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Abstract

This paper re-examines the link between absolute prudence and self-protection activities.

We show that the level of effort chosen by an agent with positive and decreasing absolute

prudence is larger than the optimal effort chosen by a risk-neutral agent if the degree of ab-

solute prudence is less than a threshold that is utility-independent and empirically verifiable.

We explain this threshold by a trade-off between the variation of the variance and the level

of the third moment of the loss distribution. We also discuss our result in terms of skewness.

Our contribution extends the model of Eeckhoudt and Gollier (2005).
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1 Introduction

The optimality of self-protection activities was first examined by Ehrlich and Becker (1972). It

is well known that increased risk aversion does not necessarily raise the optimal investment in

prevention (see, e.g., Dionne and Eeckhoudt, 1985; Briys and Schlesinger, 1990; Briys et al.,

1991). This negative result is still not well explained in the literature.

Recently, some papers studied the effect of prudence on optimal prevention. Jullien, et al.

(1999) and Chiu (2000) show that prudence plays a role in the determination of thresholds for

optimal prevention. However, their thresholds are utility-dependent, and thus vary from agent

to agent. Eeckhoudt and Gollier (2005) propose a sufficient condition on the loss probability of

the risk neutral agent to obtain the optimal effort chosen by a prudent (imprudent) agent to

be smaller (larger) than the optimal effort chosen by a risk-neutral agent. Since their threshold

probability is 1
2 , there is room to find a condition that would permit to obtain a larger level of

effort by prudent agents when p ≤ 1
2 .

We extend the analysis by linking differently optimal prevention and absolute prudence. We

show that the level of effort chosen by an agent with positive and decreasing absolute prudence

is larger than the optimal effort chosen by a risk-neutral agent if absolute prudence is less

than a threshold that is utility-independent, or stays the same for all agents. This threshold is

equal to the ”marginal change in probability on variance per third moment of loss distribution.”

Intuitively, the level of effort chosen by a prudent agent is larger than the optimal effort chosen

by a risk-neutral agent when the positive benefit, for a risk averse individual, of reducing the

variance is larger than the utility cost of spending money on protection for a prudent agent who

prefers to save money in such circumstance. Our contribution extends the model of Eeckhoudt

and Gollier (2005) 1.

The article is organized as follows. Section 2 presents the model and main result. Section

3 explains the result in terms of loss distribution moments and skewness. Section 4 shows how

the main result applies to HARA utility functions. Section 5 concludes the paper.
1Menegatti (2009) proves that, in a two-period framework, prudence has a positive effect on optimal pre-

vention. Here we are limited to a single period model. Chiu (2005a) shows that, when protection activities

are mean-preserving, degree of absolute prudence plays an important role in determining the optimal choice of

self-protection. We do not consider the mean-preserving condition in this paper. Eeckhoudt et al. (2010) and

Dachraoui et al. (2004) consider background risk as well.
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2 The Model and Main Result

We consider an expected utility maximizer who is endowed with wealth w0 and faces the risk of

losing the amount L with probability p(e); e is the amount of money invested in prevention and

p(e) is differentiable with respect to e. We assume that the utility function u on final wealth is

increasing and differentiable. The decision problem for a risk-averse individual can be written

as

e∗ ∈ arg max
e≥0

V (e) = p(e)u(w0 − e− L) + (1− p(e))u(w0 − e). (1)

We assume that V is concave in e (see Arnott, 1991, and Jullien et al., 1999, for analysis of the

different conditions). The optimal preventive investment en for the risk-neutral agent, assuming

an interior solution, is given by

−p′(en)L = 1. (2)

Condition (2) states that the marginal cost must equal the marginal benefit. The effect of

prevention is limited to the variation of expected loss for this decision maker.

Define pn = p(en) as probability of loss of the risk-neutral agent, and wn = w0 − en as the

agent’s final wealth in the no-loss state. We have the following lemma.

