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Comparative Mixed Risk Aversion: Definition and Application 
to Self-Protection and Willingness to Pay 

 
 
Abstract 
 

We analyze the optimal choices of agents with utility functions whose derivatives alternate in 

sign, an important class that includes most of the functions commonly used in economics and 

finance (Mixed Risk Aversion, MRA, Caballé and Pomansky, 1996). We propose a comparative 

mixed risk aversion definition for this class of utility functions, namely, ''More Risk Averse 

MRA'', and provide a sufficient condition to compare individuals. We apply the model to optimal 

prevention and willingness to pay. More risk averse MRA agents spend less to reduce accident 

probabilities that are above ½. They spend more only when accident probabilities are below ½. 

Explanations in terms of risk premiums are provided. The results presented also allow for the 

presence of background risk. 

 
 
Keywords: Mixed risk aversion, more risk averse MRA, self-protection, willingness to pay, 

background risk. 

 

JEL classification:  D80. 
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Introduction 

 

The link between the structure of an agent's utility function and his action to reduce risk can be a 

subtle one. For example, following the contribution of Ehrlich and Becker (1972), who 

introduced the concepts of self-protection and self-insurance into the literature, Dionne and 

Eeckhoudt (1985) have shown that a more risk averse individual, in the sense of Arrow-Pratt, 

does not necessarily produce more self-protection activities1.  

 

The willingness-to-pay literature (Drèze, 1962; Jones-Lee, 1974; and Pratt and Zeckhauser, 

1996) throws up another example. It is commonly acknowledged that a more risk averse 

decision-maker is not necessarily willing to pay more for a lower probability of accident 

(Eeckhoudt, Godfroid and Gollier, 1997). In a third example, McGuire, Pratt and Zeckhauser 

(1991) have shown that more risk averse individuals might choose more risky decisions 

(described as less insurance and more gamble) than less risk averse individuals. They obtained 

that this behavior depends upon a critical endogenous switching probability. 

 

For many economic applications under risk and uncertainty, a simple concave transformation of a 

von Newmann-Morgenstern utility function (or an Arrow-Pratt increase in risk aversion) does not 

always yield intuitive changes in the decision variables affecting event probabilities or 

distribution functions. In the three previous examples, individual behavior affects the probability 

of events as well as the contingent outcomes. This behavior changes the outcomes distribution 

but does not necessarily increase risk in the sense of Rothschild-Stiglitz. It implies a first-order 

shift instead of a pure second-order one such as a mean preserving spread (Rothschild and 
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Stiglitz, 1970).2 Consequently, to predict  (risk averse) decision-makers' behavior, one needs 

restrictions on either utility or distribution functions that can take into account actions, such as 

self-protection, that may affect all distribution moments. In this paper, we look at restrictions 

made on utility functions. For an analysis of restrictions on distribution functions see Julien, 

Salanié and Salanié (1999), and for restrictions on loss functions see Lee (1998). 

 

Section 1 presents the concept of mixed risk aversion (MRA) introduced in the literature by 

Caballé and Pomansky (1996) and offers the definition of "More Risk Averse MRA". Section 1 

also proposes a transformation result that sets a sufficient condition to compare mixed risk averse 

individuals. We say that individual v is more risk averse MRA than individual u if he is more risk 

averse, more prudent, more temperate… or if the absolute ratio of the nth+2 over the nth+1 

derivative of v is higher than the corresponding ratio of u for all positive integer n. 

 

Section 2 shows how the concept of more risk averse MRA can be used to establish an 

exogenous threshold probability over which a more risk averse MRA agent invests less in self-

protection activities and has a lower willingness to pay. We show that if agent v is more risk 

averse MRA than agent u, then v will select a higher level of self-protection and have a higher 

willingness to pay only if the accident probability is lower than ½3. This result is important since 

the threshold probability is no longer endogenous, and the great majority of risky situations that 

require self-protection (occupational safety, firearm safety, road safety, health care, 

environmental prevention, …) and public decisions on safety are characterized for events with a 

probability lower than ½. 
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We explain in detail why ½ is a critical value for obtaining the desired result. We also obtain that 

the switching probability of becoming a gambler is greater than ½ in the probability-improving 

environment of McGuire, Pratt and Zeckhauser4. Section 3 extends the above results to risky 

situations with background risk (Doherty and Schlesinger, 1983; Eeckhoudt and Kimball, 1992; 

Eeckhoudt, Gollier and Schlesinger, 1996). Concluding remarks are presented in Section 4. 

