est présumé être strictement exogène, et ses mouvements sont captés par un processus 

de Log-ACD. De plus, en prenant en considération les données d’ultra haute fréquence 

(UHF), notre modèle consiste à décomposer la distribution conjointe de la mesure de la 

liquidité ex-ante dans des distributions qui sont simples et faciles à interpréter. Nos 

résultats suggèrent que les durées de négociation et de côte ont une influence sur les 

variations de liquidité ex-ante, les variables à court terme comme le changement de 

l'écart de fourchette et le volume peuvent aussi prédire la tendance du changement de la 

liquidité. Toutefois, contrairement à la littérature précédente, la variable à long terme tel 

que déséquilibre de négociation est moins informative pour prédire la dynamique de 

changement de liquidité.  

 

Mots clés : la Valeur à Risque Intrajournalière avec liquidité-ajustée, Carnet d’ordre, 
Stratégie de négociation, Mesure de liquidité Xetra (XLM). 
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Abstract

This thesis proposes three articles about the market microstructure. To this end, we have 

three different and complementary articles. 

The first chapter develops a high-frequency risk measure: the Liquidity-adjusted 

Intraday Value at Risk (LIVaR). Our objective is to explicitly consider the endogenous 

liquidity dimension associated with order size. By reconstructing the open Limit Order 

Book of Deutsche Börse, changes in the tick-by-tick (ex-ante) frictionless return and 

actual return are modeled jointly. This modeling helps to identify the dynamics of 

frictionless and actual returns, and to quantify the risk related to the liquidity premium. 

In our sample, liquidity risk can account for up to 35% of total risk depending on order 

size. Our model can be used not only to identify the impact of ex-ante liquidity risk on 

total risk, but also to provide an estimation of the VaR for the actual return at a point in 

time. 

The second chapter analyzes whether the state of the limit order book affects future 

price movements in line with what recent theoretical models predict. We do this in a 

linear vector autoregressive system which includes midquote return, trade direction and 

variables that are theoretically motivated and capture different dimensions of the 

information embedded in the limit order book We find that different measures of depth 

and slope of bid and ask sides as well as their ratios cause returns to change in the next 

transaction period in line with the predictions of Goettler, Parlour, and Rajan (2009) and 

Kalay and Wohl(2009). Limit order book variables also have significant long term 

cumulative effects on midquote return, which is stranger and takes longer to be fully 

realized for variables based on higher levels of the book. In a simple high frequency 

trading exercise, we show that it is possible in some cases to obtain economic gains 

from the statistical relation between limit order book variables and midquote return. 

The third chapter focuses on ex ante liquidity embedded in open Limit Order Book 

(LOB) and its dynamics. Using the tick-by-tick data and the re-constructed open LOB 

data from Xetra trading system, we utilize a decomposition model to investigate the 

impact of trade duration, quote duration and other exogenous variables on ex-ante 
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liquidity embedded in open LOB. More specifically, the duration factor is assumed to be 

strictly exogenous and its dynamics can be captured by a Log-ACD process. 

Furthermore, by taking into account of Ultra High Frequency (UHF) data, our modeling 

involves decomposing consistently the joint distribution of the ex-ante liquidity measure 

into certain simple and interpretable distributions. In this study, the decomposed factors 

are Activity, Direction and Size. Our results suggest that trade durations and quote 

durations do influence the ex-ante liquidity changes. Short-run variables, such as spread 

change and volume, also predict the tendency of liquidity changes. However, contrary to 

previous literature, the long-term variable trade imbalance is less informative in 

predicting the liquidity change dynamics. 

Keywords: Liquidity-adjusted Intraday Value at Risk, Limit Order Book, Trading 

strategy, Xetra Liquidity Measure (XLM)
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Chapter 1 

Liquidity-adjusted Intraday Value at Risk modeling and risk 
management: An application to data from Deutsche Börse 

Abstract 

This paper develops a high-frequency risk measure: the Liquidity-adjusted Intraday Value at 

Risk (LIVaR). Our objective is to explicitly consider the endogenous liquidity dimension 

associated with order size. By reconstructing the open Limit Order Book of Deutsche Börse, 

changes in the tick-by-tick (ex-ante) frictionless return and actual return are modeled jointly. 

This modeling helps to identify the dynamics of frictionless and actual returns, and to 

quantify the risk related to the liquidity premium. In our sample, liquidity risk can account for 

up to 35% of total risk depending on order size. Our model can be used not only to identify 

the impact of ex-ante liquidity risk on total risk, but also to provide an estimation of the VaR 

for the actual return at a point in time.  

1.1 Introduction 

Following increased computerization, many prominent exchanges around the world such as 

Euronext, the Tokyo Stock Exchange, the Toronto Stock Exchange, and the Australian Stock 

Exchange have organized trading activities under a pure automatic order-driven structure: 

there are no designated market-makers during continuous trading, and liquidity is fully 

guaranteed by market participants via an open Limit Order Book (LOB hereafter). In other 

main exchange markets including the NYSE and the Frankfurt Stock Exchange, trading 

activities are carried out under the hybrid structure, which combines the automatic order-

driven structure and the traditional floor-based quote-driven structure. Nevertheless, most 

trades are executed under the automatic order-driven structure due to its advantages of 

transparency, efficiency, and immediacy. Consequently, trading frequency is rising and 

trading activity is easier than ever. 

As mentioned above, one of the most important features of open LOB is that liquidity is 

provided entirely by traders who place limit orders. As a result, the role of the traditional 
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market makers has been replaced by informed and uninformed traders.1 During trading hours, 

traders can place limit orders with different prices and quantities according to their trading 

strategies and preferences. Nowadays, these limit orders are placed, updated or cancelled 

very frequently. As a result, the liquidity embedded in the open LOB also changes quickly. 

Another important feature of the open LOB market structure is the existence of active 

trading2 whereby traders trade over a very short time horizon by monitoring the market 

continuously or using high-speed computers during the day and liquidating all open positions 

before market closing.  Leaving aside the question of whether active trading is beneficial or 

not,3 this new trading culture requires more and more attention to intraday risk derived from 

market and open LOB. However, traditional risk management has been challenged by this 

trend towards high-frequency trading because low-frequency measures of risk such as Value 

at Risk (VaR), which are usually based on daily data, are ill-suited to capturing the potential 

liquidity risk hidden in very short horizons. 

In this paper, we propose a new high-frequency risk measure — Liquidity-adjusted Intraday 

Value at Risk (LIVaR) — that accounts for both the market risk and the ex-ante liquidity risk 

of liquidating a position4. Ex-ante liquidity is computed for a given order size before the 

transaction is executed. The difference between ex-ante liquidity and traditional (ex-post) 

liquidity is that the latter is the liquidity consumed when transactions are completed.5 By 

nature, ex-ante liquidity is forward-looking liquidity and presents important and practical 

aspects for intraday traders and other participants indirectly involved in active trading, 

including financial institutions6 and market regulators. Most importantly, compared with the 

ex-post liquidity measure, the ex-ante liquidity measure is more related to the original 

definition of a liquid asset. Typically, the recognized description of a liquid security is its 

1 A large number of studies show that informed traders trade via open LOB (Kumar and Seppi (1994),  Handa 
and Schwartz (1996), Bloomfield, O’Hara and Saar (2005), Foucault, Kadan and Kandel (2005),  Kaniel  and 
Liu (2006), and Rosu (2009), among others).  
2 High-frequency trading (HFT) was estimated to make up 51% of equity trades in the U.S. in 2012 and 39% of 
traded value in the European cash markets (Tabb Group). In this study, we distinguish between active traders 
and high-frequency traders. As mentioned in Ait-Sahalia and Saglam (2014), HFT refers to trading strategies  
whose profits strongly rely on their latency advantage. Our active traders include traders using algorithmic 
strategies and traders working manually at their trading desks. 
3 HFT was strongly criticized after the “flash crash” on May 6, 2010 and “gold halt” on January 6, 2014. 
However , HFT has been shown to increase market liquidity (Hendershott, Jones, and Menkveld (2011)) and 
price efficiency (Chaboud, Chiquoine, Hjalmarsson, and Vega (2014), Brogaard, Hendershott and Riordan 
(2014)).      
4 In this paper we consider the case of a sell transaction, but similar arguments apply to a buy transaction. 
5 The ex-post measure is based on the transaction price and is therefore backward-looking. 
6 As mentioned by Gouriéroux and Jasiak (2010), financial institutions also need intraday risk analysis for 
internal control of their trading desks. 
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ability to convert the desired quantity of a financial asset into cash quickly and with little 

impact on the market price (Demsetz (1968); Black (1971); Kyle (1985); Glosten and Harris 

(1988)). This definition implicitly covers four dimensions: volume (significant quantity), 

price impact (deviation from the best price provided in the market), time (speed of 

completing the transaction), and resilience (speed of backfilling). The ex-ante liquidity 

measure derived from open LOB can provide more information on volume, price impact, and 

resilience dimensions. In an automated trading system, the speed of completing the 

transaction varies according to the location and the capacity of the machine and software. 

Regarding existing risk measures, the conventional VaR is  a risk measure that has been 

widely used in both academic and industry sectors. However, at both low frequency and high 

frequency, this  risk measure can be interpreted only as an estimation of the potential loss on 

a predetermined portfolio over a relatively long or short fixed period, namely a measure of 

market price risk. Thus, VaR is not a liquidation value because it does not take into account 

the volume dimension; it is solely a ‘paper value’ for a frozen portfolio. Nevertheless, 

liquidity risk is always present before the transaction is realized. Further, from a high-

frequency market microstructure perspective, the transaction price is an outcome of 

information shock, trading environment, market imperfections, and the state of the LOB. For 

very short horizons, all these microstructure effects could cause the transaction price to 

deviate from the efficient price. Therefore, if we concentrate on the transaction price, the 

VaR will suffer from a serious omission of liquidity, especially when the liquidation quantity 

is large. To unwind a large position, a trader might have to move down in the LOB and 

accept a lower price. In other words, when a trader with a large long position for a given 

stock wishes to liquidate his position in a very short time horizon, his potential loss will 

depend on two (related) risks: market risk and liquidity risk. Market risk is assumed by all 

traders, whereas liquidity risk is a concern only when the trader starts liquidating his position. 

This is why our proposed LIVaR measure includes the additional dimension of ex-ante 

liquidity risk.  LIVaR measures the potential maximum loss at a given confidence level due 

to the decrease in both market price and available liquidity in the LOB.  The introduction of 

the ex-ante liquidity dimension can thus offer a more accurate risk measure for active traders 

and market regulators who aim to closely monitor total risk and compute regulatory capital.  

Very few studies have focused on high-frequency risk measures. Dionne, Duchesne and 

Pacurar (2009) are the first to consider an ultra-high-frequency market risk measure, Intraday 
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Value at Risk (IVaR), based on all transactions. In their study, the informative content of 

trading frequency is taken into account by modeling the durations between two consecutive 

transactions. One important practical contribution of their paper is that, instead of being 

restricted to traditional one- or five-minute horizons, their model allows the IVaR measure to 

be computed for any time horizon once the model is estimated. The authors found that 

ignoring the effect of durations can underestimate risk. However, as they noted, similar to 

other VaR measures, the IVaR ignores the ex-ante liquidity dimension by taking into account 

only information about transaction prices.  

 The development of liquidity-adjusted risk measures goes back to Bangia et al. (1999), who 

first consider the spread between best ask and bid as a measure of liquidity risk in VaR 

computation. To simplify the modeling, they further assume that the liquidity risk proxied by 

half spread is perfectly correlated with market risk. Actually, the total risk they attempt to 

identify is the sum of market risk and trading cost associated with only one share, because 

their liquidity risk measure does not consider the volume dimension. In line with Bangia et al. 

(1999), Angelidis and Benos (2006) estimate the liquidity-adjusted VaR by using data from 

the Athens Stock Exchange. They find that liquidity risk measured by the bid-ask spread 

accounts for 3.4% of total market risk for high-capitalization stocks and 11% for low-

capitalization stocks. Using the same framework as Bangia et al. (1999), Weiß and Supper 

(2013) address the liquidity risk of a portfolio formed with five NASDAQ stocks by 

estimating the multivariate distribution of log-return and spread using vine copulas to account 

for the dependence between the two variables across stocks over a regular interval of 5 

minutes. They evidence strong extreme comovements in liquidity and tail dependence 

between bid-ask spreads and log-returns across the selected stocks. 

Our study is related to that of Giot and Grammig (2006), who focus on the ex-ante liquidity 

risk faced by an impatient trader acting as a liquidity demander by submitting a market order.  

Using open LOB Xetra data sampled at regular time intervals, the authors construct an actual 

return that is a potential implicit return for a predetermined volume to trade over a fixed time 

horizon of 10 or 30 minutes. Ex-ante liquidity risk is quantified by comparing the standard 

VaR based on frictionless return, i.e. mid-quote return, and the liquidity-adjusted VaR 

inferred from the actual return.  

Our study differs from previous papers in the following ways. First, we examine the ex-ante 

liquidity risk by focusing on the tick-by-tick frictionless returns (issued from the best bid/ask 
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price) and actual returns (issued from the potential liquidation price) derived from open LOB. 

Many papers have explored ex-post liquidity (Bacidore, Ross, and Sofianos (2003); Battalio, 

Hatch and Jennings (2003), Goyenko, Holden and Trzcinka (2009)  among others), which is 

already consumed by the market or marketable orders when the trades are realized. Compared 

with ex-post liquidity, ex-ante liquidity is more informative and relevant in that it measures 

the unconsumed liquidity in LOB. Further, the existing literature that analyzes ex-ante 

measures of liquidity (e.g., Giot and Grammig, 2006) is based on a regular time interval and 

thus ignores the information within the interval. In our study, we evidence that the durations 

between two consecutive observations are positively related to volatilities of actual returns 

and frictionless returns.  

Second, our study addresses the questions of the relationship between ex-ante liquidity risk 

embedded in open LOB and market risk, and how ex-ante liquidity evolves during the trading 

day. One challenge of directly modeling frictionless returns and actual returns is that they are 

not time-additive. Therefore, in this article we model the frictionless return changes and 

actual return changes using an econometric model characterized by the Logarithmic 

Autoregressive Conditional Duration, Vector Autoregressive Moving Average and 

Multivariate GARCH processes (denoted by Log-ACD, VARMA and M-GARCH hereafter). 

The structure not only captures the joint dynamics of both frictionless return changes and 

actual return changes, but also quantifies the impact of ex-ante liquidity risk on total risk by 

further defining IVaRc and LIVaRc as the VaRs on frictionless return changes and actual 

return changes, respectively. To make the model more flexible, we allow for the time-varying 

correlation of volatility of the frictionless return and actual return.  

Third, from a practical perspective, our proposed risk measure aims at providing a view of 

total risk and ex-ante liquidity that can help high-frequency traders develop their timing 

strategies during a particular trading day. Our model is first estimated on deseasonalized data 

and then validated on both simulated deseasonalized and re-seasonalized data. The time 

series of re-seasonalized data is constructed by re-introducing deterministic seasonality 

factors. One advantage of simulated re-seasonalized data is that risk management can be 

conducted in calendar time. In addition, because the model is estimated using tick-by-tick 
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observations and takes into account the durations between two consecutive transactions, 

practitioners can then construct the risk measure for any desired time horizon.7 

The rest of the paper is organized as follows: Section 1.2 describes the dataset we utilize. 

Section 1.3 briefly presents the procedure used to test the model and to compute an impact 

coefficient of ex-ante liquidity risk and an ex-ante liquidity premium. Section 1.4 defines the 

actual return, frictionless return, IVaR and LIVaR. In Section 1.5, we specify the econometric 

model used to capture the dynamics of duration, frictionless return changes, actual return 

changes and their correlations. Section 1.6 applies the econometric model proposed in 

Section 1.5 to data for three stocks and reports the estimation results. The model performance 

is assessed by the Unconditional Coverage test of Kupiec (1995), the Independence test 

proposed by Christoffersen (1998), and the new improved backtests of Ziggel et al. (2014). In 

Section 1.7, we analyze the ex-ante liquidity risk in LIVaRc and compare the proposed 

LIVaR with other high-frequency risk measures. Section 1.8 presents the results on 

robustness analysis. Section 1.9 concludes the paper and proposes new research directions. 

1.2 Xetra dataset  

The present study uses data from the automated order-driven trading system Xetra, which is 

operated by Deutsche Börse at the Frankfurt Stock Exchange and has a similar structure to 

NASDAQ’s Integrated Single Book and NYSE’s Super Dot. A more detailed review of Xetra 

can be found in the supplementary appendix. Our sample period is July 5 to July 16, 2010. 

We have also considered an additional sample from June 6 to June 17, 2011 and the results 

are presented in the appendix.   

For blue-chip and other highly liquid stocks, during continuous trading, there are no 

dedicated market makers like the traditional NYSE specialists. Therefore, the liquidity comes 

from all market participants who submit limit orders in LOB. Our database includes up to 20 

levels of LOB information except the hidden part of an iceberg order, which means that by 

observing the LOB, any trader and registered member can monitor the dynamic of liquidity 

supply and potential price impact caused by a market or marketable limit order. However, all 

the trading and order submissions are anonymous; that is, the state and the updates on LOB 

can be observed but there is no information on the identities of market participants.  

7 If market conditions change significantly, the model can, of course, be re-estimated. 
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The raw dataset that we analyzed contains all the events that are tracked and sent through the 

data streams. There are two main types of streams: delta and snapshot. The former tracks all 

the possible updates in LOB such as entry, revision, cancellation and expiration. Traders can 

be connected to the delta stream during trading hours to receive the latest information, 

whereas the snapshot provides an overview of the state of LOB and is sent after a constant 

time interval for a given stock. Xetra original data with delta and snapshot messages are first 

processed using the software Xetra Parser developed by Bilodeau (2013) to make Deutsche 

Börse Xetra raw data usable for academic and professional purposes. Xetra Parser 

reconstructs the real-time order book sequence including all the information for both auctions 

and continuous trading by implementing the Xetra trading protocol and Enhanced Broadcast.8 

We further convert the raw LOB information into a readable LOB for each update time and 

then retrieve useful and accurate information about the state of LOB and the precise 

timestamp for order modifications and transactions during continuous trading. Inter-trade 

durations and LOB update durations are irregular. The stocks that we choose for this study—

SAP (SAP), RWE AG (RWE), and Merck (MRK) — are blue-chip stocks from the DAX30 

index. SAP is a leading multinational software corporation with a market capitalization of 

33.84 billion Euros in 2010. RWE generates and distributes electricity to various customers 

including municipal, industrial, commercial and residential customers. The company 

produces natural gas and oil, mines coal and delivers and distributes gas. In 2010, its market 

capitalization was around 15 billion Euros. Merck is the world’s oldest operating chemical 

and pharmaceutical company with a market capitalization of 4 billion Euros in 2010. Plots of 

the daily and intradaily time evolution of price, volume, returns, and state of the LOB for 

each of the three stocks during our sample period can be found in the appendix. 

1.3 Procedure used for computing the risk measures 

To compute the proposed risk measures, the model will first be estimated using 

deseasonalized data, and then the tests will be carried out on both deseasonalized and 

seasonalized data. Figure 1.1 presents the flowchart of our methodology: 

[Insert Figure 1.1 here] 

We now describe the main steps: 

8 See Xetra Release 11.0 – Enhanced Broadcast Solution and Interface Specification for a detailed description.  
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(a) We first compute the raw tick-by-tick durations defined as the time interval between two 

consecutive trades and tick-by-tick frictionless returns and actual returns based on the 

data of open LOB and trades. 

(b) We further compute the frictionless return changes and actual return changes by taking 

the first difference of frictionless returns and actual returns, respectively. This step is 

required because the frictionless return and actual return are not time-additive and cannot 

be modeled directly. 

(c) We remove seasonality from durations, frictionless return changes and actual return 

changes to obtain the corresponding deseasonalized data.  

(d) The deseasonalized data are modeled by a LogACD-VARMA-MGARCH model. 

(e) Once we have estimated the model, we simulate the deseasonalized data based on 

estimated coefficients and construct VaR measures at different confidence levels for 

backtesting on out-of-sample deseasonalized data. 

(f) The seasonal factors are re-introduced into the deseasonalized data to generate the 

re-seasonalized data. 

(g) As done in (e), we construct different quantiles for backtesting on out-of-sample 

seasonalized data. 

(h) We construct impact coefficients of ex-ante liquidity risk based on the simulated re-

seasonalized data. 

(i) We further compute the IVaR and LIVaR, which are defined as the VaR for frictionless 

return and actual return, respectively. 

(j) Based on the IVaR and LIVaR, we can finally compute the ex-ante liquidity premium by 

taking the ratio of the difference between LIVaR and IVaR over LIVaR. 

The following sections will explain each step in detail. 

1.4 Frictionless return, actual return and the corresponding high-
frequency VaRs 

We take into account all trading information that is available by modeling tick-by-tick data. 

The first characteristic in tick-by-tick data modeling is that the durations between two 
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consecutive transactions are irregularly spaced. Consider two consecutive trades that arrive at 

 and , and define  as the duration from  to . Based on this point process, we can 

further construct two return processes: frictionless return and actual return. More specifically, 

the frictionless return is defined as the log ratio of best bid price,  at moment i and 

previous best ask price, . The frictionless return is an ex-ante return indicating the tick-

by-tick return for selling only one unit of stock.9  

1

(1)ln ( ).                                                                                     (1 .1 )
(1)

F i
i

i

bR
a   

The actual return is defined as the log ratio of selling price for a volume v and previous best 

ask price.10  
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 are the kth level bid price and volume available, respectively.  is the quantity 

left after K-1 levels are completely consumed by v. The consideration of quantity available in 

LOB is in line with other ex-ante liquidity measures in the market microstructure literature 

(Irvine, Benston and Kandel (2000); Domowitz, Hansch and Wang (2005); Coppejans, 

Domowitz and Madhavan (2004), among others). The choice of volume v is motivated by 

transaction volume and volume available in LOB. Explicitly, for each stock we first compute 

the cumulative volume available over the 20 levels at each transaction moment for the bid 

side of LOB, and then we choose the minimum cumulative volume as the maximum volume 

to construct the actual returns. We thus avoid the situation where the actual price does not 

9 In the market microstructure literature, the mid-quote price is often used as a proxy for the unobserved 
efficient market price. However, from a practical perspective, traders can rarely obtain the mid-quote price 
during their transactions. Therefore, the use of the mid-quote price will underestimate the risk faced by active 
traders. We take a more realistic price, the best bid price, as the frictionless price for traders who want to 
liquidate their stock position. 
10  The frictionless return and actual return are defined similarly from buyers’ viewpoint. This definition 
implicitly assumes that orders can be executed without any latency, and quote stuffing does not affect order 
execution.    
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exist for a given volume. One concern that may arise involves iceberg orders, which keep a 

portion of the quantity invisible to market participants. In this study, we assume that the 

liquidity risk is faced by an impatient trader, and the possibility of trading against an iceberg 

order will not influence his trading behavior. According to Beltran-Lopez, Giot and Grammig 

(2009), the hidden part of the book does not carry economically significant informational 

content.11 The difference between the frictionless return and the actual return is that the actual 

return takes into account the desired transaction volume, which is essential for the liquidity 

measure. Intuitively, the actual return measures the ex-ante return when liquidating v units of 

shares.  

One characteristic of our defined frictionless returns and actual returns is that they do not 

possess the time-additivity property of traditional log-returns. To circumvent this difficulty, 

we model the frictionless return changes and actual return changes instead of modeling the 

actual return and frictionless return directly. More specifically, let 
 
and 

 be the tick-by-tick frictionless return changes and actual return changes. 

Following this setup, the L-step forward frictionless return and actual return can be expressed 

as follows: 
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11 1

(1) (1)ln( ) ln( ) ...                                 (1.3)
(1) (1) i i i L i m

L
F f f f F fi L i
i L i

mi L i

b bR r r r R r ,
a a

1 2
11 1

( ) ( )ln( ) ln( ) ...                              (1.4)
(1) (1) i i i L i m

L
B b b b B bi L i
i L i

mi L i

b v b vR r r r R r ,
a a  

The terms  and  are the sum of all tick-by-tick changes in return over a 

predetermined interval and can be considered as the waiting cost related to frictionless returns 

and actual returns.12 More specifically, they measure the costs/gains associated with the latter 

instead of immediate liquidation of one share and v shares of stock, respectively. Moreover, if 

we define the IVaRc and LIVaRc as the VaR for  and , respectively, and 

compute them for a predetermined time interval, then the IVaRc and LIVaRc will provide the 

maximal loss over a given interval and at a given confidence level for an investor that trades 

11 In our dataset, the hidden order information is not available. However, from the transaction data and open 
LOB, we deduced that the proportion of transactions that hit hidden orders is less than 1% for the three stocks.   
12  The waiting cost could be positive or negative, which indicates loss and gain, respectively. 
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at frictionless or actual return. In other words, the IVaRc and LIVaRc will estimate the 

maximal loss in terms of frictionless return and actual return, which are related to market risk 

and total risk (market risk and ex-ante liquidity risk), respectively. Mathematically, consider 

a realization of a sequence of intervals with length int and let 13 be the sum of 

tick-by-tick changes of returns  over the t-th interval, 

( ) 1 ( ) 1

,
( 1) ( 1)

                                                      (1.5)
t t

f f b b
int,t j int t j

j t j t
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where  is the index for which the cumulative duration exceeds the t-th interval with 

length int for the first time. By definition: 
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The process of duration allows us to aggregate the tick-by-tick data to construct the dynamics 

of frictionless return and actual return for a predetermined interval that allows consideration 

of risk in calendar time. Accordingly, the IVaRc and LIVaRc 14 for frictionless return changes 

and actual return changes with confidence level  for a predetermined interval int are 

defined as: 
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tI  is the information set until moment . Similar to the traditional definition of VaR, 

 and  are the conditional -quantiles for  and . 

We can further define the IVaR and LIVaR as the VaR for the frictionless return and actual 

return as follows: ( 1)
F c
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13 are defined on both seasonalized return changes and deseasonalized return changes.  
14 IVaRc and LIVaRc are also defined on both seasonalized return changes and deseasonalized return changes. 
Moreover, our IVaRc and LIVaRc can also be used in the strategy of short selling where IVaRc and LIVaRc will 
be the 1-  quantiles of the distributions. 
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( 1)
B c

int,v,t t int,v,tLIVaR R LIVaR ,

where  and  are the frictionless return and actual return at the beginning of the t-

th interval. Consequently, IVaR and LIVaR estimate the -quantiles for frictionless return 

and actual return at the end of the t-th interval. 

1.5  Methodology 

In our tick-by-tick modeling, there are three random processes: duration, changes in the 

frictionless return, and changes in the actual return. The present study assumes that the 

duration evolution is strongly exogenous but has an impact on the volatility of frictionless 

and actual return changes. The joint distribution of duration, frictionless return change and 

actual return change can be decomposed into the marginal distribution of duration and joint 

distribution of frictionless and actual return change conditional on duration. More 

specifically, the joint distribution of the three variables is: 
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where  is the joint distribution for duration, frictionless return change and actual return 

change.  is the marginal density for duration and  is the joint density for actual 

and frictionless return changes. Consequently, the corresponding log-likelihood function for 

each joint distribution can be written as: 
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In the next subsections, we specify marginal density for dynamics of duration and joint 

density for frictionless return and actual return changes. We present the model for 

deseasonalized duration, frictionless and actual return changes. The deseasonalization 

procedure is described in detail in Section 6.  

1.5.1. Model for duration 

The ACD model used to model the duration between two consecutive transactions was 

introduced by Engle and Russell (1998). The GARCH-style structure is used to capture the 
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duration clustering observed in high-frequency financial data. The basic assumption is that 

the realized duration is driven by its conditional duration and a positive random variable as an 

error term. Let  be the expected duration given all the information up to i-1, 

and  be the positive random variable. The duration can be expressed as: . 

There are several possible specifications for the expected duration and the independent and 

identically distributed (i.i.d.) positive random error (see Hautsch (2004) and Pacurar (2008) 

for surveys). To guarantee the positivity of duration, we adopt the log-ACD model proposed 

by Bauwens and Giot (2000). The specification for expected duration is  

1 1
exp ln .                                                                          (1.9)

p q

i j i j j i j
j j

For positive random errors, we use the generalized gamma distribution, which allows a non-

monotonic hazard function and nests the Weibull distribution (Grammig and Maurer (2000); 

Zhang, Russell and Tsay (2001)): 
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where , is the gamma function, and . 

1.5.2. Model for frictionless return and actual return changes 

The high-frequency frictionless return and actual return changes display a high serial 

correlation. To capture this microstructure effect, we follow Ghysels and Jasiak (1998) and 

adopt a VARMA (p,q) structure: 
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where  and  are matrices of coefficients for  and , respectively. As mentioned 

in Dufour and Pelletier (2011), we cannot directly work with the representation in (11) 
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because of an identification problem. Consequently, we impose the restrictions on by 

supposing that the VARMA representation is in diagonal MA form. More specifically, 

 where  and  are the coefficients for nth-lag error terms of the 

actual return change and frictionless return change, respectively.  

Furthermore, we assume the volatility part follows a multivariate GARCH process: 
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where  is the bivariate normal distribution that has the following two moments: 

. The normality assumption for the error term is supported by 

backtesting. The other distributions we tried, such as Normal Inverse Gaussian (NIG), 

Student-t and Johnson, overestimated the error distribution in our simulation tests. 

 is the conditional variance matrix for  that should be positive-definite. To model the 

dynamic of , we use the DCC structure proposed by Engle (2002) in which  is 

decomposed as follows: 
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iQ is the unconditional correlation matrix of , ( ) is the conditional variance 

for actual (frictionless) return change, and  measures the impact of duration on the 

volatilities of actual and frictionless return changes, respectively.15 

In the DCC framework, each series has its own conditional variance. For both actual and 

frictionless return changes, we adopt a NGARCH(m,n) (Nonlinear GARCH) process as 

proposed by Engle and Ng (1993) to capture the cluster as well as the asymmetry in 

volatility. The process can be written as: 
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where  and are used to capture the asymmetry in the conditional volatilities. When 

, the model will become a standard GARCH model, whereas a negative 

 indicates that a negative shock will cause higher conditional volatilities for the 

next moment.  