Lemma 2.1 (i) Risk-averse agents exert more effort than the risk-neutral agent if

AP (wn − y) ≤ 1− 2pn

pn

1
y

for all y ∈ [0, L], (3)

where AP (x) = −u′′′(x)
u′′(x) is the absolute prudence coefficient (Kimball, 1990).

(ii )Risk-averse agents exert less effort than the risk-neutral agent if

AP (wn − y) ≥ 1− 2pn

pn

1
y

for all y ∈ [0, L]. (4)

Proof See Appendix.

When pn ≥ 1
2 , 1−2pn

pn

1
y ≤ 0, and AP ≥ 1−2pn

pn

1
y for all prudent agents. Lemma 2.1 states that

prudent agents exert less effort than the risk-neutral agent. Dachraoui et al. (2004) showed

that pn ≤ 1
2 is a necessary condition for more mixed risk-averse agents to spend more effort.

Lemma 2.1 is a complement of their result. If pn ≤ 1
2 , then 1−2pn

pn

1
y ≥ 0, and AP ≤ 1−2pn

pn

1
y

for all imprudent agents (AP (wn − y) < 0). Lemma 2.1 indicates that imprudent agents exert

more effort than the risk-neutral agent. Eeckhoudt and Gollier’s result (2005, Corollary 1) is

recovered.
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Lemma 2.1 states that the level of effort chosen by a prudent agent is larger (less) than the

optimal effort chosen by a risk-neutral agent if coefficient of absolute prudence is less (larger)

than a threshold for all level of loss y ≤ L. This threshold is utility-independent and stays

the same for all agents. However, it depends on the y values in interval [0, L]. If we use the

assumption of decreasing absolute prudence (DAP ), then these coefficients of absolute prudence

and thresholds depend only on loss L. In fact, part (i) of Lemma 2.1 implies the following

proposition.

Proposition 2.2 If pn < 1
2 and AP (wn−L) ≤ 1−2pn

pn

1
L , then risk-averse agents with DAP exert

more effort than the risk-neutral agent.

Proof Since

pn <
1
2
⇒ 1− 2pn

pn

1
L
≤ 1− 2pn

pn

1
y

for all y ∈ [0, L] (5)

and

DAP ⇒ AP (wn − y) ≤ AP (wn − L) for all y ∈ [0, L], (6)

we have

pn <
1
2
, DAP and AP (wn − L) ≤ 1− 2pn

pn

1
L

(7)

⇒ AP (wn − y) ≤ 1− 2pn

pn

1
y

for all y ∈ [0, L]. (8)

By combining (8) with part (i) of Lemma 2.1, we obtain the result. Q.E.D.

When pn ≤ 1
2 , Proposition 2.2 provides an upper bound on absolute prudence, AP ≤ 1−2pn

pn

1
L ,

to obtain more effort by DAP agents than the risk-neutral agent. DAP was first defined by

Kimball (1990). He showed that DAP is necessary and sufficient to guarantee that the effect of

income risk on the marginal propensity to consume (or “precautionary premium”) is decreasing

in wealth. Since then, DAP has been associated to some other intuitive properties and there

are a number of arguments in favor of this assumption in the literature (see, e.g. Eeckhoudt and

Kimball (1991); Kimball (1993); Gollier (1996); and Gollier (2001)).

When pn < 1
2 , we also have

lim
pn→0

1− 2pn

pn

1
L

= ∞ (9)
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and

lim
L→0

1− 2pn

pn

1
L

= ∞. (10)

Hence, Proposition 2.2 suggests that, for small probability of loss (pn → 0), or small amount of

loss (L → 0), all decreasing prudent agents will exert more effort than the risk-neutral agent,

which may appear to be a paradox. However there exist many applications where L is large and

pn is very low (catastrophe loss, environmental loss) and where L is small and pn is quite high

but less than 1
2 (current life loss). In fact, there are very few risky situations where pn ≥ 1

2 . So

our condition provides guidance for an empirical test. It can be verified with information on pn,

L and w for a particular utility function.

