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Abstract

Expected utility functions are limited to second-order (conditional) risk aversion, while

non-expected utility functions can exhibit either first-order or second-order (conditional)

risk aversion. We extend the concept of orders of conditional risk aversion to orders of

conditional dependent risk aversion. We show that first-order conditional dependent risk

aversion is consistent with the framework of the expected utility hypothesis. Our theoretical

result proposes new insights into economic and financial applications such as the equity

premium puzzle, the cost of business cycles, and stock market participation. Our model is

compared to the rank-dependent expected utility model.
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1 Introduction

We present a new approach to developing an expected utility model that exhibits first-order risk

aversion and explains some economic and finance puzzles. The main contribution of our model

is to show that dependent background risk is sufficient to obtain a first-order risk premium

distinct from a second-order premium with the standard expected utility framework. Because

many economic agents are often exposed to simultaneous dependent risks (for example, an IBM

employee who is considering buying IBM stock or a non-permanent employee who owns units

of stock index and whose job is subject to business cycles) the sufficient condition we propose

is natural for many economic agents.

The concepts of second-order and first-order risk aversion were coined by Segal and Spivak

(1990). For an actuarially fair random variable ε̃, second-order risk aversion means that the risk

premium the agent is willing to pay to avoid kε̃ is proportional to k2 as k → 0. Under first-

order risk aversion, the risk premium is proportional to k. Loomes and Segal (1994) extend this

notion to preferences about uninsured events, such as independent additive background risks.

They introduce the concept of orders of conditional risk aversion. Defining ỹ as an independent

additive risk, the conditional risk premium is the amount of money the decision maker is willing

to pay to avoid ε̃ in the presence of ỹ. The preference relation satisfies first-order conditional

risk aversion if the risk premium the agent is willing to pay to avoid kε̃ is proportional to k as

k → 0. It satisfies second-order conditional risk aversion if the risk premium is proportional to

k2.

First-order risk aversion implies that small risks matter. It is well known from Arrow (1974)

and Borch (1974) that differentiable expected utility (EU) is only second order. Because expected

utility theory is limited to second-order (conditional) risk aversion, it ignores many real world

results. Several non-EU models that can predict first-order risk aversion behavior (i.e. rank-

dependent EU and loss aversion) are being used in the economic and financial literatures to

explain puzzles that EU cannot handle (see, Epstein and Zin 1990; Quiggin 1982; Tversky and

Kahneman 1992).

For example, risk-averse individuals are reluctant to take a small actuarially favorable gamble

or to invest in financial markets with a positive risk premium. These two puzzles —coward

gambler (Samuelson, 1963) and the stock market participation puzzle (Barberis et al., 2006)—

have been solved with the property of first-order risk aversion, but outside the expected utility
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framework. Two other significant puzzles are the equity premium puzzle (Mehra and Prescott,

1985), in which asset prices are poorly explained by reasonable values of risk aversion, and the

welfare cost of business cycles considered small by an expected utility representative agent who

does not consider dependent background risk (Lucas, 1987).

In this paper, we reinvestigate whether first-order conditional risk aversion appears in the

framework of the expected utility hypothesis. The general answer to this question is positive with

some weak restrictions: expected utility theory exhibits first-order risk aversion when there is a

dependent background risk, but not otherwise. We extend the concepts of orders of conditional

risk aversion to orders of conditional dependent risk aversion, for which ε̃ and the background

risk ỹ are dependent and ỹ may enter the agent’s utility function arbitrarily. We thus propose

a new source of first-order risk aversion over general preferences. Because EU theory is simple,

parsimonious, and able to explain a wide set of empirical facts, our use of first-order risk aversion

is easy to interpret in many real-world applications, and the assumptions are plausible. It is now

well accepted that a labor or income risk that changes over economic cycles can be interpreted

as a correlated background risk for a representative agent when choosing optimal portfolio or

assets in pension funds.

We propose conditions on the stochastic structure between ε̃ and ỹ that guarantee first-

order conditional dependent risk aversion for expected utility agents with a certain type of

risk preference; i.e., with correlation aversion. Eeckhoudt, Rey and Schlesinger (2007) provide

an economic interpretation of correlation aversion: a higher level of the background variable

mitigates the detrimental effect of a reduction in wealth. It turns out that the concept of

expectation dependence proposed by Wright (1987), which is a stronger measure of dependence

than covariance, is a key element of such a stochastic structure.

The paper proceeds as follows: Section 2 sets up the model. Section 3 explains the concept

of expectation dependence. Section 4 discusses the concept of orders of conditional risk aversion

and investigates the orders of conditional dependent risk aversion. It also presents two special

cases and two examples of the general model. Section 5 applies the results to two economic

puzzles. Section 6 offers a direct comparison between expected utility and rank-dependent

expected utility for generating first-order risk aversion. Section 7 concludes the paper.
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2 The model

We consider an agent whose preference for random wealth, w̃, and a random outcome, ỹ, can

be represented by a bivariate expected utility function. Let u(w, y) be the utility function. We

assume that all partial derivatives required for any definition exist. We make the standard

assumption that u1 > 0, where u1 = ∂u
∂w .

Let us assume that z̃ = kε̃ is the risk faced by a risk-averse agent. Parameter k can be

interpreted as the size of the risk. One way to measure an agent’s degree of risk aversion for

z̃ is to ask him how much he is willing to pay to eliminate z̃. This value will be referred to as

the risk premium π(k) associated with that risk. For an agent with utility function u, Eỹ the

expected value of another risk ỹ, and non-random initial wealth w, the risk premium π(k) must

satisfy the following condition in the absence of a background risk:

u(w + Ekε̃− π(k), Eỹ) = Eu(w + kε̃, Eỹ). (1)

Segal and Spivak (1990) give the following definitions of first- and second-order risk aversion:

Definition 2.1 (Segal and Spivak, 1990) The agent’s attitude towards risk at w is first-order

if for every ε̃ with Eε̃ = 0, π′(0) 6= 0. The agent’s attitude towards risk at w is second-order if

for every ε̃ with Eε̃ = 0, π′(0) = 0 but π′′(0) 6= 0.

They provide the following results linking properties of the order of expected utility model

to its order of risk aversion given the level of wealth w0:

(a) If the utility function u is not differentiable at w0 but has well-defined and distinct left

and right derivatives at w0, then the agent exhibits first-order risk aversion at w0.

(b) If the utility function u is twice differentiable at w0 with u11 < 0, then the agent exhibits

second-order risk aversion at w0.

Segal and Spivak (1996) point out that if the von Neumann-Morgenstern utility function

is increasing, then it must be differentiable almost everywhere, and one may convincingly ar-

gue that non-differentiability is seldom observed in the expected utility model. Alternatively,

like increasing functions, concave functions may still have a countable set of points of non-

differentiability.