Our structure also explicitly introduces the duration dimension in conditional volatilities. In 

his pioneering study of the impact of duration on volatility, Engle (2000) assumes that the 

impact is linear; that is, . This modeling for the unit of time might be 

restrictive for some empirical data for which conditional volatility can depend on duration in 

a more complicated way. To make the model more general, we follow Dionne, Duchesne and 

Pacurar (2009) by assuming the exponential form and . 

15The DCC model can be estimated by a two-step approach. Engle and Sheppard (2001) show that the likelihood 
of the DCC model can be written as the sum of two parts: a mean and volatility part, and a correlation part. Even 
though the estimators from the two-step estimation are not fully efficient, the one iteration of a Newton-Raphson 
algorithm applied to total likelihood provides asymptotically efficient estimators.
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When , the volatility will become a standard NGARCH process, whereas when 

, it transforms to the similar model studied in Engle (2000).  

As mentioned above, our model has three uncertainties: duration uncertainty, price 

uncertainty and LOB uncertainty. Deriving a closed form of LIVaRc would be complicated 

for multi-period forecasting in the presence of three risks, especially for non-regular time 

duration. Therefore, once the models are estimated, we follow Christoffersen (2003) and use 

Monte Carlo simulations to make multi-step forecasting and to test the model’s performance. 

1.6  Empirical Results 

1.6.1. Seasonality adjustment 

It is well known that high-frequency data behave very differently from low-frequency data. 

Table 1.1, 1.2 and 1.3 present the descriptive statistics of raw and deseasonalized duration, 

frictionless return changes and actual return changes for which various volumes are chosen 

for the three studied stocks. From Panel A, we can observe that for the sample period (the 

first two weeks of July 2010), SAP is the most liquid stock: the average duration is the 

shortest and the number of observations is the largest. MRK is the least liquid one. Moreover, 

given that the variables are constructed on tick-by-tick frequency, all three stocks have an 

average of zero and a very small standard deviation for frictionless return changes and actual 

return changes. All three stocks present high kurtosis due to the fact that most of the 

observations are concentrated on their average and co-exist with some extreme values. In 

addition, the raw data are characterized by extremely high autocorrelation for both first and 

second moments for all of the variables.  

High-frequency data are characterized by seasonality, which should be removed before 

estimating any model. To do so, several approaches have been proposed in the literature: 

Andersen and Bollerslev (1997) use the Fourier Flexible Functional (FFF) form to take off 

seasonality, Dufour and Engle (2000) remove seasonality by applying a simple linear 

regression with a dummy, and Bauwens and Giot (2000) take off seasonality by averaging 

over a moving window and linear interpolation.  

[Insert Table 1.1 to 1.3 here] 

However, as found in Anatolyev and Shakin (2007) and Dionne, Duchesne and Pacurar 

(2009), the high-frequency data could behave differently throughout the day as well as 
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between different trading days. Therefore, to fully account for the deterministic part of the 

data, we apply a two-step deseasonalization procedure, interday and intraday. Further, an 

open auction effect in our continuous trading dataset exists that is similar to the one found by 

Engle and Russell (1998). More precisely, for each trading day, continuous trading follows 

the open auction in which an open price is set according to certain criteria such as 

maximization of the volume. Once the open auction is finished, the transactions are recorded. 

Consequently, the beginning of continuous trading is contaminated by extremely short 

durations. These short durations could produce negative seasonality factors of duration that 

are based on previous observations and cubic splines. To address this problem, the data for 

the first half hour of each trading day are only used to compute the seasonality factor and 

then discarded.  

The interday trend is extracted under a multiplicative form: 

, , ,

2 2
                                                    (1.15)  

( ) ( )

f b
i s i s i sf b

i,inter i,inter i,inter
f bs s s

dur r r
dur , r , r ,

dur r r
 

where , ,  are the ith duration, frictionless and actual return change for day , 

respectively and , ,  are the daily average for day s for duration, squared 

frictionless, and actual return changes, respectively.  

Based on interday deseasonalized data, the intra-day seasonality is removed by following 

Engle and Russell (1998): 

, ,
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                      (1.16)
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where ,  and  are the corresponding deseasonality factors 

constructed by averaging the variables over 30-minute intervals for each day of the week and 

then applying cubic splines to smooth these 30-minute averages. The same day of week 

shares the same intra-deseasonality curve. However, it takes different deseasonality factors 

according to the moment of transaction. Figure 1.2 illustrates the evolution of the seasonality 

factors of RWE for duration, frictionless, and actual return changes when v = 4000.16 It is not 

16 Results on other volumes for RWE, SAP, and MRK are available upon request. 
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surprising to see that the frictionless and actual return changes have similar dynamics because 

the actual return changes contain the frictionless return changes. However, the magnitude for 

frictionless and actual return changes differs. Panels B of Tables 1.1, 1.2 and 1.3 report 

descriptive statistics of deseasonalized durations, frictionless and actual return changes. The 

raw frictionless and actual return changes have been normalized to bring the mean to zero 

and standard deviation to one. However, other statistics such as skewness, kurtosis and auto-

correlation are not affected by this normalization process. The high kurtosis and auto-

correlation will be captured by the proposed models. 

[Insert Figure 1.2 here] 

1.6.2. Estimation results 

We use the model presented in Section 5 to fit SAP, RWE and MRK deseasonalized data. 

The estimation data cover the first week of July 2010. The data from the second week are 

used as out-of-sample data to test the model’s performance. For robustness, we apply the 

same procedure to the same stocks for first two weeks of June 2011. As previously 

mentioned, the estimation is realized jointly for frictionless and actual return changes. The 

likelihood function is maximized using Matlab v7.6.0 with Optimization toolbox. 

Tables 1.4, 1.5 and 1.6 report the estimation results for actual return changes for SAP, RWE 

and MRK for v = 4000, 4000, and 1800 shares, respectively. It should be noted that for each 

stock, the frictionless return changes and actual return changes are governed by the same 

duration process, which is assumed to be strictly exogenous. The high clustering phenomenon 

is indicated in deseasonalized data by the Ljung-Box statistic (see Table 1.1, 1.2 and 1.3, 

Panel B). The clustering in duration is confirmed by the Log-ACD model. To better fit the 

data, we retain a Log-ACD (2,1) specification for SAP durations, a Log-ACD(3,1) model for 

RWE durations and a Log-ACD(1,1) model for MRK durations. The Ljung-Box statistic on 

standardized residuals of duration provides evidence that the Log-ACD model is capable of 

removing the high autocorrelation identified in deseasonalized duration data. The Ljung-Box 

statistic with 15 lags is dramatically reduced to 25.08 for SAP, 39.7 for RWE and 21.79 for 

MRK. 

Frictionless and actual return changes of the three stocks are also characterized by a high 

autocorrelation in level and volatility. Moreover, the Ljung-Box statistics with 15 lags on 

deseasonalized return change and its volatility reject independence at any significance level 
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for the three stocks. Taking the model efficiency and parsimony into consideration, a 

VARMA(4,2)-MGARCH((1,3),(1,3)) 17  model is retained for SAP, a VARMA(5,1)-

MGARCH((1,3),(1,3)) model for RWE, and the specification of VARMA(2,2)-

MGARCH((1,3),(1,3)) for MRK. The model adequacy is assessed based on standardized 

residuals and squared standardized residuals. Taking MRK as an example, the Ljung-Box 

statistics for standardized residuals and squared standardized residuals of actual return 

changes, computed with 5, 10, 15, 20 lags, respectively, are not significant at the 5% level. 

The Ljung-Box statistic with 15 lags has been significantly reduced after modeling to 7.72. 

Similar results are obtained for stocks RWE and SAP. 

Regarding the estimated parameters, the sum of coefficients in each individual GARCH 

model is close to one, indicating a high persistence in volatility. Further,  and  are 

significantly different from zero in both structures, thus evidencing asymmetric effects.  In 

other words, a negative shock generates a higher conditional volatility for the next moment. It 

also should be noted that  and  are both positive for the three stocks. This means that a 

longer duration will generate higher volatility for both actual return and frictionless return 

changes. In addition, due to the fractional exponent, volatility increases slowly as duration 

lengthens. In our model, volatility is the product of no-duration scaled variance and duration 

factor, and the  of actual return changes are higher than  of frictionless return changes 

for the three stocks. This implies that the duration factor has a larger impact on actual returns 

than on frictionless returns.  

The use of dynamic conditional correlation is justified by the fact that  and  in equation 

(12) are both significantly different from zero for the three stocks. As expected, the 

conditional correlation of actual return and frictionless return changes is time-varying. A sum 

of the two parameters of around 0.8 confirms the high persistence of conditional correlation.  

[Insert Table 1.4 to 1.6 here]  

1.6.3. Model performance and backtesting  

In this section, we present the simulation procedure and backtesting results on simulated 

deseasonalized and re-seasonalized frictionless and actual return changes. Once the model is 

estimated on tick-by-tick frequency, we can test the model performance and compute 

17 NGARCH (1,3) for actual return changes and NGARCH(1,3) for frictionless return changes.  

f b

b f

b f

1 2
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frictionless IVaRc and LIVaRc by Monte Carlo simulation. One of the advantages of our 

method is that once the model is estimated, we can compute the simulated deseasonalized 

IVaRc and LIVaRc for any horizon without re-estimating the model. In addition, we can 

compute the simulation-based re-seasonalized IVaRc and LIVaRc in traditional calendar time 

using the available seasonal factors. 

We choose different time intervals to test the model performance. The interval lengths are 40, 

50, 60, 80, 100, 120, and 140 units of time for the more liquid stocks SAP and RWE and 20, 

30, 40, 50, 60, 80, and 100 for the less liquid stock MRK. Given that the model is applied to 

deseasonalized data, the simulated duration is not in calendar units. However, simulated 

duration and calendar time intervals are related in a proportional way.  Further, depending on 

the trading intensity, the simulated duration does not correspond to the same calendar time 

interval. For a more liquid stock, the same simulated interval relates to a shorter calendar 

time interval. For instance, in the case of MRK, the interval length 50 re-samples the one-

week data for 190 intervals and corresponds to 13.42 minutes, and the interval-length relates 

100 to 95 intervals and corresponds to 26.84 minutes. However, for a more liquid stock such 

as SAP, the interval-length 50 corresponds to 5.45 minutes and the interval-length 140 

corresponds to 15.27 minutes.  

The simulations for frictionless and actual return changes are realized as follows: 

1) We generate the duration between two consecutive transactions and assume that the 

duration process is strongly exogenous.  

2) With the simulated duration and estimated coefficients of the VARMA-MGARCH model, 

we obtain the corresponding return changes.  

3) We repeat steps 1 and 2 for 10,000 paths and re-sample the data at each path according to 

the predetermined interval.  

4) For each interval, we compute the corresponding IVaRc and LIVaRc at the desired level of 

confidence. To conduct the backtesting for each given interval, we also need to construct the 

return changes for original out-of-sample data.  

To validate the model, we conduct the Unconditional Coverage and Independence tests by 

applying the Kupiec test (1995), the Christoffersen test (1998), and the recently proposed 

tests of Ziggel et al. (2014). The Kupiec test checks whether the empirical failure rate is 
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statistically different from the failure rate we are testing, whereas the Christoffersen test 

evaluates the independence aspect of the violations. More specifically, it rejects VaR models 

that generate clustered violations by estimating a first-order Markov chain model on the 

sequence. The new set of tests proposed by Ziggel et al. (2014) are based on simulation with 

i.i.d Bernoulli random variables. One advantage is that the new test allow for two-sided 

testing. Table 1.7 reports the p-values for all tests (two-sided testing for UC and i.i.d) on 

simulated data for confidence levels of 95%, 97.5%, 99% and 99.5%. The time interval varies 

from 5 minutes to 15 minutes for SAP, from 5 minutes to 16.67 minutes for RWE and from 5 

minutes to 27 minutes for MRK. Most of the p-values are higher than 5%, indicating that the 

model generally captures the distribution of frictionless and actual return changes well.  

[Insert Table 1.7 here] 

Because most trading and risk management decisions are based on calendar time and raw 

data, it might be difficult for practitioners to use simulated deseasonalized data to conduct 

risk management. To this end, we conduct another Monte Carlo simulation that takes into 

account the time-varying deterministic seasonality factors. The process is similar to that used 

for simulating deseasonalized data. However, the difference is that we re-introduce the 

seasonality factors for duration, actual return changes and frictionless return changes. Given 

that seasonality factors vary from one day to another, the simulation should take the day of 

week into account. More precisely, for the first day, simulated durations are converted to a 

calendar time of that day and the corresponding timestamp identifies seasonality factors for 

actual and frictionless return changes. The simulation process continues until the 

corresponding timestamp surpasses the closing time for the underlying day. In the case of a 

multiple-day simulation, the process continues for another day. Based on the simulated re-

seasonalized data, we also compute our IVaRc and LIVaRc by repeating the same algorithm.  

Table 1.8 presents the backtesting results on the re-seasonalized simulated data. The time 

interval varies from 5 minutes to 10 minutes for the three stocks, and the confidence levels to 

test are 95%, 97.5%, 99%, and 99.5%. Similar to the test results for simulated deseasonalized 

data, the p-values suggest that the simulated re-seasonalized data also provides reliable 

high-frequency risk measures for all chosen confidence levels over intervals of 5 to 10 

minutes.  

[Insert Table 1. 8 here] 
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1.7  Risks for Waiting Cost, Ex-ante Liquidity Risk and Various IVaRs 

1.7.1. Risks for waiting cost  

As shown in Section 4, the sums of tick-by-tick frictionless return changes and actual return 

changes over a given interval can be viewed as the waiting costs related to market risk and 

total risk, which contains market risk and ex-ante liquidity risk. Consequently, the 

corresponding IVaRc and LIVaRc estimate the risk of losses on these waiting costs. Based on 

simulated re-seasonalized data from the previous section that contain the determinist 

(seasonal factor) and random (error term) elements, we can further investigate the effect of 

the ex-ante liquidity risk embedded in the open LOB on the total risk. To this end, we define 

an impact coefficient of ex-ante liquidity risk18: 

 

As mentioned above,  and  are the VaRs for frictionless return changes 

and actual return changes of volume v for the t-th interval. As we simulate the data in the 

tick-by-tick framework, we can compute the  and  for any desired 

interval. Accordingly,  and  are the averages of  and . 

As a result,  assesses, on average, the impact of the ex-ante liquidity risk of volume v on 

total risk for a given interval. Figure 1.3 shows how the impact coefficients of ex-ante 

liquidity perform for intervals from 3 minutes to 10 minutes for the three stocks.  

[Insert Figure 1.3 here] 

There are two interesting points to mention after observing the plots. First, the curve is 

globally increasing; that is, the impact coefficient of the ex-ante liquidity most often increases 

when the interval increases and finally converges to its long-run level. The relation of 

frictionless return changes and actual return changes can be explicitly expressed by 

 where is the volume-dependent LOB return change for the i-th 

transaction. Econometrically, given that the sum of two ARMA structures is also an ARMA 

structure (Engel (1984)), the difference of the frictionless return changes and the actual return 

18 The risk measures in equation (17) are computed for confidence level 95%; in practice, other confidence 
levels can also be used. 
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changes implicitly follows another ARMA structure. Accordingly, the relationship of 

 and  can be generally written as: 

int, .                                      (1.18)c c c F,LOB
int,v,t t int,v,t int,v,tLIVaR IVaR LOBIVaR Dep  

 measures the risk associated with the open LOB, and  presents the 

dependence between the frictionless return changes and the actual return changes, which can 

stand for various dependence measures. However, in our specific modeling,  is the 

covariance between and . Therefore, the numerator of equation (17) is the sum of 

and . The fact that the curve is globally increasing in time is due to the 

higher autocorrelation in LOB return changes over time, which are the changes of magnitude 

in LOB caused by a given ex-ante volume.  

The convergence means that, for the long run, the sum of and  is 

proportional to . Recall that in a general GARCH framework, the forward multi-

step volatility converges to its unconditional level. In the present study, once the intervals 

include sufficient ticks for which the volatilities of both LOB return changes and frictionless 

return changes reach their unconditional levels, the volatilities of the sum of both return 

changes increase at the same speed. The impact coefficient of the ex-ante liquidity therefore 

converges to its asymptotic level.  

Second, it is interesting to observe that the impact coefficients of ex-ante liquidity of the 

RWE stock are negative for a volume of 1,000 shares and become positive when volumes are 

2,000, 3,000, and 4,000 shares. A negative impact coefficient of ex-ante liquidity indicates 

that volatility for the actual return changes is less than that of the frictionless return changes. 

In other words, the ex-ante liquidity risk embedded in LOB offsets the market risk. This 

again results from the fact that off-best levels of LOB are more stable than the first level. 

Based on equation (18), when the volume is small, the negative correlation between 

frictionless return change and LOB return change plays a more important role in determining 

the sign of the impact coefficients of ex-ante liquidity. However, for a higher ex-ante volume, 

the risk of LOB return change also increases but at a faster rate than its interaction with 

frictionless return change. Consequently, the impact coefficients of ex-ante liquidity become 

positive.  
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1.7.2. High-frequency ex-ante liquidity premium 

Based on the tick-by-tick simulation, we can also compute the high-frequency IVaR and 

LIVaR for frictionless return and actual return. Using IVaR and LIVaR of the same stock, we 

can further define a Relative Liquidity Risk Premium as follows: 

.                                                                     (1.19)int,v,t int,t
int,v,t

int,v,t

LIVaR IVaR
LIVaR

 

Similar to the liquidity ratio proposed in Giot and Grammig (2006),  and  

are the VaR measures for frictionless return and actual return at the end of the t-th interval 

and int is the predetermined interval such as 5-min, and 10-min. Unlike the frictionless return 

changes and actual return changes, our defined actual return and frictionless return do not 

have the time-additivity property. Even though the VaR based on frictionless return changes 

and actual return changes can be used directly in practice, in some situations practitioners 

might want to predict their potential loss on frictionless return or actual return instead of 

frictionless and actual return changes for a precise calendar time point.  

To illustrate how our model can be used to provide the ex-ante risk measure for frictionless 

return and actual return, we first compute the return changes for frictionless returns and 

actual returns, then calculate the instantaneous frictionless return and actual return at the 

beginning of the given interval using equations (3) and (4). Once we know the frictionless 

return and actual return at the beginning of a given interval, we can obtain the frictionless 

return and actual return for the end of the interval. Figure 1.4 illustrates how the frictionless 

return and actual return at the end of an interval are computed. Figure 1.5 tracks the evolution 

of IVaR and LIVaR associated with a large liquidation volume for SAP, RWE, and MRK 

during one out-of-sample day, July 12, 2010. For the three stocks, the IVaR and LIVaR both 

present an inverted U shape during the trading day. However, for the more liquid stock SAP, 

the IVaR and LIVaR are less volatile than those of the less liquid stocks RWE and MRK. It 

also seems that the total risk is smaller during the middle of the day. Nonetheless, the smaller 

VaR in absolute terms does not mean we should necessarily trade at that moment. The IVaR 

and LIVaR only provide the estimates of potential loss for a given probability at a precise 

point in time.  

[Insert Figure 1.4 here] 

int,tIVaR int,v,tLIVaR
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[Insert Figure 1.5 here] 

In addition, the difference between the curves on each graph, which measures the risk 

associated with ex-ante liquidity, varies with time. This is due to the fact that LOB interacts 

with trades and changes during the trading days. A smaller (bigger) difference indicates a 

deeper (shallower) LOB. More specifically, for the least liquid stock, MRK, the ex-ante 

liquidity risk is more pronounced even for a relatively smaller quantity of 1800 shares. 

Regarding the more liquid stocks such as SAP and RWE, the ex-ante liquidity risk premiums 

are much smaller even for the relatively larger quantities of 4,000 shares. This again suggests 

that the ex-ante liquidity risk heightens when the liquidation quantity is large and the stock is 

less liquid.  

Table 1.9 presents the average relative ex-ante liquidity risk premium given various order 

sizes at different confidence levels for SAP, RWE, and MRK. The results are based on our 

one-week simulations. For each stock, we consider order sizes ranging from the mean to the 

99th quantile of historical transaction volume. As shown in Table 1.9, the proportion of 

liquidity risk increases with volume for the three stocks, as expected. At the 95% confidence 

level, for the average transaction volumes the liquidity risk accounts for only 3.46%, 2.88% 

and 1.03% of total risk for SAP, RWE, and MRK, respectively, meaning that the LOB seems 

efficient for providing liquidity for relatively small transaction volumes. However, for large 

transaction volumes such as the 99th quantile, liquidity risk can account for up to 32%, 

25.26%, and 31.88% of total risk at 95% confidence level.  

[Insert Table 1.9 here] 

1.7.3. Comparison of LIVaR and other intraday VaRs  

Our proposed IVaR and LIVaR, which are validated by backtesting, allow us to further 

analyze ex-ante liquidity and compare the two risk measures with other high-frequency risk 

measures found in the literature. 

The standard IVaR proposed by Dionne, Duchesne and Pacurar (2009) is based on a 

transaction price that is similar to the closing price in daily VaR computation. However, the 

resulting IVaR serves as a measure of potential loss of ‘paper value’ for a frozen portfolio 

and omits the ex-ante liquidity dimension. To some extent, the IVaR accounts for an ex-post 

liquidity dimension; more specifically, it measures the liquidity already consumed by the 

market. However, active traders are more concerned with ex-ante liquidity because it is 
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related to their liquidation value. For any trader, the risk related to liquidity is always present 

and the omission of this liquidity dimension can cause a serious distortion from the observed 

transaction price, especially when the liquidation volume is large.  

Another major difference is that before obtaining LIVaR, we should compute LIVaRc for 

actual return changes, which gives the potential loss in terms of waiting costs over a 

predetermined interval. Accordingly, the resulting LIVaR provides a risk measure for actual 

return at a given point in time, while the standard IVaR is based on tick-by-tick log-returns, 

which have a time-additive property. It thus directly gives a risk measure in terms of price for 

a given interval.   

The high-frequency VaR proposed by Giot and Grammig (2006) is constructed on mid-quote 

price and ex-ante liquidation price over an interval of 10 or 30 minutes.  As mentioned in 

Section 3, because the use of mid-quote might underestimate the risk faced by active traders, 

we take best bid price as the frictionless price when liquidating a position. Figure 1.6 

illustrates the difference in constructing the frictionless returns and actual returns. 

[Insert Figure 1.6 here] 

Consequently, for active day-traders, our LIVaR can be considered an upper bound of risk 

measure that provides the maximum p-th quantile in absolute value when liquidating a given 

volume v. Further, we found that durations impact volatilities of both frictionless and actual 

returns (with a higher impact on actual returns than on frictionless returns), and therefore 

should not be ignored. 

1.8  Robustness analysis 

1.8.1 With data from another period 

Regarding to the robustness analysis of our model, we re-applied our model to the data for 

another period. It should be noted that the model structure used to estimate remain the same, 

that is, the LogACD-VARMA-MGARCH model; however, the seasonality and the number of 

lags for three parts of the model can change depending on the characteristics of the trading 

data and LOB structure. In appendix, the results of average relative ex-ante liquidity risk 

premium for June 2011 are also presented. As expected, due to different characteristics in 

trading and LOB structure, the results are slightly different. For example, the LOB of SAP  in 

June 2011 is less deep than that in July 2010, as a result, the average relative ex-ante liquidity 

risk premium slightly increases. 
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1.8.2 With simulated data 

Another robustness analysis involves using simulation to quantify the effect of volatility 

change on the liquidity risk premium. There are situations where the volatility for actual 

return, frictionless return, or both, could be different; using simulation allows us to verify 

how our model captures these characteristics. It should be noted that our model are the 

stationary model, the magnitude of volatility could change but the time series should remain 

stationary. Figure A 1.7 to Figure A 1.9 of appendix illustrate the evolution of liquidity risk 

premium as a function of the volatility. In order to isolate the effect of volatility, we choose a 

particular parameter set, time interval, and confidence level equal to 5%. The procedure is as 

following, first, we take the estimated parameters from MRK for volume equal to 2700 as the 

initial parameters. Second, we change the volatility for actual return changes on keeping the 

volatility of frictionless return changes unchanged and simulate 5000 scenarios for this 

magnitude of volatility. In our exercise, we choose 14 different volatility multipliers. Third, 

we compute the liquidity risk premium based on the simulated data. We repeat the same 

procedure to frictionless return changes and both frictionless return changes and actual return 

changes19.  

For the purpose of comparison, we compute the relative change between initial liquidity risk 

premium and new simulated-based risk liquidity premium. As shown in the figures, when the 

total risk (actual return risk) increases and market risk (frictionless return risk) remains 

unchanged, the liquidity risk premium increases (In our example, an increases of more than 

10%). Whereas when the market risk increases and total risk remains unchanged, the liquidity 

risk premium decreases (In our example, a decreases of more than 40%). If we sum up the 

two effects by increasing both volatilities, we observe a decreasing curve (In our example, a 

decrease of around 15%) due to the fact that the effect of market risk is more important than 

total risk on the liquidity risk premium.

1.9 Conclusion 

In this paper, we introduce the ex-ante liquidity dimension in an intraday VaR measure using 

tick-by-tick data. To take the ex-ante liquidity into account, we first reconstruct the LOB for 

three blue-chip stocks actively traded in Deutsche Börse (SAP, RWE, and MRK) and define 

19 For the frictionless return changes, we increase the error term variance by keeping actual return changes 
variance unchanged, whereas, for both frictionless return changes and actual return changes, we increase both 
error term variance by multiplying the same multiplier. 
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the tick-by-tick actual return; that is, the log ratio of ex-ante liquidation price computed from 

a predetermined volume over the previous best ask price. Correspondingly, the proposed 

IVaRc and LIVaRc are based on the frictionless return changes and actual return changes and 

relate to the ex-ante loss in terms of frictionless return and actual return, respectively. In other 

words, both risk measures can be considered as the waiting costs associated with market risk 

and liquidity risk.  

To model the dynamic of returns, we use a LogACD-VARMA-MGARCH structure that 

allows for both the irregularly spaced durations between two consecutive transactions and 

stylized facts in changes of return. In this setup, the time dimension is supposed to be 

strongly exogenous. Once the model is estimated, Monte Carlo simulations are used to make 

multiple-step forecasts. More specifically, the Log-ACD process first generates the tick-by-

tick duration while the VARMA-MGARCH simulates the corresponding conditional tick-by-

tick frictionless return changes and actual return changes. The model performance is assessed 

by using the tests of Kupiec (1995), Christoffersen (1998) and the new improved backtests of 

Ziggel et al. (2014) on both simulated deseasonalized and re-seasonalized data. All tests 

indicate that our model can capture well the dynamics of frictionless returns and actual 

returns over various time intervals for confidence levels of 95%, 97.5%, 99%, and 99.5%.  

Our LIVaR provides a reliable measure of total risk for short horizons. In addition, the 

simulated data from our model can be easily converted to data in calendar time. In our 

sample, we find that the liquidity risk can account for up to 35% of total risk depending on 

order size. Regarding practical applications, potential users of our measure could be 

high-frequency traders that need to specify and update their trading strategies within a trading 

day, or market regulators who aim to track the evolution of market liquidity, along with 

brokers and clearinghouses that need to update their clients’ intraday margins.  

Future research could take several directions. Our study is focused on a single stock’s ex-ante 

liquidity risk. A possible alternative is to investigate how IVaR and LIVaR evolve in the case 

of a portfolio. In particular, the lack of synchronization of the durations between two 

consecutive transactions for each stock is a challenge. Another direction is to test the role of 

ex-ante liquidity in different regimes. Our study focuses on the liquidity risk premium in a 

relatively stable period. It could also be interesting to investigate how the liquidity risk 

behaves during a crisis period. This study will require a more complicated econometric model 

to take different regimes into account.  
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Table 1.1: Descriptive Statistics for SAP Raw and Deseasonalized Data 

Panel A :  SAP Raw data 
 Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 6.43 13.21 4.58 37.28 1.00E-03 292.75 6909.93 1426.06 
FR Change 6.39E-09 1.93E-04 0.10 6.01 -1.98E-03 1.47E-03 6408.48 7082.94 

AR(Q=8000) -7.77E-09 1.66E-04 0.13 8.13 -1.92E-03 2.14E-03 5096.10 6512.58 
AR(Q=6000) -6.25E-09 1.66E-04 0.10 7.43 -1.93E-03 1.72E-03 5252.56 6021.21 
AR(Q=4000) -4.73E-09 1.68E-04 0.09 7.79 -1.96E-03 2.11E-03 5374.51 5185.26 
AR(Q=2000) -2.76E-09 1.72E-04 0.11 7.15 -1.98E-03 1.90E-03 5514.05 5156.26 

Panel B :  SAP  Deseasonalized Data 
Duration 1.00 1.88 4.21 37.82 0.00 52.68 4345.54 1528.45 

FR Change -1.33E-04 1.01E+00 0.07 5.99 -10.96 7.21 6411.40 5923.61 
AR(Q=8000) -4.32E-05 1.04E+00 0.08 9.99 -15.37 11.25 5043.46 6599.80 
AR(Q=6000) -1.05E-05 1.04E+00 0.08 9.45 -13.07 12.60 5184.79 7189.66 
AR(Q=4000) -6.65E-05 1.03E+00 0.07 8.33 -12.78 10.76 5324.84 5661.21 
AR(Q=2000) -1.37E-04 1.02E+00 0.09 7.26 -12.78 9.69 5501.73 4684.47 

 

The table shows the descriptive statistics for raw durations, actual return changes when Q=2,000, 4,000, 6,000, 

8,000 and frictionless return changes. The sample period is the first 2 weeks of July 2010 with 44,467 

observations. 