 

 

1 Mixed risk aversion 

 

Most of the utility functions commonly used in economics and finance such as the logarithmic 

and the power functions have derivatives with alternating signs showing positive odd derivatives 

and negative even derivatives. Caballé and Pomansky (1996) characterized the class of utility 

functions having this property which they called mixed risk aversion (MRA). These functions are 

properly characterized by the measure describing a mixture of exponential functions. Caballé and 

Pomansky have shown that the stochastic dominance and aggravation-of-risks concepts are more 

operative when applied to this class of utility functions. We build on this work by analyzing 

comparative mixed risk aversion.  

 

1.1 Definition 

 

Caballé and Pomansky defined mixed risk aversion as: 
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Definition 1:  (Caballé and Pomansky, 1996)  A real-valued continuous utility function u defined 

on (0,∞) exhibits mixed risk aversion if and only if it has a completely monotone first derivative 

on (0,∞)  and u (0) = 0. ( ) ( ) ( )( )1. . 1 0, 0n ni e u w for n+− ≥ ≥

 

Theorem 2.2 in Caballé and Pomansky (1996) shows that u(w) is a mixed risk aversion function 

if and only if it admits the following representation 

 

 ( ) ( )∫
∞

−−
= 0

1 tdF
t
ewu u

wt
, (1) 

with 

 
( )

∞<∫
∞
1 t

tdFu . 

 

Caballé and Pomansky (1996) also generalized the Arrow-Pratt index of absolute risk aversion to 

higher orders. They defined the nth order index of absolute risk aversion as 

 

( )
( ) ( )
( ) ( )wu

wuwA n

n
u
n 1

2

+

+
−= , for n ≥ 0. 

 

uA0  is the Arrow-Pratt index of absolute risk aversion, whereas  is the index of absolute 

prudence introduced by Kimball (1990) and  corresponds to the index of absolute temperance 

proposed by Eeckhoudt, Gollier and Schleisinger (1996). 

uA1

uA2
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The nth order index of absolute risk aversion, ( ) ,u
nA w  for u as given by (1) simplifies to: 

 

 ( )
( )
( )∫

∫
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∞ −+
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0
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u
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This formulation of the nth order index of absolute risk aversion provides equivalent 

characterizations for mixed risk aversion. In fact, the two following characterizations are 

equivalent: 

 

i)  is decreasing in w for all w and n. ( )⋅u
nA

or 

ii)  for all w and n. ( ) ( )wAwA u
n

u
n 1+≤

 

To prove that  is decreasing in w we apply the Cauchy-Schwartz inequality, i.e., ( )⋅u
nA

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
2

2 2
u ut t dF t t dF t t dF tϕ ψ ϕ ψ≤∫ ∫ ∫ u , 

to 

( ) ( ) ( ) 22222 /wt/n/wt/n ett,ett −−+ == ψϕ . 

  

The equivalence between i) and ii) follows from ( ) ,wAu
n 0≥  for all  and the identity ,n 0≥
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( ) ( ) ( ) ( )( )wAwAwAwA
dw
d u

n
u
n

u
n

u
n 1+−= . 

