
The Profitability of Lead-Lag Arbitrage at 

High-Frequency 

Cédric Poutré1, Georges Dionne2,†, Gabriel Yergeau2 
1Université de Montréal 

2HEC Montréal 

26 September 2022 

Abstract 

Any lead-lag effect in an asset pair implies the future returns on the lagging asset have 

the potential to be predicted from past and present prices of the leader, thus creating sta- 

tistical arbitrage opportunities. We utilize robust lead-lag indicators to uncover the origin of 

price discovery and we propose an econometric model exploiting that effect with level 1 data 

of limit order books (LOB). We also develop a high-frequency trading strategy based on the 

model predictions to capture arbitrage opportunities. The framework is then evaluated on six 
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1 Introduction

Lead-lag relationships have long been a subject of interest in finance. The following are just

a few areas that have been explored: stock index futures (Frino & West (2003), Dimpfl &

Jung (2012)), cash market and stock index futures (Chan (1992)), stock and stock index

futures (Brooks, Garrett, et al. (1999)), stock index and stock index futures (Kawaller et al.

(1987), Jong & Nijman (1997), Yang et al. (2012)), stocks (Hou (2007)), spot stock index

and stock index futures markets (Herbst et al. (1987), Tse (1995), Judge & Reancharoen

(2014)), foreign exchange spot and futures markets (Y.L. Chen & Gau (2010)), and VIX

markets (Bollen et al. (2017)). But, the hypothesis that these relationships can potentially

be a source of profitable statistical arbitrage is fairly recent. For example, after finding

significant lead-lag relationships in NYSE stocks, Curme et al. (2015) discussed the idea

that lagged correlations might be exploited by a prediction model. They also believed that

the resulting arbitrage opportunities may not be easily exploitable in the presence of market

frictions. The same questions were also raised in Basnarkov et al. (2020) in the context

of foreign exchange markets. In this paper, we revisit the existence, predictability, and

profitability of lead-lag relationships in detail. Our main questions are the following:

1. Can lead-lag relationships be identified in the high-frequency prices of arbitrage-linked

assets?

2. If the answer to question 1 is conclusive, can returns in lagging assets be predicted?

3. If the answers to questions 1 and 2 are both affirmative, can the predictability of

lagging assets be exploited by high-frequency traders (HFTers), even when important

market frictions are considered?

Up to now, the profitability of statistical arbitrage from lead-lag relationships with realistic

trading behavior has not been well established. Our goal is to demonstrate its economic

viability by proposing a new approach based on robust lead-lag indicators, the direction
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probability estimation of the lagging asset’s return, and the use of LOB information in

an high-frequency trading (HFT) arbitrage strategy. We also consider important potential

market frictions between multiple exchanges with an application to DAX 30 stocks, all of

which are cross-listed in three markets: Xetra in Frankfurt, and Chi-X and BATS, both in

London.

Using recent advancements in the estimation of lead-lag, stemming from Hayashi &

Yoshida (2005) and Hoffman et al. (2013), we demonstrate that Chi-X led the high-frequency

prices of most DAX 30 stocks by mere milliseconds in 2013. This surprising result is in fact

in line with other studies empirically demonstrating that the most liquid, actively traded,

and least expensive exchange should be the origin of price discovery. This is true in our case,

since Chi-X received more quotes and trades for DAX 30 stocks on a daily basis than either

Xetra or BATS. Chi-X is also the exchange with the most generous trading rebates and is

thus the most competitive option for high-frequency traders, which ultimately establishes

Chi-X as the price leader for the cross-listed stocks under study. We also show that all DAX

30 stocks listed at these exchanges are extremely well integrated, because their lags are lim-

ited by the speed at which information can travel. This level of precision in the estimation

of cross-listed stocks’ lead-lag relationships has never been attained before.

Knowing that there is a definitive leader in the prices of cross-listed stocks, we then

demonstrate how lagging assets’ returns can be predicted accurately using current and past

prices observed at two exchanges. A new econometric model, the autoregressive distributed

lag multinomial logistic regression, is able to utilize the existing lead-lag relationship between

two price processes to predict whether the lagging asset’s next return will be positive, null, or

negative, with an overall accuracy exceeding 80% out-of-sample. This degree of performance

is well maintained throughout our data period, further indicating the robustness of the lead-

lag relationship detected in DAX 30 stocks. On our data, the proposed model’s accuracy

compares favorably with those of models previously suggested in the lead-lag literature, e.g.,

Huth & Abergel (2014) and Alsayed & McGroarty (2014). It is also a significant departure
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from ordinary least square models, because it predicts the probabilities of the lagging asset’s

next return direction instead of predicting the next return itself. We show that this easier

task makes it possible to build a more profitable HFT strategy by detecting more potential

arbitrage opportunities with superior accuracy. Moreover, as opposed to popular frameworks

based on error correction or vector autoregression models, we do not require a uniform

sampling scheme of the price processes, which distinguishes our work from prior studies even

further.

Fragmented markets make arbitrage opportunities more abundant for HFTers (Foucault

& Biais (2014) and O’Hara (2015)). In this case of cross-listed stocks, whenever a lead-lag

movement in a lagging asset takes longer than the usual lag to occur (which is measured in

milliseconds), an arbitrage opportunity is revealed. Earlier work on high-frequency lead-lag

arbitrage failed to generate a profit due to trading costs created by market orders. This

occurred with few exceptions, which we will address later. We empirically demonstrate the

impossibility of profiting from the usual mid-quote signal coupled with market orders in the

context of high-frequency lead-lag arbitrage. Thus, we propose a different strategy, one that

makes use of limit orders, thereby reducing the exchange trading costs while also not having

to cover the bid-ask spread at every arbitrage opportunity. Furthermore, the trading signal is

based on level 1 prices rather than mid-quotes, leading to better-informed decisions compared

to earlier studies. In a scenario where latency, trading costs, and execution-related risks are

all taken into consideration, we determine that a high-frequency trader colocated at Chi-X is

able to generate a net profit surpassing €1.9 million by arbitraging DAX 30 stocks in 2013 at

only two exchanges: Xetra and BATS. The presence of market frictions dramatically impedes

the trader’s capacity to profit more from the detected lead-lag arbitrage opportunities, and

risk management procedures are necessary to obtain a satisfying profitability.

The methodology and results in this paper are important from both the academic and

practitioner standpoint. First, we contribute to the ongoing discussion about HFTers’ arbi-
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trage activities,1 since the understanding of which is still limited in the empirical research

(Y. Chen et al. (2019)). Indeed, our paper demonstrates how HFTs are realistically able to

profit from a specific form of statistical arbitrage. Second, we quantify the interconnected-

ness of international markets in the case of cross-listed stocks by explicitly measuring the

time needed between exchanges to incorporate new price information. Third, we further

advance the lead-lag literature by providing the first truly profitable high-frequency lead-lag

arbitrage strategy and a new econometric model that is able to predict future returns of lag-

ging assets with an accuracy that surpasses earlier models. Furthermore, our framework is

applicable to any pair of assets, making it useful for future studies on lead-lag relationships.

Our work falls under the lead-lag arbitrage literature, in which scarcely any studies have

attempted to quantify the financial importance of lead-lag relationships. Brooks, Rew, et al.

(2001); Huth & Abergel (2014); and Alsayed & McGroarty (2014) are closely related to our

paper, especially the last one. However, our study differs from Alsayed & McGroarty (2014)

on many points. Firstly, we do not work on a mid-quote basis because, as we show, this

leads to suboptimal trading decisions. Each of the three papers above use that setting. We

alternatively directly model the best bid and ask price processes, which allows for more pre-

cise predictions and better-informed trading decisions. Secondly, we propose an econometric

model utilizing all relevant past prices observed in both the lagging and leading assets, in-

stead of a subset of that information. Thirdly, rather than relying on liquidity-taking orders,

as in the three above-mentioned papers, we employ liquidity-providing limit orders to avoid

important trading costs that render all of their strategies non-viable in practice. It also al-

lows for a more passive trading strategy, which we show to be profitable on our data. Finally,

our application covers a new area for lead-lag arbitrage: cross-listed stocks.

The remainder of the paper is organized as follows. Section 2 introduces the literature
1Refer to the recent Staff Report on Algorithmic Trading in U.S. Capital Markets of the SEC: https:

//www.sec.gov/tm/reports-and-publications/special-studies/algo_trading_report_2020 and the
MiFID II Review Report on Algorithmic Trading of the ESMA: https://www.esma.europa.eu/
press-news/esma-news/esma-publishes-mifid-ii-review-report-algorithmic-trading (both ac-
cessed August 12, 2022).
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on lead-lag relationships, where an emphasis is put on cross-listed stocks, different high-

frequency arbitrage strategies, and lead-lag estimation methods in past studies. Section 3

presents the methodology used to locate and quantify lead-lag relationships. It also details

the proposed econometric model in conjunction with the new HFT strategy built around

it. The section ends with a description of market frictions and how we include them into

our estimations. Section 4 is dedicated to the data from Xetra, Chi-X, and BATS, and also

presents the latencies and costs we utilize. Section 5 analyzes the empirical results of our

methodology and discusses their implications. Section 6 concludes the paper.

2 Literature Review

As discussed in the introduction, lead-lag relationhips have been observed in most financial

assets and instruments. The particular case of cross-listed stocks has been studied at an

intraday frequency in Grammig et al. (2005); Pascual et al. (2006); Frijns, Gilbert, et al.

(2010); Frijns, Gilbert, et al. (2015); Ghadhab & Hellara (2016); and Frijns, Indriawan,

et al. (2018). They all analyze cross-listed stock price discovery based on variations of

Hasbrouck’s information shares (Hasbrouck (1995)) and/or the component shares of Gonzalo

& Granger (1995). Grammig et al. (2005) sample 10-second intervals of mid-quote prices of

three German firms cross-listed in New York (NYSE) and Frankfurt (Xetra) from August

to October 1999, and find that price discovery mostly originated from the home exchange.

Pascual et al. (2006) arrive at the same conclusion in the case of five Spanish ADRs listed on

the NYSE and SSE at a one-minute resolution in 2000, as do Frijns, Gilbert, et al. (2010) on

four Australian and five New Zealand firms from 2002 to 2007 at a minute level. Ghadhab

& Hellara (2016) also corrobarate the idea that local markets are dominant for cross-listed

stocks, but find that foreign markets contribute more to price discovery for multiple-listed

firms, even more so when their trading costs are lower. Other factors affect the origin of

price discovery for cross-listed stocks. Indeed, Frijns, Gilbert, et al. (2015) suggest that a
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reduced bid-ask spread and a higher trade activity, small trades in particular, have a positive

and causal impact on price discovery, from a sample of cross-listed Canadian stocks in the

US from 1996 to 2011, at a minute frequency. These recur in Frijns, Indriawan, et al. (2018),

which finds a bilateral causality between liquidity in an exchange and its contribution to price

discovery. These authors also obtain that algorithmic activity is negatively related to price

discovery for Canadian cross-listed stocks in the US from 2004 to 2017. None of the papers

mention the possibility of an arbitrageur exploiting these lead-lag relationships, nor do they

measure how predictable the lagging assets returns are. We aim to answer these questions by

proposing a novel HFT strategy and a new econometric model for cross-listed stocks. Our

methodology also considers important limiting factors of arbitrage, mainly, trading costs,

latency, and execution-related risks. The proposed model is also computationally simple

enough to be used by HFTers in practice.

Very few papers have tried to develop arbitrage strategies or predictive models based

on the concept of lead-lag in finance, and none in the context of cross-listed stocks: Judge

& Reancharoen (2014) and Li et al. (2022) use daily data; Brooks, Rew, et al. (2001) and

Stübinger (2019) focus on uniformly sampled intraday data; and Huth & Abergel (2014) and

Alsayed & McGroarty (2014), the closest studies to our paper, also use LOB data. Brooks,

Rew, et al. (2001) investigate the lead-lag relationship between the spot index and futures

contract of the FTSE 100 at a 10-minute frequency. They are able to predict, one step

ahead, the direction of the return in the lagging spot price, with an out-of-sample accuracy

approaching 70%, based on a version of the error correction model (ECM) of Engle & Granger

(1987). Nonetheless, because of trading costs, their round-trip trade strategy is unable to

outperform a passive buy-and-hold strategy. In the same vein, Huth & Abergel (2014) are

also not able to profit from the lead-lag relationship they detect in a futures-stock pair, since

paying the bid-ask spread at every opportunity is too expensive. Even though their linear

regression model predict the next mid-quote return at the next trade of the lagging stock

with an accuracy of 60%, the opportunities detected do not cover the market orders costs.
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On the other hand, Stübinger (2019) and Alsayed & McGroarty (2014) find economically

significant profit-generating strategies by exploiting lead-lag relationships. Stübinger (2019)

proposes the "optimal causal path algorithm" to uncover the lead-lag structure between

two time series, and then applies it to S&P 500 constituents at a minute level, to identify

promising stocks for a pair trading–type strategy. The strategy limits excessive trading by

only selecting statistically high returns of the leading stock that also cover the trading costs

of market orders. Positions are closed after ` minutes, where ` is the lag estimated from

the optimal causal path algorithm. This trading signal allows the author to significantly

outperform a buy-and-hold strategy of the S&P 500 index after transaction costs. But, in

a high-frequency setting where lag is measured in milliseconds, as in our study, the trading

signal of Stübinger (2019) would result in an insignificant number of trades, since returns at

that scale seldom cover the bid-ask spread. Alsayed & McGroarty (2014) profit from lead-lag

arbitrage across international futures with a new forecasting framework yielding over 85%

accuracy in lagging contracts’ mid-quote changes. Their framework is based on the concept

of clusters, which are uninterrupted, contiguous observations of prices that allow them to

predict mid-quote movements and trade at a high frequency. But, we question the strategy’s

practical profitability because their profit calculations use mid-quote returns and not actual

execution prices. We are proposing a novel high-frequency strategy relying on limit orders

to circumvent the profitability issues of earlier studies. Our practical methodology also gets

as close as possible to real-life HFT, thus making our results more concrete and accurate. In

both Huth & Abergel (2014) and Alsayed & McGroarty (2014), the leading asset leads by

mere fractions of a second: around 300 milliseconds in the former and down to 25 milliseconds

for a particular pair in the latter. This highlights the importance of newer methodologies

enabling sub-second lead-lag estimation.