 
Table 1.2: Descriptive Statistics for RWE Raw and Deseasonalized Data 

Panel A :  RWE  Raw data 
 Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 7.64 15.88 4.75 37.53 1.00E-03 296.58 10061.17 2479.01 
FR Change -3.10E-08 2.51E-04 0.12 7.51 -3.07E-03 2.49E-03 5091.89 7971.04 

AR(Q=4000) -4.33E-08 2.23E-04 0.22 10.01 -2.96E-03 2.38E-03 3940.66 10253.80 
AR(Q=3000) -4.05E-08 2.25E-04 0.18 10.00 -3.29E-03 2.37E-03 4022.16 10239.86 
AR(Q=2000) -3.70E-08 2.27E-04 0.18 9.19 -3.22E-03 2.33E-03 4131.99 10306.19 
AR(Q=1000) -3.12E-08 2.32E-04 0.16 8.75 -3.19E-03 2.42E-03 4364.74 11046.85 

Panel B :  RWE Deseasonalized Data 
Duration 0.97 1.73 3.71 24.51 2.45E-05 28.63 3101.10 577.62 

FR Change -7.80E-05 0.98 0.12 6.00 -8.55 7.80 5123.94 5093.30 
AR(Q=4000) -1.23E-04 0.99 0.20 7.32 -8.61 10.11 3930.82 4781.76 
AR(Q=3000) -1.13E-04 0.98 0.18 7.08 -9.52 9.60 4002.22 4796.94 
AR(Q=2000) -1.01E-04 0.98 0.17 6.66 -9.40 9.14 4101.41 4888.15 
AR(Q=1000) -8.61E-05 0.98 0.17 6.38 -9.27 8.52 4315.98 5519.57 

 

The table shows the descriptive statistics for raw durations, actual return changes when Q=1,000, 2,000, 3,000, 

4,000 and frictionless return changes. The sample period is the first 2 weeks of July 2010 with 37,394 

observations. 
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Table 1.3: Descriptive Statistics for MRK Raw and Deseasonalized Data 

Panel A : MRK  Raw data 
 Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 16.31 36.40 5.16 47.06 0.001  718.35 2157.42 905.39 
FR Change -3.83E-09 3.11E-04 0.00 15.52 -5.03E-03 4.25E-03 2551.10 4125.30 

AR(Q=2700) -1.33E-08 2.74E-04 -0.02 24.71 -4.71E-03 3.75E-03 1672.50 2303.16 
AR(Q=1800) -9.58E-09 2.79E-04 0.17 24.70 -4.77E-03 4.74E-03 1754.34 2308.44 
AR(Q=900) -6.82E-09 2.84E-04 0.24 21.74 -4.82E-03 4.50E-03 1890.60 3030.64 

Panel B :  MRK Deseasonalized Data 
Duration 0.97 1.95 4.13 29.42 1.581E-05 26.65 736.41 150.75 

FR Change -2.55E-04 1.01 0.06 13.44 -13.87 11.61 2537.61 4884.19 
AR(Q=2700) -2.78E-04 1.03 0.14 15.67 -14.65 11.65 1670.95 2537.68 
AR(Q=1800) -2.81E-04 1.03 0.20 17.60 -14.15 15.63 1730.01 2201.63 
AR(Q=900) -2.68E-04 1.02 0.33 16.44 -13.79 16.86 1862.13 2289.72 

  
The table shows the descriptive statistics for raw durations, actual return changes when Q=900, 1,800, 2,700 and 

frictionless return changes. The sample period is the first 2 weeks of July 2010 with 17,472 observations. 
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Table 1.4: Estimation Results SAP (v = 4000) 

Estimation log-ACD(2,1)-VARMA(4.2)- NGARCH((1.3).(1.3))  (Obs =21089) 
A

C
D

(2
.1

) 
 

Parameters Estimation Std Error Statistics  

 0.127  0.009  LB test on Residuals 

 -0.049  0.009  Lags Statistic C_Value 
 0.963  0.004  5 5.364 11.070 
 0.812  0.022  10 13.045 18.307 
 0.419  0.016  15 25.077 24.996 
 -0.081  0.004  20 30.561 31.410 
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 1.043 0.088 
 LB test on Residuals 

 -0.322 0.010 

 -0.154 0.061 Lags Statistic C_Value 

 0.089 0.031 5 5.291 11.070 

 -0.031 0.016 10 13.424 18.307 

 0.047 0.014 15 16.106 24.996 

 0.032 0.011 20 18.769 31.410 

 0.008 0.012 
 LB test on Squared Residuals 

 -1.338 0.087 

 0.353 0.085 Lags Statistic C_Value 

 0.088 0.004 5 3.395 11.070 

 0.412 0.022 10 15.405 18.307 

 0.159 0.006 15 18.925 24.996 

 0.404 0.022 20 21.266 31.410 

 0.308 0.018       

 0.073 0.002       
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 0.6055 0.0693 LB test on Residuals 
 0.1754 0.0093 
 -0.0401 0.0175 Lags Statistic C_Value 

 -0.0593 0.0187 5 15.811 11.070 

 0.0488 0.0133 10 21.046 18.307 

 -0.0199 0.0103 15 23.203 24.996 

 -1.4122 0.0690 20 32.595 31.410 

 0.4265 0.0669 LB test on Squared Residuals 
 0.0716 0.0037
 0.4799 0.0305 Lags Statistic C_Value 

 0.1612 0.0074 5 7.794 11.070 

 0.3466 0.0254 10 17.916 18.307 

 0.2472 0.0237 15 21.902 24.996 

 0.0377 0.0025 20 24.743 31.410 

DCC  
parameter 

 0.0791 0.0032 

 0.7537 0.0113 
 
The Statistics column reports the Ljung-Box statistic on standardized residuals of duration, actual return changes 
and squared standardized residuals for different lags. The bold entries are the estimation coefficients that are not 
significantly different from zero and the Ljung-Box statistics that reject the non-correlation in the residuals.  
 

 

  



36

Table 1.5: Estimation Results RWE (v = 4000) 

Estimation log-ACD(3,1) VARMA(5.1)- NGARCH((1.3).(1.3))  (Obs =15320) 
A

C
D

(3
.1

) 
 

Parameter Estimation StdError Statistics 
 0.108  0.010  

LB test on Residuals 
 -0.020  0.013  
 -0.024  0.009  Lags Statistic C_Value 
 0.970  0.004  5 9.209 11.070 
 1.145  0.028  10 20.280 18.307 
 0.280 0.010  15 39.712 24.996 
 -0.068  0.004  20 44.304 31.410 
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 0.710 0.012 
 LB test on Residuals  -0.333 0.011 

 0.047 0.014 

 0.005 0.013 Lags Statistic C_Value 
 0.006 0.014 5 10.161 11.070 
 0.024 0.013 10 14.653 18.307 
 0.006 0.014 15 27.042 24.996 
 0.009 0.013 20 30.095 31.410 
 0.041 0.012 

LB test on Squared Residuals  0.007 0.012 

 -0.980 0.002 
 0.099 0.006 Lags Statistic C_Value 
 0.437 0.030 5 4.356 11.070 
 0.156 0.008 10 8.474 18.307 
 0.461 0.029 15 11.071 24.996 
 0.260 0.023 20 14.102 31.410 
 0.067 0.003   
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 0.2324 0.0123   
 0.1447 0.0109 

 LB test on Residuals 
 0.0374 0.0132 

 0.0048 0.0131 Lags Statistic C_Value 
 0.0746 0.0135 5 6.378 11.070 
 -0.0428 0.0133 10 9.420 18.307 
 0.0305 0.0138 15 13.824 24.996 
 -0.0168 0.0132 20 22.560 31.410 
 0.0205 0.0128 

  0.0179 0.0114 

 -0.9805 0.0018 
LB test on Squared Residuals 

 0.0711 0.0049 
 0.4586 0.0343 Lags Statistic C_Value 
 0.1436 0.0080 5 7.403 11.070 
 0.4531 0.0359 10 16.284 18.307 
 0.2731 0.0276 15 19.750 24.996 
 0.0299 0.0029 20 22.811 31.410 

DCC  
parameter 

 0.0813 0.0043 
 0.7791 0.0135 

 
The Statistics column reports the Ljung-Box statistic on standardized residuals of duration, actual return changes 
and squared standardized residuals for different lags. The bold entries are the estimation coefficients that are not 
significantly different from zero and the Ljung-Box statistics that reject the non-correlation in the residuals.  



37

Table 1.6: Estimation Results MRK (v = 1800) 

 

Estimation log-ACD(1,1)-VARMA(1.1)-NGARCH((1.3).(1.3))  (Obs =7653) 
A

C
D

(1
.1

) 
 

Parameter Estimation StdError 
Statistics 

LB test on Residuals 

 0.048  0.005  Lags Statistic C_Value 

 0.984  0.004  5 8.240 11.070 

 0.784  0.034  10 17.239 18.307 

 0.382  0.025  15 21.796 24.996 

 -0.049 0.005  20 25.006 31.410 
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 0.9401 0.0599  LB test on Residuals 

 -0.3679 0.0149 Lags Statistic C_Value 

 -0.0316 0.0515 5 11.971 11.070 

 0.0945 0.0264 10 25.105 18.307 

 -1.1788 0.0584 15 27.396 24.996 

 0.2028 0.0565 20 29.201 31.410 

 0.1543 0.0109  LB test on Squared Residuals  

 0.3863 0.0341 Lags Statistic C_Value 

 0.1877 0.0115 5 1.818 11.070 

 0.4853 0.0328 10 3.084 18.307 

 0.2238 0.0289 15 7.719 24.996 

 0.0861 0.0032 20 10.320 31.410 
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 0.4737 0.0725  LB test on Residuals 

 0.1822 0.0129 Lags Statistic C_Value 

 0.0422 0.0228 5 20.248 11.070 

 -0.0652 0.0179 10 28.844 18.307 

 -1.2728 0.0712 15 30.197 24.996 

 0.3020 0.0677 20 34.977 31.410 

 0.1551 0.0119 LB test on Squared Residuals 

 0.4034 0.0378 Lags Statistic C_Value 

 0.2373 0.0163 5 4.348 11.070 

 0.1670 0.0272 10 11.419 18.307 

 0.0525 0.0039 15 22.855 24.996 

DCC  
parameter 

 0.1009 0.0027 20 35.233 31.410 

 0.6775 0.0159 
 
The Statistics column reports the Ljung-Box statistic on standardized residuals of duration, actual return changes 
and squared standardized residuals for different lags. The bold entries are the estimation coefficients that are not 
significantly different from zero and the Ljung-Box statistics that reject the non-correlation in the residuals.  
  



Table 1.7: Backtesting on Simulated Re-seasonalized Data 

 
Panel A: SAP Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 4000) 

 

Nb of  
Interval 

Interval  
(units) 

Time 
interval 
(in Min) 

Kupiec test Christoffersen Test Unconditional Coverage I.I.D 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

585 40 4.36 0.001 0.010 0.717 0.191 0.407 0.724 0.769 0.953 0.019 0.008 0.000 0.241 0.364 0.748 0.133 0.122
468 50 5.45 0.154 0.405 0.160 0.321 0.272 0.575 0.896 0.948 0.006 0.006 0.018 0.099 0.292 0.094 0.205 0.928
390 60 6.54 0.907 0.090 0.286 0.971 0.174 0.747 0.919 0.919 0.188 0.059 0.173 0.776 0.998 0.069 0.050 0.449
292 80 8.73 0.313 0.796 0.267 0.672 0.376 0.530 0.709 0.868 0.101 0.153 0.024 0.576 0.097 0.014 0.007 0.010
234 100 10.90 0.078 0.062 0.320 0.872 0.709 0.852 0.926 0.926 0.202 0.203 0.216 0.780 0.116 0.074 0.387 0.384
195 120 13.08 0.342 0.954 0.451 0.980 0.503 0.646 0.919 0.919 0.611 0.911 0.974 0.168 0.191 0.439 0.161 0.150

 
 

Panel B: RWE Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 4000) 
 

Nb of  
Interval 

Interval  
(units) 

Time 
interval 
(in Min) 

Kupiec test Christoffersen Test Unconditional Coverage I.I.D 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

535 40 4.77 0.001 0.002 0.095 0.239 0.477 0.832 0.902 0.951 0.003 0.004 0.024 0.226 0.951 0.876 0.690 0.667
428 50 5.96 0.134 0.589 0.891 0.923 0.313 0.557 0.783 0.891 0.299 0.212 0.322 0.383 0.661 0.427 0.514 0.689
357 60 7.14 0.217 0.292 0.362 0.874 0.341 0.679 0.881 0.881 0.066 0.207 0.051 0.107 0.171 0.442 0.204 0.083
267 80 9.55 0.106 0.258 0.239 0.761 0.510 0.762 0.931 0.931 0.084 0.130 0.790 0.713 0.664 0.528 0.535 0.689
214 100 11.92 0.109 0.877 0.577 0.126 0.591 0.661 0.811 0.811 0.040 0.098 0.592 0.855 0.970 0.021 0.020 0.012
178 120 14.33 0.145 0.460 0.522 0.909 0.590 0.748 0.915 0.915 0.004 0.040 0.235 0.351 0.819 0.625 0.317 0.632
153 140 16.67 0.626 0.299 0.646 0.797 0.538 0.817 0.908 0.908 0.722 0.088 0.253 0.864 0.059 0.884 0.026 0.742

 

 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        50 
        38 



 

 
 

Panel C: MRK Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 1800) 
 

Nb of  
Interval 

Interval  
(units) 

Time 
interval 
(in Min) 

Kupiec test Christoffersen Test Unconditional Coverage I.I.D 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

476 20 5.36 0.006 0.120 0.384 0.699 0.430 0.647 0.845 0.845 0.001 0.032 0.496 0.800 0.246 0.229 0.230 0.232
317 30 8.04 0.026 0.119 0.152 0.617 0.547 0.782 0.936 0.936 0.008 0.052 0.326 0.914 0.646 0.220 0.245 0.236
238 40 10.71 0.021 0.058 0.309 0.857 0.642 0.854 0.927 0.927 0.085 0.085 0.602 0.414 0.664 0.219 0.226 0.211
190 50 13.42 0.213 0.384 0.942 0.959 0.530 0.756 0.836 0.918 0.070 0.088 0.577 0.148 0.784 0.978 0.606 0.501
158 60 16.14 0.470 0.613 0.747 0.820 0.490 0.732 0.820 0.910 0.167 0.412 0.888 0.697 0.249 0.240 0.220 0.256

95 100 26.84 0.378 0.800 0.959 0.506 0.656 0.768 0.883 0.883 0.336 0.886 0.592 0.168 0.252 0.215 0.242 0.237
 
The table contains the p-values for Kupiec, Christoffersen, Unconditional coverage, and I.I.D (Ziggel et al (2013)) tests for the stocks SAP, RWE, and MRK. 
Interval is the interval length used for computing the LIVaR. Nb of intervals is the number of intervals for out-of sample analysis and Time interval in minutes 
is the corresponding calendar time. Bold entries indicate the rejections of the model at 95% confidence level. When the number of hits is less than two, the p-
values are denoted by #. 
 

 

 

 

 

 

 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        38 
        39 



 

Table 1. 8: Backtesting on Simulated Re-seasonalized Data 

 
Panel A: SAP Out-of-sample Backtesting on Raw Actual Return Change (v = 4000) 

 

Interval  
(in Mins) 

Nb of  
Interval 

Kupiec test Christoffersen Test Unconditional Coverage I.I.D 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

5 485 0.445 0.420 0.091 0.017 0.612 0.444 0.130 0.675 0.790 0.978 0.436 0.148 0.851 0.324 0.386 0.650
6 405 0.132 0.483 0.256 0.986 0.334 0.570 0.888 0.888 0.060 0.089 0.236 0.694 0.328 0.564 0.709 0.692

8 300 0.588 0.566 1.000 0.663 0.297 0.651 0.841 # 0.721 0.643 0.408 0.983 0.667 0.237 0.086 0.016
9 270 0.670 0.923 0.209 0.220 0.500 0.132 0.697 0.832 0.723 0.780 0.764 0.459 0.562 0.124 0.286 0.689
10 245 0.066 0.726 0.362 0.520 0.081 0.552 0.752 0.898 0.713 0.896 0.925 0.726 0.370 0.416 0.693 0.020

 
 

Panel B: RWE Out-of-sample Backtesting on Raw Actual Return Change (v = 4000) 
 

Interval  
(in Mins) 

Nb of  
Interval 

Kupiec test Christoffersen Test Unconditional Coverage I.I.D 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

5 485 0.173 0.341 0.364 0.778 0.266 0.604 0.897 0.927 0.510 0.649 0.922 0.889 0.996 0.682 0.085 0.587
6 405 0.132 0.071 0.583 0.986 0.352 0.777 0.888 0.921 0.358 0.604 0.812 0.325 0.723 0.791 0.008 0.005
7 345 0.570 0.563 0.772 0.379 0.259 0.618 0.791 0.851 0.536 0.928 0.276 0.455 0.742 0.072 0.170 0.858
8 300 0.070 0.156 0.537 0.697 0.651 0.776 0.908 0.908 0.002 0.290 0.400 0.651 0.694 0.677 0.257 0.269
9 270 0.307 0.247 0.857 0.601 0.430 0.795 0.863 0.931 0.273 0.788 0.673 0.386 0.804 0.456 0.001 0.001
10 245 0.043 0.156 0.733 0.175 0.647 0.856 0.856 0.856 0.084 0.357 0.485 0.197 0.639 0.533 0.068 0.069
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Panel C: MRK Out-of-sample Backtesting on Raw Actual Return (v = 1800) 
 

Interval  
(in Mins) 

Nb of  
Interval 

Kupiec test Christoffersen Test Unconditional Coverage I.I.D 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

5 485 0.187 0.201 0.140 0.298 0.344 0.628 0.897 0.949 0.090 0.102 0.086 0.270 0.892 0.831 0.101 0.101
6 405 0.010 0.071 0.980 0.220 0.476 0.723 0.777 0.777 0.172 0.046 0.179 0.780 0.111 0.590 0.444 0.102
7 345 0.273 0.175 0.394 0.548 0.312 0.701 0.878 0.939 0.431 0.126 0.460 0.836 0.882 0.457 0.204 0.102

9 270 0.098 0.247 0.654 0.752 0.513 0.728 0.863 0.931 0.013 0.077 0.504 0.627 0.387 0.512 0.966 0.968
10 245 0.016 0.050 0.765 0.520 0.647 0.856 0.856 0.856 0.002 0.110 0.366 0.621 0.165 0.577 0.109 0.108

 
The table contains the p-values for Kupiec and Christoffersen Unconditional coverage, and I.I.D (Ziggel et al (2013)) tests. Intervals are regularly time-spaced 
from 5 minutes to 10 minutes. Bold entries indicate the rejections of the model at 95% confidence level. When the number of hits is less than two, the p-
values are denoted by #. 
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Table 1.9: The Relative Liquidity Risk Premium 

 

Panel A: SAP 

Relative Ex-ante Liquidity Risk Premium  
at the end of 5-min Interval 

Confidence 
Level  

Volume (Shares)/PDHTV 

550 1500 2000 4000 8000 
mean >90% >95% >97.5% >99% 

10% 4.03% 10.36% 12.86% 22.20% 34.17%
5% 3.46% 9.32% 11.58% 20.55% 32.00%
1% 2.72% 8.22% 10.26% 18.40% 29.24%

 

 

Panel B: RWE 

Relative Ex-ante Liquidity Risk Premium  
at the end of 5-min Interval 

Confidence 
Level  

Volume (Shares)/PDHTV 
350 1000 1500 2000 4000 

mean >90% >95% >97.5% >99% 
10% 3.62% 9.78% 14.57% 17.82% 27.80%
5% 2.88% 8.39% 12.87% 15.92% 25.26%
1% 2.09% 6.54% 10.55% 13.45% 21.76%

 

 

Panel C: MRK 

Relative Ex-ante Liquidity Risk Premium  
at the end of 5-min Interval 

Confidence 
Level  

Volume (Shares)/PDHTV 
200 500 900 1800 2700 

mean >90% >95% >97.5% >99% 
10% 1.96% 9.83% 16.66% 27.07% 33.40%
5% 1.03% 8.96% 15.81% 25.79% 31.88%
1% 0.39% 8.67% 15.12% 24.65% 30.18%

 

 

The panels present the proportion of liquidity risk on total risk given different order sizes at 90%, 95% and 99% 
confidence level for SAP, RWE, and MRK. The order size for each stock ranges from the average (first column) 
to the 99th quantile of transaction volume (last column). PDHTV: Percentile in the Distribution of Historical 
Trade Volume 



Figure 1.1: Flowchart for Computing Impact Coefficient of Ex-ante Liquidity Risk  
and Ex-ante Liquidity Premium 
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(a): Compute durations, frictionless returns and actual returns based on raw data.  

(b): Construct the frictionless return changes and actual return changes. 

(c): Remove seasonality from durations, frictionless return changes and actual return changes. 

(d): Estimate the model. 

(e): Backtest deseasonalized IVaRc and LIVaRc. 

(f): Compute the re-seasonalized data by re-introducing the seasonal factors. 

(g): Backtest re-seasonalized IVaRc and LIVaRc. 

(h): Compute the impact coefficient of ex-ante liquidity risk.  

(i): Compute the IVaR and LIVaR for frictionless return and actual return. 

(j): Derive the ex-ante liquidity risk premium. 
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Figure 1.2: Seasonality Factor For RWE 

 

Panel A: Seasonality Factor for Duration 

 
Panel B: Seasonality Factor for Actual Return Changes (v = 4000)  
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Panel C: Seasonality Factor for Frictionless Return Changes 

 

 

Figure 1.3: Impact Coefficients of Ex-ante Liquidity for Different Time Intervals 

Panel A: SAP 
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Panel B: RWE 

 

Panel C: MRK 

 

Panels A, B and C illustrate how the impact coefficients of ex-ante liquidity evolve for intervals from 3 minutes 
to 10 minutes for stocks SAP, RWE, and MRK. The selected volumes for the actual return changes are 2,000, 
4,000, 6,000, and 8,000 shares for SAP, 1,000, 2,000, 3,000, and 4,000 shares for RWE, and 900, 1,800 and 
2,700 shares for MRK. 
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Figure 1.4: Computation of the Frictionless Return and the Actual Return for the End 
of an Interval 

 

 

Figure 1.4 illustrates the computation of the frictionless return and the actual return for the end of an interval. I 
indicates the transaction. At the beginning of the interval, we compute the frictionless return and actual return 
using real market data. Each I corresponds to a frictionless (actual) change that comes from the simulations. 
Consequently, the frictionless return (actual return) at the end of the interval is the sum of the initial frictionless 
return (actual return) and all the corresponding changes in the interval. 

 

Figure 1.5: IVaR and LIVaR of 5-minute for July 12, 2010 

Panel A: SAP with LIVaR (v =4000) 
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Panel B: RWE with LIVaR (v =4000)

 
Panel C: MRK with LIVaR (v =1800) 

 
Panels A, B and C present the VaRs for frictionless returns and actual returns at the end of each 5-minute 
interval on July 12, 2010, for the three stocks of SAP, RWE, and MRK, respectively. The selected volumes for 
the actual returns are 4,000 shares for SAP, 4,000 shares for RWE and 1,800 shares for MRK. 



Figure 1.6: Frictionless Returns and Actual Returns 

 
This figure presents the difference between our frictionless (actual) return and the frictionless (actual) return proposed by Giot and Grammig (2006). Arrow a 

presents the starting price and end price in constructing our frictionless return, while arrow b shows the starting price and end price for the actual return given a 

liquidation quantity v. Both frictionless returns and actual returns take the previous best ask price as starting price. Arrows c and d give the starting price and end 

price for computing the frictionless return and the actual return (for quantity v) proposed by Giot and Grammig (2006). Their frictionless return takes the 

previous mid-quote as the starting price and the following mid-quote as the end price. Their actual return takes the previous mid-quote as the starting price and 

the actual price as the end price.    
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Chapter 2 
Effects of the Limit Order Book on Price Dynamics 

Abstract

In this paper, we analyze whether the state of the limit order book affects future price 

movements in line with what recent theoretical models predict. We do this in a linear 

vector autoregressive system which includes midquote return, trade direction and 

variables that are theoretically motivated and capture different dimensions of the 

information embedded in the limit order book. We find that different measures of depth 

and slope of bid and ask sides as well as their ratios cause returns to change in the next 

transaction period in line with the predictions of Goettler, Parlour and Rajan (2009) and 

Kalay and Wohl (2009). Limit order book variables also have significant long term 

cumulative effects on midquote return, which is stronger and takes longer to be fully 

realized for variables based on higher levels of the book. In a simple high frequency 

trading exercise, we show that it is possible in some cases to obtain economic gains 

from the statistical relation between limit order book variables and midquote return 

2.1 Introduction 

Regardless of their original trading mechanism, almost all of the world's major 

exchanges now feature electronic limit order books. Some of them such as Euronext 

Paris have completely abandoned any form of floor trading and operate as pure 

electronic limit order markets without any designated market makers. Others such as 

NASDAQ also had to adapt their trading mechanisms to reflect the growing importance 

of electronic limit order books originating from alternative trading systems such as 

Electronic Communication Networks (ECN). 

As the importance of electronic limit order books in financial markets increases, so does 

the demand for information embedded in them. Most exchanges such as those operated 

by NYSE Euronext now offer investors access to historical and real-time data on their 

limit order books for a fee while others such as Frankfurt Börse make their electronic 

limit order book data available with a minor delay on their websites. More importantly, 
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historical and real-time data on limit order books are available at ever increasing 

frequencies, thanks to recent technological advancements in electronic trading systems. 

For example, Frankfurt Börse offers historical data on its electronic limit order book 

including trades and quotes up to 20 levels with millisecond time stamps. Thus, there is 

an immense wealth of historical and real-time information embedded in high frequency 

limit order books available to investors. 

Whether information embedded in the limit order book should have any effect on future 

price movements is a theoretical question. Earlier microstructure models such as Kyle 

(1985), Glosten and Milgrom (1985), Rock (1996) and Glosten (1994) treated limit 

orders as free options provided by uninformed investors to the market and susceptible to 

being picked off by later better informed investors. To put differently, most earlier 

microstructure models implicitly assumed that the limit order book cannot possibly be 

informative for future price movements. However, recent theoretical models allow 

informed investors to choose between limit and market orders and show that they indeed 

use not only market, as assumed in the previous literature, but also limit orders in 

rational expectations equilibria.1 Regardless of the channel through which information 

gets embedded in the limit order book, the common prediction of these models is that 

limit orders should contain relevant information for the true value of the underlying 

asset and, thus, affect future price movements. 

In this paper, we analyze whether the state of the limit order book affects future price 

movements in line with what the theory predicts. To this end, we reconstruct the first 20 

levels of the historical limit order book every millisecond for several companies traded 

at Frankfurt Stock Exchange in July 2010 and June 2011 based on the data from the 

1 For example, informed investors might use limit orders to avoid detection (as in Kumar and Seppi 
(1994)), to insure themselves against the price they might obtain for their market orders (as in 
Chakravarty and Holden (1995)), to take advantage of their sufficiently persistent private information (as 
in Kaniel and Liu (2006) and Kalay and Wohl (2009)). There is also a more recent literature on dynamic 
limit order markets with strategic traders, such as Foucault, Kadan and Kandel (2005), Rosu (2009) and 
Goettler, Parlour, and Rajan. Foucault, Kadan and Kandel (2005) show that patient trades tend to submit 
limit orders while impatient ones submit market orders in equilibrium. Rosu (2009) shows that fully 
strategic, symmetrically informed liquidity traders can choose between market and limit orders based on 
their trade off between execution price and waiting costs. Goettler, Parlour, and Rajan find that limit 
orders tend to be submitted mostly by speculators and competition among them results in their private 
information being reflected in the limit order book. 



53

Xetra electronic trading system. The information embedded in high frequency limit 

order book is quite rich and is not easy to summarize with a single variable. Instead, we 

consider variables such as measures of depth and slope that are theoretically motivated 

and capture different dimensions of the information embedded in the limit order book. 

Based on existing theoretical models, we then develop our hypotheses on how depth and 

slope of bid and ask sides should affect future returns. Specifically, we argue based on 

Goettler, Parlour and Rajan (2009) that an increase in depth at lower levels of the ask 

(bid) side results in lower (higher) future prices, while an increase in the depth at higher 

levels of the ask (bid) side results in higher (lower) future prices. Similarly, we expect 

based on Kalay and Wohl (2009) that an increase in the slope of the ask (bid) side 

results in higher (lower) future prices, regardless of the levels considered to measure it. 

To test these hypotheses, we consider data in transaction, rather than calendar period, 

and calculate midquote returns and limit order book variables right after a trade, as in 

Hasbrouck (1991). We then estimate a linear vector autoregressive system (VAR) that 

includes midquote return, trade direction and each limit order book variable one at a 

time, while controlling for the contemporaneous effect of trade direction on returns and 

limit order book variables. This empirical specification allows us to analyze the effect of 

limit order book variables on return while still controlling for the effect of trade 

direction and autocorrelation in returns. 

In this framework, we first focus on the coefficient estimates on the first lags of limit 

order book variables in the return equation, which reveal the initial effect of limit order 

book variables on return. Most limit order book variables considered in this paper have 

significant parameter estimates on their first lags in the return equation, even after 

controlling for lagged values of returns, trade directions and the limit order book 

variable itself. This in turn suggests that limit orders contain relevant information about 

future price movements in line with the predictions of recent theoretical models. More 

importantly, the coefficient estimates on the first lag of most limit order book variables 

have signs predicted by our hypotheses based on Goettler, Parlour and Rajan (2009) and 

Kalay and Wohl (2009). To be more precise, depth, especially of the ask side, has 

coefficient estimates of different signs on its first lag depending on the levels used to 

measure it, in line with our hypothesis based on Goettler, Parlour and Rajan (2009). On 
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the other hand, slopes of both sides have coefficient estimates of the same sign 

regardless of levels used to measure them, confirming our hypothesis based on Kalay 

and Wohl (2009). 

The coefficient estimates on the first lags of limit order book variables in the return 

equation provide information about the initial effects of these variables on return. 

However, they do not immediately reveal the long term cumulative effects of these 

variables on returns given that return, trade direction and limit order book variables have 

significant dynamics of their own. To take this into account, we calculate the impulse 

response functions of return to each limit order book variable. The impulse response 

functions suggest that the long term cumulative effects of most limit order book 

variables are generally in the same direction as their initial effects with few exceptions. 

For example, the long term cumulative effect of bid side depth depends closely on the 

levels considered. Bid side depth based on the first two, five and twenty levels have 

positive long term cumulative effects on return. On the other hand, bid side depth 

excluding the first level have negative long term cumulative effects on return. More 

importantly, our results on the long term cumulative effects of limit order book variables 

on return are mostly in line with our hypotheses and, thus, provide further empirical 

evidence from a different angle in their support. 

