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Abstract 

We demonstrate how a mixture of two SEP3 densities (skewed exponential power distribution of 
Fernández et al., 1995) can model the conditional forecasting of VaR and CVaR to efficiently 
cover market risk at regulatory levels of 1% and 2.5%, as well as at the additional 5% level. Our 
data consists of a sample of market asset returns, relating to a period of extreme market turmoil, 
showing typical leptokurtosis and skewness. The SEP3 mixture outcomes are benchmarked using 
various competing models, including the generalized Pareto distribution. Appropriate scoring 
functions quickly highlight valuable models, which undergo conventional backtests. As an 
additional backtest, we argue for and apply the CVaR part of the optimality test of Patton et al. 
(2019) to assess the conditional adequacy of CVaR. An additional aim of this paper is to present a 
collaborative framework that relies on both comparative and conventional backtesting tools, all in 
compliance with the recent Basel regulation for market-risk. 
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Highlights 

▪ Conditional forecasting of VaR and CVaR 

▪ Mixture of two skewed exponential power distributions (SEP3) 

▪ Testing the conditional adequacy of CVaR 

▪ In line with Basel, performing required and supplementary VaR and CVaR evaluations 

  



2 

Introduction 

In 2016, the Basel Committee decided that banks’ market risk capital should be calculated 

with the conditional value at risk (CVaR), also known as expected shortfall,1 at the 97.5% 

confidence level, while maintaining model backtesting at the 99% value at risk (VaR) (BCBS, 

2016, 2019). This shift toward CVaR is motivated by the inadequacy of the risk coverage 

calculated by VaR, which has been noted over time. Market risk is now jointly managed via CVaR 

and VaR, at two different probabilities: p = 2.5% and p = 1%, respectively.2  

In recent decades, it has become increasingly important to assess financial risk accurately; 

selecting a suitable distribution has turned out to be a major challenge. The empirical evidence 

against normality is considerable (see, e.g., Haas et al., 2006). Accounting for heavy tails, 

autocorrelations, and volatility clustering, the stylized aspect of financial time series is more 

critical than ever for gauging market risk (McNeil et al., 2015). 

On the one hand, for these reasons, various methods to transform the normal density, such 

as Gram-Charlier expansions, have been created to meet the desired features, for increased 

flexibility in fitting empirical distributions (see, e.g., Zoia et al., 2018; Molina-Muñoz et al., 2021). 

On the other hand, alternative distributions to replace Gaussian law have been studied, including 

stable distributions and several Student-t extensions (see, e.g., Lee and Lin, 2012; Iqbal et al., 

2020). A great deal of effort has also been made based on exponential power (EP) distribution, 

which, with three parameters, can reproduce any kurtosis level. Fernández et al. (1995) introduced 

a four-parameter skewed EP, which will be abbreviated as SEP3 density here. Zhu and 

Zinde-Walsh (2009) presented a five-parameter asymmetric exponential power distribution 

(AEPD) to capture both the right- and left-tail thicknesses independently. Downside risk 

measurement and forecasting accuracy improve when the relevant tail is more adequately captured. 

Zhu and Galbraith (2011) and, more recently, Kim and Lee (2021) used AEPD to build a 

conditional heteroscedastic specification. 

 
1 CVaR is also called expected shortfall in the literature. Both measures are equivalent for continuous distributions 
without jumps (Rockafellar and Uryasev, 2002). See also Dionne (2019). 
2 In this paper, we use the letter p to refer to the probability that the VaR is exceeded, and 1-p for the corresponding 
confidence level. The p-value notation is for statistical tests. 
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Earlier, Rombouts and Bouaddi (2009) showed that a mixture of a skewed construction 

using an EP distribution worked properly to model standardized innovations in an asymmetric 

GARCH-type model. Indeed, a distribution mixture is an interesting alternative, offering a degree 

of freedom to represent the left and right tails relatively separately in terms of skewness and tail 

thickness. It is in this line that we link our work. 

We propose to show that a mixture of two SEP3 works well for conditional forecasting with 

two stages, as in McNeil and Frey (2000) and as shown in Nolde and Ziegel (2017), the latter of 

which we refer to as NZ (2017) in the sequel. The first stage, based on an AR(1)-GARCH(1,1), will 

model the standardized innovations in two ways: a Gaussian and the Skew-t of Fernández and Steel 

(1998). The first stage standardized residuals will be estimated in the second stage using competing 

models starting with a simple normal law and moving on to a SEP3 mixture. 

To measure risk, we focus on VaR, well-known and elicitable, and CVaR, a coherent and 

subadditive risk measure. Let Y represent the return on a given asset over a given horizon. Negative 

returns, which are subject to loss risk, are located at the left tail of the distribution of Y. Also, 

p-levels are small, close to 0. At a given p-level (0,1) , p-VaR is defined by   

 
p

YVaR (Y) inf{y | F (y) p}     
 

(1) 

where YF  is the cumulative distribution function of Y. p-VaR can also be defined as the negated 

value of Y p-quantile . CVaR is the negated value of the expected return Y conditional on Y being 

below the p-quantile of Y. Assuming YF  strictly increases with finite mean, p-CVaR is defined by 

 CVaR Y    F u du. (2) 

Due to our convention, VaR and CVaR are then typically positive; the greater the value, the 

riskier the situation being measured. Assuming normal returns, 2.5%-CVaR represents a risk 

similar to 1%-VaR. 

In addition to the regulatory requirements for capital, the new Basel regulations strongly 

recommend supplementing statistical procedures to ensure the ex-post suitability of models 

(BCBS, 2016, page 82; BCBS, 2019, paragraph 32.13). For these reasons, models are evaluated 

through a collaborative approach using tools from both branches of backtesting: conventional 

(called standard) and comparative. Depending on level p = 1% or 2.5%, appropriate scoring 
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functions guide the analysis to focus on worthwhile models, whereas models are validated 

individually using standard backtests and on the basis of the DM test (Diebold and Mariano, 1995). 

Three standard VaR tests are applied: the uc test of Kupiec (1995), the cc of Christoffersen 

(1998), and the DQ of Engle and Manganelli (2004). For CVaR, we use the ESZ  test of Acerbi 

and Szekely (2019) and the RC test of Righi and Ceretta (2015). Moreover, we argue for and 

employ the CVaR part of the optimality test of Patton et al. (2019) to evaluate the CVaR’s 

conditional adequacy. One aim of this paper is to orchestrate all these aspects into a validation 

process that complies with the regulations in force. 

We utilize a sample of data from three assets: IBM, General Electric, and Walmart, whose 

returns all refute normality over the time period under examination, which encompasses the 

extreme price fluctuations of the last economic recession in the United States (NBER3 December 

2007 to June 2009  and the financial crisis of August 2007 to February 2009 (TED spread). Our 

competing models have a role to play in identifying and documenting specific aspects of the 

research. Due to their well-known performance at high quantiles, the generalized Pareto 

distribution (GP, McNeil et al. 2015) and the exponential generalized beta type 2 (EGB2, Kerman 

and McDonald, 2015) are also in the running to benchmark the findings. 

We provide mathematical derivations of VaR and CVaR for our parametric models in the 

Online Appendices. Appendix A1 describes the model naming. Appendices A2 and A3 derive 

formulas to compute CVaR for distribution mixtures, while Appendices A4 to A10 derive the 

CVaR formula for individual parametric distributions. With the aforementioned assets, we design 

in Appendix A11 an optimal portfolio, which will serve as input data beginning in Section 2. 

The first section, which follows, presents the data. Section 2 provides a preliminary 

analysis and establishes an initial in sample modeling. Section 3 presents the conditional 

forecasting and backtesting framework. Section 4 covers backtesting results. The final section 

discusses the results and concludes the paper. 

 

 
3 https://www.nber.org/cycles.html 
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1. Data 

Our data contains three risky stocks: IBM, General Electric, and Walmart. The period 

consists of 1,200 days, from June 18, 2007 to March 20, 2012. The actual daily price extraction 

period starts 251 days earlier, on June 16, 2006. In total, 1,451 daily prices are collected 

(=1,200+250+1 day), to provide 250-day rolling windows for the out-of-sample framework, plus 

one additional day to compute the first day’s return. The return of asset i for time t is calculated 

using the formula: Return , Price , divid , /Price , 1 (Price ,  and divid ,  are the 

price of asset i and its dividend, if any, at 𝑡).  

Figure 1 shows that, over the period in question, the asset return distributions are far from 

normal. By fitting a Student-t distribution to the returns, using the standard maximum likelihood 

approach, the estimated degrees of freedom are 3.2, 2.4, and 3.2, respectively, indicating the 

presence of a very fat tail. 
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Figure 1: Histograms and densities of IBM, GE, and WM stocks 
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Table 1 displays descriptive statistics, including a correlation matrix. During this period of 

the financial crisis, the correlations are all positive and very strong, at around 50%. 

 
Table 1: Descriptive statistics of individual assets 

 IBM General Electric Walmart 

Correlations 
IBM 
General Electric 
Walmart 

 
1 
0.56759 
0.49146 

 
 
1 
0.43083 

 
 
 
1 

Covariances* 
IBM 
General Electric 
Walmart 

 
0.02688 
0.02443 
0.01138 

 
0.02443 
0.06894 
0.01598 

 
0.01138 
0.01598 
0.01995 

Mean 
Variance* 
Skewness 
Kurtosis 

0.07580% 
0.02688 
0.27190 
7.43415 

    -0.00286% 
0.06894 
0.35375 
9.95718 

0.03472% 
0.01995 
0.35429 

    10.68244 

*Variances and covariances are multiplied by 100 to show more decimal places. 

On average, the daily returns are practically nil. The skewness coefficients are positive, 

which is surprising given that the extreme market turmoil should instead cause a shift toward the 

left tail of losses. The empirical kurtosis coefficients are very large, roughly three times higher than 

the known normal of 3. This confirms the presence of a large tail thickness. 

Using the three assets, we construct an optimal portfolio Y∗. The optimal weight vector β 

is computed to minimize the relative VaR, defined as VaR μ , assuming normal 

returns. The weights are β 0.38894, 0.04651, 0.65756 . For detailed calculations, see 

Online Appendix A11. To simplify the notations, we will refer to this optimal portfolio as tY in 

the following. tY  is assumed to remain optimal for all competing models, to ensure results 

comparability. 

As demonstrated in Table 2, the portfolio skewness = 0.35887 > 0 and kurtosis = 9.81578 

indicate that the same conclusion applies to the portfolio as it does to the individual assets.  
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Table 2 : Optimal portfolio (normal model) 
 

  Portfolio    

 Weights  0.38894 -0.04651 0.65756   

Mean Variance* Std-deviation Skewness Kurtosis  Min Max 

0.05244%  0.01680  1.29631% 0.35887 9.81578 -7.15216% 10.54010% 
*Variance is multiplied by 100 to show more decimal digits. 

 

Figure 2 clearly shows that a Gaussian cannot fit. Student-t is not sharp enough and does 

not keep enough mass around the mode. This rather suggests a Laplace density. 

 

 

Figure 2: Histogram and densities of the optimal portfolio 

 

2. Preliminary analysis 

In this section, models M1 through M8 are directly fitted to 
1200

t t 1{Y }   using the maximum 

likelihood approach in static modeling. The goal is to deliver a quick overview of model traits 

before going deeper into them in Sections 3 and 4. The eight competing models for the data 

modeling are listed in Table 3. 
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Table 3 : Model Symbol Definitions 

Model  Symbol Description of the model 

M1 1:NO Normal distribution (see Appendix A4)  

M2 1:T Student-t distribution (see Appendix A5) 

M3 1:EGB2 Exponential GB2 distribution (Exponential Generalized Beta 2; Appendix A6) 

M4 2:NO Mixture of 2 normal distributions (Appendices A2, A3, A4) 

M5 2:T Mixture of 2 Student-t distributions (Appendices A2, A3, and A5) 

M6 3:NO Mixture of 3 normal distributions (Appendices A2, A3, A4) 

M7 2:SN2 Mixture of 2 SN2 distributions (Skewed Normal of Fernández et al., 1995, 
Appendix A7) 

M8 2:SEP3 Mixture of 2 SEP3 distributions (Skewed Exponential Power type 3 of 
Fernández et al., 1995; Appendices A3, A8, and A9) 

 

The results for p=5% are shown in Tables 4 and 5 alongside usual validation criteria: AIC, 

BIC, and the KS goodness-of-fit test. Also, model-derived kurtosis and asymmetry coefficients can 

be compared to empirical ones (Table 2). For mixtures, jc  identifies the weight of the jth 

individual density in the mixture. 

Obviously, M1=1:NO is not suitable for data. M2=1:T, assuming a single Student-t, has 

infinite kurtosis (degree of freedom 43.288  ). M3=1:EGB2 using a single EGB2 density 

could capture both thickness and skewness using parameters  and .   Values 0.165   and 

0.158   tend to 0. Therefore, EGB2 tends toward a Laplace (Lemma 2 of Caivano and Harvey, 

2014). This confirms Section 1 remarks. 