Loomes and Segal (1994) introduced the order of conditional risk aversion by examining

the characteristics of π(k) in the presence of an independent uninsured risk ỹi. For an agent
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with utility function u and initial wealth w, the conditional risk premium πc(k) must satisfy the

following condition:

Eu(w + Ekε̃− πc(k), ỹi) = Eu(w + kε̃, ỹi). (2)

Definition 2.2 (Loomes and Segal, 1994) The agent’s attitude towards risk at w is first-order

conditional risk aversion if for every ε̃ with Eε̃ = 0, π′c(0) 6= 0. The agent’s attitude towards

risk at w is second-order conditional risk aversion if for every ε̃ with Eε̃ = 0, π′c(0) = 0 but

π′′c (0) 6= 0.

It is obvious that the definitions of first- and second-order conditional risk aversion are more

general than the definitions of first- and second-order risk aversion. We can extend the above

definitions to the case Eε̃ 6= 0. Because u is differentiable, fully differentiating (2) with respect

to k yields:

E{[Eε̃− π′c(k)]u1(w + Ekε̃− πc(k), ỹi)} = E[ε̃u1(w + kε̃, ỹi)]. (3)

Because ε̃ and ỹi are independent,

π′c(0) =
Eε̃Eu1(w, ỹi)− E[ε̃u1(w, ỹi)]

Eu1(w, ỹi)
= 0. (4)

Therefore, not only does πc(k) approach zero as k approaches zero, but also π′c(0) = 0. This

implies that at the margin, accepting a small risk has no effect on the welfare of economic

agents. This is an important property of expected utility theory: in the small, the expected

utility maximizers are risk-neutral in the presence of an independent background risk.

Using a Taylor expansion of πc around k = 0, we obtain that1

πc(k) = πc(0) + π′c(0)k +O(k2) = O(k2). (5)

This result is the Arrow-Pratt approximation, which states that the conditional risk premium

is approximately proportional to the square of the size of the risk.

In conclusion, if the random outcome and the background risk are independent, then second-

order conditional risk aversion relies on the assumption that the utility function is differen-

tiable. Hence, within a framework of independent background risk, utility functions in the von

1In the statistical literature, the sequence bk is at most of order kλ, denoted as bk = O(kλ), if for some finite

real number ∆ > 0, there exists a finite integer K such that for all k > K, |kλbk| < ∆ (see White, 2000, p. 16).
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Neumann-Morgenstern expected utility class can generically exhibit only second-order condi-

tional risk aversion, and cannot explain the rejection of a small and actuarially favorable gamble

or the acceptance of a full insurance contract with actuarially unfair pricing.

3 Expectation Dependence

We denote by F (ε, y) the joint distribution function of (ε̃, ỹ). Fε(ε) and Fy(y) are the marginal

distributions. Wright (1987) introduced the concept of expectation dependence in the economics

literature.

Definition 3.1 If

ED(y) = [Eε̃− E(ε̃|ỹ ≤ y)] ≥ 0 for all y, (6)

and there is at least some y0 for which a strong inequality holds,

then ε̃ is positive expectation dependent on ỹ. Similarly, ε̃ is negative expectation dependent on

ỹ if (6) holds with the inequality sign reversed.

Wright (1987, p. 113) interprets negative expectation dependence as follows: “when we

discover ỹ is small, in the precise sense that we are given the truncation ỹ ≤ y, our expectation

of ε̃ is revised upward.” He also provides the following theorem to link expectation dependence

and covariance.

Theorem 3.2 (Wright 1987, Theorem 3.1) ε̃ is positive (negative) expectation dependent on ỹ

if and only if Cov(ε̃,m(ỹ) ≥ (≤)0 for every increasing function m.

Hence, “ε̃ is positive (negative) expectation dependent on ỹ” does not mean that “ỹ is the

causality of ε̃.” Expectation dependence simply means that the two variables are dependent, and

the covariance between the two random variables (Cov(ε̃, ỹ)) is not strong enough to measure

this dependence.

One example of distribution with positive expectation dependent random variables is the

bivariate normal distribution with positive correlation coefficient. Because positive (negative)

expectation dependence is a weaker definition than positive (negative) quadrant dependence

(Wright, 1987, p. 114), bivariate random variables that are positive (negative) quadrant depen-

dent (Lehmann, 1966) are also positive (negative) expectation dependent. Portfolio selection
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problems with positive quadrant dependent (PQD) variables are explored by Pellerey and Se-

meraro (2005) and Dachraoui and Dionne (2007), among others. Pellerey and Semeraro (2005)

assert that a large subset of the elliptical distribution class is PQD. Many other bivariate random

variables besides elliptical distributions are PQD. For examples of such distributions, see Joe

(1997) and Balakrishnan and Lai (2009). Dachraoui and Dionne (2007) also present examples

of PQD bivariate distributions that are not elliptical. Dionne et al. (2012) discuss examples of

distributions where the sign of Cov(ε̃, ỹ) differs from that of Cov(ε̃,m(ỹ)).

In the following proposition, we introduce a specific distributional assumption that is fre-

quently used in the macroeconomics literature for representing an idiosyncratic risk.

Proposition 3.3 Suppose ỹ = h(ε̃, ũ), where h(ε, u) is increasing (decreasing) in ε, and (ε̃, ũ)

are independent random variables, then ε̃ is positive (negative) expectation dependent on ỹ.

Proof See Appendix.

Suppose ỹ is an idiosyncratic risk and ε̃ is an aggregate risk. Although ỹ is dependent on

ε̃, Proposition 3.3 shows that the aggregate risk is expectation dependent on the idiosyncratic

risk. We use the following two examples to illustrate that Proposition 3.3 corresponds to typical

ways of introducing an idiosyncratic risk in macroeconomic and finance literatures.

Example 1 Denote C̃ as aggregate consumption. The labor income (earnings) of worker i

is denoted by W̃i. Labor income is uncertain and defined by W̃i = (aI{C̃≤C∗} + bI{C̃>C∗})gũi,

where g, a, b, and C∗ are positive constants, b ≥ a, I{A} denotes the indicator function of the

event A (equal to 1 if A is realized and to 0 otherwise), ũi > 0, and (C̃, ũi) are independent

random variables. For a dynamic version of this example, we refer to Krebs (2007, p. 667).

aI{C̃≤C∗} + bI{C̃>C∗} is the cyclical component of labor income risk, and we can interpret this

component as describing job displacement risk. b − a is the income loss of a worker who is

displaced when the aggregate state C̃ ≤ C∗. Because h(C, ui) = (aI{C≤C∗} + bI{C>C∗})gui is

increasing in C, Proposition 3.3 implies that C̃ is positive expectation dependent on W̃i.