We then analyze whether this relation is a causal one. To this end, we analyze causality 

between limit order book variables and return in the sense of Granger (1969).  Most 

measures of ask and bid side depth as well as their ratio causes return to change at the 

next transaction period. The only exception is the bid side depth between the second and 

fifth levels, for which we fail to reject the null hypothesis that it does not cause return 

based on the F-statistic. Similarly, most measures of ask and bid side slope as well as 

their ratio causes return to change at the next transaction period. Once again, the 

exception to this is the slope measure between the second and fifth levels of ask and bid 

sides as well as their ratio. Furthermore, the test statistics tend to be much higher for 

limit order book variables measured based on lower levels (up to and including the fifth 

level) of the limit order book, suggesting that there is stronger empirical evidence for the 

relevance of information embedded in the lower levels of the limit order book. 
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Having analyzed the statistical relation between return and the information embedded in 

the limit order book, we then ask whether an investor can use this statistical relation to 

obtain economic gains. To this end, we consider an in-sample trading exercise similar to 

those considered in Kozhan and Salmon (2012). Specifically, having observed a 

transaction (and, thus, the return, trade direction and limit order book variables), we 

calculate our forecast of the midquote return at the next transaction period based on the 

estimated coefficients of the VAR model. We then calculate our trading signal for the 

next transaction period based on whether our forecast is greater or less than a threshold. 

In particular, we consider a forecast greater than a positive threshold to be a buy 

opportunity or signal and a forecast less than a symmetric negative threshold to be a sell 

opportunity or signal while a forecast between these two thresholds is not considered to 

be a strong enough signal. Tick-by-tick transaction prices tend to be quite noise. Hence, 

similar to a technical analysis trading strategy, we only consider trading signals when 

they are further confirmed by the relative movements of short- and long-run moving 

averages of recent transaction prices. To be more precise, we take a long position based 

on our trading signal, only when the short-run moving average crosses from below the 

long-run moving average by more than a specified amount. Similarly, we take a short 

position based on our trading signal, only when the short-run moving average crosses 

from above the long-run moving average by more than 0.06 euros. Otherwise, we do not 

consider a trading signal to be strong enough and, thus do not trade, if it is not 

confirmed by the relative movements of short- and long-run moving averages. 

We start our trading exercise at the beginning of July 2010. We do not take any position 

until we observe a signal strong enough. When we receive such a signal, we then take a 

long or short position of one share depending on the signal. At every transaction period, 

we calculate our trading signal and re-evaluate our position. Specifically, if we have a 

long (short) position and receive a strong enough buy (sell) signal or a signal that is not 

strong enough, we continue to keep our long (short) position of one share. On the other 

hand, if we have a long (short) position and receive a strong enough sell (buy) signal, we 

then close our long (short) position and hold a short (long) position of one share. We 

continue in this fashion until the last transaction in July 2010 and keep the position in 

the last transaction till trading terminates in July 2010. We evaluate the performance of 
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trading strategies based on their cumulative returns when we sell at bid and buy at ask 

prices. 

Trading strategies based on most limit order book variables outperform a benchmark 

model that does not utilize the information embedded in the limit order book. To be 

more specific, trading strategies based on 22 out of 30 limit order book variables 

outperform the benchmark model. Of this 22 trading strategies, 21 provide positive 

returns. Most trading strategies based on ask side or ratio variables outperform the 

benchmark strategy while only half of the trading strategies based on bid side variables 

do so. Furthermore, trading strategies based on ask side variables tend to outperform 

those based on the corresponding bid side variable. Also, trading strategies based on 

variables that capture the information embedded in the lower levels of the limit order 

book tend to outperform those based on variables that do not include this information. 

Finally, these results hold when we consider a latency of 0, 500 or 1000 milliseconds, 

suggesting the robustness of our results to a more realistic assumption of 500 or 1000 

milliseconds latency. As one would expect, profits based on a latency of 500 or 1000 

milliseconds are lower than those based on a latency of 0 milliseconds for the same 

threshold parameter. Furthermore, profits tend to decrease monotonically as we consider 

higher latencies. However, we should note that the performance of trading strategies 

depends on a set of chosen parameters. There are some sets of parameters for which 

trading strategies using limit order book information outperform the benchmark and 

there are others for which the opposite holds. In other words, it is feasible to obtain 

economic gains using information embedded in the limit order book for some sets of 

parameters but this is not always the case. 

Our paper is related to a growing body of papers which focus on the relation between 

high frequency returns and the information embedded in the limit order book. Biais, 

Hillion, and Spatt (1995) are among the first to analyze the dynamics of limit order 

markets and document many interesting facts. Specifically, they find that price revisions 

tend to move in the direction of previous limit order flows, suggesting that the limit 

order book contains some relevant information for the future path of prices. In contrast, 

Griffiths, Smith, Turnbull, and White (2000) find that limit orders tend to have a 

negative impact on prices in the Toronto Stock Exchange due to the possibility that limit 
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orders can be ``picked off" by better informed investors. This finding in turn suggests 

that limit orders are placed by less informed investors and, thus, do not convey much 

relevant information about prices. On the other hand, using data from the Australian 

Stock Exchange, Cao, Hansch, and Wang (2009) find that the limit order book is 

somewhat informative with a contribution of approximately 22% to price discovery. 

They also find that order imbalances between the demand and supply schedules along 

the book are significantly related to future short-term returns, even after controlling for 

the autocorrelations in return, the inside spread, and the trade imbalance. Similarly, 

using data from NYSE's TORQ (Trades, Orders, Reports, and Quotes), Kaniel and Liu 

(2006) find that the informed traders prefer limit orders to market orders and, thus, limit 

orders are more informative than market orders. More recently, Beltran-Lopez, Giot, 

and Grammig (2009) also finds that factors extracted from the limit order book have 

non-negligible information relevant for the long run evolution of prices in the German 

Stock Exchange. Specifically, they find that shifts and rotations of the order book can 

explain between 5% to 10% of the long run evolution of prices depending on the 

liquidity of the asset. 

Our paper differs from the previous literature in many dimensions. First of all, most 

papers consider a single variable that is supposed to summarize all the information 

embedded in the limit order book. However, as we demonstrate in this paper, the 

dynamic relation between return, trade direction and the state of the limit order book is 

more complex than what can be captured by a single variable. Instead, we consider a 

wide range of variables that capture different dimensions of the information embedded 

in the limit order book. More importantly, we show that different variables, and even 

sometimes the same variable measured based on different levels of the limit order book, 

can have different effects on the short and long term dynamics of returns. Second, most 

of our variables are closely related to and motivated by the recent dynamic models of 

limit order markets and have not been previously considered in a similar context. 

Furthermore, we provide some preliminary empirical evidence in support of the causal 

relation between limit order book variables and return as implied by these theoretical 

models. Third, to the best of our knowledge, we are among the first to report the impulse 

response function of return to limit order book variables, which allows us to analyze the 
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long term cumulative effect of limit order book variables on return after several 

transactions. Fourth, most papers focus on the statistical relation between return, trade 

direction and the state of the limit order book and do not provide much evidence 

whether this statistical relation is economically important for investors. In this paper, we 

do this by providing some preliminary evidence from a simple trading strategy based on 

the statistical relation between return, trade direction and the state of the limit order 

book. Finally, we should note that our data set is relatively unique and allows us to 

capture the state of the limit order book at a higher frequency than the ones that have 

been used in the previous empirical literature, providing a much finer analysis. Hence, 

part of our analysis can be considered as new out-of-sample tests of existing theoretical 

models and our findings provide empirical support for these models while the rest of our 

analysis is novel empirical evidence that might provide some guidance to new 

generation of models.  

The rest of the paper is organized as follows. Section 2.2 presents the details of our data 

set. Section 2.3 discusses the variable definitions. Section 2.4 develops the empirical 

hypotheses based on theoretical models of limit order markets. Section 2.6 presents the 

coefficient estimates of limit order book variables in the return equation, Section 2.7 

presents impulse response functions of return to limit order book variables and Section 

2.8 presents results on whether limit order book variables Granger cause return to 

change. Section 2.9 analyzes the economic value of information embedded in the limit 

order book based on a trading strategy. Section 2.10 discusses out-of-sample results 

based on another company and time period. Section 2.11 discusses some further 

robustness checks. Section 2.12 concludes. 

2.2 Data 

Our data comes from the automated order-driven trading system Xetra operated by the 

Deutsche Börse Group at Frankfurt Stock Exchange (FSE). It is the main German 

trading platform accounting for more than 90% of total transactions at all German 

exchanges. The trading and order processing (entry, revision, execution and cancellation) 

of Xetra system is highly computerized. Since September 20, 1999, the normal trading 

hours are from 9h00 to 17h30 CET (Central European Time). 
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The raw dataset contains all events that are tracked and sent through the data streams. 

We first process the raw dataset using a software called XetraParser developed by 

Bilodeau (2013).2 We then reconstruct the first twenty levels of the limit order book at 

millisecond time intervals. The limit order book can change when either a trade is 

executed or a limit order is placed, modified or canceled. In the unlikely event that these 

two types of events have the same millisecond time stamp, we need to make an 

assumption on the sequence of events given that we do not observe which one of them 

arrived earlier. We assume that a trade is always executed before any other change to the 

limit order book with the same millisecond time stamp. Thus, we first modify the limit 

order book to reflect the trade execution before taking its snapshot. In other words, if a 

trade is executed at a given millisecond, then the snapshot of the limit order book for 

that millisecond already reflects the executed trade. To avoid any problems due to this 

assumption, we ignore the state of the limit order book when a trade is executed and use 

its snapshots either one millisecond before or after a trade. Based on these snapshots, we 

measure variables summarizing the state of the limit order book every millisecond. We 

also eliminate all data corresponding to the three call auctions during a trading day since 

the price during these auctions is determined based on a certain set of rules and not by 

trading activity. 

 

We consider data for two blue chip stocks in the DAX30 index, namely Merck (MRK) 

and SAP (SAP). The two stocks are in completely different industries: Merck is world's 

oldest operating chemical and pharmaceutical company while SAP specializes in 

enterprise software and related services to manage business operations and customer 

relations. Merck is a relatively small company in the DAX30 index with a market 

capitalization of approximately 4 billion Euros at the end of June 2010 corresponding to 

0.75% of total market capitalization of stocks in the DAX30 index. On the other hand, 

SAP had market capitalization of approximately 33 billion Euros at the end of June 2010, 

almost 8 times that of Merck, representing 6.25% of total market capitalization of stocks 

in the DAX30 index. Panel (a) of Table 1 shows that SAP is much more actively traded 

than Merck with an average daily volume of approximately 8 times that of Merck in 

2 We thank Yann Bilodeau for his help in constructing the dataset and comments.
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July 2010. Specifically, SAP and Merck had, respectively, average daily volumes of 

approximately 4 million and 0.5 million shares in July 2010, corresponding to around 15% 

and 2% of total trading volume of the stocks in the DAX30 index. However, Merck with 

an average share turnover of 0.8% in July 2010 seems to be more liquid than SAP which 

has an average share turnover of 0.3%. Fourth, Panel (b) of Table 1 shows that the 

characteristics of their daily returns are also quite different in July 2010. For example, 

Merck had a positive return while SAP had a negative return with relatively lower 

volatility than that of Merck. This is also reflected in the range of returns for both 

companies. 

[Insert Table 1 here ] 

 

Similarly, we consider two relatively different time periods, July 2010 and June 2011. 

Both companies are much bigger in June 2011 with market capitalizations of almost 5 

and 50 million for Merck and SAP, respectively. Trading volume for both companies 

are lower in June 2011 as presented in Panel (a) of Table 1. This is despite of an 

increase in the total trading volume for all the stocks in the DAX30 index, suggesting 

that these stocks are relatively less traded in June 2011 compared to July 2010. Both of 

the companies had negative returns in June 2011 with Merck having a relatively better 

performance and lower volatility than SAP. 

Although we analyze both companies in both periods, we present empirical results for 

Merck in July 2010 as our main results due to space limitations. However, given the 

differences between companies and time periods discussed above, we consider other 

results as an out-of-sample test of our main results. To this end, we discuss these 

additional results, which are available in the appendix, in detail in Section 2.10. 

2.3 Variable Definitions 

The information embedded in the limit order book is quite rich and is not easy to 

summarize with a single variable. Hence, we consider several variables based on 

different levels of the limit order book to capture different dimensions of the 

information embedded in the limit order book. These variables can be categorized into 
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two groups depending on whether they summarize information embedded in one or both 

sides of the limit order book. 

We start with the variables that use information embedded in only one side of the limit 

order book. The first variable we consider is the depth between levels l1 and l2  of bid 

side , 
1 2, ,
B
l l tD , or the ask side, 

1 2, ,
A

l l tD , at period t. It is simply defined as the cumulative 

quantity available between levels l1  and l2  at period t: 
2
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for 1 1, , 20l and 2 1.l l ,
B
i tQ  and ,

A
i tQ  are the quantities available at the ith level of the 

bid and ask side in period t, respectively. The depth measures the cumulative demand 

and supply for the stock at different levels of demand and supply schedules, respectively. 

In other words, the higher is the bid side depth, the higher is the overall demand for the 

stock and the higher is the ask side depth, the higher is the overall supply of the stock. 

The second variable is the slope of bid, 
1 2, ,
B
l l tS , or ask, 

1 2, ,
A

l l tS  sides between levels l1 and l2  

at t. It is defined as the change in the price relative to the cumulative quantity available 

between levels l1 and l2  in period t: 
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for 1 1, ,19l and l2> l1. ,
B

l tP  and ,
A

l tP  are the lth best bid and ask prices, respectively in 

period t. The slope of the bid side is a measure of price sensitivity to changes in quantity 

demanded and is always negative. A high (in absolute value) bid-side slope coefficient 

implies that the bid price will decrease more for a given change in quantity demanded. 

Ceteris paribus, this in turn suggests that the investors are willing to buy at lower prices 

for the same total quantity demanded. Similarly, the slope of the ask side is a measure of 
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price sensitivity to changes in quantity supplied and is always positive. A high ask-side 

slope coefficient implies that the ask price will increase more for a given change in 

quantity supplied, which in turn suggests that the investors are willing to sell at higher 

prices for the same total quantity supplied. 

To combine information embedded in both sides of the limit order book, we consider the 

ratios of the variables introduced above. Specifically, the depth ratio is simply defined 

as the (normalized) difference in the cumulative quantity available at different levels of 

bid and ask sides: 

1 2 1 2
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1 2 1 2
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for 1 1, , 20l  and l2> l1. This variable is bounded above by one and below by minus 

one. Positive values of depth ratio indicate that the total supply of the stock between two 

given levels of the ask side is greater than the total demand between the same two levels 

of the bid side. Furthermore, as the quantity supplied increases relative to the quantity 

demanded between the same two levels of the bid and ask sides, the depth ratio 

increases. Similarly, we define the slope ratio as the (normalized) difference in the 

slopes of bid and ask sides between different levels: 
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for 1 1, ,19l and l2> l1. We take the absolute value of the bid slope since it is always 

negative by definition. This variable is also bounded between one and minus one. 

Positive values of slope ratio indicate that the supply schedule is steeper than the 

demand schedule. Furthermore, as the supply schedule becomes steeper relative to the 

demand schedule the same two levels of the bid and ask sides, the slope ratio increases. 

[Insert Table 2.2 here] 

Figure 3.1 presents two snapshots of the limit order book for Merck in July 2010. As it 

can easily be seen from Figure 3.1, both bid and ask sides of the limit order book can 

take on different shapes at different points in time. The limit order book variables are 

designed to summarize these different shapes that the limit order book can take on. To 

see what information different limit order book variables capture, Table 2.2 presents the 
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values of the limit order book variables that correspond to these two snapshots. For 

example, it is easy to see from Figure 3.1 that there is more total demand and less total 

supply in the first snapshot compared to the second one. These facts are captured by 

1,20
BD  and 1,20

AD . Furthermore, there seems to be more total demand and less total supply 

in the higher levels of the limit order book in the first snapshot compared to the second 

one. This can indeed be verified by comparing 5,20
BD  and 5,20

AD  of the first snapshot to 

those of the second one. As another example, compare the slopes of the bid side in these 

two snapshots. The bid side in the first snapshot appears to be overall steeper than that 

in the second snapshot, which is confirmed by comparing 1,20
BD 's. On the other hand, the 

bid side of the first snapshot seems to be flatter compared to the second snapshot when 

we focus on the first two and five levels. This turns out to be the case when we compare 

1,2
BS  and 1,5

BS  of the two snapshots. Similarly, the ratio variables allow us to infer about 

the shapes of bid and ask sides with respect to each other. For example, the bid side 

appears to be overall steeper than the ask side in the first snapshot, which is confirmed 

by the fact that 1,20,tSR  is negative. 

[Insert Figure 2.1 here] 

Table 2.3 presents the transformations applied to the limit order book variables and 

summary statistics for the transformed limit order book variables as well as log returns. 

Although not presented in Table 2.3, we also analyze whether any of the limit order 

book variables have unit root based on augmented Dickey-Fuller test. We reject the 

existence of a unit root for all limit order book variables at 1% statistical significance 

level, suggesting the stationarity of these variables. 

[Insert Table 3.3 here]

2.4 Hypotheses Development 

In this section, based on recent theoretical models of limit order markets, we develop 

our hypotheses on the effect of limit order book variables on return. We first consider 

the effect of depth on return. Goettler, Parlour, and Rajan (2009) develop a theoretical 

model where traders optimally choose the type of order to submit and whether to acquire 

information about the asset. They solve for the equilibrium of this model and show that 
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depth at different levels of the limit order book should not only be informative about 

future prices but also have different effects on them. Specifically, they show that there 

are only a few stale orders in the book since traders submitting limit orders revisit the 

market and resubmit orders, on average, twice as often as the true value of the asset 

changes. Thus, orders submitted in the higher levels of ask (bid) side suggest that the 

current best ask (bid) is too low (high) and hence lead to an upward (downward) 

revision in expectations about the true value of the asset. On the other hand, given that 

the transactions prices and traders' prices are, on average, equal to the true value of the 

asset, depth at lower levels of ask (bid) side lead to lower (higher) prices. Let us denote 

our hypothesis for the ask side with a and that for the bid side with b. Then, our first 

hypotheses on the effect of depth on return can be summarized as follows: 

Hypothesis 1a (Goettler, Parlour, and Rajan): An increase in depth at lower levels of 

the ask side results in lower future prices, while an increase in the depth at higher levels 

of the ask side results in higher future prices. 

Hypothesis 1b (Goettler, Parlour, and Rajan): An increase in depth at lower levels of 

the bid side results in higher future prices, while an increase in the depth at higher 

levels of the bid side results in lower future prices. 

We then consider the effect of slope on return. Kalay and Wohl (2009) analyze the 

relation between slope and future returns in the Noisy Rational Expectations 

Equilibrium (NREE) models of Hellwig (1980), Kyle (1989), Admati (1985), and 

Easley and O’Hara (2004). Specifically, they consider the framework of Hellwig (1980) 

and solve for the equilibrium. Given their assumption that limit orders can only be 

submitted by informed traders, as the number of informed traders on the bid side 

increases, the bid side becomes flatter, or equivalently, the slope of the bid side 

decreases. An increase in the number of informed traders on the bid side also implies a 

decrease in the relative importance of liquidity traders on the bid side. This in turn 

results in a decrease in the future price of the stock. The opposite model holds for the 

ask side. Thus, our hypotheses can be summarized as follows: 
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Hypothesis 2a (Kalay and Wohl (2009)):  An increase in the slope of the ask side results 

in higher future prices. 

Hypothesis 2b (Kalay and Wohl (2009)): An increase in the slope of the bid side results 

in lower future prices. 

We should note that the predictions of Kalay and Wohl (2009) on the effect of slope on 

return do not depend on the levels of the limit order book used to measure it, unlike the 

predictions of Goettler, Parlour, and Rajan for the effect of depth on return. However, 

we still consider slope measured based on different levels of the limit order book to 

analyze whether this prediction of Kalay and Wohl (2009) holds. 

We now consider the effect of depth and slope ratios on return. Recall that the depth 

ratio is defined as the normalized difference between ask and bid side depths. Given our 

hypotheses 1a and 1b, one would expect to observe an effect of depth ratio on return 

similar to but stronger than those proposed in Hypothesis 1a and 1b. Similarly, recall 

that the slope ratio is defined as the normalized difference between ask and bid side 

slopes. Given our hypotheses 2a and 2b, one would also expect to observe an effect of 

slope ratio on return similar to but stronger than those proposed in Hypothesis 2a and 

2b. Let c denote the combined versions of hypotheses a and b. Then our hypotheses on 

the effect of depth and slope ratios on return can then be summarized as follows: 

Hypothesis 1c (Goettler, Parlour, and Rajan): An increase in depth ratio based on 

lower levels of the limit order book results in lower future prices while an increase in 

the depth ratio based on higher levels results in higher future prices. 

Hypothesis 2c (Kalay and Wohl (2009)): An increase in the slope ratio results in higher 

future prices. 

2.5  The Empirical Model 

In this section, we discuss the empirical model that we use to test our hypotheses. To 

this end, we follow Hasbrouck (1991) who shows that a vector autoregressive system for 

the interactions between return and trade direction is consistent with stylized market 
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microstructure models such as Glosten and Milgrom (1985). Specifically, Hasbrouck 

(1991) suggests using the following vector autoregressive model to analyze the effects 

of information embedded in trades on prices: 

, , ,
1 1

, , ,
1 1

                                                        (2.7a)

                                                       (2.7b)

t r t x t r t

t r t x t x t

r r x
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where t indexes trades, xt is the sign of the trade in period t (+1 for a trade initiated by a 

buyer and -1 for a trade initiated by a seller), rt is the midquote return defined as the 

change in the average of best bid and ask quotes between period t-1 and t, i.e. 

1t t t tr q q q   and qt is the simple average of best bid and ask quotes in period t. 

This is a very general and flexible model that nests many of the standard microstructure 

models as special cases. The disturbances in this framework, ,r t  and ,x t , are generally 

modeled as white noise processes and can be interpreted as public information 

embedded in unexpected returns and private information embedded in unexpected trades, 

respectively. 

In this paper, we assume that the dynamics of a limit order market can also be 

approximated by a linear vector autoregressive system similar to that proposed by 

Hasbrouck (1991). Specifically, we consider each variable summarizing different limit 

order book-related information separately as a third state variable in the VAR in 

addition to return and trade direction: 
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where zt is a variable that summarizes a certain dimension of the information embedded 

in the limit order book. 
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This specification can be considered as a reduced form linear approximation that is 

designed to capture dynamics of limit order market models discussed in the introduction. 

Secondly, it is flexible and allows us to analyze the effect of limit order book-related 

information on prices while still controlling for trade-related information. For example, 

the immediate effect of limit order book-related information on prices is captured by 

,1z . Finally, Goettler, Parlour and Rajan (2009) argue that competition among 

speculators results in their private information being partially revealed in the limit order 

book. Hence, ,z t  in this framework can be interpreted as an unexpected private 

information shock embedded in the limit order book variable of interest. 

As mentioned above, we can measure limit order book variables including best bid and 

ask prices every millisecond. However, a trade can only be matched to a millisecond 

interval and thus one needs to decide whether to take a snapshot of the limit order book 

right before or right after a trade. The theory does not provide much guidance on this 

issue. In this paper, we follow the previous literature, e.g. Hasbrouck (1991) and Dufour 

and Engle (2000), and measure the limit order book variables right after a trade occurs. 
3This sampling approach implies that the midquote return and limit order book variables 

in period t are observed right after (less than a millisecond after) the trade, and thus 

trade direction. Thus, one can include trade direction in period t to control for its 

contemporaneous effect on return and limit order book variables in the estimated version 

of (2.8). Our results are similar regardless of whether or not we control for this 

contemporaneous effect. We choose to present results on the statistical relation between 

return and limit order book variables based on the specification that includes this 

contemporaneous effect. 

However, we should note that any contemporaneous effects of trade direction on return 

and limit order book variables cannot be interpreted as a causal relation even if trade 

direction is observed right before these variables. This is mainly due to the fact that 

market participants (human or non-human) cannot be possibly reacting to and trading 

based on any information embedded in contemporaneous return and limit order book 

3 We also considered the alternative sampling approach of measuring the limit order book variables right 
before a trade occurs. Our results on the effects of limit order book variables on return do not change 
significantly when consider this alternative sampling approach. 
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variables which are only observed less than a millisecond before the trade occurs. Xetra 

reports that the average time required for an order to travel from the trading participant's 

system across the network to its back-end and for confirmation of receipt to be sent back 

to the participant is about 13 milliseconds.4  Assuming that the two legs of this round 

trip are equally fast, it takes about 6.5 milliseconds for an order to travel from the 

trading participant's system across to the Xetra back-end. Hence, even if we make the 

unrealistic assumption that any necessary computations of an algorithmic trading 

strategy or the reaction of a human trader take less than a millisecond, it is physically 

impossible for their orders to arrive at the market within a millisecond. Hence, we 

choose to present our results on the trading strategy based on the empirical specification 

that does not include the contemporaneous effect of trade direction on return and limit 

order book variables. 

Following Hasbrouck (1991) and Dufour and Engle (2000), we also assume that the 

infinite sums in the model in Equation (2.8) can be truncated at J lags. Furthermore, the 

timing convention discussed above is reflected in the starting points of the summations 

in the estimated version of (2.8). pecifically, the summations for trade direction in the 

equations for return and limit order book variables start at zero instead of one. Then, the 

estimated version of the model in Equation (2.8) can be expressed as follows: 
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Hasbrouck (1991) and Dufour and Engle (2000) consider J=5 assuming that five lags 

are sufficient to capture the dynamics of the variables of interest. In this paper, we 

4 http://deutscheboerse.com/dbg/dispatch/en/binary/gdb_content_pool/imported_files/public_files/10_dow 
nloads/31_trading_member/10_Products_and_Functionalities/20_Stocks/BR_Xetra_Speed.pdf
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consider different lag structures up to a maximum of five lags. To be consistent with the 

previous literature, we present results based on a lag structure of five lags.5 

We estimate the empirical model via ordinary least squares (OLS), which provides 

consistent parameter estimates for return and limit order book variables given that they 

are stationary. OLS also yields consistent estimates for the parameters in the trade 

equation even though we estimate a linear specification for a limited dependent variable. 

As discussed in detail in Dufour and Engle (2000), this is mainly due to the fact that the 

conditional mean of the trade sign is generally correctly specified given that the 

probability of a buy or sell is never far from 1/2. A similar argument holds for depth and 

slope ratios. Specifically, the OLS yields consistent estimates for the parameters in the 

equations for depth and slope ratios even though they are limited between -1 and +1. 

This is again due to the fact that their conditional mean is correctly specified since their 

means are not far from zero. However, these estimates are inefficient and standard errors 

are biased. Hence, we present heteroskedasticity and autocorrelation consistent standard 

errors (Newey and West (1987)). The results are presented in Table 2.4. 

 

2.6 Coefficient Estimates 

We start with the effect of ask side variables on returns. Ask side depth measured based 

on the first two, five and twenty levels have significantly negative coefficient estimates 

on their first lags. On the other hand, ask side depth between the second and fifth levels 

has a significantly positive coefficient estimates on its first lag. These results provide 

some empirical evidence in support of Hypothesis 1a that an increase in depth at lower 

levels of the ask side results in lower future prices at the next transaction period while an 

increase in the depth at higher levels results in higher future prices. Furthermore, ask 

side depth between the fifth and twentieth levels has a statistically insignificant 

coefficient estimate on its first lag. This in turn suggests that any information, that is 

relevant for future prices, embedded in the ask side depth is mostly available at the 

lower levels of the ask side. These results are not only statistically but also economically 

significant. To understand the economic magnitude of these coefficient estimates, one 

5 Results based on the model estimated based on different numbers of lags are similar to those presented 
in the paper and available from the authors upon request. 
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needs to take into account the fact that we consider the logarithm of the ask side depth in 

the VAR system. For example, assuming that everything else remains constant, the log 

stock price decreases by 0.18 basis points ( ( 0.180 . . 0.260 log(2))b p ) at the next 

trade following a two-fold increase in the depth of the first two levels of the ask side. 

Although this might look like an economically insignificant change at first sight, it is 

indeed more than 18 times the mean log return between two trades, which is around 0.01 

basis points. 

[Insert Table 2.4 here] 

Different measures of ask side slope have positive and significant coefficient estimates 

on their first lags with the exception of the slope between second and fifth levels of the 

ask side. This in turn confirms Hypothesis 2a that an increase in the slope of the ask side 

results in higher future prices. The economic magnitude of this effect is a 0.09 (

0.132 log(2) ), 0.13 ( 0.189 log(2) ) and 0.40 (0.575 log(2) ) basis points increase in 

the price at the next trade following a two-fold increase in the slope of the first two, five 

and twenty levels of the ask side, respectively. Once again, considering that the mean 

log return between two trades is around 0.01 basis points, these effects are economically 

important. Furthermore, these results suggest that there is relevant information for future 

prices not only in lower but also in higher levels of the ask side in terms of its slope, as 

suggested by the significant coefficient estimate on the first lag of the ask side slope 

between the fifth and twentieth levels. 

We now consider the bid side variables. The coefficient estimates on the first lag of 

most bid side variables have the opposite signs of those on the first lag of the 

corresponding ask side variable. This is in line with our hypotheses in Section 2.4. 

Furthermore, the economic interpretations of the coefficient estimates on the bid side 

variables are similar to those on the corresponding ask side variables. Thus, we only 

briefly discuss our results on the bid side variables. 

First, the coefficient estimates on the first lag of bid side depth in the first two and five 

levels are both significantly positive. This in turn suggests that an increase in depth at 

lower levels of the bid side results in higher future prices at the next transaction period, 
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in line with the first part of our Hypothesis 1b. However, the coefficient estimates on the 

first lag of depth in the higher levels of the bid side are either significantly positive for 

1,20
BD  and 5,20

BD  or negative but insignificant for 2,5
BD . In other words, these coefficient 

estimates do not provide any supporting evidence for the second part of our Hypothesis 

1b. Second, different measures of bid side slope have negative and significant 

coefficient estimates on their first lags with the exception of the slope between second 

and fifth levels of the ask side. These provide empirical evidence in support of 

Hypothesis 2b that an increase in the slope of the bid side results in lower future prices. 