 

1.2 Mixed risk aversion and other concepts of attitude toward risk 

 

Pratt and Zeckhauser (1987) introduced the concept of Proper Risk Aversion to predict lottery 

choices in the presence of an independent, undesirable lottery. A utility function is proper when 

an undesirable lottery can never be made desirable by the presence of another (independent) 

undesirable risk. Their concept is more general than mixed risk aversion, in the sense that (1) is 

sufficient for proper risk aversion but not necessary. Pratt and Zeckhauser have shown that 

mixtures of exponential utilities are proper and that properness implies decreasing absolute risk 

aversion (DARA). Brockett and Golden (1987) developed a parallel characterization of such 

functions and Hammond (1974) proposed a first application using a mixture (discrete) of 

exponential functions. 

 

Mixed risk aversion implies standard risk aversion (Kimball, 1993) which implies properness 

(Pratt and Zeckhauser, 1987), which implies risk vulnerability (Gollier and Pratt, 1996)5. These 

three concepts were mainly developed to account for the presence of background risk; they are 

not directly useful for the purpose of comparing self-protection activities and willingness to pay 

choices’ among risk averse decision makers. More restriction on the utility function is necessary 

and mixed risk aversion will be shown to yield interesting results. 
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1.3 Comparative mixed risk aversion 

 

Consider two risk averse agents u and v. Following Pratt (1964), it has been established that 

comparative risk aversion amounts to applying a simple concave transformation k of a utility 

function: v is more risk averse than u if and only if v = k(u) with k'' < 0. This type of comparison 

is not sufficient for comparing optimal decision variables for problems, such as self-protection or 

willingness to pay, that imply the variation of all moments of the distribution.  

 

Definition 2:  Let u and v be two mixed risk averse utility functions. We say that v is more risk 

averse MRA than u if and only if ( ) ( )wAwA v
n

u
n ≤ , for all n and w. 

 

The next proposition introduces a sufficient condition to compare mixed risk aversion. 

 

Proposition 1: Let u and v be two mixed risk averse utility functions described respectively by 

distribution functions Fu and Fv. If ( )⋅vdF  dominates ( )⋅udF  in the sense of the Maximum 

Likelihood Ratio (i.e. 
( )
( )⋅
⋅

v

u
dF
dF

 is decreasing over (0,∞)) then v is more risk averse MRA than u. 

 

Proof of Proposition 1: The proof uses characterization i) of mixed risk aversion presented in 

Section 1.1 and Theorem 4 in Jewitt (1987). 

 

We discuss an example that will provide the intuition behind the proposition. 
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Consider  

  
( )
( ) ,eq...eqeqwv

ep...epepwu
wa

m
wawa

wa
m

wawa

m

m

−−−

−−−

−−−−=

−−−−=
21

21

21

21

where pi and qi are probabilities, and ai is a positive parameter for i = 1, …, m and a1 < a2 < … < 

am. If 
m

m
q
p

...
q
p

≥≥
1

1 , then from Proposition 1 we know that v is more risk averse, more prudent, 

more temperate,… than u, and, more generally, more risk averse MRA, that is 

( ) ( )⋅≤⋅ v
n

u
n AA , for all . 0≥n

 

The intuition behind the proposition is quite simple. We know that u and v are mixtures of CARA 

utility functions. Consider, for the sake of illustration, the case where there are only two positive 

ai (a1 and a2) in the example above. By transforming p1 into q1 lower than p1, less weight is put 

upon the less risk averse CARA component of the u function (since a1 < a2). Of course lowering 

p1 also implies that q2 exceeds p2 so that simultaneously more weight is placed upon the more 

risk averse component of u. So v is surely more risk averse than u and the proposition shows that 

this property automatically extends to all ratios of the successive derivatives of each utility 

function. 

 

In Section 3, we show how the proposition can be extended to the presence of a background risk. 
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2 Applications 

 

We now apply the comparative mixed risk aversion result to decisions by mixed risk averse 

agents to self-protection and to willingness to pay. Intuitively, we may expect a more risk averse 

MRA agent to exert more self-protection activities and to be willing to pay a higher monetary 

amount for a lower probability of accident. We will see that this result can be obtained only when 

the accident probability is sufficiently low. 

 

2.1 Self-protection 

 

The standard model for self-protection (Ehrlich and Becker, 1972) can be summarized as follows. 