Example 2 Define C̃ as aggregate per capita consumption. δ̃i is an idiosyncratic permanent

income shock for individual i. W̃i = eδ̃iC̃ is individual i’s labor income. (C̃, δ̃i) are independent

random variables. For a dynamic version, we refer to Constantinides and Duffie (1996) and De

Santis (2007). Because h(C, δi) = eδiC is increasing in C, from Proposition 3.3, we know that

C̃ is positive (negative) expectation dependent on W̃i.
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Normally one would think that the distribution of idiosyncratic shocks depends on the re-

alization of the aggregate state, but the above two examples describe the reverse relation (i.e.

distribution of aggregate risk as a function of idiosyncratic risks), which is not nearly as evident

to interpret. However, Theorem 3.2 clarifies that expectation dependence does not mean there

is causality but rather correlation between idiosyncratic shocks and the aggregate state. There-

fore, the two examples only state that idiosyncratic shocks and the aggregate state are strongly

correlated in both directions.

4 Order of conditional dependent risk aversion

4.1 Definition

We now introduce the concept of order of conditional dependent risk aversion. For an agent with

utility function u and non-random initial wealth w, the conditional dependent risk premium,

πcd(k), must satisfy the following condition:

Eu(w + Ekε̃− πcd(k), ỹ) = Eu(w + kε̃, ỹ), (7)

where ε̃ and ỹ are not necessarily independent risks. We propose the following definitions:

Definition 4.1 The agent’s attitude towards risk at w is first-order conditional dependent risk

aversion if for every ε̃, πcd(k)−πc(k) = O(k). The agent’s attitude towards risk at w is second-

order conditional dependent risk aversion if for every ε̃, πcd(k)− πc(k) = O(k2).

πcd(k) − πc(k) measures how dependence between risks affects the risk premium. Second-

order conditional dependent risk aversion implies that in the presence of a dependent background

risk, a small risk has no (significant) effect on risk premium. However, first-order conditional

dependent risk aversion implies that in the presence of a dependent background risk, a small

risk affects the risk premium significantly. This means that in the presence of a dependent

background risk, the risk premium associated with a small risk is mainly explained by O(k), or

by the first-degree conditional risk aversion.

Definition 3.1 is useful for deriving a first-order approximation of πcd(k).

Lemma 4.2

πcd(k) = −k
∫∞
−∞ED(y)u12(w, y)Fy(y)dy

Eu1(w, ỹ)
+O(k2). (8)
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Proof See Appendix.

Lemma 4.2 shows the general measure for first-order conditional risk aversion. The first

term involves two important concepts: u12, the cross-derivative of the utility function, and

ED(y), the expectation dependence between the two risks. The sign of u12 indicates how this

first concept acts on utility. Eeckhoudt et al. (2007) provide a context-free interpretation of

the sign of u12. They show that u12 < 0 is necessary and sufficient for “correlation aversion,”

meaning that a higher level of the background variable mitigates the detrimental effect of a

reduction in wealth. Equation (8) also captures the dependence between the two risks. The

sign of expectation dependence indicates whether the movements on background risk tend to

reinforce the movements of ỹ on wealth (positive expectation dependence) or to counteract

them (negative expectation dependence). As already discussed, O(k2) in (8) is negligible for

small risks. Lemma 4.2 allows a quantitative treatment of the direction and size of the effect

of expectation dependence on first order risk aversion. To clarify this, consider the following

cases: (1) If the agents are correlation-neutral (u12 = 0) or the background risk is independent

(ED(y) = 0), then the agents’ attitude towards risk is only second-order conditional dependent

risk aversion; and (2) If u12 < 0 and ED(y) > 0 (ED(y) < 0), then the agents’ attitude towards

risk is first-order conditional dependent, and their marginal risk premium for a small risk is

positive (negative) (i.e., limk→0+ π
′
cd(k) > (<)0).

¿From Lemma (4.2) and Equation (5), we obtain2

Proposition 4.3 (i) If ε̃ is positive expectation dependent on ỹ and u12 < 0, then the agent’s

attitude towards risk is first-order conditional dependent risk aversion and πcd(k) − πc(k) =

|O(k)|;

(ii) If ε̃ is negative expectation dependent on ỹ and u12 > 0, then the agent’s attitude towards

risk is first-order conditional dependent risk aversion and πcd(k)− πc(k) = |O(k)|;

(iii) If ε̃ is positive expectation dependent on ỹ and u12 > 0, then the agent’s attitude towards

risk is first-order conditional dependent risk aversion and πcd(k)− πc(k) = −|O(k)|;

(iv) If ε̃ is negative expectation dependent on ỹ and u12 < 0, then the agent’s attitude towards

risk is first-order conditional dependent risk aversion and πcd(k)− πc(k) = −|O(k)|.
2Dionne and Li (2011) show that the more information we have about the sign of higher cross derivatives

of the utility, the weaker the dependence conditions on distribution required to guarantee first-order conditional

dependent risk aversion.
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The intuition behind Proposition 4.3 is that in the absence of a dependent background risk,

differentiable EU is only second order because the derivative is taken around the certainty line

(k = 0, meaning no risk). In small neighborhoods differentiable functions behave like linear

functions (in the present context, expected value, hence risk neutrality, as in (4)). But suppose

that risk ε̃ is added to risk ỹ and the two are not independent. For example, suppose that

ỹ = (−x,H;x, T ) and kε̃ = (−k,H; k, T ); H and T are the same for ỹ and kε̃ and represent two

states of nature. From hereon, when we take the derivative of π(k) with respect to k, at k = 0,

we take derivatives of the utility function at two different points: w − x and w + x. Because

these derivatives are typically different under risk aversion, the derivative with respect to k will

not be zero, but rather a function of the difference between U ′(w − x) and U ′(w + x) at k = 0,

when the two risks are additive.

Consider a truncated standardized bivariate normal distribution with h1 < ε̃ < +∞, k1 <

ỹ < +∞, and unconditional correlation coefficient ρ. This truncated standardized bivariate

normal distribution is not elliptical. From Ang and Chen (2002, p. 488), we know that ρ > 0

cannot guarantee positive expectation dependence (for simulations on truncated standardized

bivariate normal distribution, we refer to Dionne, Li, and Okou, 2012). The sign of covariance

therefore cannot predict the sign of πcd (k). As Proposition 4.3 shows, the sign of expectation

dependence can predict first-order risk aversion.

4.2 Two special cases and two examples

We consider two special cases to illustrate Proposition 4.3.

Case 1. Consider an additive background risk with u(x, y) = U(x + y). Here, x may

be the random wealth of an agent and y may be a random labor income risk that cannot be

insured. Because u12 < 0 ⇔ U ′′ < 0, parts (i) and (iv) of Proposition 4.3 imply that if the

agent is risk averse and ε̃ is positive (negative) expectation dependent on the background risk

ỹ, then the agent’s attitude towards risk is first-order conditional dependent risk aversion and

πcd(k) > (<)πc(k). Another possible interpretation is that x̃ is the aggregate per capita dividend

risk and ỹ = W̃i is the idiosyncratic risk, where x̃ = C̃ and W̃i are defined as in Examples 1 and

2. Then the agent is first-order conditional dependent risk-averse if U ′′ ≤ 0.

Case 2. Consider a multiplicative background risk with u(x, y) = U(xy). Here, x may be

the random wealth of an agent and ỹ = (1 + r̃) where r̃ is the random interest rate risk that
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cannot be hedged. Proposition 4.3 implies that (i) if relative risk aversion −xyU
′′(xy)
U ′(xy) > 1 and ε̃

is positive (negative) expectation dependent on the background risk ỹ, then the agent’s attitude

towards risk is first-order conditional dependent risk aversion and πcd(k) > (<)πc(k); and (ii) if

relative risk aversion −xyU
′′(xy)
U ′(xy) < 1 and ε̃ is positive (negative) expectation dependent on the

background risk ỹ, then the agent’s attitude towards risk is first-order conditional dependent

risk aversion and πcd(k) < (>)πc(k).