Before explaining our result in terms of second and third moments, we give another expla-

nation for Proposition 2.2 in terms of relative prudence. We note that if wn − L > 0, then

AP (wn − L) ≤ 1− 2pn

pn

1
L

(11)

⇔ −u′′′(wn − L)
u′′(wn − L)

≤ 1− 2pn

pn

1
L

⇔ −(wn − L)
u′′′(wn − L)
u′′(wn − L)

≤ 1− 2pn

pn

wn − L

L

⇔ RP (wn − L) ≤ 1− 2pn

pn

wn − L

L
, (12)

where RP (x) = −xu′′′(x)
u′′(x) is the coefficient of relative prudence. Some contributions in the

literature suggest that the benchmark value for RP is 2 (see, e.g., Hadar and Seo, 1990; Choi

et al., 2001; Gollier, 2001, pp. 60-61; White, 2008; Eeckhoudt et al. 2009, Wang and Li 2010;

Chiu et al. 2010). Because

1− 2pn

pn

wn − L

L
≥ 2 ⇔ pn ≤ wn − L

2wn
, (13)

we get the following corollary from Proposition 2.2:

Corollary 2.3 If RP (wn − L) ≤ 2 and pn ≤ wn−L
2wn

, then risk-averse agents with DAP exert

more effort than the risk-neutral agent.2

3 An Explanation for the Threshold based on Moments

In this section, we show that a close examination of second and third moments of the loss

distribution explains Proposition 2.2 and the cost-benefit analysis of prevention for a risk-averse
2Notice that pn ≤ wn−L

2wn
= 1

2
− L

2wn
< 1

2
.
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and prudent agent.

Define

L̃oss =





L with pn

0 with 1− pn

as loss of the risk-neutral agent. The variance (or second central moment) of the loss is

V ar(L̃oss) = pn(1− pn)L2, (14)

and its third moment is equal to

E(L̃oss
3
) = pnL3. (15)

The marginal change in probability on variance is

dV ar(L̃oss)
dpn

= (1− 2pn)L2. (16)

Hence the threshold can be rewritten as

1− 2pn

pn

1
L

=
(1− 2pn)L2

pnL3
(17)

=
Marginal change in probability on variance

Third moment of loss
.

Proposition 2.2 states that risk-averse agents with DAP exert more effort than the risk-neutral

agent if AP is less than the ”marginal change in probability on variance per third moment of

loss distribution.”3

Another way to see the result is to note that more self-protection is desirable when (38) in

the Appendix is positive for all y ∈ [0, L]. Since

H ′′(y) ≥ 0 for all y ∈ [0, L] ⇔ AP (wn − y) ≤ 1− 2pn

pn

1
y

for all y ∈ [0, L] (20)

3Since the third central moment of loss is

E(L̃oss− EL̃oss)3 = pn(1− pn)(1− 2pn)L3, (18)

the threshold can also be rewritten as

1− 2pn

pn

1

L
=

pn(1− pn)(1− 2pn)L3

pn(1− pn)L2pnL

1

L
(19)

=
Third central moment of loss

(V ariance of loss) (Expected loss)

1

L
.

Hence, the threshold can also be interpreted as a trade-off among loss amount, expected loss, variance and third

central moment.
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and

DAP and H ′′(L) ≥ 0 ⇒ AP (wn − y) ≤ 1− 2pn

pn

1
y

for all y ∈ [0, L], (21)

then more self-protection is desirable when

H ′′(L) = (2pn − 1)u′′(wn − L)− pnLu′′′(wn − L) (22)

is positive. (22) can be rewritten as

H ′′(L)L2 = (2pn − 1)L2u′′(wn − L)− pnL3u′′′(wn − L). (23)

We see from (23) that our sufficient condition includes the variation of the variance and the level

of the third moment. The variation of the variance and the level of the third moment multiply

u′′(wn −L) and u′′′(wn −L) respectively. Hence, when p < 1
2 , the cost-benefit of self-protection

for a risk-averse and decreasing prudent agent is equal to a reduction in the variance, which is

(most of the time) desirable for a risk-averse agent, less the utility cost of spending money for

protection against an uncertain event, which is not desirable for a prudent agent who prefers to

save money in such circumstance (Kimball, 1990).