Finally, the information embedded in both lower and higher levels of the bid side is 

relevant for future prices as suggested by the significant coefficient estimates on the first 

lag of bid side variables based on both lower and higher levels. 

We now turn our attention to the variables that use information embedded in both sides 

of the limit order book. The coefficient estimates on the first lag of depth ratio are all 

negative regardless of the levels considered. These estimates are statistically significant 

with the exception of the depth ratio between second and fifth levels of the limit order 

book. These results suggest that an increase in depth ratio results in a lower future price 

regardless of the levels considered, providing evidence for the first part of Hypothesis 1c 

but against its second part. On the other hand, the coefficient estimates on the first lag of 

slope ratio are all significantly positive, with the exception of the slope ratio between the 

second and fifth levels of the limit order book. These results in turn suggest that an 

increase in the slope ratio results in higher future prices, providing evidence in support 

of Hypothesis 2c. Given that these variables are not transformed like variables based on 

one side of the limit order book, their economic interpretation is straightforward. For 

example, the log stock price decreases by 14 basis points at the next trade following a 

10% increase in the depth ratio and increases by 19 basis points following a 10% 

increase in the slope ratio. 

2. 7  Impulse Response Functions 

So far, we have focused on the coefficient estimates on the first lags of limit order book 

variables in the return equation. These coefficient estimates reveal the initial effects of 
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each limit order book variable on return but not their long term cumulative effects. 

Given that most of the variables in the VAR system have also significant dynamics of 

their own, one needs to calculate the impulse response functions of return to limit order 

book variables to infer about long term cumulative effects of limit order book variables 

on returns. To do this, we first simulate the estimated VAR system for a long enough 

period setting all residual terms to zero, i.e. , , , 0z t r t x t , to obtain its steady state. 

Second, starting with the steady state, we simulate the VAR system once again but this 

time assuming that the initial residual of the limit order book variable of interest is +1 

while all other residuals (initial or future) remain zero. The difference between these two 

simulations of the VAR system is the impulse response function of return to a unit shock 

to the limit order book variable of interest. 

Figure 2.2 presents the impulse response functions of return to limit order book 

variables. The cumulative effect of an increase in depth between any levels of the ask 

side is negative. This is in line with the initial effects of ask side depth on return 

discussed above based on the coefficient estimates on the first lags. The only exception 

is the ask side depth between second and fifth levels, which has a significantly positive 

initial effect but a negative long term cumulative effect. These results provide further 

supporting empirical evidence for the first part of Hypothesis 1a. However, they also 

suggest that the second part of Hypothesis 1a might not hold in the data when one 

considers the long term cumulative effect of ask side depth rather than its initial effect. 

[Insert Figure 2.2 here] 

In contrast to ask side depth, the long term cumulative effect of bid side depth depends 

on the levels considered. On one hand, bid side depth based on the first two, five and 

twenty levels have positive long term cumulative effects on return, although their 

cumulative effects in the short and medium term tend to be higher than those in the long 

term. These findings are in line with the initial effects of these variables on return and 

provide further empirical support for the first part of Hypothesis 1b. On the other hand, 

measures of bid side depth that exclude the first level have negative long term 

cumulative effects on return, although they have positive initial effects as well as 
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positive cumulative effects in the short and medium term. These findings provide 

empirical evidence in support of the second part of Hypothesis 1b, unlike the coefficient 

estimates discussed above. Hence, these impulse response functions of return to bid side 

depth based on different levels suggest that Hypothesis 1b holds in the data when one 

considers long term cumulative effects rather than initial or short to medium run effects. 

We now turn our attention to the long term cumulative effects of slope measures. Ask 

side slope has a positive long term cumulative effect regardless of the levels considered 

to measure it. These results are in line with their initial effects discussed above based on 

the coefficient estimates on their first lags in the return equation and provides further 

empirical evidence in support of Hypothesis 2a. On the other hand, the long term 

cumulative effects of bid side slope measures are negative with the exception of bid side 

slope between the second and fifth levels. This is mostly in line with Hypothesis 2b but 

also suggests that bid side slope might have different long term cumulative effects on 

returns depending on the levels considered to measure it, in contrast to its initial effect. 

Finally, we consider the long term cumulative effects of depth and slope ratios on return. 

Regardless of the levels considered, depth ratio has a negative long term cumulative 

effects on return. This provides further empirical evidence for the first part of 

Hypothesis 1c. However, it also provides some evidence contrary to the second part of 

Hypothesis 1c. This in turn suggests that Hypothesis 1c might not hold when we 

consider the long term cumulative effects rather than initial effects. Measures of slope 

ratio based on different levels of the limit order have positive long term cumulative 

effects on return, providing further empirical support for Hypothesis 2c. 

The impulse response functions can be economically interpreted as the change in the log 

price of the stock in basis points as a function of transaction periods in response to a one 

unit positive shock to the limit order book variable of interest while taking into account 

its transformation. For example, log stock price decreases by almost 0.1 basis points in 

the long term following almost a three-fold increase6 in between the first and fifth levels 

of the ask side. Furthermore, the long term cumulative effects of limit order book 

6 Note that a one unit positive shock to a limit order book variable with a log transformation implies e(  
2.718) -fold  increase in the limit order book variable of interest.
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variables based on higher levels of the limit order book tend to be stronger and take 

longer to be fully realized. This suggests that there might be more information (relevant 

for returns) embedded in the higher levels of the limit order book but it takes longer for 

this information to be fully incorporated in prices. 

2.8 Granger Causality 

We have discussed whether limit order book variables have any significant effect on 

returns based on coefficient estimates and impulse response functions. However, we 

have not yet answered whether the state of the limit order book causes returns to change 

at the next transaction period. In this section, we address this question by analyzing the 

causal effect of limit order book variables on returns. 

To do this, we consider the statistical test of causality in the sense of Granger (1969). 

Specifically, consider that we are interested in whether a given limit order book variable 

Granger causes return. We run a regression of return on its own five lags and five lags of 

the limit order book variable. We then conduct an F-test of the null hypothesis that the 

coefficients on the lags of the limit order book variable are jointly zero. Rejecting this 

null hypothesis suggests that the limit order book variable causes the return. To conduct 

the test, we consider the asymptotic F-statistic that has a 2  distribution with 5 degrees 

of freedom asymptotically. Last column of Table 2.4 presents statistics testing whether 

limit order book variables Granger cause return. 

Our results can be summarized as follows: Most measures of ask and bid side depth as 

well as their ratio causes return to change at next transaction period. The only exception 

is the bid side depth between the second and fifth levels, for which we fail to reject the 

null hypothesis that it does not cause return based on the F-statistic. Similarly, most 

measures of ask and bid side slope as well as their ratio causes return to change at the 

next transaction period. Once again, the exception to this is the slope measure between 

the second and fifth levels of ask and bid sides as well as their ratio. Furthermore, the 

test statistics tend to be much higher for limit order book variables measured based on 

lower levels of the limit order book, suggesting that there is stronger empirical evidence 

for the relevance of information embedded in the lower levels of the limit order book. 
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To sum up, these results provide further empirical evidence that the state of the limit 

order book affects returns at the next transaction period, although it is hard to interpret 

them in terms of individual hypotheses discussed in Section 2.4 as they do not provide 

any information on the directional effect of limit order book variables on return. 

2.9 Economic Value of the Information in the Limit Order Book 

So far, we have discussed the statistical relation between returns and the information 

embedded in the limit order book. In this section, we analyze whether an investor can 

use this significant statistical relation to obtain economic gains. To this end, we consider 

simple trading strategies similar to those discussed in Kozhan and Salmon (2012). 

Specifically, at each transaction period t, we first obtain forecast of the midquote return 

at the next transaction period t+1,  ( )
1ˆ j

tr , based on a restricted version of the VAR model 

in Equation (9a) that excludes the contemporaneous effect of trade direction on return.7 

We then calculate our trading signal for the transaction period based on whether our 

forecast is greater or less than a threshold. In particular, we consider a forecast greater 

than a positive threshold, i.e. ( )
1ˆ j

tr  where 0 , to be a buy opportunity or signal 

and a forecast less than a symmetric negative threshold, i.e. ( )
1ˆ j

tr  where 0 , to 

be a sell opportunity or signal while we do not trade on any forecast between these two 

thresholds, i.e. ( )
1ˆ| |j

tr . Similar to Kozhan and Salmon (2012),  can be considered as 

a parameter to filter out potentially weak signals. In this paper, we consider a  of 1 

basis points. As we consider higher values for , we trade less frequently. 

In addition, we remove further noise from the transaction data and, thus from our trading 

strategy, using a moving average filter. Specifically, for each transaction period t, we 

calculate a short-run moving average based on the last three and a long-run moving 

average based on the last forty midquote prices including the midquote price at 

7 We also consider trading strategies based on a forecasting model that includes the contemporaneous 
effect of trade direction on returns. As discussed above, any contemporaneous effect of trade direction on 
return is not a causal relation even if trade direction is observed right before the return is calculated. Our 
results based on this VAR model are similar to those based on the restricted VAR model and, thus, are not 
presented. 
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transaction period t. Similar to a technical analysis trading strategy, we consider the 

relative movement of the short and long-run moving averages to confirm the strength of 

our trading signal discussed above. To be more precise, we take a long position based on 

our trading signal discussed above, only when the short-run moving average crosses 

from below the long-run moving average by more than 0.06 euros, which correspond to 

approximately 10 basis points for MRK in July 2010. Similarly, we take a short position 

based on our trading signal discussed above, only when the short-run moving average 

crosses from above the long-run moving average by more than 0.06 euros. Otherwise, 

we do not consider a trading signal to be strong enough and, thus do not trade, if it is not 

confirmed by the relative movements of short- and long-run moving averages. 

We start our trading exercise at the beginning of July 2010. We do not take any position 

until we observe a signal strong enough based on both of the filters discussed above. 

When we receive such a signal, we then take a long or short position of one share 

depending on the signal. At every transaction period, we calculate our trading signal and 

reevaluate our position. Specifically, if we have a long (short) position and receive a 

strong enough buy (sell) signal or a signal that is not strong enough, we continue to keep 

our long (short) position of one share. On the other hand, if we have a long (short) 

position and receive a strong enough sell (buy) signal, we then close our long (short) 

position and hold a short (long) position of one share. We continue in this fashion until 

the last transaction in July 2010 and keep the position in the last transaction till trading 

terminates in July 2010. 

Several remarks are in order about our trading strategy. First of all, we implicitly assume 

that our trading does not alter the dynamics of the relation between return, trade 

direction and limit order book. We believe that this is a reasonable assumption since we 

only consider trading one share at a time which should be negligible given the trading 

volume of Merck in July 2010. Secondly, it is an in-sample trading exercise since we 

use the coefficient estimates based on the whole sample to obtain our return forecasts at 

each transaction period. An out-of-sample trading exercise would require the estimation 

of the VAR model at each transaction period based on the information available only up 

to that transaction period, which is computationally quite intensive. Finally, in our 

trading exercise, we calculate our signal based on the snapshot of the limit order book 
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right after (less than a millisecond after) a transaction and assume that we can trade at 

the prices in that snapshot of the limit order book. However, in reality, the computation 

of our trade signal after a transaction and the processing of our order at the exchange are 

not instantaneous. Hence, we might end up trading at prices different than those in the 

snapshot of the limit order book right after a transaction. Hence, we perform the same 

exercise when we assume a latency of 500 and 1000 milliseconds and trade at prices 

observed 500 and 1000 milliseconds after observing a transaction. This exercise allows 

us not only to check the robustness of our results to a more realistic assumption about 

latency but also to analyze the effect of speed on the profitability of our trading 

strategies. Given that our forecasting model is designed to predict returns with a zero 

delay, we expect profits based on a latency of zero millisecond to be higher than those 

based on a latency of 500 and 1000 milliseconds. 

We consider different trading strategies based on different limit order book variables as 

separate predictors in the forecasting model in Equation (9). We evaluate the 

performance of these trading strategies based on their cumulative returns over the 

month. We also distinguish between returns based on trading at midquote and bid and 

ask prices. Returns based on midquote prices might not necessarily be attainable by 

traders. Returns based on bid and ask prices, on the other hand, provide a more realistic 

performance measure for the trading strategy since we consider actual prices at which 

the traders can buy and sell the stock. Thus, we present results based on trading at bid 

and ask rather than midquote prices. 

As a benchmark, we consider a trading strategy based on a forecasting model that 

ignores information embedded in limit order book variables. Specifically, we obtain our 

trade signals in the benchmark trading strategy based on the estimation of the empirical 

model in Equation (9) with the restriction that , 0   1, ,5z for . This benchmark 

model allows us to analyze whether limit order book variables provide additional 

information useful to the trader above and beyond what is embedded in past returns and 

trade direction. One can think of this benchmark strategy as the equilibrium strategy of a 

trader who faces barriers to entry. For example, a trader might want to use the 

benchmark strategy if she cannot process or have access to the limit order book due to 

technological or financial reasons. Furthermore, we also consider this trading strategy 



78

with and without applying the moving average filter. This allows us to have an idea 

about the effect of the moving average filter on the profits from this trading strategy. 

[Insert Table 2.5 here] 

Table 2.5 presents returns from trading strategies when we sell at bid and buy at ask 

prices as well as the number of trades required to implement these trading strategies. We 

start by comparing results based on the benchmark strategies with and without the 

moving average filter. This allows us to provide some intuition on why we apply the 

additional moving average filter. First of all, as expected, the number of trades decreases 

significantly from 270 to 96 when we apply the moving average filter. Furthermore, 

although still negative, returns based on the benchmark strategy increases significantly, 

regardless of the assumed latency, when we apply the moving average filter. The 

negative returns on the benchmark strategy without the moving average filter is due to 

the large number of trades required to implement this strategy and the loss associated 

with each round trip transaction due to the bid-ask spread. Kozhan and Salmon (2012) 

also report large negative returns from a trading strategy based on a linear model, with a 

daily cumulative return of as low as -92% (corresponding to a compound monthly return 

of -100% assuming that there are 22 trading days in a month) based on actual bid and 

ask prices. As discussed above, these findings are due to the fact that transaction data 

and, thus, trading returns are noisy and the additional filter based on the difference 

between short- and long-run moving averages allows to us to decrease this noise further. 

More importantly, most trading strategies based on limit order book information 

outperform the benchmark model. To be more specific, trading strategies based on 22 

out of 30 limit order book variables outperform the benchmark model. Of this 22 trading 

strategies, 21 provide positive returns. Most trading strategies based on ask side or ratio 

variables outperform the benchmark strategy while only half of the trading strategies 

based on bid side variables do so. Furthermore, trading strategies based on ask side 

variables tend to outperform those based on the corresponding bid side variable. Also, 

trading strategies based on variables that capture the information embedded in the lower 

levels of the limit order book tend to outperform those based on variables that do not 

include this information. Finally, these results hold when we consider a latency of 0, 500 

or 1000 milliseconds, suggesting the robustness of our results to a more realistic 
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assumption of 500 or 1000 milliseconds latency. As one would expect, profits based on 

a latency of 500 or 1000 milliseconds are lower than those based on a latency of 0 

milliseconds for the same threshold parameter. Furthermore, profits tend to decrease 

monotonically as we consider higher latencies. On the other hand, the relative 

performance of strategies based on limit order book variables with respect to the 

benchmark strategy generally increases as the latency increases from 0 millisecond to 

1000 milliseconds, suggesting that the information embedded in the limit order book can 

still be economically important for traders with a relatively high latency. 

Several remarks are in order concerning these results. First of all, there are four 

parameters that we had to choose to operationalize our trading strategy: the time period 

for short- and long-run moving averages, the threshold parameters for the moving 

average filter and our trading signal. We chose parameters which we considered to be 

reasonable. However, we should note that they were still chosen in an ad hoc fashion as 

there is no theoretical model that provides any guidance on how to choose these 

parameters. We considered other sets of parameters and results undoubtedly change. 

There are some sets of parameters for which trading strategies using limit order book 

information continue to outperform the benchmark and there are others for which this is 

no longer the case. In other words, our results suggest that it is feasible to obtain 

economic gains using information embedded in the limit order book for some sets of 

parameters but this is not always the case. 

2.10 Robustness Checks based on Another Company and Time Period 

In this paper, we have focused on a single company, i.e. Merck, in a single month, i.e. 

July 2010. However, our findings are not due to our choice of company and time period. 

To demonstrate this, we have also analyzed the effect of limit order book variables on 

return for Merck in June 2011 and SAP in July 2010 and June 2011. In this section, we 

briefly summarize these additional findings which are available in the appendix. 

First of all, regardless of the company and time period, most limit order book variables 

have significant coefficient estimates on their first lags in the return equation and these 

coefficient estimates have the same signs and similar magnitudes as our benchmark 

results. Furthermore, similar to our benchmark results, the coefficient estimates on 
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higher order lags of most limit order book variables are not significantly different than 

zero. Second, the long term cumulative effects of most limit order book variables on 

returns are similar to those presented in Figure 2.2. Third, similar to our benchmark 

results, most limit order book variables significantly cause return to change at the next 

transaction period. Finally, the results from the trading exercise are also similar to our 

benchmark results. To sum up, these additional results suggest that the effect of limit 

order book variables do not change significantly with the stock and time period and are 

very similar to those in our benchmark analysis. 

2.11 Further Robustness Checks 

In this section, we discuss several checks we have implemented to test the robustness of 

our results. The results are available in the appendix. 

2.11.1 Daily Results 

Our results are based on the estimation of the VAR system in Equation (9) over the 

whole sample period between 1st July 2010 and 31th July 2010. We have enough 

observations in a given day to estimate the VAR system for each day of our sample 

period separately. This allows us to analyze whether results based on the whole sample 

period continue to hold when we focus on a single day. Furthermore, it also provides 

some information about the stability of our results. Not surprisingly, daily coefficient 

estimates on the first lag of limit order book variables in the return equation tend to 

change from one day to another but most of them tend to be stable and move around the 

corresponding estimates based on the whole sample. 

2.11.2  Controlling for Other Factors 

In this section, we analyze the robustness of our results by controlling for other factors 

that might potentially affect the relation between return, trade direction and the state of 

the limit order book. One such variable is the duration measured as the waiting time 

between consecutive transactions. Dufour and Engle (2000) analyze the effect of 

duration on the relation between return and trade direction by considering the interaction 

between duration and trade direction as an additional variable in their empirical 

specification. In this framework, they find that as duration decreases, the price impact of 
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trades, the speed of price adjustment to trade-related information, and the positive 

autocorrelation of signed trades all increase. They argue that markets have reduced 

liquidity when they are most active and there is an increased presence of informed trades. 

Our empirical approach differs from theirs in the sense that we include (log) duration 

itself in the empirical specification in Equation (9) as an additional state variable. Other 

variables that might also capture market activity are transaction volume and return 

volatility. We consider log number of shares traded at each transaction and log absolute 

midquote return (right before each transaction) to proxy for transaction volume and 

return volatility, respectively, and include these variables separately as additional state 

variables in the empirical specification in Equations (9). Our results available in an 

online appendix suggest that the relation between return, trade direction and the state of 

the limit order book do not change significantly when we control for duration, 

transaction volume and volatility. 

2.12 Conclusion 

In this paper, we analyze whether the state of the limit order book affects future price 

movements in line with what the theory predicts. To this end, we reconstruct the first 20 

levels of the historical limit order book every millisecond for several companies traded 

at Frankfurt Stock Exchange in July 2010 and June 2011 based on the data from the 

Xetra electronic trading system. We consider several variables that summarize different 

dimensions of the information embedded in the limit order book, such as depth and 

slope of both ask and bid sides separately as well as their ratios. Following Hasbrouck 

(1991), we estimate a linear vector autoregressive system (VAR) that includes midquote 

return, trade direction and a limit order book variable one at a time. In line with 

theoretical models of dynamic limit order markets, we find that the state of the limit 

order book help predict short run midquote return. Limit order book variables also have 

significant long term cumulative effects on midquote return and trade directions. This 

long term cumulative effect is stronger and takes longer to be fully realized for variables 

based on higher levels of the book. In a simple high frequency trading exercise, we 

show that it is possible to obtain economic gains from the relation between limit order 

book variables and midquote return. 
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Figure 2.1 Two Snapshots of the Limit Order Book 

Panel (a) and (b) present the price and depth of the first 20 levels of the limit order book for Merck on July 
1, 2010 at 9:10:27.948 and 9:33:36.100, respectively. The diamonds and squares represent different levels 
of the ask and bid sides, respectively. 
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Figure 2.2 Impulse Response Function of Return to Limit Order Book Variables 

This figure presents the impulse response functions of midquote return to a one unit positive shock to limit order book 
variables. The horizontal axis is transaction periods, i.e. the number of transactions since the initial shock, and the 
vertical axis is the response of midquote return in basis points. The solid, dashed, small dotted and dashed-dotted line 
correspond to the limit order book variable measured based on the first two, five, ten and twenty levels, respectively. 
The big dotted line corresponds to the limit order book variable measured between second and fifth levels. 
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Table 2.1 Summary Statistics for Daily Trading Volume and Returns 

This table presents summary statistics for daily trading volume (Panel (a)) and returns (Panel (b)) for MRK and SAP 
in July 2010 and June 2011 
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Table 2.2 Variables for the Snapshots of the Limit Order Book in Figure 2.1 

This table presents the values of the limit order book variables based on the snapshots of the limit order book for 
Merck on July 1, 2010 at 9:10:27.948 (Snapshot 1) and 9:33:36.100 (Snapshot 2) presented in Figure 2.1 
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Table 2.3 Summary Statistics 

 

This table presents the transformation applied to limit order book variables and the summary statistics for these 
transformed variables 
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Table 2.4 Coefficient Estimates on Lagged Values of Limit Order Book Variables (Zi-j) and F-
statistics for Granger Causality Tests 

This table presents the parameter estimates of lagged limit order book variables in the return equation ,( )z  and F-

statistics for Granger Causality tests. ***, **, * represent statistical significance at 1%, 5%, 10%, respectively. 
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Table 2.5  Bid-Ask Return on Trading Strategies 

This table presents the cumulative bid-ask returns on trading strategies over the whole trading period of July 2010. 
The trading strategy is based on the empirical model in equation 9 that excludes the contemporaneous effect of trade 
direction on return and described in detail in Section 2.9. The parameter of the filter for the return forecasts, , is set 
to 1 basis points. The long and short-run moving average filters are calculated based on the last three and forty 
transaction prices, including the most recent one, respectively. The parameter of the moving average filter is set to 
0.06 euros. Benchmark with and without moving average (MA) filter present results from trading strategies based on 
a forecasting model that ignores information embedded in limit order book variables.
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Chapter 3 
The Dynamics of Ex ante High-Frequency Liquidity: An 

Empirical Analysis 

Abstract

The ex ante liquidity embedded in open Limit Order Book (LOB) and its dynamics have 

been one of the most important issues in financial research and evolves with 

development of financial infrastructure. Using the tick-by-tick data and the re-

constructed open LOB data from Xetra trading system, we utilize a decomposition 

model to investigate the impact of trade duration, quote duration and other exogenous 

variables on ex-ante liquidity embedded in open LOB. More specifically, the duration 

factor is assumed to be strictly exogenous and its dynamics can be captured by a Log-

ACD process. Furthermore, by taking into account of Ultra High Frequency (UHF) data, 

our modeling involves decomposing consistently the joint distribution of the ex-ante 

liquidity measure into certain simple and interpretable distributions. In this study, the 

decomposed factors are Activity, Direction and Size. Our results suggest that trade 

durations and quote durations do influence the ex-ante liquidity changes. Short-run 

variables, such as spread change and volume, also predict the tendency of liquidity 

changes. However, contrary to previous literature, the more long-term variable trade 

imbalance is less informative in predicting the liquidity change dynamics. 

3.1 Introduction 

Liquidity has been one of the most important issues in financial research for a long time 

and evolves with development of financial infrastructure. However, the term of liquidity 

might be interpreted differently by various market participants: market regulators see 

liquidity as a capacity of buying and selling a large quantity of financial securities or the 

total turnover of assets in a given time interval. For the individual traders, the level of 

liquidity might only relate to the quantity available when changing their positions at 

buying or selling side. In this paper, we focus on the dynamic of ex-ante liquidity, which 



92

is offered by the Limit Order Book (LOB), from a general view through the analysis of 

available electronic data in Xetra open LOB system.  

There already exist a large number of theoretical microstructure models emphasizing on 

state of LOB because of its importance in discovering price formation and explaining 

the trading mechanism. However, the empirical research on ex-ante liquidity in LOB 

itself is still limited. There is a huge gap between theoretical and empirical research for 

the analysis of high-frequency trading mechanism and liquidity. This is due to the fact 

that market order traders and LOB traders behave in a complicated way, and the 

theoretical models are reluctant to capture all these features. For example, the LOB 

traders in Parlour (1998) cannot choose multiple limit-order price strategy; in Foucault 

(1999), the lifetime of a limit order could not last more than one period; and in Foucault, 

Kadan and Kadel (2005), the limit orders cannot be canceled once they are placed in the 

open LOB. All these restrictions have impact on the ex-ante liquidity provision.  

In market microstructure framework, beside the spontaneously demand and supply in 

the market, the liquidity provision also inherently depends on various exogenous factors 

such as trading mechanism, information disclosure process and regulatory issues. For 

instance, Viswanathan and Wang (2002) show that the slope of the equilibrium bid price 

is flatter than that in dealership since the discriminatory pricing rule intensifies the 

liquidity provision. Another important concern is the availability of data. In the previous 

studies, liquidity measures such as quoted spread and effective spread are obtained from 

trade related database. One problem with these liquidity measures is that they only 

reflect the liquidity for one share trading. With the introduction of open LOB trading 

mechanism, the access to more complete high-frequency data becomes possible. As a 

result, we can use the information in LOB to compute two different measures of the 

liquidity: ex-ante liquidity and ex-post liquidity. Up to now, a large number of liquidity 

(illiquidity) measures1 or proxies have been proposed. There exists little consensus on 

the most appropriate liquidity measure in terms of efficiency and accuracy due to its 

multi-facets complexity in both cross-section (depth, width, resiliency etc) and 

frequency (high-frequency or low-frequency based) dimensions. In practice, researchers 

1 Liquidity measure designs liquidity or illiquidity measure.
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propose and use various liquidity measures, consistent with the available data, to 

examine one or several liquidity dimensions they focus on.  

This empirical paper concentrates on ex-ante liquidity embedded in open LOB (depth 

and price impact). Recent studies related to ex-ante liquidity include Irvine (2000), 

Coppejans, Domowitz and Madhavan (2004), Domowitz, Hansch and Wang (2005), 

Giot and Grammig (2006), Beltran-Lopez, Giot and Grammig (2009), Beltran-Lopez, 

Grammig and Menkveld (2011). According to Aitken and Comerton-Forde (2003), ex-

post liquidity measures involve trade-based measures and ex-ante liquidity measures are 

related to order-based. The former measures involve most used liquidity measures and 

indicate what the traders have obtained in the realized transaction. The second group 

captures the cost related to potential immediate trading. For traders with small quantity 

to trade, the liquidity cost is quasi-fixed and is equal to the half of bid-ask spread. In this 

case we do not need any information about the LOB. However, for the larger traders, the 

spread will surely underestimate the associated cost when the quantity to trade is larger 

than the quantity available at first level. This requires a liquidity measure that can allow 

for volume-related price impact.  

Another characteristic of the ex-ante liquidity measure is that it can be computed even 

where there is no trade. As noted by Beltran-Lopez, Grammig and Menkveld (2011), for 

the average stock in DAX30 of Xetra trading system, the average daily number of limit 

orders is 12,785, i.e. 25 limit orders per minute, whereas the average number of trades is 

four per minute. As the trend of high frequency trading continues to increase rapidly, 

market regulators and institutional investors need more continuous measure of liquidity 

to update their information set. The traditional ex-post liquidity measure cannot meet 

this requirement as it can be computed only when transactions occur. The temporal 

relation between updates of LOB and transactions can be shown in Figure (3.1) where 

transactions and updates of LOB are denoted by circles and squares respectively. 

[Insert Figure 3.1 here] 

The objective of this study is to capture the evolution of ex-ante liquidity measure by a 

decomposition model which allows for various factors in a flexible way. To our 
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knowledge, we are the first to consider modeling the ex-ante liquidity by a 

decomposition model and to include a large set of factors. Given the particularity of 

UHF data and the motivation of microstructure analysis, one of possible modeling 

frameworks involves decomposing consistently the joint distribution of a target variable 

into certain simple and interpretable distributions.  

The idea of decomposition is pioneered by Rogers and Zane (1998) and aims at 

constructing observation-driven models in the sense of Cox et al. (1981). The 

decomposition model has been first used in analyzing transaction price dynamics. 

Hausman, Lo, and MacKinly (1992) and Russell and Engle (2005) propose an 

Autoregressive Conditional Multinomial (ACM) and ordered Probit model respectively. 

Rydberg and Shephard (2003) manage to achieve the same goals by decomposing the 

joint distribution of tick-by-tick transaction price changes into three sequential 

components. The first component is designed active and indicates whether the price 

change will occur. The second called direction component relates to the direction of 

price change, and the third one measures the absolute size of the price change. Finally, 

the decomposition model is used to provide the prediction for price movements or price 

level with the help of simulations. McCulloch and Tsay (2001) aim at modeling the 

transaction price change process with a decomposition model. In their framework, they 

initialize a price change and duration (PCD) model that decomposes the price changes 

into four factors and introduces time and liquidity dimension in modeling price change 

dynamics. The duration between two consecutive transactions and the number of trades 

during this duration are considered as implicit factors for the price changes. In total, they 

use six conditional models to capture the dynamic of price changes. Manganelli (2005) 

applies the decomposition methodology in investigating the simultaneous interaction 

between duration, volume and return. Two subgroups of different trade intensity 

perform different dynamics. The decomposition framework remains flexible for more 

complicated modeling and according to different modeling assumptions, addition or 

deletion of certain factors is possible. 