Consider bivariate log-normal random variables (ε̃, ỹ) with joint probability distribution

F (ε, y) such that  log(ε̃)

log(ỹ)

 ∼ N
  µ1

µ2

 ,

 σ2
1 σ12

σ12 σ2
2

  , (9)

where indexes 1 and 2 are used for log(ε̃) and log(ỹ) respectively. We know from Lien (1985,

pp. 244–245) that

ED(y) = exp(µ1 +
σ2

1

2
)
Ψ( log(y)−µ2−σ12

σ2
)

Ψ( log(y)−µ2
σ2

)
, (10)

where Ψ(z) is the cumulative distribution function of a standardized normal random variable

evaluated at z.

Assume that u(w + x̃ + ỹ) = [(w+x̃)ỹ]1−γ

1−γ and x̃ = x + kε̃ with E (ε) = 0. w is non-random

initial wealth. Figure 1 presents different values of πcd in function of k and γ when σ1 = 1, σ2 =

10, σ12 = Cov (log (ε) , log (y)) = ρσ1σ2 = −1, and O
(
k2
)

= 0. We observe that πcd is linear in

k and decreases significantly with γ. This example corresponds to (iv) in Proposition 4.3. Since

x̃ and ỹ are negatively correlated, there is a natural hedging between the two random variables

and a negative premium. The premium decreases with k for a given γ because the size of risk

increases with k and the natural hedging becomes more important. More risk averse individuals

benefit more from the natural hedging and the effect is significant.

Example 3 The first example concerns a coward gambler. A coward gambler does not take

a sufficiently small bet when offered two-to-one odds and permitted to choose a side (Samuelson,

1963). The assumption that people are cowards gamblers has some clear implications to financial

markets (Segal and Spivak, 1990), as we will see in Example 4. The following proposition yields

the conditions for people to be cowards (or not) in the presence of a background risk.

Proposition 4.4 (i) Let E[ε̃] > 0. If the decision maker’s attitude towards risk is second-

order conditional dependent risk aversion, then for a sufficiently small k > 0, Eu(w + kε̃, ỹ) >

Eu(w, ỹ).
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(ii) Let E[ε̃] > 0. If the individual’s attitude towards risk is first-order conditional dependent

risk aversion and πcd(k) − πc(k) = |O(k)|, then for a sufficiently small k > 0, Eu(w, ỹ) >

Eu(w + kε̃, ỹ), if E[ε̃] is small enough.

Proof See Appendix.

Proposition 4.4 is also important for the next puzzle.

Example 4 Consider now a portfolio problem with two dependent risks: the payoff of the

risky asset and the wage of the agent (for example an IBM employee considering buying IBM

stock). The agent has guaranteed wealth w at the beginning of the period. The risk-free return

over the period is rf . The return of the risky asset over the period is a random variable r̃. The

agent’s problem is to determine how much to invest in the risky asset. Let w−α be the amount

invested in the risk-free asset and α the amount invested in the risky asset. The value of wealth

at the end of the period may be written as

w̃ = (w − α)(1 + rf ) + α(1 + r̃) = w(1 + rf ) + α(r̃ − rf ) = w0 + αx̃, (11)

where w0 = w(1 + rf ) is future wealth obtained with the risk-free asset and x̃ = r̃ − rf . The

agent’s expected utility is

V (α) = Eu(w̃, ỹ) = Eu(w0 + αx̃, ỹ). (12)

Suppose u11 ≤ 0. Because V is concave in α, the agent will invest a positive amount in the risky

asset if and only if Eu(w0 + αx̃, ỹ) > Eu(w0, ỹ) for small α > 0. From part (i) of Proposition

4.4, we know that if the decision maker’s attitude towards risk is second-order conditional

dependent risk aversion, then the agent will invest a positive amount in the risky asset if it has a

positive risk premium (E (r̃) > rf ). This replicates Arrow’s (1974) famous result. However, part

(ii) of Proposition 4.4 tells us that this conclusion fails when the decision maker is first-order

conditional dependent risk-averse. In this case, we get the much more plausible result that if

the risk premium is positive but sufficiently small, a correlation-averse decision maker will not

invest in the risky asset if it is positive expectation dependent on the background risk. This

last result is related to the financial market participation puzzle (Berbaris et al., 2006). It is

well documented that the expected utility model (without a background risk) cannot explain

the rejection of a small and actuarially favorable gamble. EU decision makers with second-order

risk aversion will always invest part of their wealth in a risky asset with a positive risk premium,
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while first-order risk averse investors may not invest in this risky asset (Segal and Spivak, 1990).

Part (ii) of Proposition 4.4 shows that this last result is compatible with an EU decision maker

in the presence of a dependent background risk.

5 Applications

In this section, we illustrate the applicability of our results to two problems (puzzles) analyzed in

the literature. In particular, we demonstrate the practical relevance of the distinction between

first- and second-order risk aversion. In these applications, the background risk is interpreted as

an idiosyncratic risk. For example, in a permanent income shock macroeconomic environment,

full insurance of background risk is not possible (see, for example, Constantinides and Duffie,

1996). Therefore, at equilibrium there is no trading between consumers to eliminate the idiosyn-

cratic risk. Consumption shocks translate into idiosyncratic income shocks and background risk

remains significant.

5.1 The equity premium puzzle

The equity premium puzzle illustrates that second-order risk aversion is not sufficient to explain

asset prices. Epstein and Zin (1990) solve the puzzle with rank-dependent expected utility, which

exhibits first-order risk aversion. Another explanation involves incomplete market models with

idiosyncratic risk. Constantinides and Duffie (1996) show how the introduction of heterogeneity

in the form of uninsurable, persistent and heteroskedastic labor income shocks may resolve

the puzzle in theory. Krueger and Lustig (2010) present five conditions to affirm that market

incompleteness does not increase the risk premium. One of these conditions is the independence

between idiosyncratic risk and aggregate shocks. In this subsection, we show how dependent

risks increase the risk premium in the framework of expected utility.

We concentrate our analysis on the independence assumption by considering the standard

representative agent model with two dependent risks. We use the static version of Weil’s (1992)

model proposed by Gollier and Schlesinger (2002) to illustrate our main result. Our model

with dependent risks is a particular case of the intertemporal setting of Krueger and Lustig

(2010), but adequately illustrates the effect of a dependent idiosyncratic risk on asset price.