Considering that today’s integrated markets rely heavily on advanced information tech-

nology to connect traders and exchanges around the globe, aggregated data at the minute

level is not suitable to uncover lead-lag relationships between cross-listed stocks. This is
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especially true when exchanges are geographically close. As shown in Budish et al. (2015),

the correlation of related instruments only breaks down at a millisecond resolution in well-

integrated markets, even though their correlation seem nearly perfect at a minute level. But,

using sub-second data, i.e., trades and quotes (TAQ) from LOB data, to quantify lead-lag

relationships has its challenges: it is neither synchronously nor regularly observed. As noted

in Hayashi & Yoshida (2005) and Zhang (2011), among others, earlier estimators based on

previous-tick interpolation are severely biased whenever the processes are not synchronously

observed. This is true for Granger’s causality (Granger (1969)) and for Hasbrouck’s infor-

mation share (Hasbrouck (1995)) models when working with HFT data, because correlation

estimates decrease when the processes are synchronously sampled at high frequencies. This

downward correlation bias effect was first studied in Epps (1979). Furthermore, if the two

processes differ in noise, microstructure frictions, or liquidity, these methods will not be

consistent (Putnin, š (2013)). Since 2010, some consistent estimators of lead-lag at a high

frequency have been proposed (e.g., Hoffman et al. (2013), Hayashi & Koike (2018)), making

it possible to depart from previous-tick interpolation and regular sampling of LOB data. It

is now possible to use the LOB as is. We are the first to investigate lead-lag relationships

of cross-listed stocks at that level of precision, since past causality methods would not have

been robust at that time scale. Being able to work at the sub-second horizon is absolutely

necessary in our case, because the geographical proximity of the exchanges allows information

to flow between them nearly instantly.

3 Methodology and Framework

We introduce the ideas behind the results presented in Section 5. Even though our appli-

cation covers cross-listed stocks, the general methodology and framework in this section are

applicable to any financial market where a high-frequency trader suspects that a lead-lag

relationship exists between any pair of assets.
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Subsection 3.1 details how we find lead-lag relationships between processes and how to

quantify their strength. Subsection 3.2 proposes an econometric model able to exploit an

existing lead-lag relationship by predicting the lagging process’ future directional movements

from past information on the leading process. Subsection 3.3 presents an HFT strategy

created from the econometric model predictions. Finally, subsection 3.4 is dedicated to the

market frictions we consider when computing our trading profits.

3.1 Lead-Lag Relationships

There are two main schools of thought as regards the ways of mathematically defining and

detecting lead-lag relationships: causality methods (e.g., Granger (1969)) or correlation

methods (e.g., Herbst et al. (1987)). The latter approach makes it possible to explicitly

measure the timing relationship between time series, which provides valuable information

in a trading context. Following that literature, there exists a lead-lag relationship in a

pair of stochastic processes ({Xt}, {Yt}) with observations ({xt}, {yt}) whenever their cross-

correlation with lag `, Corr(Xt, Yt+`), is statistically different from 0 for any ` 6= 0. The

optimal lag `∗ is defined as

`∗ ≡ arg max
`∈R

|Corr(Xt, Yt+`)| = arg max
`∈R

|ρX,Y (`)|,

where ρX,Y (`) is the lagged Pearson correlation coefficient ρX,Y (`) ≡ Cov(Xt, Yt+`)√
Var(Xt) Var(Yt)

,

Cov(Xt, Yt+`) is the lagged cross-covariance of processes ({Xt}, {Yt}), and Var(·) is their

variance. Whenever `∗ 6= 0, the relationship between {Xt} and {Yt} is not contemporaneous

and it establishes that there is lead-lag between the processes. When `∗ > 0, {Xt} leads

{Yt} and vice versa for `∗ < 0. Knowledge of the leader at t can potentially be exploited to

forecast the lagging process at t+ `∗.

In this paper, we rely on high-frequency data, which is notable for being non-synchronous

and irregularly observed. "Non-synchronous" means that the two processes are observed at
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different times, and "irregularly observed" refers to irregular intervals between observation

times of the processes. These features drive us to depart from older lead-lag estimation

methods used in the literature, as mentioned earlier in Section 2. Hayashi & Yoshida (2005)

propose a covariance estimator for non-synchronous and irregularly observed diffusion pro-

cesses, resulting in the following consistent cross-correlation estimator:

ρ̂HYX,Y =
∑
i

∑
j ∆X(IXi )∆Y (IYj )1{IX

i ∩I
Y
j 6=∅}√∑

i[∆X(IXi )]2∑j[∆Y (IYj )]2
,

where

1{A} =


1, if A is true,

0, if A is false

is the indicator function. The processes ({Xt}, {Yt}) have discrete observation times 0 =

tX1 < tX2 < · · · < tXn = TX and 0 = tY1 < tY2 < · · · < tYm = T Y with intervals IXi =

(tXi−1, t
X
i ], IYj = (tYj−1, t

Y
j ] and ∆X(IXi ) = xtXi − xtXi−1

, ∆Y (IYj ) = ytYj − ytYj−1
. Hoffman et al.

(2013) extended this estimator to include the lag `:

ρ̂HYX,Y (`) =
∑
i

∑
j ∆X(IXi )∆Y (IYj )1{IX

i ∩(IY
j )` 6=∅}√∑

i[∆X(IXi )]2∑j[∆Y (IYi )]2

where (IYj )` = (tYj−1 + `, tYj + `]. This makes it possible to obtain a practical and unbiased

estimation of `∗ on HFT data:

̂̀∗ = arg max
`∈R

|ρ̂HYX,Y (`)|,

which is the estimator used in this paper. In order to quantify the overall side and strength

of the lead-lag relationship, Huth & Abergel (2014) introduce the Lead-Lag Ratio (LLR)
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measuring the asymmetry of the cross-correlation function:

LLRX,Y ≡
∑
g∈G ρ̂

HY
X,Y (`g)2∑

g∈G ρ̂
HY
X,Y (−`g)2

for G, a discrete time grid of positive lags. Whenever LLRX,Y > 1, {Xt} leads {Yt} and the

higher LLRX,Y is, the more {Xt} leads {Yt}. This statistic is also applied to detect lead-lag

relationships in our data.

3.2 Econometric Model

We concentrate on the models of Huth & Abergel (2014) and Alsayed & McGroarty (2014)

since they are the only studies whose methodologies are directly developed on unsampled

LOB data. Huth & Abergel (2014) are predicting the direction of the mid-quote move (up or

down) at the next trade of the lagging mid-quote process {Yt} by taking the sign of a linear

regression that uses the leader’s past mid-quote moves as the only exogenous variables, like

so:

R̂Y
j ≡ sign(∆̂Y (IYj )) = sign

 p∑
k=1

βk
∑

i:tXi <t
Y
j−1

∆X(IXi )1{IX
i ∩(IY

j )`k
6=∅}

,

where p is the last statistically significant lag. They set βk = ρ̂HYX,Y (`k) and achieve around

60% directional accuracy on test days. The model’s core idea is a binary classification, when

in fact, a logistic regression would be more appropriate than taking the sign of a model

that is designed for a harder prediction problem. Predictions that fall close to 0 can also

be problematic since they lie around the model’s decision boundary, where predictions are

most uncertain (Nguyen et al. (2022)). Adding a null prediction seems necessary for HFT

whenever that occurs. Null predictions have been considered in the next contribution.

Alsayed & McGroarty (2014) define clusters as sets of contiguous process variations

uninterrupted by variations of a second process observed in parallel. They define
{
CX
i,n

∣∣∣ i, n ∈
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N+
}
as the set of clusters of process {Xt}, where the subscript i refers to the cluster index

and n the variation index within each cluster. The same definition holds for process {Yt}.

Figure 1 illustrates the concept of clusters.

Figure 1: Time-line illustration of dual process clusters. Observations of process {Xt} are
marked by an "X" and those of {Yt} are marked by an "O." Taken from Alsayed & McGroarty
(2014).

Suppose that {Xt} leads {Yt}, and define C ·i,n as the mid-quote returns of both processes,

Alsayed & McGroarty (2014) predict the next cluster’s direction of the lagging asset, R
C

Y
i
≡

sign
(∑

nC
Y

i,n

)
, with the following rule:

R̂
C

Y
i

=



+1, ifmax
n

(
C
X

i,n

)
≥ KAM

−1, ifmin
n

(
C
X
i,n

)
≤ −KAM

0, otherwise,

where KAM ∈ R+
0 is a preset threshold. They achieve a directional accuracy in excess of

85% on pairings of S&P 500, FTSE 100, and DAX futures contracts in 2012. This high

level of accuracy can be explained by the high LLRX,Y in the three asset pairs studied.

Only relying on the leader’s latest cluster might be hazardous for asset pairs with a weaker

lead-lag relationship.

Huth & Abergel (2014) and Alsayed & McGroarty (2014) both offer interesting predic-

tive models that are able to exploit HFT lead-lag relationships in their respective financial

contexts. The use in Huth & Abergel (2014) of the leading process’ past relevant infor-

mation, the simplicity of the Alsayed & McGroarty (2014) model, and the trader’s ability
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to set a confidence threshold are all important qualities in HFT econometric models. We

extend their contributions by proposing a model that takes into account the aforementioned

overlooked aspects. Following Alsayed & McGroarty (2014), we set clusters of the lead-

ing price process as CX
i =

{
CX
i,j

∣∣∣ j = 1, . . . , nXi ∈ N+
}

and the lagging price process’ as

CY
i =

{
CY
i,j

∣∣∣ j = 1, . . . , nYi ∈ N+
}
, where i = 1, 2, . . . , N for N the number of clusters,

and CX
i,j = ∆X

IX∑
k<i

nX
k +j

, CY
i,j = ∆Y

IY∑
k<i

nY
k +j

 the absolute variations of the two

price processes (any price process, not necessarily mid-quote). We define rCX
i

=
nX

i∑
j=1

CX
i,j as

the total price process variation within cluster CX
i and the same definition applies for {Yt}.

Without loss of generality, we assume that the first cluster we observe is from {Xt}, and

the last one is from {Yt}. We are interested in predicting the direction of rCY
i
based on past

observations of ({Xt}, {Yt}), i.e.,

RCY
i
≡ sign

(
rCY

i

)
=



+1, if rCY
i
> 0

0, if rCY
i

= 0

−1, if rCY
i
< 0.

To do so, we propose the autoregressive distributed lag multinomial logistic regression

(ADLMLR) to model RCY
i
. It generalizes the logistic models for autoregressive binary vari-

ables introduced in Bonney (1987) in two ways. Firstly, it departs from a binary dependent

variable to a multicategorical one, allowing for the modeling of a larger spectrum of systems.

Secondly, {Yt} is not only autoregressive, it is autoregressive with a distributed lag for {Xt},

thus incorporating past values of both processes. This model is an important departure

from conventional approaches based on error correction models (ECM) (for example, En-

gle & Granger (1987), Hasbrouck (1995), Brooks, Rew, et al. (2001), Pascual et al. (2006),

Frijns, Gilbert, et al. (2010), Yang et al. (2012), Judge & Reancharoen (2014)) or vector

autoregressive models (VAR) (see Hou (2007), Dimpfl & Jung (2012)) since it does not re-
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quire the processes to be synchronously and regularly observed in time, thanks to the use of

clusters. We also depart from an ordinary least squares (OLS) framework to a probabilistic

one, where we are interested in predicting the probability of the class of the next return’s

direction (positive, neutral, or negative) instead of quantifying the return itself. This proba-

bilistic task is easier to accomplish, hence the model predictions are more robust. As we will

show, this leads to a greater profitability potential when incorporated into an HFT strategy.

The proposed ADLMLR model for RCY
i
is as follows. Let

(
RCY

i
| pi = [pi,−1 pi,0 pi,+1]

)
∼ Multinouilli(pi,−1, pi,0, pi,+1)

where pi,· ∈ [0, 1], ∑ pi,· = 1 ∀i, are the conditional probabilities of their respective return

direction based on the past observations of ({Xt}, {Yt}). Supposing a (auto)dependence lag

of order D ∈ N+ for {Yt}, we have

pi,−1 = P
(
RCY

i
= −1 | rCY

i−D:i−1
, rCX

i−D+1:i

)
,

pi,0 = P
(
RCY

i
= 0 | rCY

i−D:i−1
, rCX

i−D+1:i

)
,

pi,+1 = P
(
RCY

i
= +1 | rCY

i−D:i−1
, rCX

i−D+1:i

)
,

where rCi−D:i = {rCi−D
, rCi−D+1 , . . . , rCi−1 , rCi

}. We define the conditional probabilities from

the logit function with an autoregressive distributed lag-like model:

ln
pi,−1

pi,+1

 = α−1 +
D−1∑
j=0

βj,−1rCX
i−j

+
D∑
j=1

γj,−1rCY
i−j
,

ln
 pi,0
pi,+1

 = α0 +
D−1∑
j=0

βj,0rCX
i−j

+
D∑
j=1

γj,0rCY
i−j
.
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Since we also have ∑ pi,· = 1, we can find the conditional probabilities:

pi,−1 = eθi,−1

1 + eθi,−1 + eθi,0
,

pi,0 = eθi,0

1 + eθi,−1 + eθi,0
,

pi,+1 = 1
1 + eθi,−1 + eθi,0

,

where

θi,−1 = α−1 +
D−1∑
j=0

βj,−1rCX
i−j

+
D∑
j=1

γj,−1rCY
i−j
,

θi,0 = α0 +
D−1∑
j=0

βj,0rCX
i−j

+
D∑
j=1

γj,0rCY
i−j
.

The parameters of the model Θ = {α−1, α0, β0,−1, . . . , βD−1,−1, β0,0, . . . , βD−1,0, γ1,−1, . . . ,

γD,−1, γ1,0, . . . , γD,0} are found by maximum likelihood estimation of

L(Θ) =
N∏
i=D

(pi,−1)
1{

R
CY

i

=−1

}
(pi,0)

1{
R

CY
i

=0

}
(pi,+1)

1{
R

CY
i

=+1

}
,

so that

Θ̂ = arg max
Θ∈R4D+2

L(Θ).

We use the BFGS algorithm of Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno

(1970) to solve for Θ̂. The largest predicted probability in vector p̂i = [p̂i,−1 p̂i,0 p̂i,+1]

determines the direction of the total variation in cluster CY
i :

R̂CY
i

=



+1, if (max(p̂i) = p̂i,+1) ∧ (p̂i,+1 ≥ K)

0, if max(p̂i) = p̂i,0

−1, if (max(p̂i) = p̂i,−1) ∧ (p̂i,−1 ≥ K),
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where K ∈ [0, 1] is a preset decision threshold controlling the minimum confidence needed

to make a prediction.