Mixture models M4=2:NO, M5=2:T and M6=3:NO improve AIC and attain higher kurtosis. 

To capture the skewness, M7=2:SN2 injects two parameters. M8=2:SEP3 adds two tail thickness 

parameters. AIC and BIC indicate a better fit to the data. Based on thickness and skewness 

parameters 1 10.959 1, 1 1. 031     , 2 2.108 2   , and 2 0.613 1  , the first SEP3 is a 

Laplace degenerate, whereas the second SEP3 is practically an asymmetric normal, which is an 

SN2. These facts confirm Section 1 findings and illustrate relationships between our models.  

For further analysis, Tables 4 and 5 provide exhaustive information and Appendix A11 

(Online Appendices) presents detailed discussion. Also, Table A.3 (Online Appendices) illustrates 

the behavior of the eight models at p = 2.5% and 1%, which is similar to p=5%. 
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Table 4 
Model estimation – Panel A 

 1:NO 1:T 1:EGB2 2:NO 2:T 

µ1 0.0005244 0.0006974** 0.0008884* −0.0004845 0.0012920** 

 (0.0003741) (0.0002977) (0.0004982) (0.0015691) (0.0005553) 

σ1 0.0129631*** 0.0085310*** 0.0014108** 0.0226636*** 0.0066854*** 

 (0.0002645) (0.0003410) (0.0006812) (0.0018632) (0.0009171) 

ν1  3.2887197*** 0.1587161**    23,642.31*** 

  (0.3809600) (0.0796200)  (0.0000001) 

τ1   0.1652522*   

   (0.0851634)   

µ2    0.0008151** −0.0004740 

    (0.0003448) (0.0008931) 

σ2    0.0082545*** 0.0140598*** 

    (0.0005136) (0.0025828) 

ν2     6.4162601** 

     (2.5707612) 

τ2      

      

c1    0.2231962*** 0.5158049*** 

    (0.0497856) (0.1538992) 

No of params 2 3 4 5 7 

LogLik 3,512.55 3,627.57 3,625.58 3,619.04 3,628.64 

AIC −7,021.10 −7,249.14 −7,243.16 −7,228.09 −7,243.28 

BIC −7,010.92 −7,233.87 −7,222.80 −7,202.63 −7,207.65 

KS (p-value) (0.0015) (0.1285) (0.3490) (0.2180) (0.1100) 

5%-VaR  2.079% 1.868% 2.006% 1.953% 2.029% 

5%-CvaR 2.621% 3.012% 2.895% 3.113% 3.041% 

Skewness 0 0 -0.081 -0.138 -0.154 

Kurtosis 3 - 5.807 6.678 8.399 

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1; p-values in parentheses; number of observations = 1,200 
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Table 5 
Model estimation – Panel B 

 3:NO 2:SN2 2:SEP3  

µ1 −0.0004753 -0.0173572*** −0.0007520***  

 (0.0009649) (0.0059701) (0.0001560)  

σ1 0.0150441*** 0.0235020*** 0.0045291***  

 (0.0022041) (0.0020111) (0.0014071)  

ν1  1.4398353*** 1.0315089***  

  (0.1888699) (0.0376383)  

τ1   0.9598700***  

   (0.1180946)  

µ2 0.0043390 -0.0001414 0.0075456**  

 (0.0098212) (0.0007373) (0.0032033)  

σ2 0.0376531*** 0.0089036*** 0.0065018**  

 (0.0101797) (0.0004863) (0.0025539)  

ν2  1.1003833*** 0.6137048***  

  (0.0657146) (0.2182171)  

τ2   2.1083901∗  

 

0.0011752***  

(1.1436395)  

µ3   

 (0.0004491)    

σ3 0.0065771***    

 (0.0008483)    

c1 0.4433715*** 0.1378343*** 0.7389303***  

 (0.1089861) (0.0366570) (0.1181466)  

c2 0.0334707    

 (0.0303812)    

No. of params 8 7 9  

LogLik 3,630.06 3,619.48 3,631.96  

AIC −7,244.13 -7,224.96 −7,245.93  

BIC −7,203.41 -7,189.33 −7,200.12  

KS (p-value) (0.2280) (0.1099) (0.3040)  

5%-VaR 2.038% 1.878% 1.992%  

5%-CvaR 3.004% 2.968% 2.973%  

Skewness 0.122 0.169 0.005  

Kurtosis 9.432 7.529 7.175  
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1; p-values in parentheses; number of observations = 1,200
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3. Out-of-sample forecasting and backtesting 

3.1 Conditional modeling 

We are now interested in VaR and CVaR conditional forecasting given t 1  being the 

information set available up to t 1 .  The framework is based on an out-of-sample rolling 

window of 250-day. The purpose is to capture time dynamics to account for autocorrelations and 

conditional volatility, including volatility clustering, which are typically observed in financial 

series of market risk (McNeil et al., 2015). The return series tY given t 1  follows a conditional 

distributionF :   Y |ℑ  ~ F . We assume F  continuous, strictly increasing with finite mean. 

Conditional risk measures at p-level are defined by  

VaR Y F p   and  CVaR Y E Y |Y VaR Y ,ℑ . 

Following NZ (2017) with adjustment due to the left tail, assume that Y  can be written as 

 Y µ σ Z  (3) 

where tZ  is an i.i.d. random standardized variable independent of ℑ . µ E Y |ℑ   and 

σ var Y |ℑ  are the negated conditional expectation and conditional variance of Y  at t 

given t 1 . The conditional risk measures of t{Y} for t 1  can be obtained from those of t{Z} 

using (3) and with one-step ahead predicted μ  and σ  (see Online Appendix A12.1 for 

detailed derivation), such as 

   VaR Y μ σ VaR Z   and  CVaR Y μ σ CVaR Z  (4) 

An ARMA-GARCH specification allows for such a design. We will use an 

  GARCH(1,1)AR 1   to model μ  and σ . The    AR 1 GARCH 1,1  system is written as 
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 t 0 1 t 1 ty y     (5) 

 
2 2 2
t 1 t 1 2 t 1       (6) 

 z ε σ⁄ ;  Z  ~ G θ  (7) 

where  0 1 1 2, , , , ,       are the AR (1) GARCH (1,1) parameters. Once standardized, the error 

term t  produces the residuals Z , such as t t tz   . Z  follows a distribution G, whose 

parameters  ensure zero mean and unit variance. If G is known,    AR 1 GARCH 1,1  can be 

estimated by the maximum likelihood method. We then derive 

 μ E Y |ℑ ξ ξ y  (8) 

  22 2
t 1 t 1 t 1 t t 2 tvar Y z               (9) 

and finally calculate risk measures related to G. In the real world, however, G is unknown. So, we 

proceed in two stages: In the first, identified as prefiltering, we impose a distribution on G (usually 

a normal, a Student-t or a Skew-t distribution). We then estimate  0 1 1 2 t, , , , ,       using the 

250-day rolling window  s t

s s t 249
Y



 
. Meanwhile, the prefiltering stage suffers from a 

misspecification introduced by imposing an arbitrary distribution on unknown G. 

Our competing models come into play in the second stage, which we henceforth call fitting. 

The models can more or less effectively reduce the impact of the aforementioned misspecification. 

Models fitted to Z  series produce VaR Z  and CVaRt 1
p Zt 1 , which are converted back 

to VaR Y  and  CVaRt 1
p Yt 1  by applying the forecasted t 1  and t 1  using (8) and (9) 

into equalities (4). 

There will be two prefilterings. The first, denoted n-prefiltering, forces G to follow a 

Gaussian, whereas the second, called e-prefiltering, imposes the Skew-t of Fernández and Steel 

(1998).4 

This Skew-t distribution, named ST3, has four parameters, say, , , ,    , and its density 

function is written for x R , such that 

 
4 Nolde and Ziegel (2017) do prefiltering in three ways: Gaussian, Student-t, and Skew-t of Fernández and Steel 

(1998). 
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   1 2 1 22 2 2

ST3 y y2

c u u
f x , , , 1 1 1 1

   

 

                        
 (10) 

where    
1

2 1/2u (x ) / ;    R;    , , 0,  and  2 1 B 1/ 2, / 2c


               . 

We add a prefix n or e to properly specify the conditional models. Thus, the 3:NO basic 

model (Section 2) will correspond to two conditional models: n|3:NO (n-prefiltered) and e|3:NO 

(e-prefiltered). Likewise, e|1:T is based on a single Student-t distribution fitted to tZ  series 

obtained from e-prefiltering. 

Three new basic models are required. The first, M9 1: ST3,  (single Skew-t density) is 

related to the conditional model e1:ST3, which will benchmark e-prefiltered models because it 

has ST3 in both stages. The predictive power of the resulting conditional model is expected to be 

average or poor when the same density is arbitrarily forced in both stages (see NZ, 2017). 

M10 1:SEP3  is the second basic model (single SEP3 density). The conditional model 

e1:SEP3 (n 1:SEP3)  will serve to identify the mixture effect on e 2:SEP3 (n 2:SEP3)  

performance (see discussion later). 

We define a final model, M11, which estimates the well-known generalized Pareto 

distribution (GP) in the fitting stage. GP is frequently needed to challenge the ability of studied 

models to account for extreme values in the data. Standardized residuals series Z  will be 

momentarily negated to fit GP. For a threshold u and 𝑧 𝑢, the cumulative function of GP is 

written as 

F z 1 1 ξ
z u
β

, ξ 0 

where  and  are the scale and shape parameters of GP. The threshold u must be determined. We 

use pragmatic method of McNeil and Frey (2000) and, like NZ (2017), we fit GP to the 30 largest 

values from the 250-day rolling window; tu  is the 31st largest value (30 = 12% of 250). Finally, 

the formulas are as follows: 
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       VaR Z u
⁄

1     and    CVaR Z    (11) 

where  t t tu , ,   parameters correspond to day t fitted GP; uN 30,  wN 250 . VaR Z  

and CVaR Z  computed following (11) are converted to VaR Y  and 

CVaR Y  using (8) and (9) into equalities (4). 

 

In total, we have 22 conditional models (11 for each prefiltering). 

3.2. Standard backtesting 

VaR testing 

3.2.1. Unconditional coverage test 

Unconditional coverage testing is based on the fact that counting independent p-VaR 

violations follows a binomial distribution. With T and 1N  denoting time length and number of 

violations, respectively, Kupiec's (1995) test compares *
1p = N / T  (failure rate) to p (theoretical 

rate) with a likelihood ratio test. The null hypothesis is 0H : p* p  against 1H : p* p . The test 

statistic ucLR  is  

 LR 2log
⁄ ⁄

 ~ χ , (12) 

which asymptotically follows a chi-square distribution with one degree of freedom.  

3.2.2. Independence test 

Violations of p-VaR should be independent and well dispersed in time. The occurrence of 

violation clustering may result in the inability to renew coverage capital in time. Christoffersen 

(1998) considers the violation process tI  as first-order Markovian with two states. Its transition 

matrix,  , is  

 01 01

11 11

1

1

   
      

, (13) 

where ij  is the transition probability from state i to state j. The process likelihood is 
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      00 1001 11
N NN N

01 01 11 11L 1 1         (14) 

where ijN  is the number of observations with a state j following a state i. There is violation 

independence if 0 01 11H :  . L( )  can be estimated empirically by ˆL( ) , where 01  and 11  

are replaced by  01 01 00 01ˆ N N N    and
 

 11 11 10 11ˆ N N N   . Thus, under 0H , the 

likelihood (14) becomes 

              00 01 10 11 1 1N N N N T N N
L p* 1 p* p* 1 p* p* L 1 p* p*

      (15) 

Note that 00 10 1N N T N    and 01 11 1N N N  . Finally, the indLR  statistic is 

 LR 2log
∗

 ~ χ . (16) 

3.2.3. Conditional coverage tests 

The goal is to evaluate the adequacy of coverage, conditional on the independence of p-VaR 

violations. The first backtest is the Christoffersen (1998) cc. Its null hypothesis is 

0 01 11H : p   . Thus, its statistic can be derived directly from (16), where p replaces p*: 

 LR 2log  ~ χ  (17) 

Moreover,  L p*  in (15) is exactly the denominator of the ucLR  statistic. This implies 

that cc uc indLR LR LR  . Under 0H ,  ccLR  follows a 
2  with 2 degrees of freedom. 

The second backtest is the DQ of Engle and Manganelli (2004). The null hypothesis can be 

rewritten as  0 t 1 tH :E h 0  ,
 
where t th I p  . Hence, 0H  can be tested with the following linear 

regression model: 

p p p
t 0 1 t 1 n t n 1 t 1 2 t 2 n t n th h ... h VaR VaR ... VaR u             , 
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where all the coefficients, 0 k k, , ,k 1,...,n    , must be simultaneously nil. This can be verified 

using Wald test, whose statistic follows a 
2  with 2n 1  degrees of freedom. 