Consider an individual with a von Neuman-Morgenstern utility function u and a non-random 

initial wealth w0. The agent faces a risk of loss l and can invest a quantity x in self-protection 

activities, in order to reduce the probability of loss ( )( )xp , a decreasing function of x. The action 

cost c for one unit of x is fixed at c ≡ 1. With two states of the world, the optimal choice of self-

protection is a solution of: 

 ( ) ( ) ( )( ) ( )xwuxpxlwuxpmax
x

−−+−− 00 1 , (2) 

subject to the constraint . The first-order condition for an optimal choice  requires 0≥x *
ux

 ( ) ( ) ( )[ ] ( ) ( ) ( )( ) ( )[ ] .xw'uxpxlw'uxpxwuxlwux'p 01 0000 =−−+−−−−−−−  (3) 

 

The second order necessary condition is 
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( )( ) ( ) .xw"uxpxlw"uxp
xw'uxlw'ux'pxwuxlwux"p

01
2

00

0000

≤−−+−−+
−−−−−−−−−

 

 

Note that risk aversion is not sufficient to ensure the second-order condition (see Arnott, 1992, 

for details). In the remainder of this article, we assume that all conditions for allowing the 

solution of (3) to be a global maximum are met. Consequently all the derived results are 

restricted to these conditions as is usually done in this literature. 

 

Self-protection activities do not necessarily reduce risk in the sense of Rothschild-Stiglitz, but do 

affect the probabilities of the various states as well as their contingent outcomes. The problem of 

analyzing the effect of risk aversion on optimal self-protection activities is different from that 

where probabilities are fixed, as in the context of market insurance or self-insurance. One 

consequence is that more risk averse agents in the sense of Arrow-Pratt will not necessarily 

choose a higher level of self-protection spending (see Dionne and Eeckhoudt, 1985). McGuire, 

Pratt and Zeckhauser (1991) have found an endogenous critical switching probability that 

depends on preferences and outcomes, and they interpret expenditures as gambling or less 

insurance. This endogenous switching probability is retrieved by Lee (1998). In this section, we 

show that the endogenous probability is lower than ½ for self-protection and willingness to pay 

and greater than ½ in the probability-improving environment of McGuire, Pratt and Zeckhauser 

(1991). 

 

Julien, Salanié and Salanié (1999) have shown that if v is more risk averse than u in the sense of 

Arrow-Pratt, then there exists a threshold probability p  such that self-protection is higher for v 
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than for u if and only if the probability of loss resulting from the optimal choice of u is less than 

p , with 

 

( ) [ ]
( ) ( ) [ ]∑ ∑

∑

∞

=

∞

=

++

∞

=

−−−

−
−

=

1 1

11

1

11

1

i j

)j()i()j()i(
ji

ji

i

)i()i(i
i

vuuv
!j!i

ll

v'uu'vl
!ip . (4) 

 

This switching probability is endogenous since it depends on u, v and on outcomes. The critical 

value p  is then different on a case-by-case basis. We now propose an exogenous probability. In 

fact, we can show the next proposition for the class of mixed risk averse utility functions. 

 

Proposition 2:  Suppose the probability of loss p(x) is decreasing in x and let u and v be two 

mixed risk averse utility functions. Let *
ux  and *

vx  be the optimal level of effort selected 

respectively by agents u and v. Let v be more risk averse MRA than u, and suppose *
vx  is higher 

than * ,ux  then  .2/1)( * <uxp

 

Proof of Proposition 2:  See Appendix A. 

 

Proposition 2 can be stated equivalently as: Suppose agent u selects an effort , such that his 

probability of accident  is higher than 1/2, then all more risk averse MRA agents v will 

select a level of effort  smaller than : Prevention decreases with risk aversion if the 

probability of loss is sufficiently high. 