3.3 High-Frequency Arbitrage Strategy

With market orders, Brooks, Rew, et al. (2001) and Huth & Abergel (2014) are not able to

profit from their predictions, as paying the bid-ask spread at every opportunity is prohibitive

for a HFTer, even more so considering exchange trading costs. Predicting thedirection of

mid-quote movement is also not the most practical way of building an HFT strategy since

orders cannot be executed at that price — another problem discussed in Huth & Abergel

(2014). To circumvent these issues, we are predicting the direction of variations in the

best bid and best ask prices based on the econometric model introduced in the previous

subsection. In other words, a first model instance is used for the best bid price process and a

second one is dedicated to the best ask. We are also relying on limit orders to reduce trading

costs.

We assume an existing lead-lag relationship between a leader {XBid/Ask
t } and a lagging

process {Y Bid/Ask
t }, which are the best bid/ask price processes. We also assume that our

econometric model is able to utilize that relationship to generate adequate predictions. Based

on these assumptions, we are interested in profiting from the predicted directions in clusters

of {Y Bid/Ask
t }: R̂

CY Bid/Ask

i

. For a tick size of δ, the novel HFT strategy is as follows:

• Bid price process:

– When R̂
CY Bid

i
= −1, do all actions at the same time:

1. Send a marketable sell limit order of volume V Bid
i at the current value of

{Y Bid
t };

2. Send a buy limit order of volume V Bid
i at the current value of {Y Bid

t } minus

δ;
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3. Send a stop buy limit order of volume V Bid
i with stop and limit prices equal

to the current value of {Y Bid
t } plus 2δ.

– When R̂
CY Bid

i
∈ {0, 1}: do nothing.

– When a position has been open for M minutes, send a market buy order to close.

• Ask price process:

– When R̂
CY Ask

i
= 1, do all actions at the same time:

1. Send a marketable buy limit order of volume V Ask
i at the current value of

{Y Ask
t };

2. Send a sell limit order of volume V Ask
i at the current value of {Y Ask

t } plus δ;

3. Send a stop sell limit order of volume V Ask
i with stop and limit prices equal

to the current value of {Y Bid
t } minus 2δ.

– When R̂
CY Ask

i
∈ {−1, 0}: do nothing.

– When a position has been open for M minutes, send a market sell order to close.

A short (long) position is open when the marketable sell (buy) limit order hits the market

and the buy (sell) limit order tries to close it whenever the lagging process {Y Bid
t } ({Y Ask

t })

moves in the predicted direction. This allows us to capture a potential profit of δ when our

econometric model makes a good prediction. No new position is open until the previous one

has been closed. The stop limit orders are employed for risk management in the case of a

wrong prediction; the same goes for closing market orders. Additional details of the strategy

are presented in Appendix A.

3.4 Market Frictions: Latency, Risks, and Costs

In order to be as practical as possible, we use the Deltix QuantOffice trading software

suite. This software only manages back-office operations and replays the LOB messages for

backtesting purposes, letting us get closer to real-life high-frequency trading. It is possible to
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bypass the software and implement an equivalent testing program. We utilize the professional

suite to ensure the quality of the results.

Latency is of paramount importance in HFT, as shown in Poutré et al. (2021). So, we use

a simplified version of their methodology to account for latency in our empirical results. By

latency, we mean the total time it takes for a trader to interact with the market when new

information arrives. Hasbrouck & Saar (2013) measure latency on three components: the

time it takes for a trader to learn about an event, to generate a response, and for the exchange

to act on that response. Considering an HFT colocated at the leading exchange, the first

two components of latency are the amount of time required for information generated at a

lagging exchange to arrive and its treatment by the HFTer’s server and trading algorithm.

This is due to the finite speed of light causing a delay in the observed LOB between the

source of information (lagging exchange) and its point of observation (leading exchange).

To replicate that relativistic effect for a HFTer, we wait for an amount of time equal to the

true one-way information transportation time plus its treatment time before entering the

lagging exchange’s data into the HFT strategy, thus delaying it. So, for a HFTer colocated

at the leading exchange, it is as if its trading algorithm only observes past LOB states of the

geographically distant lagging exchange, as it would in practice. Moving forward, this will

be referred to as the first half of latency.

The last component of latency, which we will refer to as the second half of latency, is

treated similarly. When the HFT strategy of Section 3.3 generates a trade signal, the orders

are only sent to the execution engine after a time delay that corresponds to the same one-way

information transportation time between exchanges, plus the receiving exchange’s matching

engine delay. So, a HFTer cannot interact infinitely rapidly with a geographically distant

lagging exchange, as is the case in practice. For convenience, we assume that the HFT server

is able to process a stream of level 1 data with the same efficiency as an exchange server.

This allows us to use the same total latency value for the first and second halves of latency.

In the next section, Table 3 presents the latency values employed.
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The high-frequency strategy is exposed to both execution and non-execution risks since it

utilizes market and limit orders. Those risks are taken into account using a set of professional

rules determining if, when, and at what price the orders sent would have been executed in

practice. The details are presented in Poutré et al. (2021). We also compute exchange trading

costs after an order’s execution, which are shown in Table 4 of the next section. Liquidity

removal costs for marketable limit and market orders, and liquidity-providing costs for limit

orders are taken into account.

4 Data

DAX 30 (which was extended to DAX 40 on November 24, 2020) is a German stock index

containing 30 of the country’s largest blue chip companies. Table 1 lists its constituents in

2013, and Table 2 details some of their stylized facts. Xetra, operated by Deutsche Börse

AG at the Frankfurt Stock Exchange, is the reference order-driven trading venue for German

stocks and has normal trading hours of 9:00 a.m. to 5:30 p.m. CET.2 Chi-X Europe, also an

order-driven exchange, is a cost-effective pan-European alternative to the largest European

exchanges, with continuous trading hours between 8:00 a.m. and 4:30 p.m. GMT, located

in London. Finally, BATS Europe (Better Alternative Trading System) is another London-

based pan-European stock exchange, founded in 2008. BATS Europe was a direct competitor

to Chi-X Europe, with the same normal trading hours, but it ultimately acquired the latter

in 2011.

Our data covers DAX 30 stocks in the three European exchanges listed above: Xetra, Chi-

X, and BATS, and spans six months in 2013, from February to July, inclusively, thus covering

125 trading days. Xetra’s raw data contains every market event sent by the exchange, and
2Xetra offers the "continuous trading with auctions" service for its more liquid securities. Call auctions

occur three times in a regular trading day for DAX 30 stocks: from 8.50 am to 9.00 am at the earliest
(opening auction), from 1:00 p.m. to 1:02 p.m. at the earliest (intraday auction), and from 5:30 p.m. to
5:35 p.m. at the earliest (closing auction), with random end times. Continuous trading occurs in between
auctions and only these periods are used in our study. See https://www.xetra.com/xetra-en/trading/
trading-models/continuous-trading-with-auctions for the detailed trading models of Xetra.

20

https://www.xetra.com/xetra-en/trading/trading-models/continuous-trading-with-auctions
https://www.xetra.com/xetra-en/trading/trading-models/continuous-trading-with-auctions


we use the Xetra Parser software of Bilodeau (2013) to rebuild the first level of the LOB

at microsecond precision for each update. The timestamps are then rounded to the nearest

greater millisecond, for use in conjunction with the following data sets. The data of Chi-X

and BATS was acquired from BEDOFIH (Base Européenne de Données Financières à Haute

Fréquence) and it contains the trades and quotes at a millisecond precision of the first 20

LOB levels, but only the first level is used in this study. The London-based exchanges lag

one hour behind Xetra because of different time zones, but all their normal trading hours

overlap completely, from opening to closing.

Table 1: DAX 30 constituents from February to July 2013.

Ticker Company Prime Standard
Sector

ADS Adidas Consumer
ALV Allianz Insurance
BAS BASF Chemicals
BAYN Bayer Chemicals
BEI Beiersdorf Consumer
BMW BMW Automobile
CBK Commerzbank Banks
CON Continental Automotive
DAI Daimler AG Automobile
DB1 Deutsche Börse Financial Services
DBK Deutsche Bank Banks
DPW Deutsche Post Transportation & Logistics
DTE Deutsche Telekom Telecommunication
EOAN E.ON Utilities
FME Fresenius Medical Care Pharma & Healthcare
FRE Fresenius Pharma & Healthcare
HEI HeidelbergCement Construction
HEN3 Henkel Consumer
IFX Infineon Technologies Technology
LHA Deutsche Lufthansa Transportation & Logistics
LIN Linde Chemicals
LXS Lanxess Chemicals
MRK Merck Pharma & Healthcare
MUV2 Munich Re Insurance
RWE RWE Utilities
SAP SAP Software
SDF K+S Chemicals
SIE Siemens Industrial
TKA Thyssenkrupp Industrial
VOW3 Volkswagen AG Automobile
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Table 3 details the latency to generate our results,3 and Table 4 shows the trading costs

of the three exchanges in 2013.4 Table 5 documents the rules used by Xetra to determine

stocks’ tick sizes.5 Chi-X and BATS subsequently use the same tick sizes for cross-listed

stocks also traded at Xetra.

Table 3: Latency for the two exchanges links used in the strategy.

Link
One-Way

Transportation Latency
(ms)

Exchange Latency
(ms)

Total Latency
(ms)

Total Latency Used
(ms)

Chi-X / Xetra 4.15 1.10 5.25 5
Chi-X / BATS ~ 0 0.165 0.165 1

Table 4: Trading costs associated with sending liquidity-removing and liquidity-providing
orders at Xetra, Chi-X, and BATS in 2013.

Exchange Liquidity Removal
(bps)

Liquidity Providing
(bps)

Xetra 0.36 0.36
Chi-X 0.30 (0.15)
BATS 0.15 0.00

Table 5: Tick size δ rules at Xetra

Price Range
(€) δ (€)

[0, 10) 0.001
[10, 50) 0.005
[50, 100) 0.01
[100,∞) 0.05

3Table 3 presents latencies found from multiple sources. Note that Chi-X and BATS servers are located
in Equinix Slough (LD4), 32km west of Central London, and Xetra servers are in Frankfurt (FR2). Also note
that one-way transportation latency is half of a round trip. Sources used are: https://www.marketsmedia.
com/extent-of-adoption-of-microwave-technology-in-europe-revealed (Chi-X/Xetra one-way on
fiber optics to be conservative), Deutsche Börse Group (2013) (Xetra exchange latency), and https://
cdn.cboe.com/resources/press_releases/BATS_Europe_Latency_Update_FINAL.pdf (BATS exchange
latency). Total latencies are rounded to the nearest non-zero integer.

4Deutsche Börse Group (2012) contains the trading costs of DAX stocks at Xetra, and https://www.
cboe.com/europe/equities/notices/41029/fee_schedule/ the trading costs of Chi-X and BATS. All
trading costs are effective January 2, 2013.

5https://www.xetra.com/xetra-en/trading/trading-models/trading-parameter-tick-size. All
websites referenced in this section were accessed on September 7, 2022.
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5 Results and Analysis

5.1 Empirical Lead-Lag Relationships

Table 6 presents the mid-quote lead-lag estimation of Chi-X/Xetra and Chi-X/BATS cross-

listed stocks on our data with the discrete time grid G = {0, 1, . . . , 50, 55, . . . , 100, 200, . . . ,

1000, 2000, . . . , 15000} ms.

Table 6: Mid-quote lead-lag estimation using the Hoffman et al. (2013) estimator and Huth
& Abergel (2014) LLRX,Y for the links Chi-X/Xetra and Chi-X/BATS on our data.

Chi-X / Xetra Chi-X / BATS
Ticker Leader LLRX,Y

̂̀∗ (ms) ρ̂HYX,Y ( ̂̀∗) Leader LLRX,Y
̂̀∗ (ms) ρ̂HYX,Y ( ̂̀∗)

ADS Chi-X 1.15 10 0.025 Chi-X 2.94 4 0.034
ALV Chi-X 2.12 8 0.046 Chi-X 4.00 2 0.157
BAS Chi-X 1.81 8 0.034 Chi-X 3.32 1 0.039

BAYN Chi-X 1.93 9 0.065 Chi-X 1.36 2 0.065
BEI Chi-X 1.07 6 0.059 Chi-X 1.64 2 0.154

BMW Chi-X 1.21 6 0.094 Chi-X 2.83 4 0.098
CBK Chi-X 2.21 10 0.077 Chi-X 3.36 1 0.034
CON Chi-X 1.37 7 0.039 Chi-X 1.89 10 0.033
DAI Chi-X 1.35 7 0.052 Chi-X 1.07 1 0.051
DB1 Chi-X 1.25 5 0.031 Chi-X 3.58 2 0.120
DBK Chi-X 1.73 5 0.100 Chi-X 2.81 4 0.105
DPW Chi-X 1.85 8 0.060 Chi-X 2.77 1 0.060
DTE Chi-X 2.34 9 0.039 Chi-X 2.12 1 0.206

EOAN Chi-X 3.98 7 0.030 Chi-X 1.31 0 0.038
FME Chi-X 1.19 7 0.035 Chi-X 2.89 2 0.032
FRE Chi-X 1.01 9 0.025 Chi-X 2.16 1 0.085
HEI Chi-X 1.53 6 0.033 Chi-X 1.07 1 0.306

HEN3 - - - - Chi-X 7.26 1 0.047
IFX Chi-X 1.26 7 0.034 Chi-X 2.38 3 0.045
LHA Chi-X 1.29 6 0.072 Chi-X 7.76 1 0.138
LIN Chi-X 2.20 8 0.063 Chi-X 1.93 1 0.087
LXS Chi-X 1.12 10 0.035 Chi-X 2.49 10 0.026
MRK Chi-X 1.48 7 0.088 Chi-X 1.80 1 0.094
MUV2 Chi-X 1.90 8 0.019 Chi-X 2.89 2 0.061
RWE Chi-X 1.27 8 0.032 - - - -
SAP Chi-X 1.56 8 0.062 Chi-X 1.30 0 0.100
SIE Chi-X 1.92 7 0.064 Chi-X 1.55 0 0.144

TKA Chi-X 1.59 7 0.047 Chi-X 1.55 1 0.100
VOW3 Chi-X 1.69 8 0.021 Chi-X 1.69 3 0.044

Chi-X leads almost every DAX 30 cross-listed stock also quoted at Xetra and BATS.