CVaR testing 

3.2.4. ESZ test of Acerbi and Szekely (2019) 

The backtest of Acerbi and Szekely (2019) exists in two versions: absolute or relative. We 

will consider the absolute version, whose statistic is 

 Z Y CVaR VaR I   (18) 

where I 1 Yt VaRt 
𝑝  (indicator function). 

The null hypothesis is  0 ES tH : E Z Y 0    against  1 ES tH : E Z Y 0.   To evaluate 0H ,  

we draw N random vectors,   j 1,...,Nj
t t 1,...,T

X



 depending on model parameters relating to each day t. 

Applying (18) to  jtX  vectors generates the series    j 1,..,N
j

ES tZ .X


 The two-sided p-value is 

then determined by  

          j j
ES t ES t ES t ES t2 min P Z X Z Y , P Z X Z Y   . 

3.2.5. RC test of Righi and Ceretta (2015) 

The second backtest, denoted RC, is proposed in Righi and Ceretta (2015). Its statistic is 

defined by the expression 

 RC Y
,

I , (19) 

where I 1
 

 (indicator function) and SD , variance Y I . The test p-value is 

obtained by a construction similar to ESZ . 
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3.3. Comparative backtesting 

The comparative backtesting is based on scoring functions. A scoring function assigns an 

asymmetric penalty depending on the deviation between the realized return and its corresponding 

ex-ante risk coverage. Being a penalty, it is thus meant to be minimized. 

3.3.1. Scoring functions for VaR 

Let ty  be the realized return and tv  a forecast of the p-VaR of day t. Gneiting and Raftery 

(2007, eq. (40)) show a general form of strictly consistent scoring functions for VaR: 

 S v , y I p G v I G y η y , (20) 

where I 1  and G and η are functions. G is continuously differentiable and strictly 

increasing. The functions η  and G must allow E S . , . ∞  and v  is supposed to be 

ℑ -mesurable (up to t-1 only) . We then have 

VaR arg min E S v , y |ℑ . 

The value S v , y  is the score of day t. The expectation E S v , y
 
is the model score. 

We fix G x log x  and η x 1 log x  (see Online Appendix A12.2 for 

detailed discussion and derivations). The scoring function S  thus obtained has the expression 

             S v , y
p 1 log v log y , if y v

p log v , if y v
 (21) 

S  is now defined for ∀ y ∈ R and v 0, which is the case for all p-VaR forecasts.  

The choice of S   is motivated in NZ (2017, eq.(2.20)). Indeed, logS  allows loss 

differences between competing forecasts to be 0-homogenous (homogeneous of degree 0). This 

property is essential to have optimal power of the DM test (Diebold and Mariano, 1995). 

3.3.2. Scoring functions for CVaR 

Let t t ty , v , and e  be, respectively, the realized return and the values of p-VaR and p-CVaR 

forecasts for day t. Fissler et al. (2016) propose a general form of strictly consistent scoring 

functions for CVaR: 
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S , v , e , y I p G v G y G e I v y

G e e v g e η y
 (22) 

where I 1 . η is a function and E η Y  must exist. 1G  is an increasing function5 

twice continuously differentiable and E G Y  must exist. 2G  is the derivative of 

 '
2 2 2g g G , with 2g  strictly increasing and strictly convex. v , e  must be ℑ -mesurable (up 

to t-1). We then have, for optimal V aR C V aR :  

VaR , CVaR arg min
,

E S , v , e ,, y  | ℑ . 

We choose G x 0,   G x 1 x⁄   x 0 and η x 0.  Therefore, 

   2g x log x   . The scoring function S  thus obtained is 

 S v , e , y v y v log e 1. (23) 

S  is defined for ∀ y ∈ R and e 0, which is the case for all p-CVaR forecasts. FZS  is 

chosen because it allows loss differences between competing forecasts to be 0-homogeneous (NZ, 

2017, eq.(2.24), and Patton et al., 2019, eq.(6)). 

The variable tv  is present in (23) and (22) and can’t be eliminated. More generally, 

Gneiting (2011) shows that there is no strictly consistent scoring function where te  appears alone 

without tv . This is why CVaR is not elicitable by itself, but the pair V aR C V aR is. 

3.3.3. DES test (goodness-of-fit test of Patton et al., 2019) 

From equation (23) defining FZS , Patton et al. (2019) show that, under the assumption of a 

correct model specification for VaR and CVaR, the variables λ , I p  and λ ,

I y / pe 1 are conditionally mean zero6, such that 

 
5 This is a sufficient condition on 1G . If not satisfied, Theorem 5.2 in Fissler and Ziegel (2016) shows that the 

function defined by      t t 2 1 tf v v G e G v      must be strictly increasing with respect to tv . 
6 To understand intuitively this result, consider the first-order condition derivatives of E S v , e , y |ℑt 1  with 

respect to v  and e . 
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 E λ , |ℑ E I |ℑ p 0 (24) 

 E λ , |ℑ E |ℑ 1 = 0. (25) 

Equality (24) is, interestingly, the same as for the DQ null hypothesis. So, to test (25), Patton 

et al. (2019) employ the same technique as Engle and Manganelli (2004) and rely on the linear 

regression: 

 s s
e,t 0 1 e,t 1 2 t t ,b b b e u       (26) 

where tu  is an error term, and 0 1 2(b ,b ,b )  are the regression coefficients, which must be 

simultaneously zero under the null hypothesis (against the two-sided alternative). Compared to the 

Patton et al. (2019) approach, these authors state on page 406 that “similar conditional calibration 

tests are presented in Nolde and Ziegel (2017).” 

Based on the aforementioned facts, we now know that DQ does more than evaluate conditional 

coverage: it also assesses the models’ ability to produce an optimal VaR while minimizing logS . 

Using the preceding arguments, and the parallel analogy between VaR and CVaR, we assert that 

the CVaR part of the Patton et al. (2019) construction (eq.(25)) is valid for testing the CVaR 

conditional adequacy. We refer to it as the DES test henceforth. This illustrates the key advantages 

of exploiting the close relationship between traditional and comparative backtesting techniques 

and employing them concurrently. 

3.3.4. DM test of Diebold and Mariano (1995) 

The purpose of the test is to compare forecasts between two models, i jM and M , using an 

appropriate scoring function, S. We construct the loss-difference vector     T

ij i j
t 1

d S M S M .


   

The null hypothesis is    0 i jH : E S M S M 0    . The DM statistic is the mean of ijd , 

normalized by its standard deviation, estimated with a heteroskedasticity and autocorrelation 

consistent  (HAC) correction. We apply the Harvey et al. (1997) correction with a lag = 5 to 

account for the strong autocorrelation persistence. Under 0H , the DM statistic follows a Student-t 

of T 1 degrees of freedom. 
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3.4. Approach to conducting backtesting 

Let us recall that our primary goal is to orchestrate all the procedures and actions to 

specifically meet the Basel regulations’ requirements (BCBS, 2016, p.77; BCBS, 2019, §32.5). We 

must also fulfill the Basel recommendation to foresee additional complementary procedures and 

statistical tests, with varying degrees of confidence, to support the model’s accuracy and 

robustness (BCBS, 2016, p.82; BCBS, 2019, §32.13). 

The components involved are as follows: 6 backtests ES(uc, cc, DQ, Z , RC, DES)     , 3 p-levels 

(1 % ,  2.5% , 5% ), and 2 scoring functions ( logS  and FZS ), for a total of 22 competing models. 

The calculations yield 22  6  backtests   3 p-levels  396  backtests to investigate, and 

22 2 3 132    scores to analyze pairwise using 2 3 6  DM test matrices. These are 

symmetrical non-diagonal matrices, each of which has 22    22 1 / 2 231( )    pairs of 

statistics/p-values. Therefore, 6   231  1, 386   DM statistics should be examined for signs and 

significance. To summarize, 396 1386  1, 782   different statistical tests would have to be 

conducted and reviewed! 

We are obviously not going to do that. To achieve the backtesting process much more 

efficiently, we propose the following collaborative approach. The study begins with p=1%, which 

corresponds to Basel’s explicit requirement of backtesting on VaR. The guiding idea is to select 

from the top-10 competing models on the basis of their ranking by logS . Each selected model first 

undergoes an evaluation via the six backtests. The forecasts of successful models are then 

compared in pairs by DM matrices. 

The resulting subset of models undergoes a similar circuit for p 2.5% , the regulatory 

coverage by CVaR level. Finally, the remaining models are assessed for p 5% , as an additional 

complement. The number of models thus diminishes progressively. Therefore, scoring functions 

concentrate on worthwhile models, whereas conventional backtests perform the final individual 

validation along with the DM test. 
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4. Backtesting results 

We begin by focusing on 1%-VaR backtest. For this purpose, our criteria (1a) demand that 

all three VaR tests, uc, cc, and DQ, be carried out with no rejection at the 10%-threshold. We also 

concentrate on CVaR, as per Basel recommendations, for additional tests. We deploy three tests: 

ESZ , RC, and the DES test. To meet criteria (1b), at least two of the three tests must not reject the 

model at the 5%-threshold. The supplement (1b) ensures that enough tail thickness is captured. 

Table 6 displays the results. Columns (1) to (4) show the three VaR tests; columns (5) and 

(6), the ESZ
 and RC standard tests; column (11) presents DES results on the conditional adequacy 

of CVaR. Scores and ranks of logS  are in columns (7) and (8). Columns (9) and (10) contain the 

corresponding elements for FZS . Rankings are based on the entire 22 models, including both 

prefilterings. 

For p=1%, Panel A presents the 12 highest-rated models using logS . Two of them, however, 

are problematic. The first is e|1:T, which, despite ranking fourth out of 22, is nonetheless strongly 

rejected by uc, contradicting the VaR scoring ranking. Furthermore, cc and DQ reject this model 

(respective p-values as low as 0.005, 0.012, and 0.001). Additionally, all CVaR tests reject e|1:T 

with p-values of 0.001, 0.006, and 0.015. 

This example shows that a favorable ranking by a consistent scoring function does not 

prevent adverse results in conventional backtests. On the other hand, it is interesting to note that six 

models from Panel A have the exact same number of violations of 1%-VaR, 17, and therefore, 

identical uc results. So, while uc results alone cannot be used to differentiate among them, the VaR 

scoring function can. This combination of observations highlights not only the complementarity of 

conventional and comparative backtesting components, but also the need to integrate the 

capabilities they each offer.  

We have a second case of rejection. Model e|1:ST3, 7th out of 22, fails uc as well as DQ, 

ESZ , and RC (respective p-values of 0.061, 0.054 < 10%; 0.001 and 0.026 < 5%). In fact, e|1:ST3 

is expected to deliver average to poor results, since it has an ST3 density arbitrarily imposed on 
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both stages. Meanwhile, being ranked 7th, e|1:ST3 is therefore believed to be equivalent to or 

better than almost three-quarters of the 22 models. This provides a first indication of how 

inefficient the n-prefiltering stage might be. At the same time, it also shows how difficult it is to 

model the 1%-level properly. 

The point to note now is that n|2:SEP3 is the only model resulting from Gaussian 

prefiltering. This shows, yet again, how weak this n-prefiltering is. Interestingly, despite the 

problematic n-prefiltering, the n|2:SEP3 model ranked 5th and 3rd overall for VaR and CVaR, 

respectively (columns (8) and (11)), revealing one aspect of the superiority of the 2:SEP3 mixture. 

Let us now highlight that e|2:SEP3 takes first place in Panel A and passes all six tests with 

very comfortable p-values. In addition to e|2:SEP3, n|2:SEP3 is the only model in Panel A that 

meets criteria (1a) and surpasses (1b), since it passes all CVaR tests. The last four models of Panel 

A are removed for failing two or more CVaR tests. We are left with six potential models: e|2:SEP3, 

e|1:EGB2, e|1:SEP3, n|2:SEP3, e|1:GP, and e|2:SN2. We need the DM test to discern their loss 

differences. The e|2:SEP3 score of -3.2707 clearly stands out from the others, which are all rather 

close to each other. 

The DM statistics of Table 7 are calculated by subtracting the forecasts of the row models 

from those of the column models. Thus, a negative statistic favors the line model, and vice versa. 

The improvement is confirmed when the statistic is significant at 5%. The e|2:SEP3 model shows 

all negative and significant statistics at 5% or better. The predictive power of this model is much 

higher than the others. The remaining five models, according to DM test, cannot be discriminated 

at 5%. That said, keep in mind that n|2SEP3 has an indisputable advantage over the other four 

models in meeting criteria (1a) and exceeding (1b). 