*
ux

)( *
uxp

*
vx *

ux
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To see why a more risk averse MRA individual may produce less self-protection, we first 

consider an agent with an exponential utility function. For an exponential utility function v with 

δ  as the measure of absolute risk aversion, we draw the risk premium as a function of p, the 

probability of accident, as in Figure 1 (the π  function). We see that the risk premium is 

increasing up to  and then decreasing. *p

 

Explicitly, 

 ( )[ ][ ]tpeplog t −+−= 111
δ

π , 

where .lt δ=   

 

Solving for  gives *p ( ) ( )111 −−= t* e/t/p . One can show that  for all 21 /p* < δ 6. Suppose 

now that a risk neutral agent minimizes the expected total loss ( ( )lxpx + ) over x at  and that *
ux

( )*
u

*
u xpp =  is higher than ½. Then, for the risk averse individual v, spending more on self-

protection than  (reducing p) will increase both the total expected loss and the risk premium 

(see Figure 1), which must be undesirable. For an exponential mixture, the same is true for every 

term in (1) and, hence, the exponential mixture (i.e. mixed risk averse) agent must spend less on 

self-protection than the risk neutral agent.

*
ux

7

 

(Figure 1 here) 
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Figure 1 also shows the difficulty of predicting self-protection decisions when . In this 

case, the effects on the risk premium may be positive for some  values and negative for other 

 values. 

21 /p*
u <

*
up

*
up

 

In Appendix B we evaluate the first-order condition (3) for an exponential utility function at the 

optimal level of a risk-neutral agent and give more insights as to why the sign of (3) is negative 

for  and undetermined otherwise. Figure 2 shows clearly that  must be lower than ½ 

to guarantee that the exponential risk averse (and so the mixed risk averse) agent will produce 

more prevention than the risk neutral decision-maker 

,2/1* ≥up *
up

( )( )01 >B . 

 

One corollary from Proposition 2 is that, at equilibrium, when the optimal choice of the risk-

neutral decision-maker is higher than ½, all MRA agents will select a lower level of prevention 

and will have accident probabilities higher than ½. 

 

By symmetry, it can be obtained that ≥p  ½ when the winning probability  is increasing in 

x as in McGuire, Pratt and Zeckhauser (1991). The mathematical development is identical to that 

made in Proposition 2, with  being the probability of loss for the modified problem. We 

then have the next result: 

( )xp

( )xp−1

 

Corollary:  Under the same notation as in Proposition 2, with an increasing winning probability 

function of x, , if , then  ( )xp *
v

*
u xx ≤ *( ) 1/ 2.up x ≥
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2.2 Willingness to pay 

 

Willingness to pay (WTP) is a guideline for public and private investment policies; and, 

according to WTP, public investment projects, such as health care, environmental prevention or 

road safety investments will be recommended only if the total benefits for the different agents 

benefiting from favorable probability changes exceed the capital cost of the project concerned. 

Alternative resource allocations are also compared on the basis of WTP (see Dionne and Lanoie, 

2003, and Viscusi and Aldy, 2003, for recent surveys). 

 

In some situations it is more appropriate to offer different bundles of risk to different individuals, 

if valuations of risk differ among agents. To establish such bundles, one then needs to know the 

WTP for the different risk averse categories. As we did for the self-protection model, we can use 

the concept of more risk aversion MRA to order WTP values. We can show the next result. 

 

Proposition 3:  Let u and v be two mixed risk averse utility functions and WTPu, WTPv their 

corresponding amounts of willingness to pay. Let v be more risk averse MRA than u, and suppose 

that , then the probability of a  loss corresponding to the willingness 

to pay choice of u is lower than ½. 

 is smaller than uWTP WTPv

 

Proof of Proposition 3: See Appendix A. 

 

 

3 Background risk 
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Consider now the case where the individual u faces a background risk ( )ε~  on wealth that is 

independent of the occurrence of an accident. Let's denote 

( ) ( )( ) ( ) ( )∫ +=+= εεεε dFwuwuEwu~ . We know that an individual with a utility function u 

and a background risk ε~  behaves as an individual with utility function u~  and no background 

risk. Kimball (1993) has shown that if u has a decreasing absolute risk aversion and a decreasing 

absolute prudence, then these properties hold for u~ . In other words, if u is standard risk averse 

then u~  is also standard risk averse. We also know that mixed risk aversion implies standardness. 