Exceptions are HEN3 and RWE, where no definitive lead-lag relationship exists between

Chi-X/Xetra and Chi-X/BATS, respectively. These stocks are excluded from the rest of the
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section. An important observation is that ̂̀∗ (measured in milliseconds) is lower-bounded

by the actual latency observed between the markets in 2013, i.e., around 4–5 milliseconds

for Chi-X/Xetra and around 0–1 millisecond for Chi-X/BATS (see latencies in Section 4).

This demonstrates the reliability of the Hoffman et al. (2013) lag estimation. Any lead-lag

movement in the lagging exchange that takes longer than latency is theoretically exploitable

by a HFTer. The number of potential arbitrage opportunities is presented in the next

subsection.

Interestingly, the fact that Chi-X is the leader of DAX 30 stocks is a direct counterex-

ample of some earlier papers where the home market was the main source of price discovery

(Grammig et al. (2005), Pascual et al. (2006), Menkveld et al. (2007) and Frijns, Gilbert,

et al. (2010)), but it aligns with other contributions demonstrating that the most liquid and

most actively traded market leads price discovery (Poshakwale & Theobald (2004), Frijns,

Gilbert, et al. (2015), Frijns, Indriawan, et al. (2018)) (see Table 2 in Section 4 for stylized

facts). It is also in line with the hypothesis that the market with lower transaction costs will

be the source of price discovery (Abhyankar (1995), Brooks, Rew, et al. (2001)) in the case of

Chi-X/Xetra relationships (see trading costs in Section 4). This is also known as the "trading

cost hypothesis" introduced in Fleming et al. (1996). In the case of the Chi-X/BATS rela-

tionships, even though the liquidity-removal cost is higher at Chi-X, HFTs seem to be more

active at that exchange than at BATS probably because of the higher liquidity-providing

rebates given at Chi-X. Thus, by being colocated at Chi-X, a HFTer should have the best

chance of exploiting these lead-lag relationships in DAX 30 stocks, even if Xetra is their

home exchange.

From Table 3, we can answer our first question. Indeed, the exchange that is most

liquid, most actively traded, and has the highest liquidity-providing rebates will lead the

high-frequency prices in the case of cross-listed stocks, even if it is not the home exchange.

In our application, Chi-X is the definitive leader of DAX 30 stocks, over Xetra and BATS,

for the aforementioned reasons.
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5.2 Econometric Model Performance

We choose a lag order of D = 10, given that trials on the first two weeks of data show

that rCX
i−D

and rCY
i−D

are always statistically insignificant in the model for D > 12. The

model is also losing some predictive power with D < 10, so setting D = 10 is a good middle

ground. The same D is used during the entire six months and for every stock. The models

are recurrently trained every five days with past data and are used out-of-sample through

the next five-day period, as shown in Figure 2. "Test" sections are out-of-sample periods

Figure 2: Schema depicting the recurrent training and out-of-sample testing of our model
every five days from February 1 to July 31, 2013

where live trading decisions are generated based on the predictions of the models estimated

on "train" periods consisting of past days. The first two five-day periods are reserved for the

first training iteration, and the first out-of-sample period is the following five days. Other

training frequencies were tested, but the model’s performance did not significantly change.

The decision threshold K ∈ [0, 1] plays an important role in selecting the right opportunities

to trade on. Figure 3 exemplifies its effect on the quality of predictions and the number of

potential opportunities generated by the model. Increasing K generally results in a higher

accuracy in the training sample, but only up to a certain point, at which it tends to decrease.

It also drastically reduces the number of potential opportunities, since less and less predicted

probability max(p̂i) ≥ K when K → 1. The peak is found every time a model is trained

and it is used to select the trading opportunities out-of-sample. This is done independently
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Figure 3: Example of threshold K’s effect on model performance, fitted on the bid price
processes of Chi-X:DBKd and Xetra:DBK during the first training iteration. The blue line
depicts the accuracy and the red one represents the number of potential opportunities, both
as a function of K. The dotted vertical line is the peak of the accuracy function on the
training sample.

for every stock at each exchange.

We use the model of Alsayed & McGroarty (2014) as a benchmark because a clear

comparison can be made between their model and ours. Moreover, the data in both studies

come from similar periods. Their predictive framework currently has the best accuracy in

the lead-lag arbitrage literature, so it is a suitable point of comparison. The number of

potential lead-lag arbitrage opportunities on processes ({Xt}, {Yt}) is defined as

Potential Opportunities{X,Y } = PO{X,Y } =
N∑
i=1
1{

R̂
CY

i
6=0
},

which represents the number of non-null movement predictions made by a model for the next

cluster of the lagging process {Yt}. The model accuracy is then defined as

Accuracy{X,Y } = 1
PO{X,Y }

N∑
i=1
1{(

R̂
CY

i
=R

CY
i

)
∧
(
R̂

CY
i
6=0
)},
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the ratio of correct non-null predictions to the total number of potential opportunities. We

exclude the null predictions in the accuracy measurement because they do not generate

trades. We want to focus on the model’s accuracy on actual opportunities. Table 7 summa-

rizes the performance of the Alsayed & McGroarty (2014) predictive model on the mid-quote

from our data (see Section 3.2 for details) where δ is the tick size. For the complete per-ticker

performance, see Tables 17 and 18 in Appendix B.

Table 7: Alsayed & McGroarty (2014) mid-quote direction performance summary on the six
months of data for multiple KAMs.

Threshold
(KAM)

Xetra
Accuracy

Xetra Potential
Opportunities

BATS
Accuracy

BATS Potential
Opportunities

Total
Accuracy

Total Potential
Opportunities

δ 71.72% 5 187 749 70.37% 4 833 712 71.07% 10 021 461
2δ 70.69% 1 037 573 70.88% 908 307 70.78% 1 945 880
3δ 66.76% 351 333 68.82% 285 449 67.68% 636 782
4δ 64.35% 192 933 67.46% 148 695 65.71% 341 628
5δ 63.20% 126 730 66.72% 95 555 64.71% 222 285
6δ 62.60% 85 101 66.38% 63 081 64.21% 148 182
7δ 62.39% 57 869 66.25% 42 805 64.03% 100 674
8δ 62.54% 38 922 65.88% 28 837 63.96% 67 759
9δ 62.38% 26 356 66.11% 19 655 63.97% 46 011
10δ 62.93% 18 599 65.90% 14 116 64.21% 32 715

Table 8 presents the out-of-sample performance summary of our econometric model on

the best bid and ask price processes obtained on the Chi-X/Xetra and Chi-X/BATS lead-lag

relationships. Multiple dynamic thresholds are tested to study the importance of K. We

begin at the peak, i.e., the values ofK on the training sets that generate the highest accuracy

from the set K ∈ {0.35, 0.375, 0.40, . . . , 1}, and then decrease K from that starting point by

increments of 0.025. For the complete per-ticker performance of our model for both best bid

and ask prices processes at Xetra and BATS, see Tables 19 to 22 in Appendix B.

From Tables 7 and 8, we can see that we compare favorably in terms of accuracy. As

mentioned earlier, depending only on the latest cluster observation of the leading asset can

be hazardous whenever the lead-lag relationship is not as strong as the ones observed in

Alsayed & McGroarty (2014), as defined by the LLRX,Y . In our cross-listed stock case,

fully utilizing the leading and lagging assets’ past prices resulted in an average absolute
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Table 8: ADLMLR out-of-sample performance summary on the six months of data for
multiple Ks.

Threshold (K) Xetra
Accuracy

Xetra Potential
Opportunities

BATS
Accuracy

BATS Potential
Opportunities

Total
Accuracy

Total Potential
Opportunities

Peak 84.22% 915 666 78.30% 708 580 81.64% 1 624 246
Peak - 0.025 84.25% 1 093 229 78.54% 868 951 81.72% 1 962 180
Peak - 0.050 83.94% 1 262 096 78.42% 1 042 930 81.44% 2 305 026
Peak - 0.075 83.50% 1 428 723 78.09% 1 231 914 81.00% 2 660 637
Peak - 0.100 82.84% 1 614 729 77.55% 1 401 910 80.38% 3 016 639
Peak - 0.125 82.11% 1 817 528 77.00% 1 568 967 79.74% 3 386 495
Peak - 0.150 81.32% 2 028 380 76.29% 1 709 488 79.02% 3 737 868
Peak - 0.175 80.64% 2 162 587 75.37% 1 836 598 78.22% 3 999 185
Peak - 0.200 79.84% 2 264 035 74.60% 1 878 981 77.46% 4 143 016

increase of 10% in total accuracy. As expected, by decreasing the threshold K, we are able

to increase the number of potential opportunities at the expense of a lower model accuracy.

The financial effect of K is presented in the next subsection.

We also compare the performance of the ADLMLR model to a standard autoregressive

distributed lag (ADL) model, where ADLMLR is a classification model trained with maxi-

mum likelihood and ADL is a closely related regression model fitted using the OLS method.

In Section 3.2, we made the case that ADLMLR has a greater profitability potential than

its regression counterpart, which we show here. First, we define the ADL model closest to

ADLMLR:

rCY
i

= α +
D−1∑
j=0

βjrCX
i−j

+
D∑
j=1

γjrCY
i−j

+ εj

where εj iid∼ N(0, σ2) and D ∈ N+. In order for that model’s performance to be compared

to ADLMLR’s, the predicted directions of the total variation in cluster CY
i are computed as

follows:

R̂ADL
CY

i
=



+1, if r̂CY
i
≥ KADL

0, if −KADL < r̂CY
i
< KADL

−1, if r̂CY
i
≤ −KADL.
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Again, KADL ∈ R+
0 is a preset threshold found dynamically, as described at the beginning

of this subsection. Notice that, when we set D = 1, α̂ = 0, β̂0 = 1, γ̂1 = 0, the model is

almost equivalent to Alsayed & McGroarty (2014) (they use the minimum and maximum

returns within the leader’s cluster, not its total return). Also, when D = p, KADL = 0,

α̂ = 0, and γ̂j = 0 ∀j, we get a model similar to Huth & Abergel (2014), but on a quote

basis instead of a trade basis. Hence, the ADL model in conjunction with the direction

prediction method is a generalization of the predictive framework employed in both studies.

Table 9 presents the out-of-sample performance summary of that framework on the best

bid and ask price processes selected from a grid of KADL ∈ {0, δ, 2δ, . . . , 10δ} with D =

10. At its peak, the comparable ADL model achieves an accuracy of 79.64% on a total

Table 9: ADL out-of-sample performance summary on the six months of data

Threshold (KADL) Xetra
Accuracy

Xetra Potential
Opportunities

BATS
Accuracy

BATS Potential
Opportunities

Total
Accuracy

Total Potential
Opportunities

Peak 84.43% 634 435 75.73% 777 847 79.64% 1 412 282

of 1.4 million potential arbitrage opportunities. On the other hand, as seen in Table 8,

the ADLMLR model can reach the same level of accuracy, but on 3.4 million arbitrage

opportunities, which is over 140% more than what ADL generates. At its peak, ADLMLR’s

accuracy outperforms ADL’s by an absolute 2% while creating over 200,000 more potential

opportunities. This demonstrates that the classification framework of ADLMLR indeed

produces a greater profitability potential, as compared to an equivalent regression framework.

To understand how the leading exchange affects the predictive model’s performance, we

set βj,−1 = βj,0 = 0, ∀j = 0, . . . , D − 1 in the ADLMLR model so that only past cluster

returns in the lagging exchange are used to generate predictions for the cross-listed stock

at that same exchange. Table 10 shows the results when K ∈ {0.35, 0.375, 0.40, . . . , 1} is

dynamically set at the peak. Not utilizing the lead-lag relationship between Chi-X and the

lagging exchanges Xetra and BATS dramatically lowers the model’s accuracy compared to

Table 8. In fact, it does not significantly outperform a naive forecasting model randomly
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Table 10: ADLMLR out-of-sample performance summary on the six months of data without
the leading exchange observations (βj,−1 = βj,0 = 0, ∀j = 0, . . . , D − 1)

Threshold (K) Xetra
Accuracy

Xetra Potential
Opportunities

BATS
Accuracy

BATS Potential
Opportunities

Total
Accuracy

Total Potential
Opportunities

Peak 43.62% 1 690 915 42.57% 1 014 306 43.23% 2 705 221

predicting positive or negative returns in the lagging exchange. This random model is able to

get an accuracy of 40.10% at Xetra and 40.48% at BATS. Hence, relying only on Xetra and

BATS to predict their own future returns is hardly possible because of the poor accuracy.

This is in line with the efficient market hypothesis (Fama (1970)). But, using prices observed

at Chi-X enables accurate return predictions at lagging exchanges. This is a direct violation

of the hypothesis. This is another proof of an existing lead-lag relationship for DAX 30

stocks at these three European exchanges. Additionally, when we set γj,−1 = γj,0 = 0, ∀j =

1, . . . , D without constraining the βs, ADLMLR’s accuracy decreases slightly compared to

Table 8. This means that the best model employs both the leading and lagging exchange

prices to generate its predictions; this is the one used through the remainder of the paper.

Huth & Abergel (2014) and Alsayed & McGroarty (2014) only incorporate a subset of that

information, but we are able to utilize it all.

We are interested in ADLMLR’s performance through time in order to make sure that it

is long-lasting and well founded. Figure 4 illustrates the out-of-sample aggregated accuracy

of our econometric models when K is set at peak training accuracy and D = 10 for every

stock and every trading period. The models’ out-of-sample accuracies are fairly stationary

in time, varying by about 3%, and centered at the temporal mean during the entirety of our

data sample. Therefore, ADLMLR is able to generate a robust predictive function based on

the lead-lag effect observed between Chi-X/Xetra and Chi-X/BATS. The model performs

on average 6% better at Xetra and it constantly outperforms the one fitted at BATS.

From Table 8 and Figure 4, we demonstrate that if there is a lead-lag relationship between

any two assets, an adequate econometric model fully utilizing current and past observations

of both assets is able to predict the lagging returns with respectable accuracy. In our case, a
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Figure 4: Out-of-sample accuracy in time, weighted on Table 6 selected DAX 30 stocks of
our econometric models for Xetra and BATS at each 5-day period from February 1 to July
31, 2013.

generalized form of autoregressive logistic regression can predict the next cluster movement of

Xetra’s and BATS’ best bid and ask prices out-of-sample with an average accuracy exceeding

80%. This is possible because Chi-X led the DAX 30 cross-listed stocks prices.