Panel B of Table 6 displays the six models selected from Panel A, now sorted according to 

FZS  scores (column (9)). Recall that this is the level of regulatory coverage calculation with 

2.5%-CVaR. So, the CVaR criteria should be tighter. Criteria (2a) require no rejection by any of 

ESZ , RC, or DES at the 10%-threshold. Criteria (2b) for VaR also require no rejection by any of 

the three VaR tests at 10%, which can be quite stringent due to the joint elicitability of VaR and 

CVaR. A proper VaR assessment is essential for a successful CVaR validation. 
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Once again, e|2:SEP3 takes first place. This model easily passes all conditions (2a) and (2b) 

with comfortable p-values. Model e|2:SN2 also succeeds in all criteria, with decent p-values (see 

also the SN2’s performance in Dionne and Saissi Hassani, 2017). Note that e|1:GP is ranked third, 

but fails (2a) criteria (RC p-value = 0.089 < 10%). Yet again, an excellent scoring does not always 

imply success in backtests. The next model to consider is n|2:SEP3, which is ranked 4th and almost 

as easily meets (2a) and (2b) criteria as e|2:SEP3. 

Notice how close the FZS scores for e|2:SN2 and e|1:GP are. Given the excellent 

performance of the first and the rejection of the latter, there is inconsistency. We want to see if the 

DM test can detect it. We also need confirmation that n|2:SEP3 can be considered the third choice 

in Panel 2.5% (after removing e|1GP). 

The pairwise DM test matrix of the six Panel B models is shown in Table 8. There are two 

key facts to point out. The first is that there is not enough evidence to identify the defaulter, e|1:GP, 

from the others: e|2:SEP3, e|2:SN2, and n|2:SEP3. In fact, e|1:GP would even have been 

considered satisfactory as Panel B’s third choice if we hadn’t done the backtests. The 

complementary nature of backtesting tools proves quite useful once again. The second point is that, 

despite small advantages between models e|2:SEP3, e|2:SN2, and n|2:SEP3, there is no evidence to 

differentiate them (DM statistics are negative but not significant). As a result, the three models that 

emerge through the criteria of Panels A and B are e|2:SEP3, n|2:SEP3, and e|2:SN2. 

On the other hand, e|1:EGB2 and e|1:SEP3 are rejected by both RC and DES. Incidentally, 

the single-density models, e|1:EGB2, e|1:SEP3, and e|1:GP, appear to behave similarly at the 2.5% 

and 1% levels, all passed p=1% decently, but are now rejected for the 2.5% level. 

In Panel C of Table 6, we assess our three models’ adequacy for the traditional p = 5% level. 

The criteria we set here are the same as before, namely, (3a), no rejection by any CVaR tests at 

10%, and (3b), no rejection by any VaR tests at 10%, either. Everything is fine for e|2:SEP3 and 

e|2:SN2. However, n|2:SEP3 does show a weakness on both VaR and CVaR (DQ p-value = 0.023; 

DES p-value = 0.060). This could be due to residual autocorrelations or volatility clustering left by 

the n-prefilter. Despite this, given its strong performance at the regulatory and extremely difficult 

levels, we do not believe this to be a problem for n|2:SEP3. 
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Finally, to provide a further analysis of individual model evaluations not discussed here, 

tables A.4 and A.5 of the Online appendix A13 contain complete information about all backtesting 

outcomes for n-prefiltering and e-prefiltering, respectively. For instance, we can see in Table A.4, 

regarding n-prefiltered models, a significant decline in the CVaR sufficiency, as evidenced by the 

three CVaR tests, compared to e-prefiltered models in Table A.5. In addition, DQ and DES reveal 

serious difficulties for n-prefiltered models to deal with residual autocorrelations and volatility 

clustering that the Gaussian prefilter fails to account for. 

Discussion and conclusion 

We can draw some conclusions from our examination of the facts outlined above. First and 

foremost, the superiority of the SEP3 mixture has been demonstrated for our extremely difficult 

data in VaR and CVaR conditional forecasting at the regulatory levels of 1% and 2.5%, as well as 

the complementary 5% level. With an effective Skew-t prefilter, e|2:SEP3 behaved strongly. It is 

far more interesting, however, to learn that n|2:SEP3 even overcame the poor Gaussian 

prefiltering, whereas no other n-prefiltered model even appeared in the top-10 regulatory 1% panel. 

The lower efficacy of the single-density e|1:SEP3, as compared to e|2:SEP3, again illustrated the 

strength of the 2:SEP3 mixture in conditional modeling. Our findings support and expand those of 

Haas (2009), Broda and Paolella (2011), Miao et al. (2016), Rombouts and Bouaddi (2009), Zhu 

and Galbraith (2011), and Kim and Lee (2021). 

When we compare GP to the 2:SEP3 mixture, we see that, unlike n|2:SEP3, the Gaussian 

prefiltered n|1:GP ranked rather near the end: 15th in the 1% panel (see Table A.4). On the other 

hand, the e-prefiltered e|1:GP was not well ranked in Panel A (6th), well behind e|2:SEP3 (1st) as 

well as behind n|2:SEP3 (5th). Furthermore, in the 2.5% panel, even e|1:GP was rejected. Finally, 

GP had no chance against the 2:SEP3 mixture. 

A possible shortcoming of this work is that we could also have done the calculations 

according to a third prefilter built on Student-t. The results would have been more complete, but 

this would have overloaded the paper. Also, a second point we wanted to look into was which 

models could fill in the substantial gaps left by poor Gaussian prefiltering. n|2:SEP3 was the only 

one. 
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Two-density mixtures (made up of two densities) appear to be an optimal combination. They 

can improve risk modeling by more precisely capturing the properties of the relevant tail for 

downside risk. Each density can represent the tail fatness and skewness of each side of the data 

distribution separately. To approach this fact differently, despite being Skew-t prefiltered, no 

single-density models were retained in the final selection, including the well-known GP and 

EGB2—not even the single-SEP3. 

The next point to consider is how crucial it is to model both the prefiltering and fitting stages 

properly. While the inefficiency of n-prefiltering is obvious, e-prefiltering might still have left 

some residual thickness and skewness unaccounted for. Interestingly, we can see this in the severe 

rejection of e|3:NO and e|2:NO by two CVaR tests, while models like e|1:GP were able to capture 

residual tail thickness. The presence of residual skewness in e-prefiltering can be proved, since 

e|2:SN2 managed to capture it using its two supplementary parameters, whereas neither e|2:NO nor 

e|3:NO could. As a result, even a successful prefiltering, such as the one built with Skew-t, could 

still be incomplete by itself. The quality of the fitting stage is unquestionably equally critical. 

We applied what we called a collaborative approach to enhance model-evaluation 

efficiency, using mixed backtesting tools. The effort can concentrate on relevant and worthwhile 

competitors pinpointed among numerous models by appropriate scoring functions. On the other 

hand, a prominent example to illustrate the need to combine the two branches of backtesting is 

e|1:T, which was severely rejected by all standard backtests for p=1%, while it was rather well 

rated by logS . This was also the case, albeit less intensely, for e|1:ST3 at 1% and e|1:GP at the 

2.5% level. 

Regarding the abovementioned issue of models being rejected by backtests despite having 

excellent scoring, the exact opposite situation was stated in NZ(2017). Indeed, their study revealed 

models that rated poorly but that were not rejected by traditional backtesting, while they should 

have been (data simulated with misspecification). They advise checking models that pass 

traditional backtests alongside an appropriate scoring function. We support this proposition while 

also advocating for the opposite outcome. Excellent scoring alone, or passing conventional 

backtests alone, should no longer be considered enough to approve a model. 
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By analogy with DQ, we employed DES to backtest the conditional adequacy of CVaR, 

whereas its original purpose was to assess model forecasting optimality. The mechanism is 

straightforward to document. Low-rated models would not minimize the scoring function. 

First-order conditions cannot be met. Thus, DQ or DES (or equivalent conditional tests) should 

disqualify them. This further illustrates how interesting it can be to take advantage of the close 

relationship between both backtesting branches. Backtesting can thus achieve significant 

theoretical and practical advancements. 

In addition to fully supporting the concurrent use of all backtesting approaches, we believe 

that regulators will soon consider incorporating the best of them into a future standardized 

“minimum backtesting requirement” procedure. 
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Table 6 
Backtesting results 

     ——— Standard Backtests ———   --- Comparative Backtests ---  

Models p     % —- uc —- cc   DQ    ZES  RC   — Slog —  — SFZ — DES 
 %    Viol.    Stat.   p-val  p-val  p-val  p-val p-val  Scores   #R  Scores   #R p-val 
       (1)    (2) (3) (4)  (5) (6)   (7)   (8)    (9)    (10)  (11) 

 

Panel A:              
e|2:SEP3 1 0.92 0.0001 0.769 0.865 0.802 0.579 0.979 -3.2707 1 -3.2513 1 0.701 
e|1:EGB2 1 1.42 0.0016 0.172 0.308 0.183 0.092 0.019 -3.2178 2 -3.1857 2 0.185 
e|1:SEP3 1 1.50 0.0022 0.105 0.204 0.098 0.170 0.022 -3.2153 3 -3.1720 4 0.126 
e|1:T 1 1.92 0.0067 0.005 0.012 0.001 0.001 0.006 -3.2116 4 -3.1407 12 0.015 
n|2:SEP3 1 1.33 0.0010 0.269 0.438 0.186 0.076 0.051 -3.2112 5 -3.1846 3 0.219 
e|1:GP 1 1.42 0.0016 0.172 0.308 0.160 0.094 0.014 -3.2094 6 -3.1677 7 0.143 
e|1:ST3 1 1.58 0.0029 0.061 0.128 0.054 0.001 0.026 -3.2089 7 -3.1416 11 0.078 
e|2:SN2 1 1.42 0.0016 0.172 0.308 0.385 0.054 0.006 -3.2069 8 -3.1696 5 0.260 
e|2:T 1 1.42 0.0016 0.172 0.308 0.135 0.016 0.009 -3.2030 9 -3.1691 6 0.156 
e|3:NO 1 1.42 0.0016 0.172 0.308 0.128 0.034 0.008 -3.2027 10 -3.1584 8 0.156 
e|2:NO 1 1.42 0.0016 0.172 0.308 0.123 0.038 0.003 -3.1934 11 -3.1571 9 0.126 
e|1:NO 1 2.17 0.0103 0.000 0.001 0.000 0.017 0.000 -3.1853 12 -3.1110 18 0.007 
              

Panel B:              
e|2:SEP3 2.5 2.50 0.0000 1.000 0.463 0.373 0.747 0.809 -8.7904 1 -3.4860 1 0.320 
e|2:SN2 2.5 3.00 0.0010 0.282 0.559 0.438 0.148 0.120 -8.7860 3 -3.4705 2 0.260 
e|1:GP 2.5 3.25 0.0021 0.111 0.273 0.252 0.217 0.089 -8.7893 2 -3.4702 3 0.168 
n|2:SEP3 2.5 2.92 0.0007 0.368 0.666 0.227 0.301 0.408 -8.7720 4 -3.4680 4 0.185 
e|1:EGB2 2.5 3.25 0.0021 0.111 0.273 0.097 0.104 0.082 -8.7565 7 -3.4628 6 0.097 
e|1:SEP3 2.5 3.25 0.0021 0.111 0.273 0.081 0.202 0.041 -8.7542 8 -3.4579 9 0.079 
              

Panel C:              
e|2:SEP3 5 5.00 0.0000 1.000 1.000 0.432 0.406 0.550 -18.5713 2 -3.6757 1 0.300 
n|2:SEP3 5 5.92 0.0017 0.156 0.076 0.023 0.280 0.422 -18.4889 16 -3.6548 12 0.060 
e|2:SN2 5 5.92 0.0017 0.156 0.150 0.107 0.140 0.163 -18.5322 7 -3.6626 2 0.121 

Scores of Slog multiplied by 100 to show more digits; Panel A: Models sorted by Slog (1%-VaR) 
Panel B: Selected models, sorted by SFZ (2.5%-CVaR); Panel C: Selected models only. #R columns show model 
ranking according to their respective scoring functions. 
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Table 7 

DM test matrix for Panel A ( logS scoring 1%-VaR) 

      ---------------------------   Competing Models ------------------------- 
   

e|2:SEP3 e|1:EGB2 e|l:SEP3 n|2:SEP3 e|l:GP e|2:SN2 
Models Scores #R Stat Stat Stat Stat Stat Stat 
      (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) 
e|2:SEP3 −3.2707  1 

 
−2.428 ∗∗ −2.330 ∗∗ −3.060 ∗∗∗ −2.480 ∗∗ −2.609 ∗∗∗     
(0.015) (0.020) (0.002) (0.013) (0.009) 

e|1:EGB2 -3.2178 2 2.428 ∗∗ 
 

−0.562 −0.835 −1.334 −1.812    
(0.015) 