Our paper differs from the existing literature in several dimensions. First of all, instead 

of aggregating the time for a fix interval, our analysis contains a time dimension. 
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Specifically, our paper investigates the role of trade and quote durations in explaining 

the dynamic of ex-ante liquidity provision. It's widely known that trades may contain 

private information that will be further incorporated in the quote updates. Consequently, 

trade duration and quote duration are closely related to the speed of information flow 

and quotes revision, respectively. Our model takes them as two factors for the liquidity 

changes and assumes that the trade duration factor is strictly exogenous. The joint 

modeling of trade duration and corresponding quote duration is challenging due to the 

fact that they are not synchronic by nature. To circumvent this problem, Engle and 

Lunde (2003) propose a bivariate point process. As a general conclusion, they found that 

information flow variables, such as trade duration, large volume of trade and spread, 

predict more rapid quote revision. We first apply their bivariate model to our Xetra 

dataset and then extend the analysis to the impact of both trade and quote durations on 

ex-ante liquidity changes. 

Second, by applying a decomposition model, we make a much finer analysis of ex-ante 

liquidity changes and take advantage of econometric modeling by attempting to capture 

a more general and realistic LOB trading pattern which is much more complicated than 

that characterized by structural models. Specifically, following Engle and Lunde (2003) 

and Rydberg and Shephard (2003), we use different factors to model the dynamics of 

liquidity changes, including trade duration, quote duration, activity, direction and size. 

Our objective is to identify the possible determinants of each factor from a wide range 

of variables. Our empirical findings will not only provide support to existing theoretical 

models but will offer a guidance for new theoretical models in market microstructure.  

Third, regarding the explanatory variables, in addition to the lagged dependent variables, 

we also put various exogenous variables in the different factor equations. In existing 

literature, most papers take one variable as the explanatory variable and suppose that 

this variable can summarize all the trade information. Instead, our variables are volume-

related, duration-related and trade imbalance related. Among these variables, we also 



96

distinguish the short-run and long-run variables2 to reflect the time dimension of the 

variables.  

The rest of the paper is organized as follows: Section 3.2 describes the Xetra trading 

system and the ex-ante liquidity measure Xetra Liquidity Measure (XLM) we model in 

this study. Section 3.3 briefly presents the decomposition model and the exogenous 

variables we use for explaining the dynamics of each factor. Section 3.4 applies the 

econometric model proposed in Section 3.3 to our data for the selected stocks and 

reports the estimation results. Section 3.5 concludes and provides possible new research 

directions. 

3.2  Xetra trading system and Xetra Liquidity Measure (XLM) 

3.2.1 Xetra trading system 

Electronic trading systems have been adopted by many stock exchanges during last two 

decades. The data used in this study is from the trading system Xetra, which is operated 

by Deutsche Börse at Frankfurt Stock Exchange (FSE) and has a similar structure to 

Integrated Single Book of NASDAQ and Super Dot of NYSE. Xetra trading system 

realizes more than 90% of total transactions at German exchanges. Since September 20, 

1999, trading hours have been from 9h00 to 17h30 CET (Central European Time). 

However, during the pre- and post-trading hours, entry, revision and cancellation are 

still permitted.  

There are two types of trading mechanism during normal trading hours: the call auction 

and the continuous auction. A call auction could be organized one or several times 

during the trading day in which the clearance price is determined by the state of LOB 

and remains as the open price for the following continuous auction. During each call 

auction, market participants can submit both round-lot and odd-lot orders. Both start and 

end time for a call auction are randomly chosen by a computer to avoid scheduled 

trading. Between the call auctions, the market is organized as a continuous auction 

where traders can only submit round-lot-sized limit orders or market orders.  

2 Short-run variables are variables at a given timepoint, whereas the long-run variables are variables that 
summarize the information over an interval.
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For the highly liquid stocks, there are no dedicated market makers during the continuous 

trading. As a result, all liquidity comes from limit orders in LOB. Xetra trading system 

imposes the Price Time Priority condition where the electronic trading system places the 

incoming order after checking the price and timestamps of all available limit orders in 

LOB. Our database includes 20 levels of LOB information3 meaning that, by monitoring 

the LOB, any registered member can evaluate the liquidity supply dynamic and potential 

price impact caused by a market order. However, there is no information on the 

identities of market participants. 

The reconstruction of LOB is mainly based on two main types of data streams: delta and 

snapshot. The delta tracks all the possible updates in LOB such as entry, revision, 

cancellation and expiration, whereas the snapshot gives an overview of the state of LOB 

and is sent after a constant time interval for a given stock. Xetra original data with delta 

and snapshot messages are first processed using the software XetraParser developed by 

Bilodeau (2013) in order to make Deutsche Börse Xetra raw data usable for academic 

and professional purposes. XetraParser reconstructs the real-time order book sequence 

including all the information for both auctions and continuous trading by implementing 

the Xetra trading protocol and Enhanced Broadcast. We then put the raw LOB 

information in order under a readable format for each update time and retrieve useful 

and accurate information about the state of LOB and the precise timestamp for order 

modifications and transactions during the continuous trading. The stocks Metro AG 

(MEO), Merck (MRK), RWE AG (RWE) and ThyssenKrupp AG (TKA) that we choose 

for this study are blue chip stocks from the DAX30 index. The selected stocks have 

different levels of market capitalization and are in different markets. Metro AG, with 

market capitalization of 9.8 billion Euros, operates retail stores, supermarkets and 

hypermarkets on-line and off-line. Merck is the world’s oldest operating chemical and 

pharmaceutical company with a market capitalization of 4 billion Euros in 2010. RWE 

generates and distributes electricity to various customers including municipal, industrial, 

commercial and residential customers. The company produces natural gas and oil, mines 

coal and delivers and distributes gas. In 2010, its market capitalization was around 15 

3 Our dataset does not include the hidden part of an iceberg order.



98

billion Euros. ThyssenKrupp AG manufactures iron and steel industrial components 

with market capitalization of 11.9 billion Euros. 

3.2.2 (Il)liquidity measure in Xetra Trading System 

As mentioned above, liquidity is the central quality criterion for the efficiency of 

marketplaces in electronic securities trading. We use the following definition of liquidity: 

the ability to convert the desired quantity of a financial asset into cash quickly and with 

little impact on the market price (Demsetz (1968); Black (1971); Glosten and 

Harris(1988)).The Xetra trading system defines its own ex-ante (il)liquidity measure 

Xetra Liquidity Measure (XLM) as follows4: 
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where q is the potential size in Euro, the conventional value for q in Xetra trading 

system is 25 000 euros. ,
q

net buyP  is the average price when a buy market order of q euros 

arrives and ,
q

net sellP   relates to the average price for a sell market order of q euros. v  is the 

total volume bought by the market order of q euros. ,
q

net sellP  and ,k iv  are the kth level ask 

price and volume available, respectively. ,k iv  is the quantity left after K-1 levels are 

completely consumed by the market order of q euros. ,
q

net sellP  is computed in the similar 

way. midP is the mid-quote of bid-ask spread. XLM measures the relative potential 

round-trip impact when buying and liquidating a volume of q euros at the same time. 

Intuitively, it is also the cost in basis point for an immediate demand for liquidity from 

buy and sell market orders. For example, a XLM of 10 and a market order volume of 25 

000 means that the market impact of buying and selling is 25 euros. The previous 

market microstructure literature that considers the quantity available in LOB includes 

4 More information is available in the official website of Xetra.
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Irvine, Benston and Kandel (2000), Domowitz, Hansch and Wang (2005), Coppejans, 

Domowitz and Madhavan (2004), among others. 

XLM is based on midP and the difference between ,
q

net buyP and ,
q

net sellP . Theoretically, there 

are infinite combinations of ,
q

net buyP and ,
q

net sellP  for the same difference. That is, the 

illiquidity may come from either side or both sides of LOB. However, our study focuses 

on stocks' global liquidity and considers the lack of depth in either side as an illiquid 

situation. For the buy side or sell side investors, the corresponding one-side XLM can be 

defined and computed in a similar fashion. 

The XLM measure can be used for several ends: first, XLM measure can help decision 

making in security selection when constructing a portfolio. Among the stocks with same 

correlation with market portfolio, a small XLM stock will decrease the trading cost and 

at last provide a higher net return. Second, XLM can also be used for comparison 

purpose. For instance, a cross listing stock may perform different liquidity features in 

different markets. By using XLM, one can quantify this difference by choosing a given 

volume. Third, by choosing different volume q, we can identify the global liquidity or 

one-side liquidity pattern. 

3.3 Methodology 

3.3.1 Model 

In our dataset, there are three variables to model: trade, quote and ex-ante liquidity 

changes. Following Engle and Lunde (2003), we consider trade and quote as a bivariate 

point process. Based on the timestamps of these point processes, we can define two 

types of duration: trade duration and quote duration which constitute a bivariate duration 

process. However, due to the no-synchronization problem, we further assume that the 

trade times are the initiators for both the following trade and the next quote update. 

Consequently, trade durations and quote durations with same index share the same 

original timestamp. The economic intuition behind the assumption is that the limit order 

traders in open LOB update their quotes by observing the transactions. After each 

transaction, we compute the quote duration based on the very last transaction. 
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As mentioned by Engle and Lunde (2003), by taking the transaction times as the origin 

of each pair of durations, two possible situations may occur for quote duration: an 

uncensored observation or a censored observation. The uncensored duration occurs 

when the update of quote is before the next trade arrival and the censored duration 

happens when the following trade arrives before the update of quote. We denote xi and yi 

as the trade duration and quote duration, respectively, and further define the observed 

quote duration (1 )i i i i iy d y d x ,where { }i ii y xd I . 

Apart from the time dimension, there is also a liquidity dimension to model. We use the 

above mentioned XLM as the liquidity measure. In the no-censored situation, we take 

the average of the measure within the first quote update timestamp and the following 

trade timestamp. We suppose its evolution could be written as: 

0
1

                                                                        (3.2)
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where Zk is defined as the kth rounded signed change for XLM.  

We define p as the joint density for trade duration, quote duration and XLM changes. 

One possible decomposition for this joint density of kth mark can be written as: 
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We define kx and ky  be the exogenous factor, which relates to the trade duration and 

observed quote duration, for XLM changes. Conditional on information set Fk-1 and two 

durations, Ak takes on value 0 or 1 indicating if there is a change on kth XLM. 

Conditional on Ak  = 1, Dk relates to the direction of the XLM change by taking on the 

value -1  and  +1. Finally, given the information set Fk-1 with Ak = 1 and Dirk, Sk takes 

on positive integers and indicates the size of the change.  relates to the parameter set 

including 1 , 2 , 3 , 4  and 5  which are the parameters for factors of trade duration, 

observed quote duration, activity, direction and size. 
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More precisely, we adopt Log-ACD model originally introduced by Bauwens and Giot 

(2000) in modeling the irregularly spaced trade durations which is considered as a main 

characteristic in high frequency data: 

1
1 1

, exp ln                   (3.3)
p l

k
k k j k j j k j k

j jk

x W  

where 1( )k k kE x F  and k  is a i.i.d random variable following the generalized 

gamma distribution with unit expectation. The process of duration is composed of a 

sequence of deseasonalized durations. Wk-1  is a vector of exogenous variables available 

at k-1 which include trade-related variables, quote-related variables and dummy 

variables to capture the intraday seasonality (hereafter, all exogenous vector will include 

dummy variables to capture the intraday seasonality). We use the Log-ACD to model 

durations as it is more flexible and the non-negativity constraint on the coefficients can 

be relaxed5.  

We adopt a similar structure for observed quote duration, that is 

1 1 1 1
1 1

, exp ln       (3.4)
p l

k
k k j k j j k k j k j k

j jk

y d V  

Wher 1( )k k kE y F  and k  is supposed to be i.i.d exponential distributed and the error 

distribution is supported by the estimation convergence. In this equation, we add the 

term with censored dummy variable to capture the impact of censored observation and 

the vector of exogenous variables Vk-1   which may have some common variables as in 

Wk-1. We show in the following section that as quote durations are conditional on 

transactions; one possible exogenous variable could be the expected trade duration 

available at tick k. 

Regarding the liquidity dimension, we decompose the XLM change into three factors: 

Activity, Direction and Size. The advantage of the decomposition approach is that we 

5 The ACD (Autoregression Conditional Duration ) model is initialized by Engle and Russell (1998) and 
widely used for duration modeling.
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can use simple and interpretable factors to model the complicated variables. To this end, 

the first factor Activity is a bivariate variable that takes values of 0 or 1 to indicate 

whether there is a change in XLM measure. To model the activity factor, we use the 

auto-logistic model (Cox et al.(1981)). As the log-likelihood function of the auto-

logistic is concave, the numerical optimization can be easily and reliably realized. 

However, the high-frequency data often performs a slow decay for longer lags in 

autoregressive structure. Thus there is a trade-off between bias and variance, i.e., 

inference with too few parameters may be biased, while that with too many parameters 

may cause precision and identification problems. To solve this, we adopt another 

structure called the GLARMA (Generalized Linear Autoregressive Moving Average) 

binary model which is a generalized structure of auto-logistic structure by allowing 

moving average-type behavior (Shephard (1995)). The auto-logistic model for activity is 

defined as: 

1( 1 , , ) ( ),A
k k k k kf A F x y p   where 

exp( )( )                         (3.5)
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Consequently, 1
1( 0 , , )

1 exp( )k k k k A
k

f A F x y  

1
A
kM  is the vector of exogenous variables for activity factor known at k-1. In this 

logistic modeling, the parameter A
k  is time-varying and depends on both its own lag 

variables, such as lags of gk and Ak, and some exogenous variables. The model will be 

validated by applying the Ljung-Box test on the standardized errors defined by: 
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which should be uncorrelated with zero mean and unit variance. 
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In a similar way, the Direction of change of the liquidity measure conditional on the 

activity factor is specified by another binary process on 1  or -1  (positive indicates that 

more liquidity cost should be paid when trading volume q  and negative is related to less 

liquidity cost situation) and is estimated by another auto-logistic model: 

1( 1 , , , 1) ( ),D
k k k k k kf D F x y A p  where 

exp( )( )                   (3.7)
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Consequently, 1
1( 1 , , , 1)

1 exp( )k k k k k D
k

f D F x y A  

1
D
kM  is a vector including exogenous variables of subset Fk-1 and D  is a parameter 

vector. It should be noted that the vectors and AM  and DM  might have some identical 

exogenous variables.  

Once the model is estimated, we use the Ljung-Box test to validate its ability of 

capturing the main features of data. The test will be applied to standardized residuals: 

(2 ( ) 1)                                                              (3.8)
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Finally, the last factor is Size which captures the magnitude of the change of XLM. Less 

than half of observations in the sample have no size change, that is, they stay at their 

previous level. Thus we will adopt a geometric process for size changes. The choice of 

geometric distribution is motivated by its simplicity and generality: 
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'
1

Siz Siz Siz
k siz k kM g  and 
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Siz Siz Siz Siz
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where 1
Siz
kM  is a vector of exogenous variables and siz  is the corresponding parameter 

vector. g( )k indicates the geometric distribution with parameter k
6. In order to capture 

the asymmetry between up-move size and down-move size, we add a direction variable 

in the vector of exogenous variables. In Equation (3.9), we add one to the geometric 

distribution since the minimum change is one. We also apply the Ljung-Box statistics to 

standardized residuals to evaluate the model. Given the conditional distribution of Size, 

we have 

1
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Standardized residuals is computed as 

1
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and an adequate modeling requires Siz
ku  being uncorrelated with zero mean and unit 

variance. 

In summary, for the estimation process, we can separately estimate each factor by using 

the Maximum Likelihood approach and the BIC criteria will be applied for the model 

selection, especially for the choice of number of lags. Moreover, in order to test their 

ability to capture the main feature of time series data, we perform a Portmanteau test in 

which residuals will be served to calculate the Ljung-Box statistic as a measure of 

residual dependence. 

6 The general probability distribution function is ( ) (1 ) , 0,1, 2,...mf x m m .
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Then, with the previous specification, all the observations can be classified into one of 

the three following categories: 

1) There is no change in XLM, that is, activity factor Ak = 0 and no direction and size 

factors. 

2) Liquidity decreases and the change size is at least one unit. The corresponding factors 

are : Ak  = 1 , Dk  = 1 , and Sk  =  sk 

3) Liquidity increases and change size is at least one unit. The corresponding factors are : 

Ak  = 1 , Dk  = -1 , and Sk = sk 

The overall log likelihood function is: 
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where 1 2 3 4 5, , , ,  are parameter sets for factors trade duration, quote duration, 

activity, direction and size respectively. In addition, (1),  (2),  (3),k k kI I I  correspond to 

the indicator function relating to the three categories mentioned above. 

The advantage of this modeling is that this partition enables us to simplify the modeling 

and computation task by specifying the suitable econometric models for the marginal 

densities of trade duration and conditional densities for quote duration and factors such 

as Activity, Direction and Size. In addition, for different purposes, the model could also 

be extended to a more or less complicated context by including other factors. In these 

decomposition models, one of the crucial tasks is to identify the exogenous variables. 

Apart from the irregularly spaced duration, it is reasonable to test whether the rest of the 

factors contain also seasonality effects. 
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3.3.2 Exogenous Variables Set 

Given the model defined above, we need to identify the possible exogenous variables, 

apart from own lags, for each component. Our goal is to find some variables that have 

economic interpretation. In previous literature, the most widely used variables are 

spread, trading volume and price (Hasbrouck (1996), Goodhart and O'Hara (1997), 

Coughenour and Shastri (1999) and Madhavan (2000)). The intuition is that, trading 

activities and LOB trader behavior are related. For instance, in a volatile trading period, 

trading volume will increase and trade duration and quote duration will decrease, 

consequently, these will generate a volatile open LOB.  

The first exogenous variable is relative spread change which is computed with the 

following formula: 

100 ( ( ) ( ))k k kRelativeSpread ln ask ln bid  

Its variation is measured by: 

k k k-1DeltaSpread = RelativeSpread - RelativeSpread  

where ask  and bid are the best sell price and buy price available in open LOB. The 

advantage of relative spread is that it is dimensionless and can be used to directly 

compare different stocks. 

As the relative spread captures quasi-instantaneous information and might be noisy, 

another spread-related variable is the average relative spread over most recent ten 

observations: 

10

1

1
10k k i

i
AveSpread RelativeSpread  

Regarding to the volume dimension, the first variable we take as the exogenous variable 

is the square root of the volume, SquareRoot(vol), that initiates the current trade. There 

are two reasons for the use of square root, one is to down weight the large trade volume, 

and the second is that the price impact proves to be a concave function of market order 
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size (Hasbrouck (1991)). If the volume that initiates the current trade is large, we expect 

a volatile situation and, by consequence, the trade duration and quote duration are likely 

to be short. 

The second volume-related variable is to capture the imbalance of the signed trade. For 

this end, we adopt the depth measure proposed by Engle and Lange (2001) which is 

defined as follows: 

10

1
( . )k k i k i

i
Abs sign vol sign volume  

where the signk-i  and volumek-i  are the trade sign and trade volume for the (k-i)th  trade. 

The trades are classified into buy-initiated and sell-initiated according to the rule of Lee 

and Ready (1991). Intuitively, when the depth measure increases, it indicates that the 

trades are imbalanced and the market is dominated by one-side pressure.  

The third dimension is the duration. Different from trade duration and quote duration, 

we also define two sorts of duration: back-quote duration and quote-quote duration. The 

back-quote duration is used to consider the duration between the first update of LOB 

after the previous trade and the following trade which contains quote information. It 

should be noted that the back-quote duration could be zero due to the fact that the quote 

duration might be censored when the trade occurs before the update of open LOB. The 

way by which the data is sampled ignores some quotes when there are more than one 

updates between two trades. It might not be a concern when 75% of the quotes are 

preserved as in Engle and Lunde (2003). However, in a market where the open LOB is 

more active such as the Xetra trading system, ignoring the quote activity may be a 

concern. In fact, only around 20% of the quotes are preserved in our dataset. 

Another exogenous variable is quote-quote duration which considers the duration for 

which there is no change of XLM. By consequence, this variable will be used only in 

explaining the components such as direction and size which have observations when the 

liquidity measure changes.  
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The above variables will be all (or partially) included in the exogenous variable vectors 

for different components. In addition, we also put time-of-day dummy variables in the 

vectors to remove the seasonality which is a stylized fact in high-frequency data. There 

exist several techniques for this end. In our study, we use eight time-of-day dummy 

variables to capture the intraday seasonality for each component for which we desire 

modeling. Among the dummy variables, one for the first half hour after the market 

opening and then one for each hour of the trading day until the market closing.  

Table 3.1 presents the summary statistics for durations and exogenous variables. The 

sample period is the first week of July 2010. The number of trades for all stocks ranges 

from 8 256 to 19 488. The trade frequency is also confirmed by the corresponding 

average trade durations. That is, stocks with larger number of trades correspond to 

shorter trade durations. Regarding to the average trade volumes, there is a big difference 

varying from 193 to 746 shares meaning that the selected stocks have different levels of 

liquidity. The average quote durations are relatively small and evidence that the 

dynamics in open LOB is more active than that of trades. Considering other exogenous 

variables, it is natural to see that the averages of DeltaSpread  and XLM  are close to 

zero. As AveSpread is dimensionless, we can consider it as an indicator of the 

transaction cost. All stocks have a average of AveSpread around 0.05%   meaning that 

the average of spread remains stable across the stocks. The average of trade imbalance 

variable Abs(sign.vol) varies from 944 to 3616 indicating the existence of different 

trading patterns across the stocks. 

[Insert Table 3. 1 here] 

3.4 Estimation and results 

3.4.1 Trade Duration Equation 

The log-likelihood is maximized by using the quadratic hill climbing method and the 

maximization program is run with Matlab v7.6.0 with Optimization toolbox. The 

estimate results of trade durations are presented in Table 3.2. In the modeling, we 

decompose the explanatory variables of trade durations into two groups: lagged 

dependent variables and exogenous variables. More specifically, the lagged dependent 
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variables are used to capture the high degree of persistence in the trade durations. One 

part of exogenous variables will test the effect of mark variables on trade durations, and 

the other part with dummy variables helps to remove the seasonality. 

[Insert Table 3.2 here] 

Panel A of Table 3.2  presents the estimation results of lagged dependent variables for 

all the stocks in the sample. The ACD-related models are based on the ARMA structure 

meaning that the determinant part of the dynamics of durations are specified by the 

lagged duration and lagged error term7. As we expected, the trade durations of all stocks 

are highly autocorrelated. Taking the model efficiency and parsimony into consideration, 

the number of lagged trade durations varies from one to three. The sum of the 

coefficients of lagged trade durations for all stocks is around 0.9 which confirms a very 

high degree of persistence in autocorrelation. TKA has the most persistent trade 

durations among all stocks and has been specified by a Log-ACD(3,2) dynamics. 

Regarding to the error terms for all stocks, the parameters Gamma1 (ranges from 0.512 

to 0.974) and Gamma2 (ranges from 0.350 to 0.780) are small indicating that the 

distribution of the random part is abrupt and near to zero, that is, expected trade duration 

shocks are very small. 

Considering the exogenous variables mentioned above, we put six such variables in the 

trade duration equations: DeltaSpread, AveSpread, SquareRoot(vol), Abs(sign.vol), 

BackQuote duration and XLM. Panel B of Table 3.2 reports the estimation results. 

Consistent with Engle and Lunde (2003), for all the stocks, an increase in spread, that is, 

a positive DeltaSpread, increases the trade duration. The parameters are all positive and 

significant at 5% level. Intuitively, when the stocks become less liquid, traders will slow 

their trading intensities, by consequence, trading durations will become longer. Different 

from Engle and Lunde (2003), we also find a positive sign for AveSpread coefficient. 

That is, the higher the AveSpread is, the longer the trade durations are. The difference 

between DeltaSpread and AveSpread is that the former captures the short-run spread 

change and the latter relates to the long-term spread change. It reveals that trade 

7 Regarding to the model selection, the first criteria is the Ljung-Box statistics, and the second one is the 
BIC criteria for the selection of number of lags.
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intensity is sensitive for both short-run and long-run spread change. When the stocks 

become less liquid, traders slow down their activities and then wait for next moment 

when the liquidity increases. 

Other important exogenous variables are volume-related. For all stocks, the coefficients 

of SquareRoot(vol) are all negative and significant at 5% level. This means that large 

trades will generate higher trading intensity and shorter trade durations. According to 

Easley and O'Hara(1987), large trades are likely to be related to information trade since 

the informed traders try to exploit their information advantage by increasing both the 

trading intensity and trading quantity. Another volume-related variable is Abs(sign.vol) 

which measures the volume imbalance (in Euros) of the last ten trades. As we take the 

absolute value, a higher value means a higher level of imbalance and a zero value means 

a complete balanced trading activity. All stocks have small positive coefficients, and 

only two of them are significant at 5% level. The measure of imbalance also relates to 

the information trading. Our results suggest that when the trades become imbalanced, 

the trade intensity will decrease. Presumably, when the non-informed traders observe an 

imbalanced trading history, they will then slow down their trading activity to protect 

themselves. 

Regarding the BackQuote duration, we find that the effect of duration between the first 

quote and the following trade on the trade duration is not clear. Two stocks have 

positive sign and two others have negative sign. Moreover, three of them are significant 

at 5% level. Intuitively, the trade activity should be positively correlated with quote 

activity. As a result, the coefficient should have positive sign. Our results do not seem to 

be completely consistent with this intuition. One explanation might be that as the trade 

duration consists of quote duration and BackQuote duration depends on both trade 

duration and quote duration. Therefore, the explanatory power of BackQuote duration is 

also influenced by quote duration which is censored. For instance, a longer BackQuote 

duration could be either a long trade duration or a shorter quote duration. The longer 

trade duration has a positive impact on trade duration, whereas a shorter quote duration 

has a negative one. Therefore, the sign of BackQuote duration on trade duration could 

be positive or negative. 



111

The last exogenous variable is the change of liquidity measure XLM. Like DeltaSpread, 

a high XLM means a less liquid situation. If we follow the same argument as 

DeltaSpread, higher XLM will decrease the trade intensity and then generate longer 

trade duration. Our estimate results suggest that three stocks have positive estimated 

coefficients and one has negative estimated coefficient. However, only one is significant 

at 5% level. Generally speaking, the XLM is not likely to have effect on the trade 

duration. However, if we combine the XLM result with that of DeltaSpread, it suggests 

that the trade activity is more sensitive to the first level of LOB and the quote activities 

beyond first level are not likely to explain the trade duration dynamics. 

The last part consists of dummy variables. Panel C of Table 3.2 reports the estimated 

results for these dummy variables. To make the results more visible, we piecewisely plot 

the coefficient of dummy variables in Figure 3.2 In line with previous literature, the 

trade durations do have a diurnal pattern. For all stocks, there is an inverse U-shaped 

pattern for trade durations.  

[Insert in Figure 3.2 here] 

The model is validated by the Ljung-Box statistic. Table 3.3 presents the value of Ljung-

Box statistic at different lags for trade durations and the standardized residuals of trade 

durations. The left side of the table shows that there is a high persistence in 

autocorrelation of the trade duration dynamics. The right side of the table presents 

evidence that the Log-ACD model is capable of removing this autocorrelation feature in 

the trade durations since the Ljung-Box statistics have been reduced dramatically and, in 

most of cases, the hypothesis of no autocorrelation cannot be rejected. 

[Insert Table 3.3 here] 

The overall results on trade durations are stable across stocks and provide some new 

empirical evidence about the trade duration dynamics. First, trade durations are highly 

persistent. Second, volume-related variables and best level quote have more explanatory 

power in predicting the expected trade duration. However, the quote duration and XLM 
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have less influence on trade durations. Third, trading durations do perform an intraday 

pattern. 

3.4.2 Quote Duration Equation 

The estimated results for quote duration are presented in Table 3.4. Similar to trade 

duration, we also decompose explanatory variables of quote duration into two parts: 

lagged dependent variables and exogenous variables. 

[Insert Table 3.4 here] 

Panel A of Table 3.4 reports the estimate results of lagged dependent variables for all 

stocks. Similar to trade durations, quote durations are also highly persistent. The number 

of lagged value varies from two to three and the number of lagged error terms varies 

from one to four. TKA performs the most persistent dynamics and takes a Log-ACD(3,4) 

model to fit its dynamics. Comparing the Log-ACD model to the traditional ARMA 

structure, the sum of the coefficient of “AR” part in quote duration equation varies from 

0.239 to 0.505. The relatively small coefficients can be explained by the fact that the 

start point of our quote duration is the trade timestamp, when there are more than one 

update between two trades, only the first one is used to calculate the quote duration. To 

some extent, this sampling “deletes” some autocorrelation in quote durations. Regarding 

to the coefficients of error term, the estimated coefficients vary from 0.042 to 0.072 

confirming the sampling effect in autocorrelation. 

We include more exogenous variables for quote duration than in trade duration since we 

assume that the trade durations are exogenous and can explain the quote duration 

dynamics. More specifically, the exogenous variables we use in explaining the dynamics 

of quote durations are: trade-duration-related variables, censored effect variable, 

DeltaSpread, AveSpread, SquareRoot(vol), Abs(sign.vol), BackQuote duration and 

XLM. Panel B of Table 3.4 presents the corresponding estimate results. 

As in Engle and Lunde (2003), the censored effect is captured by the product of 

censored dummy variable and lagged error term. However, our censored effect is 

positive and significant at 5% level for all stocks. The implication is that if the last quote 
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duration is censored, the next quote duration is likely to be longer and censored again. 

Trade duration related variables consist of current error term, lagged error term and 

lagged expected trade duration. The estimate results show that the current error term and 

expected trade duration have positive effect on the quote durations, the coefficients are 

positive and significant. It suggests that when the (current and lagged) trade duration 

innovations and expected trade durations are high, the quote duration will also become 

longer. Intuitively, as quote activity adjusts to trade activity, trade duration and quote 

duration are correlated positively. 

The spread-related variables, DeltaSpread and AveSpread, have negative impact on the 

quote durations, which is opposite to the trade duration. The coefficients are negative 

and significant at 5% level for all stocks. Spread variables are very important in 

explaining the trade activity and quote activity. It suggests that when the spread is large, 

the market order traders and LOB traders react in different fashions. Market order 

traders slow down their trading speed when observing an increasing spread, whereas 

LOB traders speed up to update their price or quantity of limit orders. As an intraday 

LOB trader, a main risk to face is the adverse selection risk. By monitoring attentively 

the change of spread, LOB traders attempt to avoid this risk by updating their quote 

rapidly. 