Note that our measure of risk dependence is very general and that our result holds for (almost)

all concave expected utility functions, including constant relative risk aversion (CRRA) and
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constant absolute risk aversion (CARA) preferences.

We consider a static Lucas (1978) tree economy which consists of individuals, all of whom

may be portrayed, ex ante, by a representative agent. The economy is competitive in that

individuals maximize expected utility with prices taken as given. Initial wealth consists of one

unit of the risky asset plus an allocation of a risk-free asset. We assume that the risk-free rate

is zero. We denote w as the value of wealth that is initially invested in the risk-free asset and

define x̃ as the final payoff of the risky asset. Agents’ preferences can be represented by a

von Neumann-Morgenstern utility function u. Agents can adjust their portfolio by buying and

selling the two assets, and consume all their wealth at the end of the period. Let P represent

the price of the risky asset and β denote the demand for additional units of x̃. In the absence

of a background risk, we assume that the agent faces the following optimization program:

β∗ ∈ arg max
β

Eu(w + x̃+ β(x̃− P ), Eỹ). (13)

Gollier and Schlesinger (2002) show that the equilibrium asset price with an excess demand of

zero (β∗ = 0) is equal to

P ∗ =
E[x̃u1(w + x̃, Eỹ)]

Eu1(w + x̃, Eỹ)
. (14)

One way to explain the equity premium puzzle in this theoretical framework is to recognize that

there are other sources of risk on final wealth than the riskiness of asset returns. To capture the

effects of these types of risks, we introduce a background risk ỹ, which can not be fully insured.

This yields the following optimization program:

β∗∗ ∈ arg max
β

Eu(w + x̃+ β(x̃− P ), ỹ), (15)

and modified equilibrium asset price:

P ∗∗ =
E[x̃u1(w + x̃, ỹ)]

Eu1(w + x̃, ỹ)
. (16)

We want to compare P ∗∗ with P ∗. Because E (x̃) is the same in both cases and the equity

premium is E (x̃) − P (see Gollier and Schlesinger, 2002, p. 756), this comparison is identical

to comparing the equity premiums.

Suppose u(x, y) = [(w+x)y]1−γ

1−γ , and x̃ and ỹ are independent. ỹ is multiplicative, as in Krueger

and Lustig (2010) and Constantinides and Duffie (1996). Then u1 = (w + x)−γy1−γ and

P ∗ =
Ex̃(w + x̃)−γ(Eỹ)1−γ

E(w + x̃)−γ(Eỹ)1−γ =
Ex̃(w + x̃)−γ

E(w + x̃)−γ
(17)
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while

P ∗∗ =
Ex̃(w + x̃)−γ ỹ1−γ

E(w + x̃)−γ ỹ1−γ =
Ex̃(w + x̃)−γEỹ1−γ

E(w + x̃)−γEỹ1−γ =
Ex̃(w + x̃)−γ

E(w + x̃)−γ
. (18)

We verify that P ∗ = P ∗∗. We obtain the irrelevance result for the CRRA utility function and

independent multiplicative risks. This conclusion meets Krueger and Lustig (2010, pp. 9-10)

when all other conditions are verified. We can also obtain the irrelevance result of Weil (1992)

with independent additive risks.

We want to find the condition under which idiosyncratic risk is a potential solution to the

equity premium puzzle. We suppose that x̃ = x̄ + kε̃ with Eε̃ = 0 to maintain the assumption

of a small risk. We obtain the following result.

Proposition 5.1

P ∗∗ − P ∗ = (19)

u1(w + x̄, Eỹ)
∫∞
−∞ED(y)u12(w + x̄, y)Fy(y)dy

[Eu1(w + x̄, ỹ) + k
∫∞
−∞ED(y)u112(w + x̄, y)Fy(y)dy +O(k2)][u1(w + x̄, Eỹ) +O(k2)]

k

+O(k2).

Proof See Appendix.

For small risk, we have the following conclusions. (i) If ε̃ and ỹ are independent, then

ED(y) = 0 for all y, and P ∗∗ − P ∗ = O(k2). Again, this difference is very small and even nil

for many utility functions used in the financial literature, as shown above; (ii) If ε̃ is positive

expectation dependent on ỹ and u12 < 0, then P ∗∗ − P ∗ = −|O(k)|; and (iii) If ε̃ is negative

expectation dependent on ỹ and u12 < 0, then P ∗∗ − P ∗ = |O(k)|.

¿From (8), we can rewrite P ∗∗ − P ∗ as

P ∗∗ − P ∗ = −Bπcd(k) +O(k2), (20)

where πcd(k) = −k
∫∞
−∞ ED(y)u12(w+x̄,y)Fy(y)dy

Eu1(w+x̄,ỹ) +O(k2) as in (8), and

B = (21)

u1(w + x̄, Eỹ)Eu1(w + x̄, ỹ)

[Eu1(w + x̄, ỹ) + k
∫∞
−∞ED(y)u112(w + x̄, y)Fy(y)dy +O(k2)][u1(w + x̄, Eỹ) +O(k2)]

is a positive constant if k is small enough. This is true because when k is small, the sign

of u112 does not matter. Therefore, (20) indicates that when the risk is small, the equity
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premium is determined by the order of conditional dependent risk aversion (πcd(k)). Our result

shows that independent background risk can only generate a second-order effect, whereas an

expectation dependent background risk can generate a first-order effect, and hence offers a

better understanding of the effect of incomplete markets on asset prices

Another way to interpret our result is the following. Suppose that

u(w + x̃+ β(x̃− P ), ỹ) = U
(
w + x̃+ β (x̃− P ) + W̃i

)
,

where W̃i = (aI{x̃≤x∗} + bI{x̃>x∗})gũi or eδ̃i x̃ is a dependent idiosyncratic risk, a, b, g, ũi and

δ̃i are defined in Examples 1 and 2. W̃i is the labor income of agent i and x̃ is the outcome of

the risky asset. Then x̃ can also be positive expectation dependent on W̃i when aggregate per

capita consumption C̃ is positive expectation dependent on W̃i.
3 Proposition 5.1 states that

the asset price in an economy with a dependent idiosyncratic labor income risk W̃i should be

significantly lower than the asset price in an economy with an independent idiosyncratic labor

income risk.

In particular, (20) states that with a positive πcd, we get a negative price difference (P ∗∗ − P ∗) ,

which means a higher risk premium in the economy with a dependent (and persistent) idiosyn-

cratic labor income risk that cannot be hedged. We can explain this result as follows: because

x̃ and W̃i are positive expectation dependent, and the risk averse agent cannot hedge the simul-

taneous downside (upside) evolution of (x̃, W̃i), then the agent requires a higher risk premium

for holding x̃ with W̃i than for holding x̃ with EW̃i.

5.2 The welfare cost of business cycles

We now consider how eliminating all consumption variability affects welfare. Consider a rep-

resentative consumer, endowed with the stochastic per capita consumption stream c̃ = c̄ + kε̃.