 
(0.574) (0.404) (0.182) (0.070) 

e|1:SEP3 -3.2153 3 2.3302 ∗∗ 0.562 
 

−0.401 −0.719 −1.026    
(0.020) (0.574) 

 
(0.688) (0.472) (0.305) 

n|2:SEP3 -3.2112 4 3.060 ∗∗∗ 0.835 0.401 
 

−0.208 −0.464    
(0.002) (0.404) (0.688) 

 
(0.835) (0.642) 

e|1:GP -3.2094 5 2.480 ∗∗ 1.334 0.719 0.208 
 

−0.624    
(0.013) (0.182) (0.472) (0.835) 

 
(0.533) 

e|2:SN2 -3.2069 6 2.609 ∗∗∗ 1.812 1.026 0.464 0.624 
 

      (0.009) (0.070) (0.305) (0.642) (0.533)   

***p < 0.01, **p < 0.05; statistics highlighted in bold are significant at least at 5%; p-values in parentheses below 
the statistics 

 
 
 

Table 8 
DM test matrix for Panel B (SFZ scoring 2.5%-VaR and CVaR) 

      ------------------------ Competing Models --------------------------    
e|2:SEP3 e|2:SN2 e|l:GP n|2:SEP3 e|l:EGB2 e|l:SEP3 

Models Scores #R Stat Stat Stat Stat Stat Stat 
      (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) 
e|2:SEP3 -3.4860 1 

 
-1.311 -1.279 -1.755 -2.013 ** -2.318 **     
(0.190) (0.201) (0.079) (0.044) (0.021) 

e|2:SN2 -3.4705 2 1.311 
 

-0.086 -0.477 2.111 ** -2.776 ***    
(0.190) 

 
(0.931) (0.633) (0.035) (0.006) 

e|l:GP -3.4702 3 1.279 0.086 
 

-0.413 -1.732  -2.497 **    
(0.201) (0.931) 

 
(0.679) (0.084) (0.013) 

n|2:SEP3 -3.4680 4 1.755 0.477 0.413 
 

-0.961 -1.628    
(0.079) (0.633) (0.679) 

 
(0.337) (0.104) 

e|l:EGB2 -3.4628 5 2.013 ** 2.111 ** 1.732 0.961 
 

-2.697 ***    
(0.044) (0.035) (0.084) (0.337) 

 
(0.007) 

e|l:SEP3 -3.4579 6 2.318 ** 2.776 *** 2.497 ** 1.628 2.697 *** 
 

      (0.021) (0.006) (0.013) (0.104) (0.007)   
***p < 0.01, **p < 0.05; statistics highlighted in bold are significant at least at 5%; p-values in parentheses 
below the statistics 

 
 

  



30 

Acknowledgements and declaration of interest 
 
The authors report no conflicts of interest. The authors alone are responsible for the content and 
writing of the paper. They thank Claire Boisvert for her collaboration in the preparation of the 
manuscript. 
 

References 

Acerbi, C. and Szekely, B. (2019). The minimally biased backtest for es. Risk net 29: 1-6. 

Basel Committee on Banking Supervision (BCBS) (2016). Minimum capital requirements for 
market risk, publication no 352. Bank For International Settlements (BIS):1-92. 

Basel Committee on Banking Supervision (BCBS) (2019). Minimum capital requirements for 
market risk, publication no 457. Bank For International Settlements (BIS):1-136. 

Broda, S.A. and Paolella, M.S. (2011). Expected shortfall for distributions in finance. In: Statistical 
Tools for Finance and Insurance, p. 57-99. Springer. 
https://doi.org/10.1007/978-3-642-18062-0_2 

Caivano, M. and Harvey, A. (2014). Time-series models with an EGB2 conditional distribution. 
Journal of Time Series Analysis 35(6):558-571. https://doi.org/10.1007/978-3-642-18062-0_2 

Christoffersen, P.F. (1998). Evaluating interval forecasts. International Economic Review 
39(4):841-862. https://doi.org/10.2307/2527341 

Cummins, J.D., Dionne, G., McDonald, J.B. and Pritchett, B.M. (1990). Applications of the GB2 
family of distributions in modeling insurance loss processes. Insurance: Mathematics and 
Economics 9(4):257-272. https://doi.org/10.2307/2527341 

Diebold, F.X. and Mariano, R.S. (1995). Comparing predictive accuracy. Journal of Business and 
Economic Statistics 13(3):253-263. https://doi.org/10.1080/07350015.1995.10524599 

Dionne, G. (2019). Corporate risk management: Theories and applications. John Wiley, 384 pages. 

Dionne, G. and Saissi Hassani, S. (2017). Hidden Markov regimes in operational loss data: 
Application to the recent financial crisis. Journal of Operational Risk 12(1):23-51. 
https://doi.org/10.21314/JOP.2017.188 

Engle, R.F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by 
regression quantiles. Journal of Business and Economic Statistics 22(4):367-381. 
https://doi.org/10.1198/073500104000000370 



31 

Fernández, C. and Steel, M.F. (1998). On bayesian modeling of fat tails and skewness. Journal of 
the American Statistical Association 93(441):359-371. 
https://doi.org/10.1080/01621459.1998.10474117 

Fernández, C., Osiewalski, J. and Steel, M.F. (1995). Modeling and inference with v-spherical 
distributions. Journal of the American Statistical Association 90(432):1331-1340. 
https://doi.org/10.1080/01621459.1995.10476637 

Fissler, T. and Ziegel, J.F. (2016). Higher order elicitability and Osband’s principle. Annals of 
Statistics 44(4):1680-1707. https://doi.org/10.1214/16-AOS1439 

Fissler, T., Ziegel, J.F., and Gneiting, T. (2016). Expected shortfall is jointly elicitable with value at 
risk implications for backtesting. Risk Magazine arXiv:1507.00244. 

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical 
Association 102(477):359-378. https://doi.org/10.1198/016214506000001437 

Gneiting, T. and Raftery, A.E. (2007). Strictly proper scoring rules, prediction, and estimation. 
Journal of the American statistical Association 102(477):359-378. 
https://doi.org/10.1198/016214506000001437 

Haas, M. (2009). Modelling skewness and kurtosis with the skewed Gauss-Laplace sum 
distribution. Applied Economics Letters 16(12):1277-1283. 
https://doi.org/10.1080/17446540802400441 

Haas, M., Mittnik, S., and Paolella, M.S. (2006). Modelling and predicting market risk with 
Laplace-gaussian mixture distributions. Applied Financial Economics 16(15):1145-1162. 
https://doi.org/10.1080/09603100500438817 

Iqbal, R., Sorwar, G., Baker, R., and Choudhry, T. (2020). Multiday expected shortfall under 
generalized t distributions: Evidence from global stock market. Review of Quantitative Finance 
and Accounting 55(3):803-825. https://doi.org/10.1007/s11156-019-00860-1 

Kerman, S.C. and McDonald, J.B. (2015). Skewness-kurtosis bounds for egb1, egb2, and special 
cases. Communications in Statistics-Theory and Methods 44(18):3857-3864. 
https://doi.org/10.1080/03610926.2013.844255 

Kim, M. and Lee, S. (2021). Risk measurement for conditionally heteroscedastic location-scale 
time series models with astd and aepd innovations. Journal of Statistical Computation and 
Simulation, pages 1-23. https://doi.org/10.1080/00949655.2021.2005062 

Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models. Journal 
of Derivatives 3(2):73-84. https://doi.org/10.3905/jod.1995.407942 

Lee, S.C. and Lin, X.S. (2012). Modeling dependent risks with multivariate Erlang mixtures. 
𝐴𝑆𝑇𝐼𝑁 Bulletin: The Journal of the IAA 42(1):153-180. 



32 

McDonald, J.B. and Michelfelder, R.A. (2016). Partially adaptive and robust estimation of asset 
models: Accommodating skewness and kurtosis in returns. Journal of Mathematical Finance 
7(1):219-237. https://doi.org/10.4236/jmf.2017.71012 

McNeil, A.J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic 
financial time series: An extreme value approach. Journal of Empirical Finance 
7(3-4):271-300. https://doi.org/10.1016/S0927-5398(00)00012-8 

McNeil, A.J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts, 
Techniques and Tools-Revised Edition. Princetown University Press. 

Miao, D.W.C., Lee, H.C. and Chen, H. (2016). A standardized normal-Laplace mixture 
distribution fitted to symmetric implied volatility smiles. Communications in 
Statistics-Simulation and Computation 45(4):1249-1267. 
https://doi.org/10.1080/03610918.2013.816559 

Molina-Munoz, E., Mora-Valencia, A., and Perote, J. (2021). Backtesting expected shortfall for 
world stock index etfs with extreme value theory and gram-charlier mixtures. International 
Journal of Finance and Economics 26(3):4163-4189. https://doi.org/10.1002/ijfe.2009 

Nolde, N. and Ziegel, J.F. (2017). Elicitability and backtesting: Perspectives for banking 
regulation. The Annals of Applied Statistics 11(4):1833-1874. 
https://doi.org/10.1214/17-AOAS1041 

Patton, A.J., Ziegel, J.F., and Chen, R. (2019). Dynamic semiparametric models for expected 
shortfall (and value-at-risk). Journal of Econometrics 211(2):388-413. 
https://doi.org/10.1016/j.jeconom.2018.10.008 

R CORE TEAM (2020). R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/ 

Rigby, B., Stasinopoulos, M., Heller, G. and Voudouris, V. (2014). The distribution toolbox of 
GAMLSS. gamlss.org. 

Righi, M. and Ceretta, P.S. (2015). A comparison of expected shortfall estimation models. Journal 
of Economics and Business 78:14-47. https://doi.org/10.1016/j.jeconbus.2014.11.002 

Rockafellar, R.T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. 
Journal of Banking & Finance 26(7):1443-1471. 
https://doi.org/10.1016/S0378-4266(02)00271-6 

Rombouts, J.V. and Bouaddi, M. (2009). Mixed exponential power asymmetric conditional 
heteroskedasticity. Studies in Nonlinear Dynamics & Econometrics 13(3):1-32. 
https://doi.org/10.2202/1558-3708.1645 



33 

Taylor, J.W. (2019). Forecasting value at risk and expected shortfall using a semiparametric 
approach based on the asymmetric laplace distribution. Journal of Business and Economic 
Statistics 37(1):121-133. https://doi.org/10.1080/07350015.2017.1281815 

Zhu, D. and Galbraith, J.W. (2011). Modeling and forecasting expected shortfall with the 
generalized asymmetric student-t and asymmetric exponential power distributions. Journal of 
Empirical Finance 18(4):765-778. https://doi.org/10.1016/j.jempfin.2011.05.006 

Zhu, D. and Zinde-Walsh, V. (2009). Properties and estimation of asymmetric exponential power 
distribution. Journal of Econometrics 148(1):86-99. 
https://doi.org/10.1016/j.jeconom.2008.09.038 

Zoia, M. G., Biffi, P., and Nicolussi, F. (2018). Value at risk and expected shortfall based on 
gram-charlier-like expansions. Journal of Banking and Finance 93:92-104. 
https://doi.org/10.1016/j.jbankfin.2018.06.001 

 

 



1 

 

Forecasting VaR and CVaR based on Skewed Exponential Power 
mixture in compliance with the new market risk regulation 

25 November 2022 

 
 

Online Appendices 

The appendices present mathematical developments regarding VaR and CVaR formulas of 

competing models. Table A.1 shows the symbols of different models. Appendix A2 presents the 

general expression of CVaR. Appendix A3 shows how to compute CVaR for a mixture of 

distributions. Appendices A4 to A10 develop the CVaR formulas for different statistical 

distributions. Appendix A11 derives an optimal portfolio, which serves as input data beginning in 

Section 2. Appendix A12 contains complementary derivations. Complementary tables are 

presented in Appendix A13. 

 

A1. Estimated models 

Table A.1 
Model Symbol Definitions 

Model  Symbol Description of the model 

M1 1:NO Normal distribution 

M2 1:T Student-t distribution 

M3 1:EGB2 Exponential GB2 distribution 

M4 2:NO Mixture of 2 normal distributions 

M5 2:T Mixture of 2 Student-t distributions 

M6 3:NO Mixture of 3 normal distributions 

M7 2:SN2 Mixture of 2 SN2 distributions 

M8 2:SEP3 Mixture of 2 SEP3 distributions 

M9 1:ST3 Skew-t distribution (type 3) 

M10 1:SEP3 SEP3 distribution 

M11 1:GP Generalized Pareto distribution 
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A2. General expression of CVaR 

We are interested in the family of location-scale parametric distributions F . For a 

distribution F F  and a r.v. Y F , the reduced variable  Z Y   , where n  a  d    

denote location and scale parameters, follows the distribution 0F defined by: 

0F(y) F (z)  

where y and z are generic variables for Y and Z random variables, respectively. 