5.3 Statistical Arbitrage Performance

We compute the performance of the HFT arbitrage strategy of Section 3.3 in two scenarios

to determine the lead-lag relationships’ financial significance. In the first scenario, we only

consider the first half of latency. We observe the LOBs of Xetra and BATS at a delay because

the physical distance between these exchanges and Chi-X causes the information to arrive

late at that location. In the second scenario, the first half of latency is still considered, but

now orders sent to Xetra and BATS also arrive at a delay to account for the second half

of latency. Both scenarios consider trading costs and assume the colocation of a server at

Chi-X. This allows us to empirically study the effect of latency on the arbitrage strategy’s

performance.

Table 11 details the performance of the HFT strategy when latency is considered in the
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case of information arrival, but not when sending orders (scenario 1). By being colocated at

Chi-X, we receive Xetra’s TAQ data five milliseconds after it is sent by the exchange, and

BATS’ data is received after one millisecond. But, orders are immediately integrated into

Xetra’s and BATS’s LOBs whenever they are sent by the strategy. As in Table 8, we begin

at the peak, i.e., the values of K on the training sets that generate the highest accuracy

from the set K ∈ {0.35, 0.375, 0.40, . . . , 1}, and then decrease K from that starting point by

increments of 0.025.

Table 11: Performance summary of the HFT arbitrage strategy on six months of 2013 data
for the first scenario and multiple Ks.

Threshold
(K)

Xetra Profits
(before costs)

Xetra
Net Profits

BATS Profits
(before costs)

BATS
Net Profits

Total Profits
(before costs) Total Net Profits

Peak € 607 012.83 € 121 976.42 € 405 892.76 € 327 639.91 € 1 012 905.59 € 449 616.33
Peak - 0.025 € 739 347.13 € 137 268.97 € 521 868.46 € 422 886.51 € 1 261 215.59 € 560 155.48
Peak - 0.050 € 880 286.64 € 151 088.22 € 634 577.10 € 514 435.27 € 1 514 863.74 € 665 523.48
Peak - 0.075 € 1 043 393.11 € 173 071.48 € 730 251.28 € 589 171.97 € 1 773 644.39 € 762 243.45
Peak - 0.100 € 1 236 157.68 € 198 565.95 € 800 106.40 € 642 167.31 € 2 036 264.08 € 840 733.26
Peak - 0.125 € 1 443 020.65 € 214 671.18 € 847 086.00 € 674 313.30 € 2 290 106.65 € 888 984.48
Peak - 0.150 € 1 667 881.72 € 246 440.08 € 874 899.96 € 691 162.67 € 2 542 781.68 € 937 602.75
Peak - 0.175 € 1 878 796.74 € 290 017.36 € 874 616.61 € 681 707.30 € 2 753 413.35 € 971 724.66
Peak - 0.200 € 2 058 341.88 € 318 595.84 € 849 585.18 € 652 700.51 € 2 907 927.06 € 971 296.35

We stop at K = Peak− 0.200 because it is the point at which the strategy’s profitability

starts to diminish and continues to do so past that threshold. Table 12 presents the perfor-

mance of the HFT strategy when latency is also included when sending orders to the market,

while still considering information arrival latency (scenario 2), meaning that orders sent to

Xetra take five milliseconds to arrive in the LOB, and orders sent to BATS arrive after one

millisecond from a colocated server at Chi-X. Full latency is thus considered, being the most

realistic scenario, in accounting for important market frictions.

Comparing Table 11 with Table 12, we notice that adding latency to the orders sent

by the HFT strategy plays an important role in its net profitability, especially at Xetra.

Indeed, net profits at that exchange are reduced by 15%—20%, but the strategy still remains

profitable. On the other hand, net profits at BATS do not change dramatically (around 5%

change). The geographical proximity of BATS to Chi-X and its lower trading activity and
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Table 12: Performance summary of the HFT arbitrage strategy on six months of 2013 data
for the second scenario and multiple Ks.

Threshold
(K)

Xetra Profits
(before costs)

Xetra
Net Profits

BATS Profits
(before costs)

BATS
Net Profits

Total Profits
(before costs) Total Net Profits

Peak € 555 628.57 € 99 890.54 € 423 989.76 € 346 240.12 € 979 618.33 € 446 130.66
Peak - 0.025 € 678 371.27 € 111 282.59 € 542 331.65 € 443 909.93 € 1 220 702.92 € 555 192.52
Peak - 0.050 € 809 847.42 € 120 902.05 € 657 113.35 € 537 572.71 € 1 466 960.77 € 658 474.76
Peak - 0.075 € 962 084.37 € 136 661.09 € 752 227.96 € 614 798.29 € 1 714 312.33 € 751 459.38
Peak - 0.100 € 1 146 414.12 € 158 359.51 € 828 672.00 € 671 389.06 € 1 975 086.12 € 829 748.57
Peak - 0.125 € 1 349 241.14 € 174 914.23 € 879 732.91 € 707 631.92 € 2 228 974.05 € 882 546.15
Peak - 0.150 € 1 566 425.26 € 203 051.37 € 908 244.56 € 725 160.98 € 2 474 669.82 € 928 212.35
Peak - 0.175 € 1 773 586.32 € 244 850.48 € 910 667.44 € 718 406.20 € 2 684 253.76 € 963 256.68
Peak - 0.200 € 1 945 885.20 € 268 122.62 € 885 587.51 € 689 348.67 € 2 831 472.71 € 957 471.29

liquidity compared to Xetra makes it so that latency does not play an important role on

the net profitability. Because of its higher trading costs, its geographical distance to the

leading exchange, and its higher level of trading and quoting activity, as compared to BATS,

generating net profits from lead-lag arbitrage at Xetra is more challenging. From these

results, we show that a HFTer is able to exploit the lead-lag relationship that exists for most

DAX 30 stocks cross-listed at Xetra, Chi-X, and BATS even when full latency, non-execution

risk, and trade costs are considered. From Table 12, we see that a HFTer can realistically

generate an annual net profit of over €1.9 million on DAX 30 stocks alone from the three

exchanges, or more than €33,000 on average per cross-listed stock, per exchange. Table

13 presents the detailed performance of the Alsayed & McGroarty (2014) strategy with the

most accurate KAM .

The most accurate version of the Alsayed & McGroarty (2014) mid-quote strategy is not

able to cover the bid-ask spread and the transaction costs. Almost 100% of the trades in

this strategy are not profitable, because there needs to be a variation in the best bid (when

closing a long position) and in the best ask (when closing a short position) greater than the

bid-ask spread, plus the transaction costs, within a single cluster, which lasts on average

around two seconds at both exchanges. This profitable situation occurs 0.65% of the time

at Xetra and 0.05% at BATS. Larger values of KAM do not generate better results in terms

of net profit per trade, and no KAMs generate a net profitable strategy.
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Table 13: Detailed performance of the Alsayed & McGroarty (2014) strategy on six months
of 2013 data in the second scenario with the most accurate threshold KAM = δ.

Xetra BATS
Gross Profit € 29 646.60 € 2 414.60
Loss -€ 11 530 611.00 -€ - 23 819 383.60
Trading Costs -€ 1 597 281.21 -€ 317 594.47
Total Net Profit -€ 13 098 245.61 -€ 24 134 563.47
Median Net Daily Profit -€ 110 406.68 -€ 201 944.76
Mean Net Daily Profit - € 115 913.68 -€ 213 580.21
Most Profitable Date (Net Profit) 5/20/2013 (-€ 59 006.03) 7/23/2013 (-€ 97 640.02)
Fifth Most Profitable Date (Net Profit) 7/22/2013 (-€ 63 408.32) 7/22/2013 (-€ 112 638.24)
Least Profitable Date (Net Profit) 2/26/2013 (-€ 290 537.19) 5/2/2013 (-€ 448 107.81)
Fifth Least Profitable Date (Net Profit) 2/21/2013 (-€ 136 761.52) 2/21/2013 (-€ 239 111.62)
Median Trade Time 0.050s 0.021s
Mean Trade Time 2.17s 2.17s
# Net Profitable Trades 27 350 1 917
# Net Unprofitable Trades 4 196 171 4 124 243
# Trades 4 223 521 4 126 160
% Net Profitable Trades 0.65% 0.05%
Mean Volume per Trade 100 100
Mean Net Profit per Profitable Trade € 0.68 € 1.17
Mean Net Profit per Unprofitable Trade -€ 3.12 -€ 5.85

We also demonstrate that a mid-quote-based market order HFT strategy, like the one in

Huth & Abergel (2014) and Alsayed & McGroarty (2014) is not viable in practice. To do so,

we assume a perfect model that is always able to predict the exact mid-quote return of the

lagging asset’s next cluster. If that return is above (under) a threshold KPerfect (−KPerfect),

the strategy opens a long (short) position with a buy (sell) market order at the best ask

(bid) right before the lagging asset’s next cluster begins. The position is then closed with

an opposite market order precisely when the lagging asset’s cluster ends. This is the buy-

and-hold HFT strategy of Alsayed & McGroarty (2014). Huth & Abergel (2014) employ the

same type of strategy, but on a trade basis with a threshold of 0. Table 14 presents this best

case mid-quote-based market order HFT strategy on our data in the second scenario.

Even though the predictive model is perfectly accurate on the next mid-quote return of

the lagging asset, gross profits never cover the bid-ask spread cost of market orders. This is

the only source of losses in Table 14. Thus, it is impossible to profit from high-frequency lead-

lag arbitrage from mid-quote return predictions and a market order—based HFT strategy. It

also shows that at the millisecond scale, asset returns rarely cover market order trading costs.

This means that the trading signal of Stübinger (2019) would also generate inconsiderable
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Table 14: Performance of a best case mid-quote-based market order HFT strategy on six
months of 2013 data in the second scenario for multiple KPerfect.

Threshold
(KPerfect) # Trades % Net Profitable

Trades
Gross Profit

(€)
Loss
(€)

Trading Costs
(€)

Total Net Profits
(€)

δ 11 383 116 0.50% 69 458.80 -44 766 290.20 -2 677 746.80 -47 374 578.20
2δ 2 881 086 1.36% 49 935.80 -17 000 431.90 -596 335.46 -17 546 831.56
3δ 1 226 077 1.67% 30 536.10 -10 368 211.80 -197 800.70 -10 535 476.40
4δ 723 858 1.40% 20 857.80 -7 427 306.80 -94 245.93 -7 500 694.93
5δ 427 531 1.30% 15 601.00 -5 414 911.90 -52 933.31 -5 454 244.21
6δ 303 438 1.27% 13 100.10 -4 097 537.00 -34 348.47 -4 118 785.37
7δ 180 751 1.50% 11 385.10 -2 990 559.20 -21 215.59 -3 000 389.69
8δ 113 714 1.82% 10 195.90 -2 332 527.70 -14 061.15 -2 336 392.95
9δ 71 894 2.15% 9 057.30 -1 873 618.20 -9 477.26 -1 874 038.16
10δ 47 844 2.54% 8 251.40 -1 537 993.50 -6 420.21 -1 535 892.31

profits in this setting. Switching from market orders to limit orders eliminates the necessity

of covering the bid-ask spread and facilitates access to profitability. It is also important

to know what side(s) of the LOB will generate the non-zero mid-quote return to capture

arbitrage opportunities and mid-quote returns do not provide that information. Predicting

the best bid and best ask returns allows better-informed trading decisions. Table 15 presents

the detailed performance of our limit order-based strategy with the most profitable K in the

second scenario.

Table 15: Detailed performance of the HFT strategy on six months of 2013 data in the
second scenario with the most profitable threshold K = Peak− 0.175.

Xetra BATS
Gross Profit € 3 365 103.46 € 2 108 945.01
Loss -€ 1 591 517.13 -€ 1 198 277.57
Trading Costs -€ 1 528 735.84 -€ 192 261.24
Total Net Profit € 244 850.48 € 718 406.20
Median Net Daily Profit € 1 942.99 € 6 071.93
Mean Net Daily Profit € 2 166.82 € 6 357.58
Most Profitable Date (Net Profit) 6/11/2013 (€ 9 987.13) 2/26/2013 (€ 16 118.00)
Fifth Most Profitable Date (Net Profit) 6/24/2013 (€ 5 721.97) 2/25/2013 (€ 11 053.02)
Least Profitable Date (Net Profit) 5/2/2013 (-€ 2 289.61) 5/9/2013 (€ 2 811.62)
Fifth Least Profitable Date (Net Profit) 2/21/2013 (€ 1 237.24) 7/26/2013 (€ 4 173.32)
Median Trade Time 1.02s 1.44s
Mean Trade Time 27.82s 28.45s
# Net Profitable Trades 1 158 049 1 002 859
# Net Unprofitable Trades 223 452 223 998
# Trades 1 381 501 1 226 857
% Net Profitable Trades 83.83% 81.74%
Mean Volume per Trade 503.64 352.29
Mean Net Profit per Profitable Trade € 1.79 € 1.95
Mean Net Profit per Unprofitable Trade -€ 8.20 -€ 5.51
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Gross profits are considerable in both exchanges. But, losses incurred from execution-

related risks are also sizeable, drastically decreasing the net profitability of the strategy, by

approximately 50%. Losses occur whenever the model predictions are wrong, which directly

results in limit orders not being executed because the lagging assets’ level 1 prices have drifted

away from the specified limit price. At that point, losses are cut by stop limit orders. When

these limit orders are also not executed, market orders are sent to finally close the position

afterM minutes (15 minutes for Xetra and 20 for BATS; see Appendix A for details). Losses

can also occur even when the model is right, but limit orders remain in the queue without

ever being executed.

Exchange trading costs are also significant, especially at Xetra, given its prohibitive fee

structure relative to BATS. This was expected, given the large number of trades and their

limited profitability because of the brief holding period typical of HFT strategies. Overall,

considering losses and trading costs, a net profit margin of 7% was obtained at Xetra and 34%

at BATS, where the significant difference stems from that difference in their fee structure

and from the longer latency to trade on Xetra from Chi-X. All order types are expensive at

Xetra, whereas liquidity-providing orders are free at BATS and liquidity-taking fees are less

than half of Xetra’s (see Table 4 for all fees).