Preferences over such consumption are assumed to be

Eu(c̃, ỹ), (22)

3Suppose x̃ = aC̃ + b̃, a > 0 and b̃ is a random variable independent of C̃, then x̃ is expectation dependent

on W̃i if C is expectation dependent on W̃i. The proof is similar to that in Proposition 3.3. With more general

relationships between x̃ and C̃ maters are more complicated and the conclusion remains on empirical tests, as

for the covariance between aggregate consumption and security returns discussed by Constantinides and Duffie

(1996).
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where ỹ is a background risk.

A risk-averse consumer would prefer a deterministic consumption to a risky one with the same

mean under certain conditions. As in Lucas (1987), we quantify the utility difference between

risk with compensation and certainty by multiplying the risky consumption by the constant

factor 1 + λ. We choose a λ such that the household is indifferent between the deterministic

consumption and the compensated risky one. In other words, λ∗ solves

Eu((1 + λ∗)c̃, ỹ) = Eu(Ec̃, ỹ).

Lucas (1987; 2003) defines the compensation parameter λ∗ as the welfare gain (or welfare loss)

from eliminating consumption risk. When ỹ is an insurable risk (ỹ ≡ Eỹ), Lucas (1987; 2003)

argues that the welfare costs of business cycles are likely to be very small, and that the potential

gains from counter-cyclical stabilization policy are negligible. Therefore governments should look

for ways to attain higher growth rates rather than for economic policies to reduce fluctuation in

consumption. However, this conclusion conflicts with the actual practice of short-term economic

policies in many countries. Epstein-Zin recursive utility and first-order risk aversion variations

model yields bigger numbers (Dolmas, 1998; Epaulard and Pommeret, 2003). As we will see,

incomplete market models can also offer higher numbers. Our result shows that dependent

background risk appears to be a key factor.

We now apply our results to this issue. Because for ∀λ, we have

Eu((1 + λ)c̃, ỹ) = Eu((1 + λ)c̄+ (1 + λ)kε̃, ỹ) (23)

= Eu((1 + λ)c̄+ (1 + λ)(kEε̃− πcd(k)), ỹ)

= Eu(Ec̃+ λc̄+ λkEε̃− (1 + λ)πcd(k), ỹ),

hence λ∗ = πcd(k)
c̄+kEε̃−πcd(k) and we obtain that:

Proposition 5.2 Suppose the representative consumer is risk-averse and k is small (i.e. c̄ >

O(k)).

(i) If c̃ and ỹ are independent, then the consumer’s attitude towards risk is second-order

conditional dependent risk aversion and λ∗ = O(k2);

(ii) If c̃ is positive expectation dependent on ỹ, then the consumer’s attitude towards risk is

first-order conditional dependent risk aversion and λ∗ = O(k).
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Proposition 5.2 states that when the risk associated with consumption is small, we obtain the

following: (i) If the consumption risk and the background risk are independent, then the welfare

costs of business cycles is very small, and therefore the potential gains from counter-cyclical

stabilization policy are negligible; (ii) If consumption risk is positive expectation dependent on

the background risk, then the welfare costs of business cycles can be large, and the potential

gains from a counter-cyclical stabilization policy may be significant.

To obtain a more intuitive interpretation of our result, we can define u(c, y) = U (ci) =

U(c+ yi), where c̃ = C̃ is per capita consumption and ỹi = W̃i is, in this case, an idiosyncratic

shock on consumption that cannot be diversified (De Santis, 2007). The dependence between C̃

and W̃i can be defined as in Examples 1 and 2. C̃ is then positive expectation dependent on W̃i.

Proposition 5.2 shows that in the presence of a permanent idiosyncratic shock on consumption,

the potential gains from a counter-cyclical stabilization policy will be more significant than in a

situation with a less permanent shock that can be insurable. De Santis (2007) obtained a similar

result with a different model. Here the main effect is first-order instead of second-order.

6 Link with rank-dependent expected utility theory

Because Epstein and Zin (1990) extended rank-dependent expected utility (RDEU) to intertem-

poral utility, RDEU has become an important source of first-order risk aversion in the macroe-

conomics literature. In this section, we show the connection between our results and RDEU for

generating first-order risk aversion.

In RDEU (Quiggin 1982; Segal 1990), there is a strictly increasing and continuous function

g : [0, 1]→ [0, 1], such that

RDEU(x̃) =

∫ M

m
U(x)dg(Fx(x)). (24)

Because

RDEU(x̃) =

∫ M

m
U(x)dg(Fx(x)) (25)

=

∫ M

m
U(x)g′(Fx(x))dFx(x)

= E[U(x̃)g′(Fx(x̃))]

= EV (x̃, ỹ),

where V (x, y) = U(x)y and ỹ = g′(Fx(x̃)), we can view the rank ordering of outcomes as a
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background risk ỹ in the framework of expected utility. The concavity (convexity) of g is a

necessary and sufficient condition for risk aversion (risk loving) in RDEU model, because the

probabilities of the worst (best) consequences are over-weighted compared to their untransformed

probabilities (Chew et al., 1987; Yaari, 1987). Because g′′ ≤ (≥)0 ⇒ cov(x̃,m(ỹ)) ≤ (≥)0 for

every increasing function m, x̃ is negative (positive) expectation dependent on ỹ if g is concave

(convex). We can say that when the agent is risk-averse (risk-loving) in the RDEU model, ỹ is

a negative (positive) expectation dependent background risk.

We define the risk premium for RDEU, πRDEU (k), as

RDEU(Ekx̃− πRDEU (k)) = RDEU(kx̃). (26)

(25) implies πRDEU (k) = πcd(k), where πcd(k) is defined as EV (w+Ekx̃−πcd(k), ỹ) = EV (w+

kx̃, ỹ).

From Proposition 4.3 and the fact that V12 ≥ 0, we obtain πRDEU (k) = πcd(k) = |O(k)| (or

−|O(k)|) if g is concave (convex). This meets Segal and Spivak’s result (1990, Proposition 4).

Therefore, we identify a formal connection between dependent background risk and RDEU to

generate first-order risk aversion. Because RDEU is the source of first-order risk aversion in the

Epstein-Zin model, and we can represent RDEU as expected utility with dependent background

risk, our result provides a new interpretation of the Epstein-Zin model via dependent background

risk in the framework of expected utility.

7 Conclusion

This paper shows that differentiable expected utility can be compatible with first-order risk

behavior if there exists a risk that can be eliminated and a background risk that cannot be elim-

inated (such as uncertain labor income), but these two risks are dependent. We have presented

a set of applications and examples to illustrate that the practical relevance of the distinction

between first- and second-order risk aversion is significant. We offer a better understanding

of some economic and finance real world situations, and how they relate to the non-standard

preference models.
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9 Appendix: Proofs

9.1 Proof of Proposition 3.3

Suppose h(ε, u) is increasing in ε. By law of total covariance4, we have

Cov(ε̃, γ(ỹ)) (27)

= Cov(ε̃, γ(h(ε̃, ũ))

= E[Cov(ε̃, γ(h(ε̃, ũ)|ũ)] + Cov((Eε̃|ũ), E(γ(h(ε̃, ũ))|ũ))

= E[Cov(ε̃, γ(h(ε̃, ũ)|ũ)] + Cov(Eε̃,E(γ(h(ε̃, ũ))|ũ))

= E[Cov(ε̃, γ(h(ε̃, ũ)|ũ)] ≥ 0

for every increasing γ. Therefore, ε̃ is positive expectation dependent on ỹ.