This trade-off was suggested in a comment by Eeckhoudt and Gollier (2005):

When pn is larger than 1
2 , the effect of risk aversion goes in the same direction as

the effect of prudence to generate a smaller level of effort. In the more interesting

case where pn is less than 1
2 , these two effects go in opposite directions.

We now interpret the result in terms of skewness. In the statistics literature, skewness is

often proposed to measure downside risk. It is well known that an increase of skewness will

imply an increase in downside risk only under specific conditions (Chiu, 2005b; Menezes et al.,

1980). In our application, more self-protection yields a new distribution that is more skewed to

the left. The skewness of L̃oss is defined as

SLoss =
E[L̃oss−E(L̃oss)]3

[V ar(L̃oss)]
3
2

. (24)

Since

E[L̃oss− E(L̃oss)]3 (25)

= pn(y − pnL)3 + (1− pn)(−pnL)3 = pn(1− pn)(1− 2pn)L3,
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we have

SLoss =
1− 2pn√
pn(1− pn)

. (26)

Figure 3.1 V ariance = p((1− p))L2 with L = 1

Figure 3.2 Skewness = 1−2p√
p(1−p)

We observe that (26) is independent of L. Figures 3.1 and 3.2 illustrate the variance and

skewness of loss distribution as a function of p. We observe that the variance first increases when

p < 1
2 and then decreases when p increases. The skewness always decreases when p increases

but is positive when p < 1
2 and negative otherwise.

When pn < 1
2 , for the risk-averse and decreasing prudent agent, there is a trade-off between

the variance and the skewness of the loss distribution. Spending more on self-protection (re-
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ducing p) decreases the variance of loss (see Figure 3.1), which is desirable. However, for the

prudent agent, spending more on self-protection increases the positive skewness of loss (see Fig-

ure 3.2 ), which is undesirable in this application. Hence, when pn < 1
2 , the cost-benefit analysis

of preventive actions for a risk-averse and prudent agent depends on the trade-off between the

decrease in the variance and the increase in the skewness. As shown by Chiu (2005b), prudence

has an important role to play for characterizing this trade-off when both distributions have the

same expected mean. Here we show that this is also the case even when self-protection changes

the expected loss.

We propose a sufficient condition for more self-protection by a risk-averse and decreasing

prudent agent in terms of the skewness of loss.

If pn < 1
2 , then

SLoss =
1− 2pn√
pn(1− pn)

<
1− 2pn

pn
. (27)

From Proposition 2.2, we obtain the following corollary.

Corollary 3.1 Suppose pn < 1
2 , risk-averse and decreasing prudent agents exert more effort

than the risk-neutral agent if

AP (wn − L) ≤ SLoss

L
. (28)

Corollary 3.1 provides a short-cut sufficient condition for decreasing prudent agents to exert

more effort than the risk-neutral agent: absolute prudence be less than skewness of loss per

amount of loss.

4 Sufficient Conditions for HARA

In the economic literature, the class of harmonic absolute risk aversion (HARA) utility functions

is particularly useful to derive analytical results. HARA utility functions take the following form:

u(x) = ζ(η +
x

γ
)1−γ , (29)

and the absolute prudence coefficient is equal to (see e.g., Gollier, 2001, p. 26)

AP (x) =
γ + 1

γ
(η +

x

γ
)−1. (30)

Hence Proposition 2.2 implies the following corollary.
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Corollary 4.1 Suppose DAP and HARA, risk-averse agents exert more effort than the risk-

neutral agent if
γ + 1

γ
(η +

wn − L

γ
)−1 ≤ 1− 2pn

pn

1
L

. (31)

The sufficient condition for some well known HARA utility functions is summarized in the

following table.