Consequently, if u is mixed risk averse, then u~  is also mixed risk averse and hence, for all , 0≥n

( ) ( ) (
( ) ( ) (

)
)∫

∫
+

+
−

+

+

εε

εε

dFwu

dFwu
n

n

1

2
 is decreasing in w (following i in Section 1.1), which is an extension of 

Proposition 4 in Kimball (1993) to mixed risk aversion. Consequently, we can state the following 

proposition. 

 

Proposition 4:  Let u and v be two mixed risk averse utility  functions and suppose that v is more 

risk averse MRA than u, then both u~  and v~  are mixed risk averse utility  functions and v~  is 

more risk averse MRA than u~ . 

 

A detailed proof of Proposition 4 is in Dachraoui et al. (1999). 

 

Proposition 4 allows us to extend the results of Section 2 directly to situations with a background 

risk. In particular, if the probability of loss resulting from the optimal self-protection choice of 

agent u is higher than ½, and if agent v is more risk averse MRA than u, then even in the 
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presence of a background risk, it follows from Propositions 2 and 4 that agent v will select a 

smaller self-protection effort than agent u. It follows also from Propositions 3 and 4 that agent v 

will have a lower WTP than agent u when p > ½. 

 

 

4  Conclusion 

 

In this article we have characterized comparative mixed risk aversion and provided a sufficient 

condition to compare attitudes toward risk in the class of mixed risk averse utility functions. We 

have shown how this comparison of attitudes to risk can be useful in ordering optimal decision 

variables that affect all distribution moments among different mixed risk averse individuals. 

More risk averse MRA individuals select higher effort and have a higher willingness to pay, only 

if the probability of accident is lower than ½.  

 

Many extensions of this article can be considered. First, it would be interesting to analyze how 

our measure of the comparative attitudes to risk generated by more risk aversion MRA can be 

useful in predicting the agent's action in a principal-agent framework when utility functions are 

not additively separable. How do different mixed risk averse agents choose optimal sharing 

contracts? A more difficult question would be to compare how different risk-sharing contracts are 

handled by different mixed risk averse agents. 
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Another extension is related to the willingness-to-pay literature. The study of willingness- to-pay 

aggregation is now possible in the class of MRA utility functions, since we have established an 

exogenous probability to compare optimal amounts. 
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Appendix A 

Proof of Proposition 2 

 

Proving Proposition 2 is equivalent to proving that <p  1/2.  

Let's denote 

( ) ( ) ( ) ( )[ ]1111 ++ −−−= j)i(j)i(ji
ij vuuvK . 

One can show that: 

  (A1) .
jiif
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The denominator in (4) can be written as: 
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Now we prove that 
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2 1
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First, note that 
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( ) ( ) ( ) ( )
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1 1( ) ( )
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1 1 1 1( ) ( )
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1 1
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and hence  

( ) ( ) ( ) ( )1, 1
1 1 1 1( )
! ! 1 ! 1 ! ! ! 1 ! 1 !ij j i ijK K

i j j i i j j i+ −+ = −
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Next we prove that (A4) is sufficient to get (A2). 

We can write 
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Depending on whether k is odd or even, the term inside the summation in (A5) can be written as: 

• k is even  ( 2 ,  2)k m m= ≥
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Redefining indexes in the second term of the right hand side in the previous equation as 

 (A6) can be written as 1 and 1,i l j k= + = −

 1, 1 1, 1
2 , 2 , 2 ,

, 2, 1 , 2, 1 , 2, 1

1 1 1 1( )
! ! ( 1)!( 1)! ! ! ( 1)!( 1)!ij j i ij j i

i j m i j m i j m
i p i j i p i i i p i i

K K K
i j j i i j j i+ − + −

+ = + = + =
≤ ≥ ≥ ≤ ≥ ≥ ≤ ≥ ≥

+ = +
+ − + −∑ ∑ ∑ ,K

.