Suppose h(ε, u) is decreasing in ε. By a similar approach, we can show that ε̃ is negative

expectation dependent on ỹ.

9.2 Proof of Lemma 4.2

From the definition of πcd(k), we know that

Eu(w + Ekε̃− πcd(k), ỹ) = Eu(w + kε̃, ỹ). (28)

Differentiating with respect to k yields

π′cd(k) =
Eε̃Eu(w + Ekε̃− πcd(k), ỹ)− E[ε̃u1(w + kε̃, ỹ)]

Eu1(w − πcd(k), ỹ)
. (29)

4Cov(X̃, Ỹ ) = E[Cov(X̃, Ỹ |Z̃)] + Cov(E(X̃|Z̃), E(Ỹ |Z̃)).
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Because πcd(0) = 0, we have

π′cd(0) =
Eε̃Eu1(w, ỹ)− E[ε̃u1(w, ỹ)]

Eu1(w, ỹ)
. (30)

Note that

E[ε̃u1(w, ỹ)] = Eε̃Eu1(w, ỹ) + Cov(ε̃, u1(w, ỹ)) (31)

and the covariance can always be written as (see Cuadras, 2002, Theorem 1)

Cov(ε̃, u1(w, ỹ)) =

∫ ∞
−∞

∫ ∞
−∞

[F (ε, y)− Fε(ε)Fy(y)]dεdu1(w, y). (32)

Because from Lemma 1 in Tesfatsion (1976)∫ ∞
−∞

[Fε(ε|ỹ ≤ y)− Fε(ε)]dε = Eε̃− E(ε̃|ỹ ≤ y), (33)

hence, by straightforward manipulations, we find

Cov(ε̃, u1(w, ỹ)) =

∫ ∞
−∞

∫ ∞
−∞

[F (ε, y)− Fε(ε)Fy(y)]u12(w0, y)dεdy (34)

=

∫ ∞
−∞

∫ ∞
−∞

[Fε(ε|ỹ ≤ y)− Fε(ε)]dεFy(y)u12(w, y)dy

=

∫ ∞
−∞

[Eε̃− E(ε̃|ỹ ≤ y)]Fy(y)u12(w, y)dy (by (33))

=

∫ ∞
−∞

ED(y)u12(w, y)Fy(y)dy.

Finally, we get

π′cd(0) = −
∫∞
−∞ED(y)u12(w, y)Fy(y)dy

Eu1(w, ỹ)
. (35)

Using a Taylor expansion of π around k = 0, we obtain that

πcd(k) = πcd(0) + π′cd(0)k +O(k2) = −k
∫∞
−∞ED(y)u12(w, y)Fy(y)dy

Eu1(w, ỹ)
+O(k2). (36)

Q.E.D.

9.3 Proof of Proposition 4.4

(i) Suppose the decision maker’s attitude towards risk is second-order conditional dependent

risk aversion, then πcd(k)− πc(k) = O(k2). From (7), we have

Eu(w + kε̃, ỹ) (37)

= Eu(w + Ekε̃− πcd(k), ỹ)

= Eu(w + kEε̃−O(k2)− πc(k), ỹ)

= Eu(w + kEε̃−O(k2), ỹ) by (5)

> Eu(w, ỹ) for a sufficiently small k > 0.
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(ii) Suppose the decision maker’s attitude towards risk is first-order conditional dependent

risk aversion and πcd(k)− πc(k) = |O(k)|. ¿From (7), we have

Eu(w + kε̃, ỹ) (38)

= Eu(w + Ekε̃− πcd(k), ỹ)

= Eu(w + kEε̃− |O(k)| − πc(k), ỹ)

= Eu(w + kEε̃− |O(k)| −O(k2), ỹ) by (5)

< Eu(w, ỹ) for a sufficiently small k > 0 and a sufficiently small Eε̃.

Q.E.D.

9.4 Proof of Proposition 5.1

Using a Taylor expansion of π around k = 0, we obtain that

u1(w + x̄+ kε̃, Eỹ) (39)

= u1(w + x̄, Eỹ) + ε̃u11(w + x̄, Eỹ)k +O(k2),

(x̄+ kε̃)u1(w + x̄+ kε̃, Eỹ) (40)

= x̄u1(w + x̄, Eỹ) + [ε̃u1(w + x̄, Eỹ) + (x̄+ kε̃)ε̃u11(w + x̄, Eỹ)]k +O(k2)

= x̄u1(w + x̄, Eỹ) + ε̃u1(w + x̄, Eỹ)k + x̄ε̃u11(w + x̄, Eỹ)k + ε̃2u11(w + x̄, Eỹ)k2 +O(k2)

= x̄u1(w + x̄, Eỹ) + ε̃u1(w + x̄, Eỹ)k + x̄ε̃u11(w + x̄, Eỹ)k +O(k2),

u1(w + x̄+ kε̃, ỹ) (41)

= u1(w + x̄, ỹ) + ε̃u11(w + x̄, ỹ)k +O(k2)

and

(x̄+ kε̃)u1(w + x̄+ kε̃, ỹ) (42)

= x̄u1(w + x̄, ỹ) + [ε̃u1(w + x̄, ỹ) + (x̄+ kε̃)ε̃u11(w + x̄, ỹ)]k +O(k2)

= x̄u1(w + x̄, ỹ) + ε̃u1(w + x̄, ỹ)k + x̄ε̃u11(w + x̄, ỹ)k + ε̃2u11(w + x̄, ỹ)k2 +O(k2)

= x̄u1(w + x̄, ỹ) + ε̃u1(w + x̄, ỹ)k + x̄ε̃u11(w + x̄, ỹ)k +O(k2).