Parameter Utility AP (wn − L) AP (wn − L) ≤ 1−2pn

pn

1
L

γ = −1 Quadratic 0 pn ≤ 1
2

η = 0 and γ = 1 Logarithmic 2
wn−L

L
wn−L ≤ 1−2pn

2pn

η = 0 and γ 6= 1 Power γ+1
wn−L

L
wn−L ≤ 1−2pn

(1+γ)pn

γ →∞ Negative exponential 1
η

1
η ≤ 1−2pn

pn

1
L

Table 4.1: HARA utility functions

From Table 4.1, we observe that, for quadratic, logarithmic, power (γ < −1) and negative

exponential (η > 0) functions , pn ≤ 1
2 is a necessary condition for these sufficient conditions.

5 Conclusion

We have investigated the link between optimal prevention and prudence by providing a sufficient

condition for risk-averse agents with DAP to exert more self-protection than a risk-neutral agent.

We have formalized the intuition by using the second and third moment of the loss distribution.

We have also interpreted our main result in terms of the skewness of the loss distribution.

6 Appendix

6.1 Proof of Lemma 2.1

Because V is concave, the optimal effort e∗ for a risk-averse agent will be larger than en if and

only if V ′(en) is positive:

V ′(en) = −[pnu′(wn − L) + (1− pn)u′(wn)]− p′(en)[u(wn)− u(wn − L)] ≥ 0. (32)

Using condition (2), we see that V ′(en) ≥ 0 if and only if

u(wn)− u(wn − L)
L

≥ pnu′(wn − L) + (1− pn)u′(wn) (33)
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or if and only if

u(wn)− u(wn − L)− L[pnu′(wn − L) + (1− pn)u′(wn)] ≥ 0. (34)

Given L, we have fixed en and pn (by (2)). Define

H(y) = u(wn)− u(wn − y)− y[pnu′(wn − y) + (1− pn)u′(wn)], for y ∈ [0, L], (35)

then

H(L) ≥ 0 ⇔ V ′(en) ≥ 0. (36)

We note that H(0) = 0 and

H ′(y) = (1− pn)[u′(wn − y)− u′(wn)] + pnyu′′(wn − y). (37)

Moreover, (37) implies that H ′(0) = 0 and

H ′′(y) = (2pn − 1)u′′(wn − y)− pnyu′′′(wn − y). (38)

Since

H ′(0) = 0 and H ′′(y) ≥ 0(≤ 0) for all y ∈ [0, L] (39)

⇒ H ′(y) ≥ 0(≤ 0) for all y ∈ [0, L]

and

H(0) = 0 and H ′(y) ≥ 0(≤ 0) for all y ∈ [0, L] (40)

⇒ H(y) ≥ 0(≤ 0) for all y ∈ [0, L]

⇒ H(L) ≥ 0(≤ 0),

we conclude that H ′′(y) ≥ 0(≤ 0) for all y ∈ [0, L] is a sufficient condition for H(L) ≥ 0(≤ 0).

(i) Because

AP (wn − y) ≤ 1− 2pn

pn

1
y

for all y ∈ [0, L] (41)

⇔ −u′′′(wn − y)
u′′(wn − y)

≤ 1− 2pn

pn

1
y

for all y ∈ [0, L]

⇔ H ′′(y) ≥ 0 for all y ∈ [0, L], (42)

we obtain

AP (wn − y) ≤ 1− 2pn

pn

1
y

for all y ∈ [0, L] (43)

⇒ H(L) ≥ 0

⇔ V ′(en) ≥ 0.
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(ii) We can prove this assertion by the same approach used in (i). Q.E.D.
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