 

which is positive from (A4). 

• k is odd ( 2  1,  1)k m m= + ≥

 20



 

Since  it follows that 1, 0,m mK + =

 
2 1, 2 1, 2 1,

2, 1 , 2, 1 2, 2, 1

2 1, 2 1,
, 2, 1 1, 2, 1

1 1
! ! ! ! ! !

1 1                   = .
! ! ! !

ij ij kl
i j m i j m k l m
i j i p i j k p k l

ij kl
i j m k l m
i p i j l p k l

K K
i j i j k l

K K
i j k l

+ = + + = + + = +
≥ ≥ ≤ ≥ ≥ ≥ + ≥ ≥

+ = + + = +
≤ ≥ ≥ ≤ − ≥ ≥

= +

+

∑ ∑ ∑

∑ ∑

1 K

 

Once again redefining indexes in the second term in the right hand side of the previous equation 

as  we get  1 and 1,i l j k= + = −

1, 1
2 1, 2 1, 2 ,

, 2, 1 1, 2, 1 , 2, 1

1 1 1 1( )
! ! ! ! ! ! ( 1)!( 1)!ij kl ij j i

i j m k l m i j m
i p i j l p k l i p i i

K K K
i j k l i j j i + −

+ = + + = + + =
≤ ≥ ≥ ≤ − ≥ ≥ ≤ ≥ ≥

+ = +
+ −∑ ∑ ∑ ,K  

which is also positive from (A4). 

As a result 

2 1

2, 0,
! !

i jn n

ij
i j

ln K
i j

+

= =

∀ ≥ ≥∑∑  

and at the limit we obtain 

0
2 1

≥∑∑
∞

=

∞

=

+

i j
ij

ji
K

!j!i
l . 

The denominator in (4) is the sum of two positive terms. We can then write 

( ) [ ]
( ) [ ]∑

∑
∞

=

+++
+

∞

=

−
−

−
−

≤

1

111
1

1

1

1

i

)i()i(i
i

i

)i()i(i
i

v'uu'vl
!i

v'uu'vl
!i

p  

or 

( ) [ ]
( )
( ) [ ]∑

∑
∞

=

∞

=

−
−
−

−
−

≤

2

2

1
1

1

i

)i()i(i
i

i

)i()i(i
i

v'uu'vl
!i

v'uu'vl
!i

p . 
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Since for , , and we know that 2≥i ( !i!i 12 −> ) ( ) [ ] 01 >−− )i()i(ii v'uu'vl , we then have 

( ) [ ] ( )
( ) [ ])i()i(i

i
)i()i(i

i

v'uu'vl
!i

v'uu'vl
!i

−
−
−

<−
−

1
1

2
11 . 

Taking the summation over  gives 2≥i <p  1/2.  

 

Proof of Proposition 3 

The expected utility for u is equal to: 

( ) ( ) ( )00 1 wuplwpuU −+−=  

and that of individual v to: 

( ) ( ) ( )00 1 wvplwpvV −+−= . 

In order to obtain the willingness to pay for u (Drèze, 1962; Jones-Lee, 1974), we completely 

differentiate U with respect to p and w0 to obtain: 

 
( ) ( )

( ) ( ) ( )00

000

1 w'uplw'pu
lwuwu

dp
dw

WTPu −+−
−−

==  (A7) 

The same result holds for individual v 

 
( ) ( )

( ) ( ) ( )00

000

1 w'vplw'pv
lwvwv

dp
dw

WTPv −+−
−−

==  (A8) 

The threshold probability p  is solution of (A7) = (A8) 

 
( ) ( )

uvvu
vwuuwv

p
∆∆∆∆

∆∆
''

'' 00
−
−

=  (A9) 

where  and  represent derivatives with respect to . 'v 'u 0w

With the Taylor expansion we have 

 ( ) ( ) ( ) ( ) ( ) ( )∑∑
∞

=

∞

=

−−=∆−−=∆
1

0
1

0 11
i

i
i

i

i

i
i

i xwv
!i

lv,xwu
!i

lu . 
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Similar values can be obtained for  and . 'v 'u