From (39), we have

Eu1(w + x̄+ kε̃, Eỹ) = u1(w + x̄, Eỹ) +O(k2). (43)
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From (40), we have

E(x̄+ kε̃)u1(w + x̄+ kε̃, Eỹ) = x̄u1(w + x̄, Eỹ) +O(k2). (44)

From (41), we have

Eu1(w + x̄+ kε̃, ỹ) (45)

= Eu1(w + x̄, ỹ) + Eε̃u11(w + x̄, ỹ)k +O(k2)

= Eu1(w + x̄, ỹ) + cov(ε̃, u11(w + x̄, ỹ))k +O(k2)

= Eu1(w + x̄, ỹ) + k

∫ ∞
−∞

ED(y)u112(w + x̄, y)Fy(y)dy +O(k2) (46)

From (42), we have

E(x̄+ kε̃)u1(w + x̄+ kε̃, ỹ) (47)

= x̄Eu1(w + x̄, ỹ) + Eε̃u1(w + x̄, ỹ)k + Eε̃u11(w + x̄, ỹ)x̄k +O(k2)

= x̄Eu1(w + x̄, ỹ) + cov(ε̃, u1(w + x̄, ỹ))k + cov(ε̃, u11(w + x̄, ỹ))x̄k +O(k2)

= x̄Eu1(w + x̄, ỹ) + k

∫ ∞
−∞

ED(y)u12(w + x̄, y)Fy(y)dy + x̄k

∫ ∞
−∞

ED(y)u112(w + x̄, y)Fy(y)dy

+O(k2)

= x̄Eu1(w + x̄, ỹ) + k

∫ ∞
−∞

ED(y)[u12(w + x̄, y) + x̄u112(w + x̄, y)]Fy(y)dy +O(k2).

Therefore,

P ∗∗ − P ∗ (48)

=
E[x̃u1(w + x̃, ỹ)]

Eu1(w + x̃, ỹ)
− E[x̃u1(w + x̃, Eỹ)]

Eu1(w + x̃, Eỹ)

=
x̄Eu1(w + x̄, ỹ) + k

∫∞
−∞ED(y)[u12(w + x̄, y) + x̄u112(w + x̄, y)]Fy(y)dy +O(k2)

Eu1(w + x̄, ỹ) + k
∫∞
−∞ED(y)u112(w + x̄, y)Fy(y)dy +O(k2)

− x̄u1(w + x̄, Eỹ) +O(k2)

u1(w + x̄, Eỹ) +O(k2)

=
u1(w + x̄, Eỹ)

∫∞
−∞ED(y)u12(w + x̄, y)Fy(y)dy

[Eu1(w + x̄, ỹ) + k
∫∞
−∞ED(y)u112(w + x̄, y)Fy(y)dy +O(k2)][u1(w + x̄, Eỹ) +O(k2)]

k

+O(k2).

Q.E.D.

10 References

Ang, A., Chen J., Asymmetric correlations of equity portfolios, Journal of Financial

Economics 63 (2002) 443-494.

23



Arrow, K.J., Essays in theory of risk bearing, North-Holland, Amsterdam, 1974.

Balakrishnan, N., Lai, C.D., Continuous bivariate distributions, 2nd ed. Springer,

New York, 2009.

Berbaris N., Huang, M., Thaler, R.H., Individual preferences, monetary gambles,

and stock market participation: a case for narrow framing, American Economic

Review 96 (2006) 1069-1090.

Borch, K., The mathematical theory of insurance, Lexington Book, Lexington, 1974.

Chew, S.H., Karni, E., Safra, Z., Risk aversion in the theory of expected utility with

rank-dependent probabilities, Journal of Economic Theory 42 (1987) 370-381.

Constantinides G., Duffie, J.D., Asset pricing with heterogeneous consumers, Journal

of Political Economy 104 (1996) 219-240.

Cuadras, C.M., On the covariance between functions, Journal of Multivariate Anal-

ysis 81 (2002) 19-27.

Dachraoui, K., Dionne, G., Conditions ensuring the decomposition of asset demand

for all risk-averse investors, European Journal of Finance 13 (2007) 397–404.

De Santis, M., Individual consumption risk and the welfare cost of business cycles,

American Economic Review 97 (2007) 1488-1506.

Dionne, G., Li, J., First-order (conditional) risk aversion, background risk and risk

diversification, Working paper (2011) SSRN: http://ssrn.com/abstract=1800135.

Dionne, G., Li, J., Okou, C., An extension of the consumption-based CAPM model,

Working paper (2012) SSRN: http://papers.ssrn.com//abstract=2155180.

Dolmas, J., Risk preferences and the welfare cost of business cycles, Review of Eco-

nomic Dynamics 1 (1998) 646-676.

Eeckhoudt, L., Rey, B., Schlesinger, H., A good sign for multivariate risk taking,

Management Science 53 (2007) 117-124.

Epaulard, A., Pommeret, A., Recursive utility, growth, and the welfare cost of volatil-

ity, Review of Economic Dynamics 6 (2003) 672-684.

Epstein, L.G., Zin, S.E., ‘First-order’ risk aversion and the equity premium puzzle,

Journal of Monetary Economics 26 (1990) 387-407.

Gollier, C., Schlesinger, H., Changes in risk and asset prices, Journal of Monetary

Economics 49 (2002) 747-760.

24



Joe, H., Multivariate models and dependence concepts, Chapman and Hall, London,

1997.

Krebs, T., Job displacement risk and the cost of business cycles, American Economic

Review 97 (2007) 664-686.

Krueger, D., Lustig, H., When is market incompleteness irrelevant for the price of

aggregate risk (and when is it not)? Journal of Economic Theory 145 (2010)

1-41.

Lehmann E. L., Some concepts of dependence, Annals of Mathematical Statistics 37

(1966) 1173–1153.

Lien D., Moments of truncated bivariate log-normal distributions, Economic Letters

19 (1985) 243-247.

Lucas, R., Models of business cycles, Blackwell, Oxford, 1987.

Lucas, R., Macroeconomic priorities, American Economic Review 93 (2003) 1-14.

Loomes, G., Segal, U., Observing different orders of risk aversion, Journal of Risk

and Uncertainty 9 (1994) 239-256.

Pellerey, F., Semeraro, P., A note on the portfolio selection problem, Theory and

Decision 59 (2005) 295–306.

Quiggin, J., A theory of anticipated utility, Journal of Economic Behavior and Or-

ganization 3 (1982) 323-343.

Samuelson, P.A., Risk and uncertainty: a fallacy of large numbers, Scientia, 6th

Series 57 (1963) 1-6.

Segal, U., Anticipated utility: a measure representation approach, Annals of Oper-

ations Research 19 (1989) 359-373.

Segal, U., Spivak, A., First order versus second order risk aversion, Journal of Eco-

nomic Theory 51 (1990) 111-125.

Segal U., Spivak, A., First-order risk aversion and non-differentiability, Economic

Theory 9 (1996) 179-183.

Tesfatsion, L., Stochastic dominance and the maximization of expected utility, The

Review of Economic Studies 43 (1976) 301-315.

Tversky A., Kahneman, D., Advances in prospect theory: cumulative representation

of uncertainty, Journal of Risk and Uncertainty 5 (1992) 297-323.

25



Weil, P., Equilibrium asset prices with undiversifiable labor income risk, Journal of

Economic Dynamics and Control 16 (1992) 769-790.

White, H., Asymptotic theory for econometricians, Academic Press, 2000.

Wright, R., Expectation dependence of random variables, with an application in

portfolio theory, Theory and Decision 22 (1987) 111-124.

Yaari, M.E., The dual theory of choice under risk. Econometrica 55 (1987) 95-116.

26