0F is the reduced cumulative function of F . The reduced density 0f (ꞏ) is related to the 

density f (ꞏ) by:  

 
0f (z)

f (y) 


 (A0) 

In the following, downside risk is located in the left tail (negative returns). The risk 

measures are negated, so they are positive. The probability level p  corresponds to the degree of 

confidence  1 p . The p-quantile  q  Quantile Y,  level  p  , so q < 0 (left tail). In the other 

hand, we note e E Y Y q     , which means e < 0 (left tail). Then we compute p VaR q    

and p CVaR  e  .  

According to Broda and Paolella (2011), the tail quantity of a density  f  at point x is 

defined by:    
def x

ftail x t f t dt.


  We develop the expression of CVaR using this definition:  

                      

   

     

     

0

q

0q

q q
0 0

0

f

1
e E Y Y q y f y dy (A1)

F q

f z1
z d z (A2)

p

1
f z dz z f z d z (A3)

p

1 q q
F Tail (A4a)

p
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Equation (A2) is obtained by using (A0) after a change of variable  z y ,   or

y z,   so, dy dz.   Note that there are two parts in formula (A4a): the first one is p  

times the centered reduced cumulative  0F  evaluated at the centered reduced quantity  q .   

The second one is p times the tail of 0f ,  also evaluated at  q .   CVaR is finally: 

 0

0
f f

1 q q
CVaR e F Tail

p

                    
 (A4) 

An important remark is that we have of course   0F q p   , which would simplify the 

expression (A4). Even so, we will leave the expression as it is so that it will be of the same form as 

for mixtures of distributions where there will be several cumulatives  0
iF  , for which 

  0
iF q p.    

A3. CVaR of a mixture of distributions 

Let  m  be a mixture of n densities  if , i 1,...,n.   Each density if F  has a parameter 

of location i  and scale i. The mixture density  mf  and its distribution  mF  are written as: 

       
n n

m i i m i i
1 1

f y c f y , F y c F y    

where ic  is a probability, to be estimated, regarding the weight of density  if  . The sum of the ic

is equal to 1.  

Let mq be the p-quantile of the mixture. We denote  0
if  and  0

iF  as the reduced density and the 

reduced cumulative of the ith density. The calculations are such as: 
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m

m

m i

i

0
i

q

m m

n q

i i
1

0qn
i i

i i i i i i
1 i

n
0 m i m i

i i i i f
1 i i

1
e E Y Y q yf y dy

p

1
c y f y d y

p

f z1
c z d z

p

q q1
c F Tail

p










     



   


                  



 

 



 

or, in vector form: 

1

n

0 0m 1 m 1
T 1 f

1 11 1 1

m

n n n0 0m n m n
n f

n n

q q
F Tail

c1
CVaR e .

p c q q
F Tail

        
                     

                                   
                

      

Generally, mq is found numerically as a solution to the equation  m mF q p 0.   Note that 

for a distribution i,   0
i m i iF q p.     

A4. CVaR of a normal distribution 

The density  ,    of a normal distribution  N ,   is: 

 
2

,

1 1 y
y exp .

22
 

           
 

We denote both  0   and  0   as the density and the cumulative of the standard normal 

distribution  N 0,1 . It is easy to show that: 

    0 0x x x .
x


   


 (A5a) 
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For  Y N , ,   q being the p-quantile of Y is found by solving 

  q
P Y q P Z p

      
, hence: 

 1
0q p   . 

Further, with the definition of tail and with the help of equation (A5a) , we find: 

      
0

x

0 0Tail x z z dz x 
    .  (A5) 

We apply (A4) and (A5) to obtain: 

 , , 0 0

1 q q
CVaR

p  

                  
. (A6) 

A5. CVaR of a Student-t distribution 

The density  T, , ,f      of the Student-t of parameters  (location),  (scale) and   

(degrees of freedom) is written as: 

 
b2

T, , ,

A y 1
f y 1



  

           
 

where  
1

A B 1 2, 2


      and  b 1 2.     B  is the beta function. 1  The reduced 

functions are noted  0
T,f   and  0

T,F   . We determine q from the VaR of  Y t , ,    to the 

degree of confidence  1 p : 

   

 

0
T,

0 1
T,

q
P Y q P Z q F p

q F p






           

   

 

where  0 1
T,F 
   is the quantile (or inverse) function of  0

T,F   . The tail at point x is by definition: 

      0
T ,

x x b0 2
T,f

Tail x z f z dz A z 1 z dz.




 
      (A7) 

 
1 There is another way to write the constant A with the gamma function    instead of the beta function. 
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We change the variable 2u z  , hence zdz vdu 2 . The integral of equation (A7) 

becomes: 

          

   

   

 

2

0
T ,

2

x
b

f

bx 2 2
b 1

2
0
T,

Tail x A 1 u du
2

A x x
1 u 1 A 1 (A8)

2 b 1 2 1 b

x
f x . (A9)

1







  






 

                     

 
  

 



 

In equation (A8), we replace 𝑏 with its value  1 2.  The final expression of the tail is 

simplified in (A9). In order to be valid we need to have 1  . We now apply (A9) in (A4) to find: 

T, , ,

2

0 0
f T, T,

q
1 q q

CVaR F f .
p 1    

                         
  

 

Important: In Excel, the functions related to Student-t distribution consider the degree of freedom 

ν to be an integer. Therefore, calculations cannot be made in standard form, and an additional 

module is required. The XRealStats.xlam module is used. It must be downloaded from the 

website2, placed in the C:/TP5 directory and activated to use the functions that allow calculations 

with ν∈R. The cumulative and density functions are called by T_DIST. The inverse of the 

cumulative function is T_INV. 

A6. Exponential Generalized Beta type 2 distribution: EGB2  

The EGB2 (Exponential Generalized Beta type 2) density has four parameters and is written, 

according to Kerman and McDonald (2015), for y R : 

 
  

z

z

e
f y , , ,

B , 1 e



    
    

 

 
2 http://www.real-statistics.com/free-download/ 
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where  z y , , R, , 0.         B  is the standard beta function.  

The parameters  and   characterize both tail thickness and the asymmetry of the 

distribution. The distribution has a negative or positive asymmetry, or is symmetrical when  , 

    or     respectively. As for the tail thickness, the smaller the  , the thicker the left tail (all 

other parameters being equal). 

The EGB2 includes many parametric distributions as special cases. Specifically, when 

,   the distribution converges to the normal. In practice, this convergence can be 

considered to have been reached when 15.  When 1,    EGB2 becomes a logistic 

distribution. Further, lemma 2 of Caivano and Harvey (2014) shows that EGB2 tends toward a 

Laplace density when 0.    Other interesting special cases of EGB2 and GB2 are presented by 

Kerman and McDonald (2015).  

Cummins, Dionne, McDonald, and Pritchett (1990) applies the GB2 to compute reinsurance 

premiums and quantiles for the distribution of total insurance losses. EGB2 is increasingly used in 

finance, as the studies by Caivano and Harvey (2014), McDonald and Michelfelder (2016), and in 

operational risk management (Dionne and Saissi Hassani, 2017). 

A7. CVaR of a Skew-Normal distribution: SN2 

The definition of the density of Skew-Normal (SN2) of Fernandez et al. (1995) for y R  

can be written as:  

        

2 2
2

SN2, , , y y22

2 1 y 1 y 1
f y exp I exp I

2 22 1
    

                                      
 (A10) 

where R , 0,  0.   SN2 refers to the classification proposed by Rigby et al. (2014). 

If 1,   asymmetry is to the left (negative returns); if 1,   asymmetry is positive. When 1, 

we return to a normal (symmetrical) distribution. This density is also useful to compute capital in 

operational risk management, as in the study by Dionne and Saissi Hassani (2017). A random 
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variable   0
SN2, , , SN2,Y F Z Y F .        For z 0, only the left side of the equation (A10) 

is non-zero. The reduced density is then written as: 

   0
SN2, 02

2
f z z .

1


  

 
 

The cumulative at point z 0 is written as: 

     
z0 0

SN2, SN2, 02

2
F z f t dt z .

1 
   

   

The functions  0  and  0  designate the cumulative and the reduced centered normal 

density  N 0,1 . The previous equation allows us to find the expression of the VaR at the 

confidence level  1 p : 

   0
SN2,

q q
P Y q P Z F p

               
 

02

2 q
p

1

      
 

 
2

1
0

1 1
q p

2
   

       
.  (A11) 

The expression (A11) is valid only if  2p 1 2 1,   otherwise  1  would not be 

defined. This requires that 2 p 1.    

The expression of the tail is developed as follows: 

      
x x0

SN2, 02

2
Tail x z f z dz z z dz

1  


   

    

                      
x x

0 02 2

2 u du 2
u u

1 1

 




           

     02

2
x .

1
   

 
 (A12) 
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Equation (A12) is obtained by changing the variable u z  and using equation (A5a). 

Equations (A11) and (A12) in (A4) give the expression of CVaR: 

SN2, , , 0 02

1 2 q 1 q
CVaR

p 1  

                           
. 

Again, when 1  we find the CVaR of  N , .   

A8. Skewed Exponential Power type 3 Distribution: SEP3 

Fernandez et al. (1995) defined this distribution. SEP3 refers to the classification proposed 

by Rigby et al. (2014). The density of SEP3 is written as: 

     SEP3, , , , y y

c 1 y 1 y 1
f y exp I exp I

2 2

 

     

                         
 

where    
1

2 1c 1 2 1


        and where R, 0, R, 0.       They are respectively 

the parameters of location, scale, asymmetry, and tail thickness. SEP3 has as special cases the SN2 

when 2  and a Laplace distribution (asymmetric version) when 1 . Note that other names 

exist in the literature to designate distributions comparable to SEP3, such as AP (Asymmetric 

Power) and AEP (Asymmetric Exponential Power). 

SEP3 can be leptokurtic when 2 or platykurtic when 2  (see Figure A1). VaR and 

CVaR calculations use gamma functions and the gamma distribution, as shown in the next section.  
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1   

 

1.5   



11 

 

2   

Figure A1: Plots of SEP3 with different values of  and   

A9. VaR and CVaR of SEP3 

As we did for SN2, we develop the expression of reduced cumulative of SEP3 for z 0  

(left tail) by writing: 

      
z0

SEP3, , 2 1

1
F z exp w dw

21 2 1


  

             

         
     

1
1 1 u

2 1 z 2

2
u e du

1 2 1


   
 



       (A13) 

       
1 1 u

2 z 2

1
u e du.

1 1


  




     (A14) 

Equation (A13) is immediate after the change of variable  u w 2
    and by positing 

s z 0.  Note that the inside of the integral 1 1 uu e du  is reminiscent of the gamma function. 
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We need the complete gamma function    and its incomplete version  ,   , which are defined 

by: 

 
r a 1 t

0
a, r t e dt a 0, r 0      

  a 1 t

0
a t e dt a 0

     . 

Parameter a is for the shape of these functions. It is easy to see that    a a, .    We 

also have a distribution that bears the same name, i.e. gamma,3 whose cumulative parameter shape 

= a (and scale 1 because it is standardized) evaluated at the point x 0 . It is written as 

     1

aG x a a,x .


     The calculation of  0
SEP3, ,F z  can be obtained from equality (A14): 

       

   
 

 
    

 
z 2

0 1 1 u
SEP3, , 2 z 2

0 02 2

12

1
F z u e du

1 1

1 1 , z 21 1
(A15)

11 1 1

z1
1 G (A16)

1 2



 

  
  








   

                 

  
          

 



 

Equality (A15) is a cut-off of the integral's bounds that allows finding the gamma functions. 

To save space, we have not inserted the complete mathematical expressions of the two integrals in 

(A15), which are the same as in the previous equation. The expression is simplified by using the 

cumulative  1G shape 1 and scale 1 .    By inverting (A16), the quantile of VaR at the degree 

of confidence  1 p is immediate: 

 
3 Under the same “gamma” designation, three entities can be distinguished: the function 𝛤 .  (complete from 0 to 
∞) and the incomplete function (its integral stops at a point 𝑟 ∞). The third entity is the gamma distribution with 

two parameters: shape and scale. 
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0
SEP3, ,

1
1 2

1

q
F p

2 G 1 p 1
q

 





    

       


 

The calculation of the tail of SEP3 is similar to that done for the cumulative, but with a shape

2  parameter for x 0 : 

               

   

     

   
 

x x0
SEP3, ,

1
2 1 u

2 x 2

1

22

1
Tail x z f z dz c z exp z dz

2

2
u e du

1 1

x2
2 1 G . (A17)

21 1




   

   

 





       
 



    

                  

 

  

Finally, by putting (A16) and (A17) in (A4) we find: 

 
 

1

SEP3, , , , 1 22

q q
21 1 2

CVaR 1 G 1 G .
p 1 2 1 2

 



     

                                                                  

 

Remember that  nG x is the cumulative gamma distribution of shape = n   and scale = 1 

evaluated at point x. When 2,  we return to SN2. If 2,  and 1,  we get a normal 

distribution. The gamma distribution and the complete gamma function exist in standard Excel. 