Median trading times are quick at both exchanges, though slightly longer at BATS be-

cause of its lower level of trading activity compared to Xetra (see Table 2). Mean trading

times are greater than the median, given the non-execution risk of limit orders, which can

stay for up to M minutes in the LOB without being executed. The proportions of net prof-

itable trades are in line with model accuracy for both exchanges. Once again, we notice the

importance of execution-related risks from the difference between the performance of prof-

itable and non-profitable trades. In fact, the mean loss incurred is over 4.58 times greater

than the mean profit per trade at Xetra, and the same ratio is over 2.82 at BATS. Without

risk management procedures, these ratios are even greater. Table 16 presents the detailed

performance of the HFT strategy excluding stop-limit orders, maximum level 1 price varia-
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tion, and the no-microstructure-change rule (see Appendix A for details). We leave the time

breaker of M minutes before closing positions; otherwise they can stay open for days and no

trade occurs in that time because the strategy waits for the previous position to close before

opening the next. This is a consequence of the non-execution risk of limit orders.

Table 16: Detailed performance of the HFT strategy on six months of 2013 data in the second
scenario with the most profitable threshold K = Peak− 0.175 without risk management.

Xetra BATS
Gross Profit € 1 569 778.02 € 1 146 940.41
Loss -€ 767 202.96 -€ 604 726.34
Trading Costs -€ 624 995.42 -€ 100 639
Total Net Profit € 177 579.64 € 441 575.05
Median Net Daily Profit € 1 453.54 € 3 766.97
Mean Net Daily Profit € 1 571.50 € 3 907.74
Most Profitable Data (Net Profit) 6/13/2013 (€ 4 707.61) 3/6/2013 (€ 15 650.04)
Fifth Most Profitable Date (Net Profit) 5/23/2013 (€ 3 909.88) 2/27/2013 (€ 7 581.48)
Least Profitable Date (Net Profit) 7/5/2013 (-€ 2 870.90) 7/19/2013 (-€ 2 684.23)
Fifth Least Profitable Date (Net Profit) 2/21/2013 (€ 1 320.75) 6/21/2013 (€ 699.45)
Median Trade Time 1.80s 1.76s
Mean Trade Time 75.22s 79.81s
# Net Profitable Trades 456 981 546 489
# Net Unprofitable Trades 55 701 17 172
# Trades 512 682 563 661
% Net Profitable Trades 89.14% 96.95%
Mean Volume per Trade 338.45 213.47
Mean Net Profit per Profitable Trade € 2.14 € 1.92
Mean Net Profit per Unprofitable Trade -€ 14.33 -€ 35.52

As expected, the ratio of mean loss to mean profit per trade incurred at Xetra climbs from

4.58 to 6.70 and soars from 2.82 to 18.50 at BATS. More importantly, the net profitability

decreased by 27% at Xetra and by 39% at BATS. Nonetheless, the strategy remains profitable

at both exchanges. The largest difference between Table 15 and Table 16 comes from the

absence of stop-limit orders. Without them, the positions stay open as long as the profit-

taking limit orders are not executed, up to M minutes. The average trade duration more

than doubles, hence reducing the number of arbitrage opportunities captured by about the

same quotient. Risk management procedures are thus useful in preventing large losses by

mitigating the non-execution risk of limit orders while also closing positions rapidly when

prices drift away for them.

Figure 5 presents the cumulative net profit of the most profitable version of the strategy
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in scenario 2 (see Table 15). The strategy has minimal drawdown and constantly generates

a positive net profit on a daily basis. Table 15 answers our final question. If a lead-lag

Figure 5: Cumulative net profit of the HFT strategy on a daily basis for Table 6 selected DAX
30 stocks from February 1 to July 31 2013 in the second scenario with the most profitable
threshold K = Peak − 0.175.

relationship exists between two assets and if a predictive model is able to exploit it, a HFTer

can in fact realistically earn a profit. As shown in the same table, the execution-related

risks were the main impediment to lead-lag arbitrage, followed by trading costs and latency,

based on Table 11 versus Table 12. Nonetheless, an HFT strategy that was colocated at the

leading exchange and that relied mainly on limit orders was able to profit from the lead-lag

relationship that existed between DAX 30 stocks cross-listed at Xetra, Chi-X, and BATS in

2013.

6 Conclusion

In this paper, we investigate the existence, predictability, and profitability of lead-lag rela-

tionships at a high frequency with an application to DAX 30 stocks cross-listed at Xetra in

Frankfurt, and Chi-X and BATS, both in London, during six months of 2013. Using the

robust lead-lag estimator of Hoffman et al. (2013) and the lead-lag ratio of Huth & Abergel
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(2014), we first show that Chi-X leads level 1 prices by mere milliseconds. This is in line

with previous studies showing that the most actively traded, liquid, and least expensive

exchange will ultimately be the price discovery origin of arbitrage-linked assets. The lead-

lag estimation demonstrates the great interconnectedness between the three exchanges by

showing that their lag is approaching, or even equating, the physical speed limit at which

information could travel between them at that time. This level of precision is the highest in

the cross-listed stocks lead-lag literature. It was previously unattainable because of the Epps

effect (Epps (1979)), which would have generated biased estimations at high frequencies for

previous-tick-based methodologies employed by prior studies (Zhang (2011)).

After establishing the existence of lead-lag relationships in DAX 30 cross-listed stocks, we

develop a new predictive modeling framework based on the concept of clusters proposed by

Alsayed & McGroarty (2014), in conjunction with a new, generalized version of the autore-

gressive logistic regression. Clusters allow us to depart from uniformly sampled observations

to instead employ the unadulterated LOB updates. Our econometric model employs past

and current asset prices to forecast a classification of the next clusters’ return: positive,

null, or negative. This probabilistic framework generates an out-of-sample return accuracy

exceeding 80%, with a solidly maintained performance throughout our data period, thereby

comparing advantageously to the other models put forth in the literature. Indeed, the pro-

posed approach is able to detect substantially more potential arbitrage opportunities, with

an even greater accuracy than previous regression models.

We then introduce a new high-frequency trading strategy built around our predictive

model to profit from the detected lead-lag relationships. Previous studies failed to generate

viable high-frequency strategies because of the steep costs associated with market orders

(Brooks, Rew, et al. (2001), Huth & Abergel (2014)). In these studies, paying the bid-

ask spread and the exchange trading costs was too prohibitive to exploit intraday lead-lag

relationships. To go further, we empirically demonstrate the non-viability of mid—quote

and market order-based strategies in the context of high-frequency lead-lag arbitrage. The
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results show the quasi-impossibility of such a strategy to cover even the bid-ask spread when

lags exist at the sub-second scale. The strategy we propose relies instead on limit orders

and LOB signals to cut on these costs, at the expense of adding a non-execution risk. In

a scenario where major market frictions are present, we demonstrate that high-frequency

traders could realistically earn a profit with our limit order—based strategy. More precisely,

they could generate an annual net profit above €1.9 million from DAX 30 stocks alone

and only two exchanges (Xetra and BATS) with a colocated server at Chi-X. We show that

execution-related risks, trading costs, and latency (in that order) are important impediments

to lead-lag arbitrage, and that risk management measures are necessary to alleviate their

impact on profitability.

Our goal was to demonstrate how a high-frequency trader would theoretically be able

to profit from lead-lag arbitrage and empirically show that possibility with a pragmatic ap-

proach. We intended to develop a complete framework incorporating the detection, predic-

tion, and trading of lead-lag relationships for any pair of assets. The framework empirically

achieved that for cross-listed stocks, hence advancing knowledge on lead-lag in high-frequency

markets and answering queries about their financial importance (Curme et al. (2015), Bas-

narkov et al. (2020)). The proposed framework is also general enough to be used on any pair

of assets.

Our study covered the application of high-frequency lead-lag relationships in an arbitrage

context. Li et al. (2022) demonstrate how the daily lead-lag effect significantly improves the

profitability of alpha-factor strategies. In that sense, the statistical relationship, predictive

model, and backtesting methodology presented in this paper could also be investigated for

other types of strategies, like market making. Being able to predict an asset’s level 1 prices

from another related and leading asset would probably prove beneficial for market markers.

It would also be worthwhile to quantify the financial viability of lead-lag relationships in other

asset classes and markets, and during different time periods with the proposed framework,

or any other that might come.
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Appendices

A High-Frequency Strategy - Additional Details

The strategy has two important variables controlling its performance: the time breaker’s

delay M , and the order volume V Bid/Ask
t . To select M at Xetra and BATS, we tested its

financial effect on the first out-of-sample period. We ran the HFT strategy in that timeframe

with M ∈ {5, 6, 7, 8, 9, 10, 15, 30, 60, 90, 120, 300, 600, 900, 1200, 1800, 3600} seconds at the

two exchanges. M = 900 seconds produced the greatest profitability in that first period at

Xetra, and M = 1200 seconds at BATS. These values where then set for the entirety of our

data, since dynamically selecting them (like we did for K) is computationally very expensive.

As shown in Figure 5, net profits are fairly constant in time, a sign that the strategy does

not suffer from a preset M .

As for V Bid/Ask
t , it follows the median level 1 volume of the last 500 LOB updates,

rounded to the closest lowest 100 to trade on round lots. Using more LOB updates does

not significantly affect the volume sent by the strategy and does not greatly impact the

strategy’s performance. More formally, given LOB update indices t = 1, 2, . . . , T , the order

volume that is sent by the HFT strategy is calculated by

V
Bid/Ask
t = 100

 ṽBid/Askt

100

, ∀t ≥ 500

where ṽBid/Askt is the empirical median of the sample vBid/Askt−499:t , for vBid/Askt ∈ N+ the best

bid/ask volume at index t. No order is sent to the market before observing 500 LOB updates.

This is done independently for every stock at Xetra and BATS. Using a windowed median

volume limits the market impact of the strategy and the liquidity risk, because the orders

dynamically and conservatively follow the liquidity present in the LOB.

To mitigate risk even more, orders are only sent when three conditions are respected:
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1. The last in-cluster return of the leader CX
i,nX

i
is not generated by a trade;

2. The realized local variation of level 1 price at the lagging exchange is under a preset

threshold;

3. No microstructure change has occurred.

The first condition is present so that the strategy does not to open a position whenever child

orders hit the same ticker at multiple exchanges and at the same time. When that occurs,

the LOBs of all exchanges move in the same direction at the same time. The strategy cannot

profit from that situation since it depends on delayed movements of the LOB at the lagging

exchange.

The second condition limits execution-related risks by not opening a position when the

volatility of level 1 prices of the LOB is too great, as measured from the previous 50 prices.

Given LOB update indexes t = 1, 2, . . . T , the realized local variation is defined as

RLV
Bid/Ask
t =

49∑
i=0

∣∣∣∣pBid/Askt−i − pBid/Askt−i−1

∣∣∣∣,
where pBid/Askt ∈ R+ the best bid/ask price at index t. Whenever RLV Bid/Ask

t > δW for

δ ∈ R+ the tick size andW ∈ R+
0 a preset threshold, the strategy does not send orders. W is

found from the set {5, 10, 25, 50, 75, 100, 150, 200, 250, 500} in the same way as M . W = 100

at Xetra and W = 25 at BATS.

The third condition relates to changes in the tick size of the stock. Whenever this

microstructure shock occurs, the strategy stops trading the given ticker until it returns to

its initial tick size. This is for simplicity, because the models would need a more complex

fitting method to accommodate such an event. See Table 5 for the tick size rules.
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B Econometric Model Performance - Additional Re-

sults

Table 17: Alsayed & McGroarty (2014) mid-quote direction predictions computed on six
months of data for each ticker at Xetra.

Accuracy Potential Opportunities
Ticker \KAM δ 2δ 3δ 4δ 5δ δ 2δ 3δ 4δ 5δ

ADS 71.73% 70.09% 66.10% 64.53% 64.16% 207 093 51 518 22 702 13 452 9 151
ALV 74.75% 64.11% 70.57% 75.58% 76.09% 41 165 1 120 316 172 138
BAS 75.07% 75.22% 66.57% 64.39% 63.36% 227 108 28 800 9 027 5 218 3 428
BAYN 73.85% 75.73% 67.79% 64.09% 63.19% 251 731 41 221 13 036 6 897 4 507
BEI 74.88% 71.65% 66.18% 63.49% 62.70% 110 355 21 086 8 992 5 368 3 697
BMW 74.69% 75.52% 68.71% 66.20% 63.27% 236 652 38 946 11 764 5 911 3 458
CBK 65.76% 67.46% 65.92% 63.64% 62.19% 339 938 99 731 26 519 14 294 10 138
CON 70.63% 69.95% 67.23% 65.26% 64.05% 222 551 71 282 31 413 17 958 11 853
DAI 73.50% 72.81% 67.13% 64.08% 62.26% 440 231 91 651 34 176 18 742 11 843
DB1 69.11% 67.82% 65.97% 63.45% 61.12% 201 577 62 592 24 100 13 997 9 530
DBK 73.05% 73.51% 69.02% 65.00% 63.57% 416 043 61 684 15 043 6 782 3 895
DPW 73.55% 67.99% 65.74% 66.67% 70.11% 41 428 4 792 2 201 1 026 435
DTE 66.62% 69.87% 70.03% 69.12% 68.98% 430 101 68 517 9 369 4 015 2 495
EOAN 69.12% 64.31% 64.30% 64.43% 65.03% 40 405 1 681 479 194 143
FME 73.10% 68.36% 64.72% 62.99% 62.31% 114 853 20 998 10 183 6 552 4 590
FRE 71.30% 71.24% 68.13% 64.80% 63.59% 197 753 64 364 30 590 17 911 12 534
HEI 72.77% 70.98% 66.93% 65.48% 64.74% 174 606 38 452 14 460 8 213 5 385
HEN3 - - - - - - - - - -
IFX 72.55% 69.66% 66.74% 65.31% 64.66% 281 850 78 420 21 257 10 756 7 505
LHA 70.92% 64.87% 61.73% 60.33% 64.07% 54 939 5 346 1 769 663 398
LIN 71.27% 65.19% 66.60% 68.57% 69.71% 24 285 2 215 991 385 241
LXS 69.45% 67.71% 65.46% 63.27% 63.28% 219 530 55 455 18 168 10 097 6 500
MRK 67.86% 65.75% 63.70% 62.84% 61.88% 23 184 3 425 1 193 705 522
MUV2 73.23% 63.18% 58.61% 60.67% 60.24% 33 239 2 010 691 239 166
RWE 72.20% 69.76% 64.77% 61.57% 58.82% 171 798 23 412 7 991 4 267 2 295
SAP 73.57% 71.46% 67.13% 65.98% 63.31% 145 500 19 100 7 140 3 957 2 164
SIE 75.06% 74.51% 66.10% 63.62% 62.94% 243 347 32 407 10 405 6 063 3 999
TKA 68.21% 64.93% 61.17% 59.04% 63.31% 73 814 7 277 2 045 791 387
VOW3 74.12% 67.13% 60.44% 60.52% 64.56% 77 109 6 021 1 691 580 285
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Table 18: Alsayed & McGroarty (2014) mid-quote direction predictions computed on six
months of data for each ticker at BATS.