The effect of volume-related variables, SquareRoot(vol) and Abs(sign.vol), on quote 

duration is similar to that of trade duration. More specifically, the large trades predict 

shorter quote durations. As mentioned before, large trades relate to informed trades. 

Informed traders exploit short-lived information by increasing trade intensity and trade 

quantity. When trades become more intensive, so do quote revisions. As a result, the 

quote durations become shorter. Regarding to imbalanced measure Abs(sign.vol), its 

coefficients are all positive but only two of them are significant. Compared to 

SquareRoot(vol), Abs(sign.vol) is a long-run variable as it consists of information over 

last ten trades. In a high-frequency trading framework, trades and information are short-

lived. The estimate results suggest that the short-run measure is more predictive than the 

long-run measure. The positive coefficient of Abs(sign.vol) is not very intuitive if we 

consider the trade imbalance as the result of information asymmetry. One explanation 
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might be that the positive effect is the evidence of the high-frequency algorithm trading. 

The algorithm (probably not human) traders “enjoy” providing the liquidity by creating 

this trade imbalance. For example, if an algorithm trader desires buying a given quantity 

of stocks, at ask side, he can place limit orders in different price levels with different 

quantities. As a result, the pressure on sell side increases and then more trades occur on 

the bid side. In this case, trade imbalance is not a fear and quote revision can be 

postponed. 

The BackQuote duration has a positive and significant impact on the following quote 

duration. A longer BackQuote duration can be either a low trade intensity or a high 

quote intensity. That is, a long trade duration or a short quote duration. Moreover, a long 

trade duration implies a long quote duration. The estimated results suggest that the long 

trade duration effect dominates the short quote duration effect. Concerning the effect of 

liquidity measure XLM, empirically, the effect is negative and significant at 5% level 

for three stocks. One stock has a positive significant sign. Theoretically, there are 

arguments to support either sign. A high XLM reveals a more risky situation, especially 

a high adverse selection risk. LOB traders speed up their quote revisions to reduce this 

kind of risk. This is more pronounced for less liquid stocks. On the other side, the 

increase of XLM can be interpreted as the evidence of algorithm trading. The objective 

is to provide liquidity at different price levels without updating the quote rapidly. Panel 

C of  Table 3.4 reports the results of estimation for dummy variables. We also find a 

seasonality effect for quote durations. However, as the quote durations are censored and 

the trade durations enter in the model of quote durations, the pattern of the seasonality 

for quote durations is not like that of trade durations. Figure 3. 2 illustrates the intraday 

seasonality pattern for different stocks. 

[Insert Figure 3. 2 here] 

To test the model, we present the Ljung-Box statistics on quote duration and the 

deduced standardized residuals. The results are reported in Table 3.5. The left side of the 

table shows that there is a huge autocorrelation in the quote durations, similar to the 

trade durations. Comparing the two sides of the table, we find that the Ljung-Box 
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statistics have been largely reduced and, in most of cases, the hypothesis of no 

autocorrelation cannot be rejected. It should be noted that, despite of the large number of 

the lagged variables, TKA still has a relatively high autocorrelation in the standardized 

residuals. 

[Insert Table 3.5 here] 

3.4.3 Activity Factor 

Up to now, we have analyzed the dynamics of trade durations and quote durations. 

Conditional on the time dimension, we can further make the analysis of liquidity 

dimension. As we mentioned above, we decompose the change of the liquidity measure 

XLM into three components: Activity, Direction and Size. Similar to the time dimension, 

we also put two groups of explanatory variables into the activity equation: lagged 

dependent variables and exogenous variables. The MA  vector includes expected trade 

duration, expected quote duration, DeltaSpread, AveSpread, SquareRoot(vol), 

abs(sign.vol), BackQuote duration, XLM and dummy variables. 

[Insert Table 3.6 here] 

Table 3.6 reports the estimated results for activity factor. The activity process is a binary 

process in which Ak  = 1  means the change of liquidity measure XLM. To model the 

activity factor, we adopt the GLARMA structure introduced by Rydberg and Shephard 

(2003). In addition to GLARMA structure, we also include exogenous variables. Panel 

A of  Table 3.6 presents the estimated results of GLARMA part. For all stocks, we use a 

lag set of (1,2) to capture the autocorrelation of activity factor. Consistent with previous 

literature, the coefficients of “GLAR” part are positive and significant, ranging from 

0.66 to 0.95. The result suggests a high persistence in autocorrelation for activity factor. 

More specifically, there is a cluster effect in activity, namely, the change of liquidity is 

more likely to be followed by another change. 

In this study, we are also interested in the effect of exogenous variables on the dynamics 

of liquidity. Panel B of Table 3.6 shows the estimated results for these exogenous 

variables. For the time dimension variables, expected trade duration and expected quote 
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duration do not have the same effect on the probability of liquidity change. In particular, 

a longer expected trade duration increases the probability of liquidity change, whereas a 

longer quote duration decreases this probability. In the tick-by-tick trading framework, 

as found by Dionne, Duchesne and Pacurar (2009), a longer trade duration will have a 

positive impact on price volatility. As a result, a longer trade duration will increase the 

probability of liquidity change. On the other hand, quote duration measures the quote 

intensity. A longer quote duration means a less active open LOB. By consequence, the 

quote is likely to be unchanged. 

Regarding to the spread-related variables, both DeltaSpread and AveSpread have 

positive effect on the probability of liquidity change. These two measures are related to 

the liquidity itself. When the liquidity decreases, LOB traders are more prudential in 

their quotes and then likely to update their quotes, therefore, the probability of the 

liquidity change increases. Recall that, in trade duration, DeltaSpread and AveSpread 

also have positive effect on trade duration. We find that different types of traders use 

different ways to protect themselves, more concretely, when market is less liquid, 

market order traders become less active and LOB traders become more active and 

prudential. It should be noted that the activity factor only tells us whether the liquidity 

changes or not, there is no information on the direction and magnitude of change. 

Regarding to volume-related variables, SquareRoot(vol) and Abs(sign.vol) affect the 

probability of liquidity change in different ways. As expected, the coefficient of 

SquareRoot(vol) is positive meaning that the large trades will increase the probability of 

liquidity change. As mentioned before, large trades are likely to be informative and 

increase the volatility. Under this circumstance; the LOB traders are more likely to 

review their quotes and then the liquidity changes. As for trade duration and quote 

duration, the effect of Abs(sign.vol) is again not clear. Only one stock has significant 

coefficient. The results suggest that the probability of liquidity change hardly depends 

on the long-run trade imbalance. Possible explanations are that: First, Abs(sign.vol) 

captures last ten trades information and the activity component has very short memory; 

Second, algorithm traders might provide the liquidity by “creating” this trade imbalance. 
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Another time dimension variable, BackQuote duration, also has a positive impact on the 

probability of liquidity change. This is in line with the estimate results for trade duration. 

As we can see from Panel B of Table 3.6, the effect of expected trade duration is higher 

than that of expected quote duration. Therefore, the longer BackQuote duration implies 

a more volatile market and liquidity is likely to be updated. For the liquidity measure 

XLM, as expected, the coefficient is positive and significant at 5% level. This means that 

when the market is less liquid, there is more chance that LOB traders review their quote 

and then the liquidity of this stock changes. Concerning the dummy variables, we find 

that there is a seasonality pattern only for some stocks in certain time periods, most of 

periods do not perform seasonality pattern. The results are shown in the Panel C of  

Table 3.6. 

Similar to trade durations and quote durations, we use the Ljung-Box statistics to 

validate the model. The statistics for activity factor and the corresponding standardized 

residuals are reported in left side and right side of  Table 3.7, respectively. On one hand, 

the activity factor is also highly autocorrelated. At five-lag level, the Ljung-Box 

statistics ranges from 358 to 1127 for all stocks and the hypothesis of no autocorrelation 

is rejected at any confidence level. On the other hand, we find that the model which 

includes the GLARMA part and exogenous variables can capture this autocorrelation 

feature very well. On the right side of the table, all statistics have been reduced less than 

the critical values except one for MRK. 

[Insert Table 3.7 here] 

3.4.4 Direction Factor 

Another component of liquidity measure is direction which is also a binary process: 

value 1 means the decrease of liquidity and -1 means increase of liquidity. Conditional 

on the activity, the direction factor gives more information about the change of XLM. 

To capture the dynamics of direction, we use the similar variables set as for the other 

factors. Three stocks take a GLARMA(2,1) structure and one stock takes 

GLARMA(3,1). Panel A of Table 3.8 illustrates the estimated results on GLARMA 

structure. Interestingly, the sums of the “MA” part are all negative and smaller than -0.5 
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indicating a mean-reverting feature. That is, the increase of liquidity is likely to be 

followed by a decrease of liquidity, vice versa. 

[Insert Table 3.8 here] 

The exogenous variables we include in the direction factor are: QuoteQuote duration, 

DeltaSpread, AveSpread, SquareRoot(vol), Abs(sign.vol), BackQuote duration and 

XLM. Panel B of Table 3.8  presents the estimate results of these exogenous variables. 

To explain the direction factor, the new variable QuoteQuote duration is defined as the 

duration between two liquidity measure changes. As the direction component is 

observed only when the activity factor equal to one, it is more reasonable to put a 

temporal variable to capture this time interval. Based on Panel B of  Table 3.8, we find 

that three stocks have positive coefficient for QuoteQuote duration and only one is 

significant. It appears that QuoteQuote duration is not a relevant variable in predicting 

the direction factor. 

Consider the spread related variables, a high DeltaSpread increase the probability of 

liquidity decrease if there is a liquidity change. Intuitively, when the spread increase, 

this means the LOB traders keep off from mid-quote and then XLM is likely to increase. 

Compared to DeltaSpread, the AveSpread has the opposite effect on the direction factor. 

It suggests that the permanent increase of the spread will indeed increase the probability 

of liquidity increase. It seems evident that when the traders have to pay a higher 

liquidity premium, the LOB traders (i.e, liquidity providers) are willing to provide 

liquidity. 

Regarding to the volume-related variables, coefficient of SquareRoot(vol) is positive 

meaning that the current large trades predict a less liquid situation, which is consistent 

with previous literature. Intuitively, the large trade is likely to be informed trade which 

will create volatility in the market. Accordingly, LOB traders are likely to keep away 

from mid-quote and the liquidity will decrease. However, the trade imbalance variable 

Abs(sign.vol) has no significant effect on the direction factor. This confirms the results 

in activity component. As there is no clear impact of Abs(sign.vol) on liquidity change, 

by consequence, the effect of Abs(sign.vol) on direction is not clear. As we focus on the 
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dynamics of liquidity measure XLM, the reason to the lack of information content of 

trade imbalance is out of our scope. However, it might be interesting for trading strategy 

analysis or algorithm trading to continue exploring this aspect. 

Another temporal variable BackQuote duration has a positive impact on the probability 

of liquidity increase. This suggests that when the trades become less active, the LOB 

traders are likely to review their quotes and incite the trades by providing more liquidity. 

Regarding to liquidity measure XLM, an increase of XLM will increase the probability 

of being liquid. This is the evidence of the mean-reverting in XLM dynamics. As other 

components, we also use dummy variables to capture the seasonality in direction factor. 

The estimated results show that the coefficients are not significant meaning that there do 

not exist a clear seasonality effect in direction factor. The results for coefficients of 

dummy variables are presented in Panel C of Table 3.8. 

The direction factor is observed when the liquidity measure XLM changes. The Ljung-

Box statistics for direction factor and corresponding standardized residuals are reported 

in left side and right side of Table 3.9, respectively. Similar to the activity factor, the 

direction factor is highly autocorrelated. The hypothesis of no autocorrelation is rejected 

at any confidence level for all stocks. After modeling the Ljung-Box statistics for 

standardized residuals from 5 to 200 lags are not significant at the 5% level. 

[Insert Table 3.9 here] 

3.4.5 Size Factor 

The last factor is the size of liquidity change. Table 3.10 reports the estimated results. 

Panel A of  Table 3.10 shows the results of GLARMA part. We find that the number of 

lags of GLARMA part ranges from (2,1) to (2,2). Depending on stocks, the effect of 

lagged value is either positive or negative. As shown in equation (3.10), a higher k 

indicates a smaller expectation of size factor. Combined with the estimated results of 

direction component, the implication is that the XLM does have a mean-reverting 

feature, however, the magnitude of reverting varies from one stock to another. 

[Insert Table 3.10 here] 
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The exogenous variables are the same as in the direction factor. In addition, we put 

current direction and lagged direction to explain the size factor. In total, there are nine 

exogenous variables for the size factor. Panel B of Table Table 3.10 reports the 

estimated results of exogenous variables. In line with estimated results for direction 

factor, QuoteQuote duration does not have significant effect for all stocks. Recall that 

QuoteQuote duration is the duration between two XLM changes. Again, it evidences 

that the LOB structure only has short memory and does not have predict power on the 

dynamics of size change. 

To explain the size factor, current direction is used to investigate if there exists a 

leverage effect, that is, the negative change (less liquid) is higher than positive change 

(more liquid). Consistent with Rydberg and Shephard (2003), the current direction 

variable has negative and significant effect on the k, which implies a higher expected 

liquidity change when the liquidity decreases and confirms the leverage effect. However, 

the lagged direction is less significant than the current one. The spread-related variable, 

DeltaSpread, has positive impact on k and only two of them are significant. Combined 

with the results of direction factor, it shows that when the lagged spread increase, the 

probability of direction equal to one increases and stock is likely to be more illiquid, 

however, the magnitude of change for this illiquidity is likely to be smaller. Only for 

TKA, AveSpread has a negative significant effect on k. For the rest of stocks, the 

AveSpread has no significant effect on k. The implication is that as the dynamics of 

liquidity only has short memory, the long-run variable is less significant. The negative 

effect of AveSpread on k, combined with the results of direction factor, means that the 

permanent increase of spread will increase the liquidity, moreover, the magnitude of this 

increase is likely to be higher, that is, the stock will become more liquid. 

Regarding to the volume-related variable, SquareRoot(vol) is not significant for three 

stocks but significant for TKA. Recall that the value of size component is defined as the 

size change minus one. Therefore, the nonsignificance means that the size component 

changes less than one unit. Up to now, we can quantify more about the effect of trade 

quantity on the liquidity change. The large trades do increase the probability of 

illiquidity, however, the effect of large trade on the magnitude of liquidity change seems 
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limited for three stocks. Only for TKA, the effect of large trade on size factor is 

significantly more than one unit. The effect of trade imbalance variable Abs(sign.vol) is 

not significant for all stocks. Taking into consideration of the nonsignificance of 

Abs(sign.vol) in direction, this again confirms the no informativeness of trade imbalance. 

The temporal variable BackQuote duration has some positive and significant effect on k 

indicating that even though the liquidity provider try to incite the traders to trade by 

increasing the liquidity provision (conclusion from results of direction factor estimation), 

the magnitude of liquidity increase is limited. The last variable XLM itself has a 

negative and significant effect on k. As mentioned before, liquidity measure XLM has 

the mean-reverting feature, the negative effect implies that when there is a mean-

reverting in liquidity measure, the magnitude has tendency to stay the same. More 

specifically, it is likely to observe the similar or symmetry magnitude in the mean-

reverting of liquidity measure. We also attempt to test if there is a seasonality in size 

factor by using dummy variables. As shown in Panel C of Table 3.10, similar to activity 

and direction factors, there is little seasonality feature in size component since most of 

the coefficients are not significant from zero at 5% level. 

Same as the direction factor, the size factor is also observed when the liquidity measure 

XLM changes. Table 3.11 reports the Ljung-Box statistics of size factor and the 

corresponding standardized residuals. Interestingly, the statistics for size factor vary 

significantly across the stocks. For instance, the size factors of RWE and TKA, with 

Ljung-Box statistics of 1406 and 889 for 5 lags, are relatively high autocorrelated. 

Given the high Ljung-Box statistics of standardized residuals for stocks RWE and TKA 

at small lags (from 5 lags to 20), the model might have the misspecification problem on 
Siz
k  or a mild distributional failure. It should be noted that Siz

k  can be specified in many 

different ways and the distribution for size factor can be others than geometric 

distribution. However, a parsimonious and interpretable model is always preferred. 

[Insert Table 3.11 here] 
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3.4.6 Effect of exogenous on XLM changes 

After estimating each factor, we are able to obtain a more general understanding on the 

dynamics of ex-ante liquidity measure XLM. The results are shown in  

 

Table 3.12. Specifically, all exogenous variables will increase the probability of having 

a change in XLM measure except the expected quoted duration and Abs(sign.vol). 

Longer expected quoted duration relates to a less active LOB, by consequence, the 

probability of change on XLM decreases. The Abs(sign.vol) is less informative on 

dynamics of XLM, this is further confirmed by the insignificance of coefficient for 

direction and size factors. 

[Insert Table 3.12 here] 

Conditional on the activity factor equal to one, exogenous variables will have different 

impact on XLM changes. Particularly, if the non-change time is longer, the XLM will be 

likely to increase, that is, the stock will become less liquid but the magnitude is limited 

to one unit (in our case, 0.25 basic point). The previous direction has a negative effect 

on the next direction factor when activity factor being one, moreover, the size of change 

will decrease for both directions. Previous short-run delta spread will cause a less liquid 

situation for the next change in which the size of change is like to increase or limited to 

one unit depending on the stock characteristics. Interestingly, XLM will change in the 

opposite direction of long-run liquidity measure AveSpread. It suggests that the future 

short term liquidity has trend of reverting to its average level, however, the speed of this 

reverting related to size factor varies according to the stock characteristics. 

Higher SquareRoot(vol) will be likely to cause a less liquid situation, however, the 

effect of volume is limited corresponding to a non-significant or negative parameter. As 

we have showed in previous estimation, the imbalance trade has little effect on next 

liquidity change, it suggest that the use of imbalance trade as a predictor of liquidity 

might be more accurate for the low-frequency framework. Recall that the BackQuote 

duration is the time between first update of LOB after a trade and the next trade. From a 



123

perspective of liquidity traders, it measures the time of liquidity resilience. A shorter 

BackQuote duration means the liquidity goes back to its original level quickly. 

Therefore, a longer BackQuote duration has negative impact on liquidity direction, 

however, the magnitude of this effect varies according to stock characteristics. XLM 

itself is mean-reverting as previous XLM has a negative effect on the next XLM 

changes, again the speed of mean-reverting changes across stocks. 

3.5 Conclusion 

After the introduction of the open LOB trading mechanism, trading frequency has 

become shorter than ever before. By consequence, the liquidity has become an important 

issue for active traders, investors and financial institutions. This paper make an analysis 

of the dynamics of ex-ante liquidity changes. The ex-ante liquidity measure used in this 

study is XLM proposed by Xetra trading system. Different from ex-post liquidity 

measure, the XLM is an ex-ante volume dependent measure. The computation of the 

measure requires the information such as the prices and the corresponding quantity 

available in the open LOB. 

To model the dynamics of the liquidity changes, we adopt the decomposition approach 

proposed by Rogers and Zane (1998). The liquidity changes have been decomposed into 

five factors: trade durations, quote durations, activity, direction and size. Trade 

durations and quote durations are the temporal variables and are not synchronized. To 

solve this problem, we follow Engle and Lunde (2003) by defining the last trade time as 

the initial quote time in quote duration computation. The other three factors are directly 

related to the change of XLM itself. Both activity factor and direction factor are binary 

process taking value 0 and 1, or -1 and 1, respectively. The size factor captures the 

magnitude of XLM change. To investigate the dynamics of each component, we apply 

the relevant econometric models to each factor and put a wide range of trade-related 

exogenous variables into the models which include volume-related variables, trade-

balance-related variables and temporal variables. The models are validated by the t-test 

of the coefficients and the Ljung-Box test on the deduced standardized residuals. 
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The essential findings are that first, most trade-related variables can influence the 

dynamic of trade durations, however, the impact of XLM on trade duration is not clear. 

Moreover, the quote durations are influenced by the dynamics of trade durations, trade-

related variables and XLM. Second, expected trade durations and quote durations are 

likely to affect the probability of liquidity change. Moreover, most of trade-related 

variables have an impact on the activity factor except the long-run trade imbalance 

variable, Abs(sign.vol). Third, temporal variable QuoteQuote duration seems not have 

impact on direction factor. Similar to the activity factor, most of trade-related variables 

can affect the direction factor except Abs(sign.vol). Fourth, there is a leverage effect in 

size factor, that is, the magnitude of liquidity decrease is higher than that of increase. 

Among the trade-related variables, only spread change has significant effect on size 

factor for most stocks. The effects of the other trade-related variables are not significant. 

The variable XLM has negative and significant effect on size factor meaning that the 

magnitude of liquidity change is likely to stay the same despite the mean-reverting 

feature. Fifth, the trade durations and quote durations have obvious seasonality pattern, 

whereas the seasonality pattern for other factors is not clear. 

Future research can continue in several directions. Our study focuses on the impact of 

trade-related variables on the liquidity changes. A possible alternative is to investigate 

how the liquidity change co-moves with trades. Another direction is to decompose the 

liquidity changes in a different order or into different factors to answer other 

microstructure questions. It could also be interesting to generalize the model from one 

particular stock to a portfolio. Again, the no-synchronization of the trade durations and 

quote durations between different stocks is a challenge. It will require a more 

complicated econometric model and reasonable assumptions. 
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Figure 3. 1 Timestamps for trades and quote update in open LOB 

This figure presents the temporal relation between trades and quote updates. The trades and the quote 
updates are presented by circles and squares, respectively. 

 

 

Figure 3. 2  Intraday Seasonality Pattern For Trade Durations 

This figure presents the temporal relation between trades and quote updates. The trades and the quote 
updates are presented by circles and squares, respectively.
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Figure 3. 3 Intraday Seasonality Pattern For Trade Durations 

This figure presents the intraday patterns of seasonality variables for trade durations for different stocks. 

 

Table 3. 1 Summary Statistics of Trade Related Variables and Exogenous Variables

 
The table reports the summary statistics for trade related variables, durations and exogenous variables. The Nb.Obs 
is the number of observations in the period of first week of July 2010. The lower part of the table presents the 
average of the exogenous variables we defined in Section 3.2. Instead of using basic point, we use1/4  basic point as 
one unit of liquidity change. 
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Table 3.2 Estimated Results For Trade Durations 

 
The table reports the estimated results for trade durations. Panel A reports the results for Log-ACD part, Panel B 
includes the results for the exogenous variables and Panel C consists of the results for dummy variables. Bold entries 
indicate the coefficients are significant at 5% level. 

 

 

Table 3.3 Ljung-Box Statistics For Trade Durations and Deduced Standardized Residuals 

 
The table reports the Ljung-Box statistic on trade durations (left side) and standardized residuals of trade duration 
(right side) for different stocks at different lags.The column of Lags is the number of lags we use to compute the 
statistic and the C_Value is the critical value for the corresponding lags. 
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Table 3.4 Estimated Results For Quote Durations 

 
The table reports the estimated results for quote durations. Panel A reports the results for Log-ACD part, Panel B 
includes the results for the exogenous variables and Panel C consists of the results for dummy variables. Bold entries 
indicate the coefficients are significant at 5%  level. 

 

Table 3.5 Ljung-Box Statistics For Quote Durations and Deduced Standardized Residuals 

 
The table reports the Ljung-Box statistic on quote durations (left side) and standardized residuals of quote duration 
(right side) for different stocks at different lags.The column of Lags is the number of lags we use to compute the 
statistic and the C_Value is the critical value for the corresponding lags. 
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Table 3.6 Estimated Results For Activity Factor 

 
The table reports the estimated results for Activity factor. Panel A reports the results for GLARMA part, Panel B 
includes the results for the exogenous variables and Panel C consists of the results for dummy variables.Bold entries 
indicate the coefficients are significant at 5%  level. 

 

 

Table 3.7 Ljung-Box Statistics For Activity and Deduced Standardized Residuals 

 
The table reports the Ljung-Box statistic on activity factor (left side) and standardized residuals of activity factor 
(right side) for different stocks at different lags.The column of Lags is the number of lags we use to compute the 
statistic and the C_Value is the critical value for the corresponding lags. 
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Table 3.8 Estimated Results For Direction 

 
The table reports the estimated results for Direction factor. Panel A reports the results for GLARMA part, Panel B 
includes the results for the exogenous variables and Panel C consists of the results for dummy variables. Bold entries 
indicate the coefficients are significant at 5% level. 

 

 

Table 3.9 Ljung-Box Statistics For Direction and Deduced Standardized Residuals 

 
The table reports the Ljung-Box statistic on direction factor (left side) and standardized residuals of direction factor 
(right side) for different stocks at different lags.The column of Lags is the number of lags we use to compute the 
statistic and the C_Value is the critical value for the corresponding lags. 
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Table 3.10 Estimated Results For Size 

 
The table reports the estimated results for Size factor. Panel A reports the results for GLARMA part, Panel B 
includes the results for the exogenous variables and Panel C consists of the results for dummy variables.Bold entries 
indicate the coefficients are significant at 5% level. 

 

Table 3.11 Ljung-Box Statistics For Size and Deduced Standardized Residuals 

 
The table reports the Ljung-Box statistic on size factor (left side) and standardized residuals of size factor (right side) 
for different stocks at different lags.The column of Lags is the number of lags we use to compute the statistic and the 
C_Value is the critical value for the corresponding lags. 
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Table 3.12  Effect of Exogenous Variables on XLM 

 
The table summarizes the effect of various exogenous variables on the XLM changes, # relates to a non-significant 
estimated coefficient. 
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Appendix

A1.1 Xetra is the main trading platform in Germany and realizes more than 90% of total 

transactions at German exchanges. Trading and order processing (entry, revision, execution and 

cancellation) in the Xetra system is highly computerized and maintained by the German Stock 

Exchange. Since September 20, 1999, trading hours have been from 9:00 a.m. to 5:30 p.m. CET 

(Central European Time). However, during the pre- and post-trading hours, operations such as 

entry, revision and cancellation are permitted.  

To ensure trading efficiency, Xetra operates with different market models that define order 

matching, price determination, transparency, etc. Most of the market models impose the 

Price-Time-Priority condition where the electronic trading system places the incoming order 

after checking the price and timestamps of all available limit orders in LOB. One of the 

important parameters of a market model is the trading model that determines whether the trading 

is organized continuously, discretely or both ways. During normal trading hours, there are two 

types of trading mechanisms: call auction and continuous auction. A call auction, in which the 

clearance price is determined by the state of LOB and remains as the open price for the following 

continuous auction, can occur one or several times during the trading day. At each call auction, 

market participants can submit both round-lot and odd-lot orders, and start and end times for a 

call auction are randomly chosen by a computer to avoid scheduled trading. For stocks in the 

Deutscher Aktien-Index 30 (German stock index, DAX301), there are three auctions during a 

trading day: the open, mid-day, and closing auctions. The mid-day auction starts at 1:00 p.m. and 

lasts around two minutes. Between the call auctions, the market is organized as a continuous 

auction where traders can submit round-lot-sized limit orders or market orders only.  

1 The DAX30 includes 30 major German companies trading on the Frankfurt Stock Exchange. The DAX30 includes 
30 major German companies trading on the Frankfurt Stock Exchange. 
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Table A 1.1: Descriptive Statistics for SAP Raw and Deseasonalized Data 

Panel A: SAP Raw data 
 Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 5.81 12.89 5.03 43.03 1.00E-03 239.8 12748.87 3409.66 
FR Change 4.83E-09 1.99E-04 0.2 20.78 -3.93E-03 4.76E-03 7228.65 12678.9 

AR Change (Q=6000) -3.33E-09 1.81E-04 0 38.23 -5.15E-03 4.99E-03 6482.09 11491.39 
AR Change (Q=4000) -1.10E-09 1.82E-04 0.11 35.28 -4.76E-03 5.09E-03 6564.74 11995.11 
AR Change (Q=2000) 1.22E-09 1.85E-04 0.24 30.43 -4.05E-03 5.18E-03 6656.12 12334.21 

Panel B: SAP  Deseasonalized Data  
Duration 0.97 1.9 3.94 26.79 0 29.83 6466.15 2249.41 

FR Change -4.00E-05 1.01 0.11 21.13 -22.91 22.18 6321.16 8731.99 
AR Change (Q=6000) -4.00E-05 1.01 0.11 21.13 -22.91 22.18 6321.16 8731.99 
AR Change (Q=4000) -5.24E-05 1 0.15 19.86 -21.1 22.59 6405.89 9233.8 
AR Change (Q=2000) -2.92E-05 1 0.23 17.88 -17.88 22.89 6483.35 9895.25 

 

The table shows the descriptive statistics for raw durations, actual return changes when Q=2,000, 4,000, 6,000 and 
frictionless return changes. The sample period is the first 2 weeks of June 2011 with 49,250 observations. 