 

A10. Skew-t distribution: ST3 

The density function of Skew-t of Fernandez et al. (1995), can be written for x R as: 

  
   1 2 1 22 2 2

ST3 y y2

c u u
f x , , , 1 1 1 1

   

 

                        
 (A18) 

where    
1

2 1/2u (x ) / ;    R;    , , 0,  and  2 1 B 1/ 2, / 2c


               . 
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ST3 refers to the classification proposed by Rigby et al. (2014). For z<0, its reduced density and 

cumulative are:  

   0 0
ST3, T,2

2
f z f z

1 


 

 
  and     0 0

ST3, T,2

2
F z F z

1  
 

  

where 0
T,f (.)  and 0

T,F (.)  are the reduced density and cumulative of a Student-t. The tail at point x 

is:  

                    

     

 

0
ST 3

0
T ,

x x0 0
ST3 T,2f

x 0
T,2

2 f

2
Tail x z f z dz z f z dz

1

2
u f u du

(1 )

2
Tail (x )

(1 ) 

 






  

 


  

 
  

 



 

Hence,  
2

0 0 1
ST3, 0 ST3 T,

1 1
F q p      VaR q F p

2


 

                 
 (A19) 

Note the similarity with SN2 expressions. We now apply (A4) and (A9) to find 

 

 

0

0
f ST3 f

2

0 0
T, T,2

1 q q
CVaR F Tail

p

q
2 q 1 q

F f
1p 1

 

                  
                               
  

 (A20) 

 

A11. Calculations on optimal portfolio 

A11.1.  Determining optimal portfolio 

Let tY  be the return on the given asset over a time horizon t. tY  follows a distribution F, 

assumed strictly increasing with finite mean. At a given p-level, we have 
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  p 1VaR F p   (A21) 

 p p
t tCVaR E Y Y VaR       (A22) 

We now introduce the relative VaR and CVaR. Relative VaR, denoted VaRr, is the distance 

between a given quantile of return distribution and its mean. Relative CVaR, or CVaRr, can be 

introduced as CVaR coverage including the expected return. Their expressions are: 

   p p
tVaRr VaR E Y   and  p p

tCVaRr CVaR E Y  .  

We begin by demonstrating that optimal portfolio weights are identical minimizing VaRr  

or CVaRr at p 5% . Assuming normal returns for now, the portfolio measures are: 

 1 1
portfolio portfolio 0 portfolio 0VaR (p)     and   VaRr (p)        (A23) 

 
   1 1

0 0 0 0

portfolio portfolio portfolio

(p) (p)
CVaR    and   CVaRr

p p

    
     (A24) 

where T
portfolio    ,  is security weights vector, is the return variance-covariance matrix, 

1
0 ( )   and 1

0 ( )  are the quantile and densty functions of  N 0,1 . Since 1
0 (p)  and 

 1
0 0 (p) / p   are constant, both VaRr and CVaRr are minimized on T   alone. Hence, the 

optimal portfolio is the same. Moreover, optimal weights are independent of p .  

Table A.2a shows the results4. The portfolio mean and standard deviation are reported next to those 

of the three assets. We focus on VaR line in order to comment weighted sum column. The portfolio

2.079%.VaR    2.621%,4.321%,2.288%R   represents the VaR vector of individual assets 

(normal returns, equation (A23)).  

 
4 See also the Excel file available on the Canada Research Chair website at https://chairegestiondesrisques.hec.ca/en/ 
seminars-and-publications/book-wiley/ 



16 

Table A.2a : Optimal portfolio (normal model)  
  IBM GE Walmart 

 Weight  0.3889444 -0.0465131 0.6575686 

 Portfolio    

Mean 
Variance* 
Standard deviation 
Skewness 
Kurtosis 

0.05244% 
0.01680 
1.29631% 
0.35887 
9.81578 

 0.07580% 
 

 1.63961% 

 -0.00286% 
 

  2.62559% 

0.03472% 
 

1.41254% 

p = 5%      

 VaR  
 VaRr  

2.07980% 
2.13224% 

 2.62112% 
 2.69692% 

  4.32157% 
  4.31871% 

2.28871% 
2.32343% 

CVaR 2.62147% 2.62112% 4.32157% 2.28871% 

CvaRr 2.67392% 2.69692% 4.31871% 2.32343% 
*Variance is multiplied by 100 to show more decimal digits. 

For p=5%, we calculate the empirical VaR  as the negated value of the 61st smallest 

value of Y . The subscript np indicates nonparametric empirical estimates throughout the sequel. 

 VaR Quantile T, p  (A25) 

 CVaR ∑ Y 1   where  N ∑ 1  (A26) 

where 𝟏𝐝 is the indicator function equal to 1 if 𝒅 is true else 0. 

Table A.2b displays the optimal portfolio’s computed 𝐕𝐚𝐑𝐧𝐩  and 𝐂𝐕𝐚𝐑𝐧𝐩  alongside 

those of the individual assets (Portfolio 𝐕𝐚𝐑𝐧𝐩 𝟐.𝟎𝟒𝟕𝟑% and 𝐂𝐕𝐚𝐑𝐧𝐩 𝟐.𝟗𝟕𝟕𝟗%).  

Table A.2b 
Empirical measurements VaRnp and CVaRnp 

 IBM GE Walmart 

Weight  0.38894 -0.04651 0.65756 

p  5%  

Order: 61 
 

Portfolio 
  

 
 

VaRnp
 

CVaRnp 
2.04736% 
2.97795% 

2.69619% 
3.82711% 

4.12926% 
6.43375% 

2.02620% 
3.21706% 
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Figure A2 clearly shows that a Gaussian cannot fit. Student-t is not sharp enough and does 

not keep enough mass around the mode. This rather suggests a Laplace density. 

 

 

Figure A2: Histogram and densities of the optimal portfolio 

 

A11.2.  Preliminary estimations of competing models 

The return portfolio Y  is assumed to remain optimal for all competing models, to ensure, 

result comparability. Models M1 to M8 are directly fitted to 𝑌  using the maximum 

likelihood approach in static modeling. 

Model validation consists of the usual criteria: AIC, BIC, and the KS goodness-of-fit test. 

Also, model-derived kurtosis and asymmetry coefficients are compared to empirical ones. Tables 3 

and 4 depict results for p=5%. For mixtures, jc  identifies the weight of the thj  individual density 

in the mixture. Empirical VaR 2.0473% and CVaR 2.9779%, are from Table A.2b. 
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Our first model, M1=1:NO, consists of a single Gaussian (Appendix A4). Obviously, M1 is 

far from allowing the targeted empirical skewness=0.35 and kurtosis=9.81. The next model, M2, 

assumes a single Student-t (Appendix A5). The estimated degree of freedom 43.288   

confirms a high tail thickness. KS does not reject M2. AIC and BIC improve compared to M1, but 

asymmetry cannot be captured. M3=1:EGB2 has a single EGB2 density (exponential generalized 

beta 2; Appendix A6). Both thickness and skewness can be captured by  and .   Values 

0.165   and 0.158   tend to 0. Therefore, EGB2 tends toward a Laplace (Lemma 2 of 

Caivano and Harvey, 2014). This confirms Section 1 remarks. 

We now explore density mixtures. M4=2:NO is made of two normals (Appendices A2, A3, 

A4). Kurtosis 6.7  improves. KS p-value  0.218 10%.   However, 3.113%CVaR   is the 

farthest away from CVaR . Next is M5 =2:T, a two Student-t mixture (Appendices A2, A3, and 

A5). Kurtosis of 8.4 is close to 9.8. BIC=-7,207.6 deteriorates. npVaR VaR  but  CVaR

3.041% CVaRnp. A word about M6=3:NO (three normals), which almost reaches empirical 

kurtosis: 9.4 9.8 . npVaR VaR  and CVaR=3.004% is close to CVaR . However, it cannot 

capture data skewness. 

To capture data skewness, we build M7=2:SN2, which is a two SN2 mixture (skewed 

normal type 2 of Fernández et al., 1995, Appendix A7). Both skewness parameters, 1 1.44 1    

and 2 1.10 1   , comply with the data. Although kurtosis and AIC deteriorate, the good news is 

that CVaR 2.968%  falls close to CVaR .  

We now incorporate tail thickness, using two SEP3 distributions (skewed exponential power 

type 3 of Fernández et al., 1995). M8=2:SEP3 has nine parameters (Appendices A3, A8, and A9). 

AIC and BIC indicate a better fit to the data. npVaR 1.992% VaR  , but, interestingly, its 

CVaR  2.973%  falls close to CVaR . 

Based on thickness and skewness parameters 1 10.959 1, 1 1. 031     , 2 2.108 2   , 

and 2 0.613 1  , the first SEP3 is a Laplace degenerate, whereas the second SEP3 is 

practically an asymmetric normal, which is an SN2. These facts illustrate relationships between our 
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models. The results corroborate similar findings in the recent market-risk literature highlighting the 

Laplace-Gaussian mixture (Haas, 2009; Broda and Paolella, 2011; Miao et al., 2016).   

For further analysis, Tables 4 and 5 (in main text) provide exhaustive information. Also, 

Table A.13 (Online Appendix A13) illustrates the behavior of the eight models at p = 2.5% and 1%, 

which is similar to p=5%. 

To conclude this overview section, Figure A.3 depicts VaR and CVaR behaviors at 5% in 

the left tail for 2:SEP3 along with 1:NO and 1:T, including their densities. Risk measures are 

reported with negative values, so they can be shown with negative returns. 
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Figure A.3: VaR and CVaR plots of selected models in the left tail of returns 
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A12. Complementary derivations 

A12.1. Converting between conditional risk measures of 𝐘𝐭 and 𝐙𝐭 given 

𝕴𝐭 𝟏  

The return series tY given t 1  follows a conditional distribution Ft:   Yt|ℑt 1 ∼ Ft . 

We assume F  continuous, strictly increasing with finite mean. Conditional risk measures at 

p-level are defined by  

VaR Y F p   and  CVaR Y E Y |Y VaR Y ,ℑ . 

Following NZ (2017) with adaption due to the left tail, assume that Y  can be written 

as 

 Y µ σ Z  (A27) 
where tZ  is an i.i.d. random standardized variable independent of ℑ . µ

E Y |ℑ  and σ var Y |ℑ . 

Converting from VaR Z  to VaR Y : 

Let Y VaR Y  and Z VaR Z . Using (A27), we can write: 

Z Y μ /σ  

VaR Z VaR Y μ /σ  

 ⟹  VaR Y μ σ VaR Z  (A28) 

Converting from CVaR Z  to CVaR Y : 

            CVaR Y E  Y |Y VaR  Y ,ℑ  (A29) 

E  μ 𝜎 𝑍 | μ 𝜎 𝑍 μ σ VaR Z ,ℑ  (A30) 

μ σ E Z |Z VaR Z ,ℑ  

 ⟹  CVaR Y μ σ CVaR Z  (A31) 
 

Equation (A30) is the result of (A27) at t+1 and (A28) applied into (A29). 
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A12.2. Defining 𝐒𝐥𝐨𝐠 scoring function of VaR 

According to Gneiting and Raftery (2007, eq. (40)), a general form of strictly 

consistent scoring functions for VaR can be written as: 

 S v , y I p G v I G y η y , (A32) 

where I 1 , G and   are functions. E η Y  must exist, and G continuously 

differentiable and strictly increasing.  

We fix G x log x . In this case, the corresponding scoring function would be 

 S v , y p I log v I log y η y . (A33) 

If η .  is ignored in (A33), S v , y  would be not defined for y 0. To fix this, notice 

min y 7.15% 100%  (see Table 2). As a result, 1 0  ∀t  t

1, . . ,1200 . Therefore, for v 1, we have 

S 1, y p 1 log 1 1 log y η y  

        1 log y η y  

 

The quantity 1  is null but the expression S 1, y  is not defined for 𝑦 0 unless we 

choose η such that  

1 log y η y ρ y  

where ρ is a function defined ∀y ∈ R and 𝐸 ρ y  exists. The function ρ x 0 does 

the job. Thus, 

η x 1 log x  

has the ability to make the function S  of equation (A33) be defined for all y . Indeed, the 

scoring function thus obtained is: 

S v , y p I log v I log y 1yt 1 0 1yt 1 log yt  

                 p I log v I log y 1 1 log y   (A34) 
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For y v  ⟹ S v , y p 1 log v log y . 