Accuracy Potential Opportunities
Ticker \KAM δ 2δ 3δ 4δ 5δ δ 2δ 3δ 4δ 5δ

ADS 72.51% 72.42% 69.19% 67.92% 67.77% 186 741 44 983 18 573 10 650 7 115
ALV 65.17% 70.67% 78.06% 81.15% 80.00% 40 214 1 040 319 191 160
BAS 76.58% 77.14% 70.22% 68.74% 68.41% 226 470 26 610 7 384 4 171 2 741
BAYN 75.83% 76.90% 70.43% 67.43% 67.25% 244 096 37 637 10 625 5 164 3 258
BEI 73.23% 74.96% 71.75% 69.47% 69.47% 108 102 19 604 7 770 4 366 2 817
BMW 72.53% 72.88% 68.70% 67.88% 65.19% 211 945 34 597 9 453 4 399 2 439
CBK 60.51% 64.05% 64.79% 64.84% 64.07% 314 401 88 256 23 712 12 619 8 984
CON 71.37% 71.14% 69.29% 67.96% 66.96% 159 198 52 819 22 658 12 242 7 924
DAI 70.45% 70.31% 66.20% 64.21% 63.58% 429 938 86 667 30 589 16 030 9 785
DB1 69.37% 70.42% 70.56% 69.60% 68.62% 161 937 49 272 18 013 9 583 6 132
DBK 76.19% 76.86% 72.58% 69.54% 67.83% 410 400 61 851 14 984 6 539 3 671
DPW 71.83% 70.41% 69.59% 70.44% 69.88% 41 742 4 160 1 812 866 415
DTE 64.38% 68.59% 68.28% 65.85% 64.89% 484 711 71 700 9 915 4 351 2 757
EOAN 70.07% 72.50% 72.79% 72.15% 71.43% 39 904 1 567 463 219 168
FME 70.85% 70.82% 68.51% 67.62% 68.06% 119 564 18 461 8 152 4 981 3 460
FRE 69.27% 69.83% 68.80% 67.65% 67.28% 128 239 43 937 19 725 10 732 7 229
HEI 68.29% 70.38% 70.42% 69.05% 67.84% 132 583 31 014 10 982 6 029 4 005
HEN3 69.07% 68.53% 67.16% 65.85% 65.97% 116 053 27 137 10 051 5 159 3 185
IFX 66.41% 67.40% 66.43% 65.20% 64.79% 248 676 72 051 19 118 9 509 6 624
LHA 73.99% 71.35% 68.56% 65.73% 68.62% 54 420 4 793 1 323 499 290
LIN 69.97% 70.91% 70.19% 68.75% 67.36% 24 303 1 860 805 336 239
LXS 68.33% 69.75% 70.31% 70.33% 70.28% 164 776 42 692 13 558 7 199 4 644
MRK 68.19% 69.52% 66.95% 68.11% 67.67% 24 930 3 094 932 508 365
MUV2 72.97% 75.38% 70.33% 65.49% 64.38% 33 414 1 775 583 226 160
RWE - - - - - - - - - -
SAP 73.95% 74.05% 71.38% 69.79% 67.24% 145 724 17 172 5 822 3 059 1 688
SIE 71.84% 75.52% 71.00% 69.32% 68.68% 258 849 30 501 8 470 4 527 2 880
TKA 72.05% 71.84% 71.47% 67.47% 65.14% 75 764 6 849 1 714 667 350
VOW3 71.70% 72.69% 69.29% 68.80% 60.70% 80 921 5 482 1 361 468 257
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Table 19: ADLMLR bid price process direction predictions computed on six months of data
for each ticker at Xetra and multiple Ks.

Accuracy
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 81.83% 81.55% 80.98% 80.34% 79.42% 78.65% 77.54% 74.43% 71.49%
ALV 77.74% 77.66% 74.09% 71.63% 71.86% 70.07% 68.58% 67.97% 67.12%
BAS 86.12% 86.01% 85.60% 84.83% 83.79% 82.61% 81.36% 80.23% 79.09%
BAYN 87.20% 86.77% 86.02% 85.18% 84.33% 83.39% 82.40% 81.43% 80.47%
BEI 88.09% 87.82% 87.48% 87.02% 86.58% 85.81% 85.15% 84.36% 83.57%
BMW 88.20% 87.91% 87.61% 86.88% 86.10% 85.08% 84.07% 82.99% 81.90%
CBK 82.46% 82.09% 81.25% 79.76% 76.96% 69.22% 69.70% 71.32% 72.40%
CON 79.78% 79.83% 79.65% 79.46% 78.94% 78.29% 77.50% 77.31% 76.11%
DAI 84.54% 84.54% 84.26% 83.78% 83.15% 82.49% 81.58% 80.65% 79.70%
DB1 80.67% 80.45% 80.14% 79.88% 79.22% 78.43% 77.44% 76.60% 71.82%
DBK 88.64% 86.37% 86.06% 85.77% 85.21% 84.63% 83.96% 83.25% 82.35%
DPW 86.44% 86.55% 85.84% 85.16% 83.88% 82.58% 80.95% 79.92% 78.90%
DTE 88.19% 88.12% 87.68% 87.11% 86.30% 85.36% 84.42% 83.44% 82.52%
EOAN 85.86% 84.73% 82.66% 80.28% 76.46% 74.41% 72.80% 71.31% 70.04%
FME 84.86% 85.15% 84.97% 84.68% 84.18% 83.68% 83.03% 82.27% 81.53%
FRE 80.52% 80.44% 79.35% 76.65% 68.62% 68.87% 69.15% 70.06% 70.75%
HEI 85.53% 85.42% 85.02% 84.72% 84.13% 83.47% 82.61% 81.74% 80.88%
HEN3 - - - - - - - - -
IFX 85.90% 85.89% 85.73% 85.49% 85.18% 84.93% 84.65% 84.22% 83.70%
LHA 85.25% 85.54% 84.96% 84.61% 83.95% 83.15% 82.41% 81.31% 80.35%
LIN 81.43% 81.61% 80.93% 79.30% 76.46% 75.04% 73.38% 71.78% 70.72%
LXS 81.14% 81.54% 81.78% 81.52% 81.25% 80.64% 80.10% 79.46% 78.70%
MRK 82.44% 82.84% 82.33% 81.48% 80.82% 80.34% 79.81% 78.82% 78.54%
MUV2 82.27% 82.32% 81.08% 79.61% 77.70% 75.40% 72.98% 71.23% 69.91%
RWE 85.24% 85.21% 84.81% 84.27% 83.51% 82.64% 81.74% 80.77% 79.61%
SAP 84.82% 84.63% 83.99% 83.16% 82.21% 81.06% 79.85% 78.63% 77.40%
SIE 87.34% 87.39% 86.73% 86.06% 85.11% 83.95% 82.76% 81.88% 80.77%
TKA 86.45% 86.70% 86.27% 85.68% 84.94% 84.03% 82.98% 81.63% 80.43%
VOW3 85.96% 85.03% 83.96% 82.55% 80.74% 79.49% 78.12% 76.73% 75.81%

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 30 921 35 286 39 968 45 093 50 575 50 272 28 165 10 629 4 297
ALV 283 394 575 980 1 663 2 743 4 032 5 601 7 281
BAS 18 160 23 046 28 044 33 558 39 700 46 766 54 954 64 071 73 405
BAYN 26 195 31 442 36 851 42 762 49 519 57 000 65 163 73 748 82 099
BEI 15 945 18 433 21 030 23 664 26 402 29 328 32 213 35 120 37 811
BMW 25 793 30 810 35 998 41 453 47 254 53 655 60 483 67 707 74 969
CBK 33 676 40 120 41 088 35 718 31 174 10 751 12 381 11 114 12 799
CON 26 077 29 178 32 502 36 021 39 907 43 920 48 190 38 752 23 615
DAI 54 762 63 187 71 882 80 629 90 099 99 954 110 593 121 646 132 795
DB1 19 627 22 824 26 454 30 525 35 270 40 394 45 854 35 404 7 226
DBK 36 681 34 372 42 140 50 664 59 908 70 333 81 715 94 324 107 699
DPW 3 406 4 140 5 000 6 233 7 871 9 861 12 165 14 388 16 578
DTE 15 898 21 367 27 264 33 409 39 635 46 320 53 142 60 140 67 593
EOAN 1 266 1 755 2 364 3 463 5 560 8 698 13 005 17 242 20 964
FME 12 382 14 521 16 831 19 370 22 244 25 238 28 402 31 444 34 313
FRE 28 444 26 874 24 332 16 284 5 360 6 136 6 845 4 108 4 861
HEI 18 116 20 956 23 910 26 966 30 117 33 293 36 637 40 151 43 507
HEN3 - - - - - - - - -
IFX 31 499 36 515 41 742 47 484 54 301 62 839 72 185 80 774 83 824
LHA 6 115 7 515 8 892 10 548 12 648 15 196 17 983 20 867 23 714
LIN 1 422 1 767 2 166 2 739 3 705 5 053 6 810 8 821 10 925
LXS 11 547 13 920 16 593 19 606 23 095 26 695 30 538 34 767 39 377
MRK 1 657 2 028 2 490 3 040 3 691 4 414 5 135 5 893 6 539
MUV2 1 145 1 493 1 866 2 428 3 318 4 573 6 239 8 210 10 290
RWE 17 519 21 529 25 494 29 483 34 003 38 907 44 709 51 344 58 359
SAP 13 213 15 657 18 212 21 188 24 919 29 452 34 764 40 652 46 600
SIE 18 183 22 674 27 466 32 574 38 546 45 283 52 742 60 341 67 885
TKA 5 462 7 323 9 218 11 086 12 822 14 743 16 816 19 029 21 456
VOW3 5 593 6 848 8 296 10 197 12 599 15 432 18 646 22 050 25 340
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Table 20: ADLMLR bid price process direction predictions computed on six months of data
for each ticker at BATS and multiple Ks.

Accuracy
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 76.02% 76.27% 76.45% 76.05% 75.55% 74.97% 74.13% 73.87% 73.42%
ALV 79.26% 79.19% 79.01% 78.89% 78.44% 77.96% 77.51% 76.68% 75.78%
BAS 79.29% 79.67% 79.58% 79.28% 78.88% 78.11% 77.20% 76.17% 75.11%
BAYN 78.90% 79.05% 78.97% 78.67% 78.24% 77.70% 77.06% 76.15% 75.24%
BEI 80.07% 79.66% 79.11% 78.32% 77.30% 76.08% 74.28% 72.27% 69.60%
BMW 79.18% 79.14% 78.95% 78.87% 78.53% 78.28% 77.88% 77.30% 76.51%
CBK 69.38% 70.46% 71.52% 71.85% 72.06% 71.94% 71.80% 71.44% 71.17%
CON 75.42% 75.39% 75.48% 75.38% 75.19% 74.91% 75.41% 74.41% 74.14%
DAI 74.64% 74.59% 74.55% 74.25% 73.99% 73.58% 73.07% 72.31% 72.17%
DB1 78.16% 77.98% 78.01% 77.76% 77.31% 76.92% 76.53% 75.63% 74.78%
DBK 86.20% 82.93% 83.27% 83.32% 83.26% 83.05% 82.70% 82.32% 81.77%
DPW 77.03% 76.77% 76.52% 75.68% 74.60% 73.29% 71.85% 70.60% 69.09%
DTE 83.86% 83.44% 82.96% 82.33% 81.55% 80.63% 79.69% 78.63% 77.47%
EOAN 84.17% 83.09% 82.33% 81.35% 80.37% 79.42% 79.20% 78.44% 77.66%
FME 76.99% 76.88% 76.83% 76.27% 75.59% 74.32% 72.88% 71.37% 70.67%
FRE 78.26% 78.03% 77.46% 76.90% 73.93% 75.86% 71.98% 71.87% 72.15%
HEI 79.79% 79.26% 78.85% 77.98% 77.30% 76.56% 75.81% 74.77% 73.68%
HEN3 76.69% 76.60% 76.05% 75.30% 74.46% 73.85% 73.13% 72.11% 72.91%
IFX 78.26% 78.23% 78.03% 77.62% 76.98% 76.11% 74.81% 72.17% 69.50%
LHA 86.66% 87.12% 87.05% 86.20% 85.49% 84.76% 84.09% 83.19% 82.35%
LIN 78.68% 78.31% 78.45% 78.27% 77.95% 77.45% 76.89% 76.19% 75.22%
LXS 80.46% 80.86% 80.83% 81.04% 80.98% 80.67% 79.94% 78.94% 78.07%
MRK 75.78% 75.82% 75.24% 74.69% 73.31% 72.02% 70.73% 69.68% 68.25%
MUV2 79.79% 79.21% 79.27% 78.82% 78.13% 77.57% 76.93% 76.09% 74.94%
RWE - - - - - - - - -
SAP 78.35% 78.11% 77.70% 77.18% 76.54% 75.94% 75.04% 73.63% 71.73%
SIE 78.00% 78.10% 77.83% 77.33% 76.66% 75.80% 74.56% 73.28% 72.07%
TKA 84.76% 84.89% 84.07% 83.90% 83.30% 82.59% 81.60% 80.62% 79.39%
VOW3 76.87% 76.15% 75.41% 74.32% 73.35% 72.44% 71.61% 70.89% 69.98%

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 16 658 19 906 23 755 28 191 30 847 33 653 39 495 23 346 7 419
ALV 4 870 6 344 7 446 8 206 8 709 9 071 9 351 9 677 10 098
BAS 20 357 24 871 30 271 36 608 43 650 51 218 59 218 68 748 79 569
BAYN 25 715 31 102 37 115 43 786 51 053 59 118 68 008 77 702 87 659
BEI 14 178 16 890 19 827 23 281 27 085 26 959 29 558 31 972 31 720
BMW 16 988 20 273 24 103 28 490 33 255 38 726 44 826 51 328 58 495
CBK 6 026 7 875 9 899 12 208 14 584 17 098 19 777 22 585 25 456
CON 18 493 21 154 24 325 27 894 31 800 36 206 7 939 7 339 7 502
DAI 27 757 32 729 38 415 44 663 51 605 59 466 68 222 78 085 62 966
DB1 7 293 8 680 10 281 12 158 14 211 16 655 19 480 22 834 26 717
DBK 30 084 26 839 33 668 41 185 49 402 58 302 68 056 78 582 89 943
DPW 6 952 8 389 9 972 11 647 13 573 15 775 17 121 18 375 20 361
DTE 19 527 24 681 30 420 36 474 42 941 49 656 56 636 63 938 71 807
EOAN 2 091 4 359 7 070 9 811 12 817 14 278 15 315 16 757 18 021
FME 10 772 13 039 15 681 18 746 22 141 26 056 30 596 35 639 33 514
FRE 16 801 19 567 21 713 25 015 18 485 8 513 4 575 2 574 3 163
HEI 10 130 11 770 13 553 15 539 17 796 20 102 22 509 25 152 28 017
HEN3 12 073 13 663 15 491 17 561 19 849 22 378 20 441 21 923 20 310
IFX 24 511 29 214 34 819 41 175 48 318 56 331 58 735 56 609 37 044
LHA 3 906 5 705 7 584 9 524 11 398 13 261 15 265 17 372 19 775
LIN 5 484 7 013 8 264 9 260 10 026 10 618 11 162 11 695 12 327
LXS 4 135 5 163 6 347 7 658 9 341 11 274 13 570 16 139 19 026
MRK 3 030 3 581 4 132 4 626 5 181 5 722 6 369 6 976 7 707
MUV2 3 617 5 042 6 265 7 312 8 176 8 885 9 537 10 194 10 932
RWE - - - - - - - - -
SAP 15 259 19 120 22 756 26 421 30 150 34 157 38 404 43 569 50 664
SIE 16 256 20 633 25 579 31 271 37 625 44 290 51 478 58 937 66 880
TKA 4 009 5 651 7 628 9 474 11 436 13 528 15 714 17 975 20 742
VOW3 9 527 12 781 16 099 19 535 22 849 25 774 28 312 30 527 32 671
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Table 21: ADLMLR ask price process direction predictions computed on six months of data
for each ticker at Xetra and multiple Ks.