 

Table A 1.2 :  Descriptive Statistics for RWE Raw and Deseasonalized Data 

Panel A :  RWE  Raw data 
 Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 6.1 12.38 5.08 48.98 1.00E-03 308.7 12478.3 2998.71 
FR Change 8.39E-09 2.18E-04 0.15 9.19 -3.29E-03 3.04E-03 6453.84 6426.85 

AR Change (Q=4000) 1.88E-08 1.99E-04 -0.02 15.33 -4.32E-03 3.04E-03 5232.02 4274.08 
AR Change (Q=2000) 1.58E-08 2.00E-04 0.06 12.98 -4.07E-03 3.04E-03 5398.41 4279.5 
AR Change (Q=1000) 1.05E-08 2.03E-04 0.13 10.9 -3.67E-03 3.04E-03 5596.1 4495.29 

Panel B :  RWE Deseasonalized Data 
Duration 0.97 1.76 4.17 37.09 4.59E-05 44.4 5721.78 2844.72 

FR Change -5.97E-05 0.98 0.02 14.47 -20.23 15.83 5155.43 4565.87 
AR Change (Q=4000) -5.97E-05 0.98 0.02 14.47 -20.23 15.83 5155.43 4565.87 
AR Change (Q=2000) -7.25E-05 0.98 0.09 12.24 -18.81 15.88 5324.74 4390.58 
AR Change (Q=1000) -6.20E-05 0.98 0.16 10.37 -16.72 15.58 5529.7 4344.41 

 

The table shows the descriptive statistics for raw durations, actual return changes when Q=1,000, 2,000, 4,000 and 
frictionless return changes. The sample period is the first 2 weeks of June 2011 with 46,893 observations. 
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Table A 1.3: Descriptive Statistics for MRK Raw and Deseasonalized Data 

Panel A : MRK  Raw data 
Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 6.1 12.38 5.08 48.98 1.00E-03 308.7 12478.3 2998.71 
FR Change 8.39E-09 2.18E-04 0.15 9.19 -3.29E-03 3.04E-03 6453.84 6426.85 

AR Change( Q=2700) 1.88E-08 1.99E-04 -0.02 15.33 -4.32E-03 3.04E-03 5232.02 4274.08 
AR  Change (Q=1800) 1.58E-08 2.00E-04 0.06 12.98 -4.07E-03 3.04E-03 5398.41 4279.5 
AR  Change (Q=900) 1.05E-08 2.03E-04 0.13 10.9 -3.67E-03 3.04E-03 5596.1 4495.29 

Panel B :  MRK Deseasonalized Data 
Duration 0.97 1.76 4.17 37.09 4.59E-05 44.4 5721.78 2844.72 

FR Change -5.97E-05 0.98 0.02 14.47 -20.23 15.83 5155.43 4565.87 
AR  Change (Q=2700) -5.97E-05 0.98 0.02 14.47 -20.23 15.83 5155.43 4565.87 
AR  Change (Q=1800) -7.25E-05 0.98 0.09 12.24 -18.81 15.88 5324.74 4390.58 
AR  Change (Q=900) -6.20E-05 0.98 0.16 10.37 -16.72 15.58 5529.7 4344.41 

 

The table shows the descriptive statistics for raw durations, actual return changes when Q= 900, 1,800, 2,700 and 
frictionless return changes. The sample period is the first 2 weeks of June 2011 with 18,631 observations. 
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Table A 1.4: Estimation Results SAP (v = 4000, First Week of June 2011) 

Estimation Actual return  and Frictionless return changes Q=4000 

Estimation VARMA(3.1)- NGARCH((1.3).1)  (Obs =20799) 
A

C
D

(1
.1

) 
 

Parameter Estimation StdError 
 Ljung_box test on Residual 

alpha1_dur 0.145  0.009  

alpha2_dur -0.013  0.012  

alpha3_dur -0.039  0.009  Lags Statistic C_Value 
beta1_dur 0.968  0.003  5 6.288  11.070 
gam1_dur 0.802  0.021  10 23.202  18.307 
gam2_dur 0.384  0.015  15 31.564  24.996 

Constant -0.097  0.005  20 35.334  31.410 

A
ct

u
al

 R
et

u
rn

 C
h

an
ge

s 
V

A
R

M
A

(3
.2

)-
N

G
A

R
C

H
((

1.
3)

.1
) 

phi11_1 0.6097 0.0107 

phi12_1 -0.2420 0.0095 

phi11_2 0.1427 0.0132 Lags Statistic C_Value 
phi12_2 -0.0433 0.0123 5 20.828 11.070 
phi11_3 0.0359 0.0126 10 25.616 18.307 
phi12_3 0.0127 0.0120 15 39.492 24.996 

phi11_4 0.0431 0.0108 20 46.121 31.410 
phi12_4 -0.0033 0.0107 

theta11_1 -0.9844 0.0011 

Constant 0.0005 0.0001  Ljung_box test on  
Residual squared Beta0 0.1119 0.0041 

Beta1_1 0.3868 0.0187 Lags Statistic C_Value 
Beta2_1 0.2067 0.0069 5 17.214 11.070 

theta 0.4511 0.0202 10 32.292 18.307 
Beta1_3 0.2456 0.0134 15 37.733 24.996 

gam 0.0989 0.0020 20 39.815 31.410 

F
ri

ct
io

n
le

ss
 R

et
u

rn
 C

h
an

ge
s 

A
R

M
A

(1
,3

)-
G

A
R

C
H

((
1,

3)
,1

) 

phi22_1 0.2352 0.0107   

phi21_1 0.1153 0.0096   
phi22_2 0.0534 0.0126 Lags Statistic C_Value 
phi21_2 0.0411 0.0121 5 25.026 11.070 
phi22_3 0.0708 0.0116 10 34.263 18.307 
phi21_3 -0.0176 0.0106 15 44.319 24.996 

theta22_1 -0.9763 0.0014 20 55.459 31.410 
Constant 0.0007 0.0001  Ljung_box test on  

Residual squared Beta0 0.0879 0.0040 
Beta1_1 0.4048 0.0245 Lags Statistic C_Value 
Beta2_1 0.1688 0.0070 5 25.026 11.070 

theta 0.4326 0.0240 10 34.263 18.307 
Beta1_3 0.2888 0.0182 15 44.319 24.996 

gam 0.0889 0.0023 20 55.459 31.410 

DCC  
parameter 

1 0.0890 0.0017    

1 0.7489 0.0076    
 

The Statistics column reports the Ljung-Box statistic on standardized residuals of duration, actual return changes and squared 
standardized residuals for different lags. The bold entries are the estimation coefficients that are not significantly different from 
zero. 
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Table A 1.5: Estimation Results RWE (v = 4000, First Week of June 2011) 

Estimation Actual return  and Frictionless return changes Q=4000 

Estimation VARMA(5.1)- NGARCH((1.3).1)  (Obs =22427) 

A
CD

(3
.1

)  

Parameter Estimation StdError  Ljung_box test on Residual 
alpha1_dur 0.107  0.008  

alpha2_dur -0.004  0.011  Lags Statistic C_Value 
alpha3_dur -0.026  0.008  5 3.819 11.070 
beta1_dur 0.962  0.003  10 8.974 18.307 
gam1_dur 1.093  0.022  15 12.131 24.996 
gam2_dur 0.297  0.009  20 16.275 31.410 
Constant -0.082  0.004  

A
ct

ua
l R

et
ur

n 
Ch

an
ge

s 
V

A
RM

A
(5

.1
)-N

G
A

RC
H

((1
.3

).1
) 

phi11_1 0.7212 0.0101 Lags Statistic C_Value 
phi12_1 -0.2930 0.0089 5 12.720 11.070 
phi11_2 0.1109 0.0120 10 24.254 18.307 
phi12_2 -0.0104 0.0105 15 37.274 24.996 
phi11_3 0.0020 0.0122 20 49.151 31.410 
phi12_3 0.0335 0.0114 
phi11_4 0.0062 0.0121 
phi12_4 0.0219 0.0115 

phi11_5 0.0153 0.0103 

phi12_5 0.0218 0.0105  Ljung_box test on  
Residual squared theta11_1 -0.9877 0.0009 

Constant 0.0002 0.0001 Lags Statistic C_Value 
Beta0 0.1537 0.0049 5 7.271 11.070 

Beta1_1 0.3617 0.0168 10 10.894 18.307 
Beta2_1 0.1955 0.0067 15 11.615 24.996 

theta 0.5689 0.0221 20 18.830 31.410 
Beta1_3 0.2031 0.0123 

gam 0.0778 0.0017 

Fr
ic

tio
nl

es
s R

et
ur

n 
Ch

an
ge

s 
V

A
RM

A
(5

.1
)-N

G
A

RC
H

((1
.3

).1
) 

phi11_1 0.2325 0.0100 Lags Statistic C_Value 
phi12_1 0.1643 0.0091 5 14.827 11.070 
phi11_2 0.0888 0.0116 10 27.592 18.307 
phi12_2 -0.0029 0.0111 15 43.001 24.996 
phi11_3 0.0820 0.0117 20 48.085 31.410 
phi12_3 -0.0349 0.0114 
phi11_4 0.0288 0.0116 
phi12_4 0.0005 0.0109 
phi11_5 0.0578 0.0108  Ljung_box test on  

Residual squared phi12_5 -0.0288 0.0097 
theta11_1 -0.9846 0.0011 Lags Statistic C_Value 
Constant 0.0004 0.0001 5 22.193 11.070 

Beta0 0.1098 0.0045 10 24.741 18.307 
Beta1_1 0.3882 0.0206 15 28.203 24.996 
Beta2_1 0.2223 0.0078 20 33.346 31.410 

theta 0.4218 0.0208 
Beta1_3 0.2123 0.0146 

gam 0.0637 0.0022 

DCC  
parameter 

1 0.1295 0.0044 
1 0.5276 0.0156 

 

The Statistics column reports the Ljung-Box statistic on standardized residuals of duration, actual return changes and squared 
standardized residuals for different lags. The bold entries are the estimation coefficients that are not significantly different from 
zero. 
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Table A 1.6: Estimation Results MRK (v = 1800, First Week of June 2011) 

Estimation Actual return changes (Q=1800) 

Estimation VARMA(2.2)- NGARCH((1.3).1)  (Obs =9428) 
A

C
D

(1
.1

) 
 

Parameter Estimation StdError  Ljung_box test on Residual 
alpha1_dur 0.091  0.010  Lags Statistic C_Value 
beta1_dur 0.900  0.017  5 11.319 11.070 
gam1_dur 0.591  0.028  10 15.434 18.307 
gam2_dur 0.525  0.039  15 20.436 24.996 

Constant -0.092  0.009  20 27.879 31.410 

A
ct

u
al

 R
et

u
rn

 C
h

an
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s 
V

A
R

M
A

(2
.2

)-
N

G
A

R
C

H
((

1.
3)

.1
) 

phi11_1 1.2982 0.0547 Lags Statistic C_Value 
phi12_1 -0.2352 0.0165 5 8.931 11.070 
phi11_2 -0.3454 0.0456 10 17.498 18.307 
phi12_2 0.1307 0.0227 15 28.640 24.996 

theta11_1 -1.5935 0.0482 20 29.687 31.410 

theta11_2 0.6063 0.0459 

Constant 0.0002 0.0001 
 Ljung_box test on  
Residual squared Beta0 0.0914 0.0035 

Beta1_1 0.3646 0.0298 Lags Statistic C_Value 
Beta2_1 0.1550 0.0068 5 7.903 11.070 

theta 0.5161 0.0363 10 13.586 18.307 
Beta1_3 0.3443 0.0246 15 17.091 24.996 

gam 0.0579 0.0028 20 45.001 31.410 

F
ri

ct
io

n
le

ss
 R

et
u

rn
 C

h
an

ge
s 

A
R

M
A

(1
,3

)-
G

A
R

C
H

((
1,

3)
,1

) 

phi22_1 0.5550 0.1480 Lags Statistic C_Value 
phi21_1 0.1853 0.0137 5 7.600 11.070 
phi22_2 -0.0200 0.0395 10 12.122 18.307 
phi21_2 -0.0635 0.0316 15 15.541 24.996 

theta22_1 -1.3188 0.1460 20 19.757 31.410 
theta22_2 0.3399 0.1406  Ljung_box test on  

Residual squared Constant 0.0008 0.0003 
Beta0 0.0561 0.0039 Lags Statistic C_Value 

Beta1_1 0.3940 0.0423 5 11.012 11.070 
Beta2_1 0.1689 0.0099 10 23.809 18.307 
Beta1_3 0.3698 0.0358 15 25.171 24.996 

gam 0.0320 0.0032 20 34.358 31.410 

DCC  
parameter 

1 0.0598 0.0015 

1 0.8526 0.0037 
 

The Statistics column reports the Ljung-Box statistic on standardized residuals of duration, actual return changes and squared 
standardized residuals for different lags. The bold entries are the estimation coefficients that are not significantly different from 
zero. 



Table A 1.7: Backtesting on Simulated Deseasonalized Data  

Panel A: SAP Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 4000) 

Interval  
(in 

units) 

Nb of  
Interval 

Time 
interval 

in 
Minutes 

Kupiec test Christoffersen Test UC (Ziggel et al (2013)) I.I.D  (Ziggel et al (2013)) 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

40 689 3.70 0.659 0.282 0.005 0.119 0.040 0.479 0.957 0.957 0.648 0.367 0.016 0.200 0.360 0.491 0.082 0.088 
50 551 4.63 0.914 0.621 0.497 0.222 0.095 0.464 0.809 0.952 0.897 0.582 0.444 0.219 0.417 0.344 0.194 0.666 
60 459 5.56 0.519 0.150 0.777 0.334 0.176 0.641 0.791 0.947 0.514 0.188 0.924 0.345 0.774 0.417 0.994 0.549 
80 344 7.41 0.414 0.343 0.807 0.550 0.275 0.644 0.818 0.939 0.413 0.450 0.943 0.498 0.874 0.314 0.984 0.657 
100 275 9.27 0.276 0.229 0.633 0.617 0.384 0.731 0.864 0.864 0.286 0.254 0.754 0.660 0.641 0.366 0.226 0.222 
120 229 11.14 0.891 0.441 0.032 0.130 0.291 0.705 # # 0.877 0.476 0.034 0.192 0.160 0.655 0.640 0.649 
140 196 13.01 0.485 0.964 0.977 0.984 0.209 0.608 0.839 0.919 0.467 0.916 0.923 0.780 0.410 0.613 0.868 0.540 

Panel B: RWE Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 4000) 

Interval  
(in 

units) 

Nb of  
Interval 

Time 
interval 

in 
Minutes 

Kupiec test Christoffersen Test UC (Ziggel et al (2013)) I.I.D  (Ziggel et al (2013)) 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

40 593 4.30 0.086 0.099 0.060 0.184 0.214 0.598 0.907 0.954 0.069 0.104 0.129 0.249 0.946 0.355 0.490 0.629 
50 475 5.37 0.006 0.057 0.909 0.336 0.430 0.695 0.744 0.794 0.004 0.048 0.982 0.206 0.158 0.964 0.716 0.263 
60 395 6.46 0.054 0.532 0.276 0.047 0.385 0.565 0.886 # 0.070 0.450 0.420 0.234 0.714 0.977 0.691 0.757 
80 296 8.61 0.289 0.166 0.015 0.085 0.356 0.740 # # 0.364 0.178 0.017 0.046 0.752 0.812 0.579 0.079 
100 237 10.76 0.055 0.059 0.312 0.861 0.576 0.853 0.926 0.926 0.075 0.118 0.228 0.914 0.535 0.518 0.112 0.108 
120 197 12.94 0.327 0.973 0.443 0.160 0.471 0.609 0.919 # 0.312 0.914 0.706 0.016 0.296 0.984 0.376 0.596 
140 169 15.09 0.189 0.057 0.065 0.193 0.621 0.913 # # 0.243 0.111 0.016 0.066 0.420 0.671 0.597 0.053 
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Panel C: MRK Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 1800) 

Nb of  
Interval 

Interval  
(in 

units) 

Time 
interval 

in 
Minutes 

Kupiec test Christoffersen Test UC(Ziggel et al (2013)) I.I.D  (Ziggel et al (2013)) 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 

40 220 11.59 0.038 0.238 0.362 0.923 0.629 0.773 0.924 0.924 0.065 0.270 0.616 0.698 0.190 0.058 0.054 0.062 
50 176 14.49 0.005 0.195 0.859 0.305 0.830 0.830 0.830 0.830 0.008 0.309 0.858 0.285 0.723 0.704 0.715 0.706 
60 147 17.35 0.053 0.006 0.086 0.225 0.907 # # # 0.006 0.002 0.172 0.072 0.284 0.097 0.934 0.312 
80 110 23.18 0.016 0.018 0.137 0.294 0.892 # # # 0.052 0.026 0.372 0.219 0.624 0.469 0.060 0.602 
100 88 28.98 0.056 0.359 0.900 0.468 0.879 0.879 0.879 0.879 0.030 0.293 0.828 0.587 0.511 0.484 0.485 0.505 

140 63 40.48 0.477 0.619 0.260 0.427 0.715 0.856 # # 0.575 0.899 0.620 0.297 0.407 0.513 0.756 0.272 

The table contains the p-values for Kupiec, Christoffersen, Unconditional coverage, and I.I.D (Ziggel et al (2013)) tests for the stocks SAP, RWE, 
and MRK. Interval is the interval length used for computing the LIVaR. Nb of intervals is the number of intervals for out-of sample analysis and 
Time interval in minutes is the corresponding calendar time. Bold entries indicate the rejections of the model at 95% confidence level. When the 
number of hits is less than two, the p-values are denoted by #. 
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Table A 1.8: Backtesting on Simulated Re-seasonalized Data 

Panel A: SAP Out-of-sample Backtesting on Raw Actual Return Change (v = 4000) 

Interval  
(in 

Mins) 
Nb 

Interval 

Kupiec test Christoffersen Test UC (Ziggel et al (2013)) I.I.D  (Ziggel et al (2013)) 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50%

5 485 0.039 0.341 0.613 0.147 0.327 0.559 0.698 0.747 0.138 0.144 0.612 0.672 0.392 0.053 0.224 0.903 
6 405 0.210 0.293 0.583 0.986 0.299 0.646 0.832 0.888 0.054 0.025 0.761 0.121 0.930 0.788 0.347 0.058 
7 345 0.099 0.175 0.803 0.548 0.417 0.731 0.818 0.939 0.654 0.404 0.487 0.588 0.323 0.252 0.009 0.162 
8 300 0.043 0.326 0.537 0.663 0.507 0.680 0.870 0.935 0.004 0.070 0.025 0.408 0.670 0.368 0.422 0.721 
9 270 0.098 0.247 0.857 0.601 0.484 0.728 0.795 0.863 0.020 0.064 0.051 0.377 0.928 0.650 0.814 0.267 
10 245 0.185 0.959 0.765 0.833 0.461 0.582 0.856 0.928 0.340 0.002 0.055 0.078 0.579 0.201 0.436 0.449 

Panel B: RWE Out-of-sample Backtesting on Raw Actual Return Change (v = 4000) 

Interval  
(in 

Mins) 
Nb 

Interval 

Kupiec test Christoffersen Test UC (Ziggel et al (2013)) I.I.D  (Ziggel et al (2013)) 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50%

5 485 0.173 0.049 0.140 0.298 0.238 0.698 0.897 0.949 0.207 0.039 0.154 0.326 0.006 0.874 0.906 0.912 
6 405 0.132 0.071 0.068 0.423 0.316 0.723 0.944 0.944 0.154 0.081 0.128 0.328 0.109 0.064 0.885 0.894 
7 345 0.099 0.006 0.008 0.063 0.394 0.878 # # 0.090 0.012 0.045 0.171 0.909 0.308 0.050 0.717 
8 300 0.160 0.326 0.178 0.663 0.405 0.680 0.935 0.935 0.200 0.389 0.213 0.934 0.940 0.525 0.422 0.443 
9 270 0.307 0.030 0.233 0.100 0.379 0.863 0.931 # 0.278 0.055 0.194 0.370 0.479 0.616 0.936 0.454 
10 245 0.318 0.354 0.765 0.520 0.406 0.715 0.856 0.856 0.286 0.449 0.993 0.408 0.402 0.625 0.196 0.200 
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Panel C: MRK Out-of-sample Backtesting on Raw Actual Return (v = 1800) 

Interval  
(in 

Mins) 
Nb 

Interval 

Kupiec test Christoffersen Test UC (Ziggel et al (2013)) I.I.D  (Ziggel et al (2013)) 

5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50% 5% 2.50% 1% 0.50%

5 485 0.039 0.106 0.613 0.354 0.479 0.650 0.698 0.796 0.019 0.076 0.671 0.869 0.723 0.061 0.027 0.660 
6 405 0.078 0.715 0.363 0.220 0.352 0.522 0.671 0.777 0.051 0.410 0.878 0.921 0.168 0.226 0.011 0.665 
7 345 0.171 0.898 0.394 0.838 0.373 0.512 0.878 0.878 0.082 0.542 0.194 0.627 0.938 0.804 0.270 0.275 
8 300 0.160 0.156 0.178 0.663 0.405 0.742 0.935 0.935 0.105 0.1078 0.116 0.2796 0.885 0.596 0.707 0.7198
9 270 0.471 0.766 0.458 0.601 0.356 0.633 0.728 0.863 0.228 0.4716 0.778 0.6942 0.523 0.3178 0.164 0.4926
10 245 0.318 0.463 0.151 0.175 0.434 0.491 0.647 0.785 0.179 0.7636 0.91 0.9398 0.577 0.3998 0.227 0.5956

 

The table contains the p-values for Kupiec and Christoffersen Unconditional coverage, and I.I.D (Ziggel et al (2013)) tests. Intervals are regularly 
time-spaced from 5 minutes to 10 minutes. Bold entries indicate the rejections of the model at 95% confidence level. When the number of hits is 
less than two, the p-values are denoted by #. 
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Table A 1.9: The Relative Liquidity Risk Premium 

Panel A: SAP 

Relative Ex-ante Liquidity Risk Premium  
at the end of  5-min Interval 

Confidence 
Level  

Volume (Shares)/PDTV 
550 1500 2000 4000 6000 

10% 6.33% 12.56% 15.56% 23.81% 29.88% 
5% 5.76% 11.19% 13.96% 21.60% 27.29% 
1% 6.15% 10.51% 12.84% 20.17% 25.38% 

Panel A: RWE 

Relative Ex-ante Liquidity Risk Premium  
at the end of  5-min Interval 

Confidence 
Level  

Volume (Shares)/PDTV 
350 1000 1500 2000 4000 

10% 3.76% 11.17% 15.61% 17.51% 26.41% 
5% 3.30% 10.37% 14.48% 16.34% 24.58% 
1% 2.52% 9.45% 13.02% 14.75% 21.94% 

Panel C: MRK 

Relative Ex-ante Liquidity Risk Premium  
at the end of  5-min Interval 

Confidence 
Level  

Volume (Shares) 
200 500 900 1800 2700 

10% 2.03% 7.64% 12.88% 22.19% 30.14% 
5% 0.77% 5.55% 10.41% 19.25% 27.42% 

1% 0.67% 3.02% 7.17% 15.34% 24.42% 
 

The panels present the proportion of liquidity risk on total risk given different order sizes at 90%, 95% and 99% 
confidence level for SAP, RWE, and MRK. For the end of comparison, the order sizes remain the same as used in 
July 2010. 
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Figure A 1.1: Daily price, volume, return, and LOB depth for SAP 
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Figure A 1.2: Daily price, volume, return, and LOB depth for RWE 
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Figure A 1.3: Daily price, volume, return, and LOB depth for MRK 

 

Figure A 1.1-1.3 plots daily price, trading volume, and return for the sample periods of July 2010 and 
June 2011 for stock SAP, RWE, and MRK.  

 

 



Figure A 1.4: Intraday price, return, trading volume, and price impact (v=2000) for SAP 
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Figure A 1.5: Intraday price, return, trading volume, and price impact (v=1500) for RWE 
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Figure A 1.6 :  Intraday price, return, trading volume, and price impact (v=900) for MRK 

Figure A 1.4-1.6 present intraday trade price, trading volume, tick-by-tick return, and price impact for a given volume for the sample periods of 
July 2010 and June 2011 for stock SAP, RWE, and MRK.  
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Figure A 1.7: The effect of Volatility of Actual Return Changes on Liquidity Risk Premium 
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Figure A 1. 8: The effect of Volatility of Frictionless Return Changes on Liquidity Risk Premium 
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Figure A 1. 9: The effect of Volatility of Both Actual Return Changes and Frictionless Return Changes on Liquidity Risk Premium

Figure A 1.7-1.9 present the evolution of liquidity risk premium, in relative term, as a function of the volatility of actual return changes, 
frictionless return changes, and both actual return changes and frictionless return changes, respectively. Relative liquidity premium 
indicate the difference between the new liquidity risk premium and the initial liquidity risk premium. For the illustration purpose, we 
use the estimated parameters from MRK when volume = 2700. The liquidity risk premium is for confidence level equal to 5%.  
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Figure A 2.1 (MRK-June 2011): Impulse Response Function of Return to Limit Order Book Variables 

This figure presents the impulse response functions of midquote return to a one unit positive shock to limit order book variables. 
The horizontal axis is transaction periods, i.e. the number of transactions since the initial shock, and the vertical axis is the 
response of midquote return in basis points. The solid, dashed, small dotted and dashed-dotted line correspond to the limit order 
book variable measured based on the first two, five, ten and twenty levels, respectively. The big dotted line corresponds to the 
limit order book variable measured between second and fifth levels. 
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Figure A 2.2  (SAP-July 2010): Impulse Response Function of Return to Limit Order Book Variables 

This figure presents the impulse response functions of midquote return to a one unit positive shock to limit order book variables. 
The horizontal axis is transaction periods, i.e. the number of transactions since the initial shock, and the vertical axis is the 
response of midquote return in basis points. The solid, dashed, small dotted and dashed-dotted line correspond to the limit order 
book variable measured based on the first two, five, ten and twenty levels, respectively. The big dotted line corresponds to the 
limit order book variable measured between second and fifth levels. 
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Figure A 2.3  (SAP-June 2011): Impulse Response Function of Return to Limit Order Book Variables 

This figure presents the impulse response functions of midquote return to a one unit positive shock to limit order book variables. 
The horizontal axis is transaction periods, i.e. the number of transactions since the initial shock, and the vertical axis is the 
response of midquote return in basis points. The solid, dashed, small dotted and dashed-dotted line correspond to the limit order 
book variable measured based on the first two, five, ten and twenty levels, respectively. The big dotted line corresponds to the 
limit order book variable measured between second and fifth levels. 
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Table A 2.1 (MRK-June 2011): Coefficient Estimates on Lagged Values of Limit Order Book Variables  

(Zi-j) and F-statistics for Granger Causality Tests 

This table presents the parameter estimates of lagged limit order book variables in the return equation ( ,z ) and F-statistics for 

Granger Causality tests. ***, **, * represent statistical significance at 1%, 5%, 10%, respectively. 
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Table A 2.2 (SAP-July 2010): Coefficient Estimates on Lagged Values of Limit Order Book Variables  

(Zi-j) and F-statistics for Granger Causality Tests 

This table presents the parameter estimates of lagged limit order book variables in the return equation ( ,z ) and F-statistics for 

Granger Causality tests. ***, **, * represent statistical significance at 1%, 5%, 10%, respectively. 
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Table A 2.3 (SAP-June 2011): Coefficient Estimates on Lagged Values of Limit Order Book Variables  

(Zi-j) and F-statistics for Granger Causality Tests 

This table presents the parameter estimates of lagged limit order book variables in the return equation ( ,z ) and F-statistics for 

Granger Causality tests. ***, **, * represent statistical significance at 1%, 5%, 10%, respectively. 
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Table A 2.4 (MRK-June 2011):  Bid-Ask Return on Trading Strategies 

This table presents the cumulative bid-ask returns on trading strategies for MRK over the whole trading 
period of June 2011. The trading strategy is based on the empirical model in Equation 2.9 that excludes 
the contemporaneous effect of trade direction on return and described in detail in Section 2.9. The 
parameter of the filter for the return forecasts, , is set to 1 basis points. The long and short-run moving 
average filters are calculated based on the last transaction price and last forty transaction prices, including 
the most recent one, respectively. The parameter of the moving average filter is set to 0.12 euros. 
Benchmark with and without moving average (MA) filter present results from trading strategies based on 
a forecasting model that ignores information embedded in limit order book variables. 
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Table A 2.5 (SAP-July 2010):  Bid-Ask Return on Trading Strategies 

This table presents the cumulative bid-ask returns on trading strategies for SAP over the whole trading 
period of July 2010. The trading strategy is based on the empirical model in Equation 2.9 that excludes 
the contemporaneous effect of trade direction on return and described in detail in Section 2.9. The 
parameter of the filter for the return forecasts, , is set to 0.5 basis points. The long and short-run 
moving average filters are calculated based on the last transaction price and last forty transaction prices, 
including the most recent one, respectively. The parameter of the moving average filter is set to 0.05 
euros. Benchmark with and without moving average (MA) filter present results from trading strategies 
based on a forecasting model that ignores information embedded in limit order book variables. 
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Table A 2.6 (SAP-June 2011):  Bid-Ask Return on Trading Strategies 

This table presents the cumulative bid-ask returns on trading strategies for SAP over the whole trading 
period of June 2011. The trading strategy is based on the empirical model in Equation 2.9 that excludes 
the contemporaneous effect of trade direction on return and described in detail in Section 2.9. The 
parameter of the filter for the return forecasts, , is set to 0.3 basis points. The long and short-run 
moving average filters are calculated based on the last transaction price and last forty transaction prices, 
including the most recent one, respectively. The parameter of the moving average filter is set to 0.06 
euros. Benchmark with and without moving average (MA) filter present results from trading strategies 
based on a forecasting model that ignores information embedded in limit order book variables. 
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Table A 2.7  Coefficient Estimates on Lagged Values of Limit Order Book Variables and Lagged Values 
of Volume and F-statistics for Granger Causality Tests for Limit Order Book Variables 

This table presents the parameter estimates of lagged limit order book variables ( ,z ) and lagged volume (
,z

) in the return 

equation and F-statistics for Granger Causality tests for limit order book variables. ***, **, * represent statistical significance at 
1%, 5%, 10%, respectively. 
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Table A 2.8 Coefficient Estimates on Lagged Values of Limit Order Book Variables and Lagged Values 
of Volatility and F-statistics for Granger Causality Tests for Limit Order Book Variables 

 

This table presents the parameter estimates of lagged limit order book variables ( ,z ) and lagged volatility (
,z

) in the return 

equation and F-statistics for Granger Causality tests for limit order book variables. ***, **, * represent statistical significance at 
1%, 5%, 10%, respectively. 
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Table A 2.9 Coefficient Estimates on Lagged Values of Limit Order Book Variables and Lagged Values 
of Duration and F-statistics for Granger Causality Tests for Limit Order Book Variables 

This table presents the parameter estimates of lagged limit order book variables ( ,z ) and lagged duration (
,z

) in the return 

equation and F-statistics for Granger Causality tests for limit order book variables. ***, **, * represent statistical significance at 
1%, 5%, 10%, respectively. 

 

 

 

 

 

 

 

 



 

Table A 2.10 Daily Coefficient Estimates on the First Lag of Limit Order Book Variables in the Return Equation 

This table presents the parameter estimates on the first lag of limit order book variables in the return equation ( ,z ) in each trading day in July 2010. ***, **, * represent 

statistical significance at 1%, 5%, 10%, respectively. 
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