For y v  ⟹ S v , y p log v 0 log y 0 log y  

                  S v , y p log v  

 

To summarize: 

             S v , y
p 1 log v log y , if y v

p log v , if y v
 (A35) 
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A13. Complementary tables 

 

Table A.3 
Calculation and comparison of risk measures and moments 

P 
        
Densities VaR CvaR Mean Variance Skewness Kurtosis 

 Mixtures (in %) in%) (in%) ( 100)   
0.050 non-param 2.04736 2.97795 0.0524 0.0168 0.3589 9.8158 
0.050 1:NO 2.07980 2.62147 0.0524 0.0168 0.0000 3.0000 
0.050 1:T 1.86805 3.01294 0.0697 0.0186 0.0000  
0.050 1:EGB2 2.00674 2.89562 0.0525 0.0157 -0.0813 5.8076 
0.050 2:NO 1.95397 3.11363 0.0525 0.0168 -0.1386 6.6789 
0.050 2:T 2.02945 3.04197 0.0437 0.0163 -0.1544 8.3993 
0.050 3:NO 2.03846 3.00451 0.0549 0.0172 0.1224 9.4321 
0.050 2:SN2 1.87846 2.96880 0.0586 0.0163 0.1697 7.5293 
0.050 2:SEP3 1.99293 2.97395 0.0544 0.0163 0.0051 7.1752 

        

0.025 non-param 2.54290 3.66665     
0.025 1:NO 2.48828 2.97808     
0.025 1:T 2.51522 3.87890     
0.025 1:EGB2 2.62287 3.51175     
0.025 2:NO 2.81354 3.90424     
0.025 2:T 2.71654 3.74976     
0.025 3:NO 2.66598 3.68928     
0.025 2:SN2  2.71156 3.70573     
0.025 2:SEP3 2.66110 3.66159     

        

0.010 non-param 3.59575 4.51902     
0.010 1:NO 2.96323 3.40250     
0.010 1:T 3.54473 5.29712     
0.010 1:EGB2 3.43734 4.32622     
0.010 2:NO 3.89559 4.82632     
0.010 2:T 3.62577 4.72258     
0.010 3:NO 3.47885 4.71115     
0.010 2:SN2 3.72513 4.51543     
0.010 2:SEP3 3.57259 4.58396     
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Table A.4 
Backtests of n-prefiltered models (Gaussian) 

    ——-— Standard Backtests -----------  -- Comparative Backtests -- 

Models p     % —- uc —- cc   DQ    ZES  RC  — Slog —    — SFZ —  DES 
 %    Viol.    Stat.   p-val  p-val  p-val  p-val p-val  Scores   #R   Scores  #R  p-val 
       (1)    (2) (3) (4)  (5) (6)   (7)   (8)     (9)    (10)  (11) 

 
n|1:NO 1 2.17 0.0103 0.000 0.001 0.000 0.000 0.000 -3.1255 22 -3.0380 22 0.003 
n|1:T 1 2.00 0.0078 0.002 0.006 0.000 0.009 0.020 -3.1623 19 -3.0907 21 0.006 
n|1:EGB2 1 1.50 0.0022 0.105 0.204 0.068 0.053 0.003 -3.1775 13 -3.1431 10 0.102 
n|2:NO 1 1.42 0.0016 0.172 0.308 0.087 0.001 0.000 -3.1528 21 -3.1028 19 0.090 
n|2:T 1 1.42 0.0016 0.172 0.308 0.100 0.043 0.015 -3.1614 20 -3.1131 17 0.140 
n|3:NO 1 1.50 0.0022 0.105 0.204 0.036 0.003 0.002 -3.1651 17 -3.1305 14 0.131 
n|2:SN2 1 1.42 0.0016 0.172 0.308 0.116 0.006 0.000 -3.1710 16 -3.1251 16 0.106 
n|2:SEP3 1 1.33 0.0010 0.269 0.438 0.186 0.076 0.051 -3.2112 5 -3.1846 3 0.219 
n|1:ST3 1 1.58 0.0029 0.061 0.128 0.042 0.029 0.009 -3.1643 18 -3.0937 20 0.062 
n|1:SEP3 1 1.50 0.0022 0.105 0.204 0.070 0.025 0.002 -3.1775 14 -3.1311 13 0.095 
n|1:GP 1 1.42 0.0016 0.172 0.308 0.120 0.048 0.003 -3.1763 15 -3.1258 15 0.109 

              
n|1:NO 2.5 3.58 0.0043 0.024 0.073 0.006 0.000 0.002 -8.6578 22 -3.3954 22 0.008 
n|1:T 2.5 3.58 0.0043 0.024 0.073 0.007 0.014 0.015 -8.6747 20 -3.4132 21 0.012 
n|1:EGB2 2.5 3.42 0.0031 0.054 0.146 0.029 0.065 0.066 -8.7022 16 -3.4374 15 0.039 
n|2:NO 2.5 3.25 0.0021 0.111 0.273 0.070 0.032 0.095 -8.7110 15 -3.4329 17 0.056 
n|2:T 2.5 3.33 0.0026 0.078 0.202 0.084 0.058 0.044 -8.6989 19 -3.4300 19 0.089 
n|3:NO 2.5 3.17 0.0017 0.155 0.357 0.034 0.010 0.005 -8.7011 17 -3.4376 14 0.051 
n|2:SN2 2.5 3.17 0.0017 0.155 0.357 0.117 0.061 0.163 -8.7458 10 -3.4501 10 0.085 
n|2:SEP3 2.5 2.92 0.0007 0.368 0.666 0.227 0.301 0.408 -8.7720 4 -3.4680 4 0.185 
n|1:ST3 2.5 3.42 0.0031 0.054 0.138 0.014 0.026 0.010 -8.6742 21 -3.4141 20 0.020 
n|1:SEP3 2.5 3.42 0.0031 0.054 0.138 0.013 0.047 0.032 -8.7002 18 -3.4323 18 0.026 
n|1:GP 2.5 3.33 0.0026 0.078 0.202 0.063 0.129 0.045 -8.7401 12 -3.4476 11 0.060 

              
n|1:NO 5 5.92 0.0017 0.156 0.338 0.182 0.002 0.008 -18.5184 10 -3.6403 20 0.039 
n|1:T 5 6.00 0.0020 0.123 0.218 0.103 0.038 0.024 -18.5059 13 -3.6454 17 0.048 
n|1:EGB2 5 5.92 0.0017 0.156 0.248 0.139 0.060 0.078 -18.4738 19 -3.6457 16 0.080 
n|2:NO 5 5.83 0.0014 0.196 0.390 0.227 0.069 0.120 -18.4829 17 -3.6445 19 0.090 
n|2:T 5 5.83 0.0014 0.196 0.277 0.109 0.046 0.043 -18.4475 22 -3.6386 21 0.076 
n|3:NO 5 5.67 0.0009 0.299 0.326 0.199 0.025 0.025 -18.4929 15 -3.6491 14 0.132 
n|2:SN2 5 5.75 0.0011 0.244 0.441 0.243 0.086 0.137 -18.4967 14 -3.6514 13 0.127 
n|2:SEP3 5 5.92 0.0017 0.156 0.076 0.023 0.280 0.422 -18.4889 16 -3.6548 12 0.060 
n|1:ST3 5 5.92 0.0017 0.156 0.248 0.134 0.032 0.022 -18.4584 21 -3.6373 22 0.061 
n|1:SEP3 5 5.83 0.0014 0.196 0.277 0.163 0.080 0.036 -18.4803 18 -3.6448 18 0.081 
n|1:GP 5 5.83 0.0014 0.196 0.390 0.228 0.135 0.070 -18.4657 20 -3.6463 15 0.118 

Scores of Slog multiplied by 100 to show more digits. 
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Table A.5 
Backtests of e-prefiltered models (Skew-t) 

   ———— Standard Backtests ——-—   --- Comparative Backtests -- 
Models p     % —- uc —- cc   DQ    ZES  RC   — Slog —   — SFZ —  DES 

 %    Viol.    Stat.   p-val  p-val  p-val  p-val p-val  Scores   #R  Scores   #R  p-val 
      (1)     (2) (3) (4)  (5) (6)   (7)   (8)    (9)    (10)   (11) 

 
e|1:NO 1 2.17 0.0103 0.000 0.001 0.000 0.017 0.000 -3.1853 12 -3.1110 18 0.007 
e|1:T 1 1.92 0.0067 0.005 0.012 0.001 0.001 0.006 -3.2116 4 -3.1407 12 0.015 
e|1:EGB2 1 1.42 0.0016 0.172 0.308 0.183 0.092 0.019 -3.2178 2 -3.1857 2 0.185 
e|2:NO 1 1.42 0.0016 0.172 0.308 0.123 0.038 0.003 -3.1934 11 -3.1571 9 0.126 
e|2:T 1 1.42 0.0016 0.172 0.308 0.135 0.016 0.009 -3.2030 9 -3.1691 6 0.156 
e|3:NO 1 1.42 0.0016 0.172 0.308 0.128 0.034 0.008 -3.2027 10 -3.1584 8 0.156 
e|2:SN2 1 1.42 0.0016 0.172 0.308 0.385 0.054 0.006 -3.2069 8 -3.1696 5 0.260 
e|2:SEP3 1 0.92 0.0001 0.769 0.865 0.802 0.579 0.979 -3.2707 1 -3.2513 1 0.701 
e|1:ST3 1 1.58 0.0029 0.061 0.128 0.054 0.001 0.026 -3.2089 7 -3.1416 11 0.078 
e|1:SEP3 1 1.50 0.0022 0.105 0.204 0.098 0.170 0.022 -3.2153 3 -3.1720 4 0.126 
e|1:GP 1 1.42 0.0016 0.172 0.308 0.160 0.094 0.014 -3.2094 6 -3.1677 7 0.143 
              
e|1:NO 2.5 3.58 0.0043 0.024 0.043 0.006 0.009 0.001 -8.7292 14 -3.4333 16 0.015 
e|1:T 2.5 3.42 0.0031 0.054 0.138 0.030 0.002 0.018 -8.7432 11 -3.4435 12 0.030 
e|1:EGB2 2.5 3.25 0.0021 0.111 0.273 0.097 0.104 0.082 -8.7565 7 -3.4628 6 0.097 
e|2:NO 2.5 3.17 0.0017 0.155 0.357 0.139 0.106 0.154 -8.7571 6 -3.4592 7 0.115 
e|2:T 2.5 3.25 0.0021 0.111 0.273 0.105 0.068 0.192 -8.7484 9 -3.4590 8 0.110 
e|3:NO 2.5 3.00 0.0010 0.282 0.559 0.155 0.138 0.143 -8.7684 5 -3.4648 5 0.117 
e|2:SN2 2.5 3.00 0.0010 0.282 0.559 0.438 0.148 0.120 -8.7860 3 -3.4705 2 0.260 
e|2:SEP3 2.5 2.50 0.0000 1.000 0.463 0.373 0.747 0.809 -8.7904 1 -3.4860 1 0.320 
e|1:ST3 2.5 3.33 0.0026 0.078 0.182 0.053 0.001 0.012 -8.7369 13 -3.4429 13 0.056 
e|1:SEP3 2.5 3.25 0.0021 0.111 0.273 0.081 0.202 0.041 -8.7542 8 -3.4579 9 0.079 
e|1:GP 2.5 3.25 0.0021 0.111 0.273 0.252 0.217 0.089 -8.7893 2 -3.4702 3 0.168 
              
e|1:NO 5 6.08 0.0023 0.095 0.121 0.063 0.014 0.002 -18.5810 1 -3.6606 7 0.030 
e|1:T 5 6.08 0.0023 0.095 0.121 0.061 0.006 0.084 -18.5654 3 -3.6624 3 0.048 
e|1:EGB2 5 6.25 0.0031 0.055 0.052 0.027 0.084 0.121 -18.5328 6 -3.6621 5 0.046 
e|2:NO 5 6.00 0.0020 0.123 0.071 0.036 0.144 0.203 -18.5333 5 -3.6609 6 0.064 
e|2:T 5 6.08 0.0023 0.095 0.065 0.033 0.089 0.234 -18.5083 12 -3.6584 10 0.065 
e|3:NO 5 5.83 0.0014 0.196 0.277 0.176 0.124 0.189 -18.5174 11 -3.6603 9 0.135 
e|2:SN2 5 5.92 0.0017 0.156 0.150 0.107 0.140 0.163 -18.5322 7 -3.6626 2 0.121 
e|2:SEP3 5 5.00 0.0000 1.000 1.000 0.432 0.406 0.550 -18.5713 2 -3.6757 1 0.300 
e|1:ST3 5 6.00 0.0020 0.123 0.218 0.163 0.001 0.048 -18.5207 8 -3.6551 11 0.083 
e|1:SEP3 5 5.92 0.0017 0.156 0.248 0.150 0.230 0.060 -18.5452 4 -3.6623 4 0.087 
e|1:GP 5 6.00 0.0020 0.123 0.136 0.101 0.187 0.120 -18.5187 9 -3.6606 8 0.108 

Scores of Slog multiplied by 100 to show more digits. 
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