Accuracy
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 80.93% 80.70% 80.31% 79.77% 79.07% 78.12% 77.15% 76.30% 71.59%
ALV 76.67% 75.88% 75.05% 73.24% 70.24% 68.91% 67.52% 66.33% 65.63%
BAS 86.35% 86.17% 85.55% 84.68% 83.39% 82.18% 80.90% 79.67% 78.53%
BAYN 84.84% 84.50% 83.97% 83.53% 82.73% 81.97% 80.95% 79.85% 78.75%
BEI 86.76% 86.66% 86.26% 85.87% 85.24% 84.56% 83.80% 82.85% 82.44%
BMW 87.94% 87.72% 87.34% 86.69% 85.86% 84.81% 83.78% 82.68% 81.61%
CBK 82.25% 72.07% 72.24% 72.32% 72.67% 72.49% 72.39% 72.33% 72.30%
CON 80.06% 80.13% 80.08% 79.89% 79.51% 78.80% 78.00% 76.70% 73.93%
DAI 84.60% 84.50% 84.28% 83.81% 83.25% 82.49% 81.67% 80.69% 79.84%
DB1 80.54% 80.27% 79.80% 79.52% 78.94% 78.38% 77.57% 76.78% 71.94%
DBK 86.07% 86.07% 85.72% 85.35% 84.76% 84.16% 83.43% 82.62% 81.84%
DPW 85.17% 85.04% 84.45% 83.83% 82.28% 80.88% 79.68% 78.67% 77.89%
DTE 89.66% 89.47% 89.04% 88.35% 87.56% 86.40% 85.24% 84.20% 83.18%
EOAN 85.81% 85.34% 83.16% 80.45% 76.95% 74.60% 72.32% 70.48% 68.98%
FME 83.81% 84.17% 84.15% 84.19% 83.77% 83.18% 82.77% 82.27% 81.69%
FRE 77.17% 77.40% 76.43% 75.08% 71.96% 71.22% 68.70% 69.45% 69.93%
HEI 85.62% 85.64% 85.40% 85.10% 84.55% 83.88% 83.02% 82.21% 81.23%
HEN3 - - - - - - - - -
IFX 86.37% 86.15% 85.93% 85.59% 85.21% 84.93% 84.64% 84.27% 83.75%
LHA 86.46% 86.32% 85.82% 85.38% 84.59% 83.56% 82.65% 81.79% 80.80%
LIN 81.37% 80.72% 79.17% 77.35% 75.54% 73.91% 72.37% 71.00% 69.78%
LXS 80.99% 81.36% 81.38% 81.35% 81.13% 80.64% 80.16% 79.63% 78.83%
MRK 78.51% 78.30% 78.86% 79.60% 78.80% 78.39% 77.71% 77.50% 76.88%
MUV2 82.58% 82.21% 81.91% 80.51% 79.26% 76.54% 74.53% 72.91% 70.84%
RWE 83.42% 83.44% 83.38% 82.92% 82.06% 81.22% 80.30% 79.30% 78.37%
SAP 85.16% 84.90% 84.10% 83.09% 81.79% 80.69% 79.47% 78.25% 77.23%
SIE 86.55% 86.82% 86.51% 85.89% 84.89% 83.93% 82.95% 82.04% 81.08%
TKA 85.78% 85.86% 85.55% 84.95% 84.12% 83.15% 82.12% 81.07% 79.77%
VOW3 85.55% 85.74% 85.15% 83.91% 82.54% 80.97% 79.43% 77.85% 76.76%

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 28 608 32 698 37 266 42 006 47 189 52 778 58 452 29 678 7 789
ALV 643 937 1 511 2 590 4 295 6 461 9 008 11 716 14 293
BAS 20 883 25 677 30 490 35 730 42 148 49 724 58 185 67 347 76 681
BAYN 21 160 25 974 31 020 36 515 42 747 49 702 57 503 66 176 75 580
BEI 17 641 20 042 22 644 25 499 28 429 31 471 34 480 37 391 35 580
BMW 24 655 29 771 34 987 40 413 46 077 52 271 58 846 65 856 73 228
CBK 13 372 4 758 5 655 6 614 7 666 8 691 9 886 11 214 12 760
CON 25 429 28 756 32 516 36 670 41 169 45 994 40 291 21 207 3 126
DAI 55 247 64 215 73 575 83 238 93 416 104 200 116 037 128 391 126 253
DB1 19 476 22 574 26 268 30 435 35 137 40 248 45 788 32 260 9 796
DBK 27 432 34 604 42 219 50 449 59 533 69 492 80 640 92 856 105 613
DPW 2 934 3 602 4 314 5 311 6 789 8 567 10 623 12 804 14 900
DTE 19 116 24 869 30 456 36 400 42 540 49 112 56 183 63 660 71 108
EOAN 1 283 1 848 2 560 3 549 5 301 7 866 10 960 14 473 18 096
FME 11 992 14 147 16 433 19 057 22 004 25 328 28 525 31 738 34 802
FRE 20 999 22 862 21 715 13 417 5 556 6 314 2 361 2 959 3 495
HEI 18 568 21 667 24 912 28 208 31 675 35 262 38 996 42 720 46 319
HEN3 - - - - - - - - -
IFX 31 910 36 935 41 767 47 211 53 824 62 397 71 723 80 246 86 962
LHA 6 181 7 661 9 079 10 863 13 014 15 616 18 424 21 423 24 285
LIN 1 369 1 675 2 108 2 804 3 827 5 208 6 891 8 716 10 637
LXS 10 966 13 216 15 819 18 753 22 050 25 553 29 378 33 623 38 364
MRK 2 634 3 102 3 141 3 549 4 245 5 020 5 765 6 468 7 097
MUV2 1 039 1 321 1 658 2 109 2 714 3 636 4 978 6 625 8 563
RWE 16 029 19 631 23 356 27 363 31 711 36 679 42 362 48 561 55 273
SAP 13 183 15 591 18 104 21 135 25 025 29 603 34 963 40 685 46 425
SIE 18 078 22 682 27 290 32 468 38 319 44 929 52 046 59 466 66 941
TKA 6 469 8 270 10 084 11 851 13 679 15 658 17 771 20 199 22 816
VOW3 3 904 5 013 6 229 7 706 9 501 11 683 14 275 17 308 20 482
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Table 22: ADLMLR ask price process direction predictions computed on six months of data
for each ticker at BATS and multiple Ks.

Accuracy
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 75.51% 75.59% 75.38% 74.97% 74.27% 73.58% 73.45% 72.85% 71.07%
ALV 78.12% 78.48% 78.11% 77.81% 77.17% 76.85% 76.43% 75.85% 75.08%
BAS 79.84% 79.86% 79.48% 79.05% 78.30% 77.42% 76.45% 75.19% 73.98%
BAYN 78.91% 78.75% 78.68% 78.39% 77.97% 77.41% 76.68% 75.93% 74.95%
BEI 79.32% 78.99% 78.54% 78.01% 77.30% 76.62% 75.45% 74.03% 71.76%
BMW 79.23% 79.09% 79.13% 78.74% 78.33% 77.63% 76.81% 76.46% 76.81%
CBK 69.27% 70.24% 71.29% 71.16% 71.54% 71.59% 71.41% 71.29% 71.20%
CON 75.31% 75.53% 75.52% 75.57% 75.74% 76.59% 76.68% 76.78% 76.39%
DAI 75.23% 75.21% 75.19% 75.07% 74.86% 74.58% 74.09% 73.30% 72.83%
DB1 79.00% 79.07% 78.53% 77.85% 77.13% 76.37% 75.56% 74.41% 73.18%
DBK 82.45% 82.52% 82.46% 82.49% 83.45% 83.09% 82.75% 82.38% 81.77%
DPW 77.55% 77.27% 77.03% 76.09% 74.84% 73.41% 71.81% 70.26% 68.58%
DTE 82.42% 82.36% 81.96% 81.45% 80.76% 79.87% 78.70% 80.18% 78.93%
EOAN 80.89% 81.06% 80.58% 80.14% 79.22% 78.24% 77.22% 76.10% 74.72%
FME 75.82% 76.08% 76.32% 76.20% 75.62% 74.94% 73.79% 72.26% 70.94%
FRE 77.24% 77.20% 77.10% 76.59% 74.86% 74.45% 74.74% 73.92% 74.01%
HEI 79.33% 78.87% 78.36% 77.77% 77.10% 76.30% 75.31% 74.32% 73.28%
HEN3 77.17% 76.66% 76.22% 75.64% 74.49% 73.61% 72.36% 71.62% 70.63%
IFX 79.22% 79.05% 78.64% 78.14% 77.47% 76.29% 74.75% 72.95% 70.28%
LHA 87.42% 87.73% 87.34% 86.88% 86.27% 85.70% 84.63% 83.68% 82.67%
LIN 77.53% 78.15% 78.42% 78.21% 77.81% 77.44% 77.02% 76.44% 75.60%
LXS 80.49% 80.25% 79.63% 79.01% 78.23% 77.23% 75.72% 74.31% 73.23%
MRK 76.76% 76.38% 75.43% 74.78% 74.47% 73.47% 72.14% 70.55% 68.90%
MUV2 80.26% 81.38% 80.53% 79.96% 79.16% 78.77% 78.40% 77.76% 77.13%
RWE - - - - - - - - -
SAP 78.82% 78.60% 78.19% 77.65% 76.93% 76.12% 75.26% 74.03% 72.65%
SIE 77.48% 77.37% 77.17% 76.66% 75.93% 74.91% 73.81% 72.59% 71.31%
TKA 84.70% 84.83% 84.10% 83.52% 82.76% 81.86% 80.92% 79.67% 78.62%
VOW3 76.27% 75.59% 75.40% 74.62% 73.65% 72.76% 71.79% 70.94% 69.84%

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 20 460 24 126 28 180 32 813 38 273 44 420 24 071 10 687 7 498
ALV 3 747 5 078 6 145 6 867 7 452 7 811 8 105 8 411 8 787
BAS 25 399 30 853 37 300 44 306 51 788 59 716 68 571 78 824 90 271
BAYN 26 801 32 133 38 087 44 553 51 822 59 762 68 834 78 496 88 362
BEI 12 084 14 542 17 175 20 086 23 480 27 283 31 779 33 811 33 689
BMW 21 650 25 444 29 913 34 879 40 243 46 361 52 962 55 564 50 812
CBK 4 992 5 985 7 238 8 611 10 063 11 543 13 101 14 694 16 337
CON 15 444 17 739 20 425 23 540 26 320 23 886 20 533 9 466 9 026
DAI 32 913 38 482 45 002 52 334 60 786 70 333 81 285 93 833 74 003
DB1 10 432 12 211 14 248 16 478 19 200 22 245 25 835 29 944 32 847
DBK 21 476 28 297 35 242 42 448 37 368 44 493 51 933 60 041 68 775
DPW 6 143 7 524 8 941 10 453 12 158 14 026 16 268 17 189 16 961
DTE 14 109 18 768 24 218 30 079 36 409 43 447 52 738 37 771 43 339
EOAN 2 993 5 818 8 898 11 518 13 743 15 553 17 149 18 670 20 339
FME 9 976 12 049 14 631 17 657 21 001 24 838 29 117 33 994 36 397
FRE 17 959 20 639 23 794 27 208 24 996 5 228 6 310 3 903 4 625
HEI 9 777 11 465 13 325 15 292 17 544 19 940 22 604 25 513 28 574
HEN3 13 097 14 941 17 055 19 271 18 646 21 219 21 552 22 979 13 939
IFX 25 927 30 711 36 085 42 126 48 862 54 363 57 507 59 465 39 525
LHA 4 736 6 846 9 041 11 155 13 133 15 062 17 074 19 219 21 531
LIN 4 855 6 385 7 677 8 748 9 590 10 188 10 670 11 131 11 693
LXS 8 759 10 471 12 631 15 159 18 011 21 241 25 009 29 290 21 101
MRK 3 158 3 772 4 388 4 905 5 328 5 817 6 357 6 991 7 726
MUV2 2 001 2 917 3 858 4 655 5 235 5 663 5 971 6 209 6 490
RWE - - - - - - - - -
SAP 19 983 24 210 28 468 32 327 35 884 39 382 42 942 46 889 51 624
SIE 17 497 21 767 26 841 32 650 39 001 46 036 53 309 60 974 69 181
TKA 5 608 7 616 9 624 11 699 13 721 15 863 18 062 20 423 22 864
VOW3 7 942 10 377 13 140 16 190 19 353 22 387 25 298 27 822 30 296
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