We can then rewrite (A9) as: 

 

( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]∑∑

∑
∞

=

++
∞

=

∞

=

−−−

−
−

=

1

11

1

1

11

1

j

jiji
ji

ji

i

i

iii
i

vuuv
!j!i

ll

v'uu'vl
!i

p  

The remainder of the proof to obtain that <p 1/2 is the same as in Proposition 2. 
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Appendix B 

The first order condition (3) of an exponential utility function evaluated at  *
up

 

A Taylor expansion of the first order condition (3) around W-x- l gives *
up

( ) ( ) ( ) ( )
( )( )] ( ).1

1
!
)1(1

!
)1(

*)1(**
1

***)(1**

2

lpxWulpp                                                                               

pp
n

lpxWulpp
n

u
nn

uu

n

n
uu

n

u
nnn

u
n

u
n

n

−−−−+

⎢⎣
⎡ −

−
−−−⎥⎦

⎤
⎢⎣
⎡ −−−

−

+
≥

−

≥
∑∑

. 

For an exponential utility function with absolute risk aversion δ , this expression becomes 

 
( ) ( ) ( )

( ) ( ) .lp
!n

p              

lp
!n

plp
!n

lp
!n

le

n

nnn*
u

*
u

nn

n

n*
u

*
u

nnn*
u

n

nnn*
u

n

lpxW *
u

⎥
⎦

⎤
−−−

⎢
⎣

⎡
−−−−−

∑

∑∑∑

≥

≥≥≥

−−

1

122

11

11111

δδ

δδδδ
 

 

The sign of this expression is that of the term inside the square brackets. The latter can be 

simplified to the next expression 

 ( ) ( )( ) ( )( ) ( ),tpexptptpexptp *
u

*
u

*
u

*
u −−+−−− 1111  where .lt δ=  (B1) 

For  the last expression is always negative no matter what the level of absolute risk 

aversion (

21 /p*
u ≥

δ ) or the level of loss (l) are. If v is an exponential mixture, the same is true for every 

term. Hence the expression equivalent to (B1) is negative for v. 

For  the sign of (B1) depends on 21 /p*
u < δ  and l (or t = δ l) as illustrated in Figure 2. If v is an 

exponential mixture, the sign in expression (B1) is then undetermined. 

(Figure 2 here) 
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Notes 

1 On this issue see also Briys and Schlesinger (1990), Julien, Salanié and Salanié (1999), Chiu 

(2000), Gollier and Eeckhoudt (2001), and Lee (1998). In fact, one cannot make any prediction 

on how a more risk averse agent will choose his optimal level of effort in a principal-agent 

relationship without introducing strong assumptions on the utility function (Arnott, 1992). 

2 For the self-protection example, the ith moment of the gross expected loss is p(x)li, where p is 

the probability of accident, x is the level of self-protection and l is the amount of loss in case of 

accident. For the principal-agent problem where the outcomes distribution can be written as 

F(l/x) it is also clear that the first derivative Fx(l/x) affects more than just the mean of l. 

3 Julien, Salanié and Salanié (1999) derived independently a similar result. However, they did not 

study the existence of an exogenous boundary that will be effective for all risk averse agents and 

for all levels of loss. 

4 In their model, activity x increases the winning probability instead of decreasing the probability 

of loss as in the self-protection and willingness to pay applications. 

5 See Gollier and Pratt (1996) for a comparison of these three concepts (risk vulnerability, 

properness and standardness) proposed in the recent literature and related to the willingness to 

accept a risk when another independent background risk is added to random wealth. In this 

article, we consider only one random variable. See however Section 3. 

6 With . 21
0

/plim *=
→δ
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7 The example is in the spirit of Eeckhoudt and Gollier (2001), who compared the optimal 

prevention of a risk averse (prudent) agent to the optimal prevention of a risk neutral decision 

maker. 
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