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Evidence of Adverse Selection
in Automobile Insurance Markets

Abstract

In this paper, we propose an empirical analysis of the presence of adverse selection in
an insurance market. We first present a theoretical model of a market with adverse
selection and we introduce different issues related to transaction costs, accident costs,
risk aversion and moral hazard. We then discuss an econometric modeling based on
latent variables and we derive its relationship with specification tests that may be useful
to isolate the presence of adverse selection in the portfolio of an insurer. We discuss in
detail the relationship between our modeling and that of Puelz and Snow (1994). Finally,
we present some empirical results derived from a different data set. We show that there
is no residual adverse selection in the studied portfolio since appropriate risk
classification is made by the insurer. Consequently, the insurer does not need a self-
selection mechanism such as the deductible choice to reduce adverse selection.

Keywords : Adverse selection, empirical test, risk classification, transaction costs.
JEL classification: D80.

Résumé

Dans cet article, nous proposons une analyse empirique sur la présence de
l'antisélection dans un marché d'assurance. Dans un premier temps, nous présentons
un modèle théorique d'un marché avec antisélection et nous introduisons différentes
discussions reliées aux coûts de transaction, aux coûts des accidents, l'aversion au
risque et le risque moral. Puis, nous discutons d'une modélisation économétrique avec
variables latentes et nous décrivons sa relation avec des tests de spécification qui
peuvent être utiles pour isoler la présence de l'antisélection dans le portefeuille d'un
assureur. Nous discutons en détail des liens entre notre modélisation et celle de Puelz
et Snow (1974). Finalement, nous présentons des résultats empiriques obtenus d'une
banque de données différente. Nous montrons qu'il n'existe pas d'antisélection
résiduelle dans le portefeuille étudié parce qu'une classification appropriée des risques
est effectuée par l'assureur. Ce résultat implique que l'assureur n'a pas besoin d'utiliser
un mécanisme d'autosélection, comme un choix de franchise pour réduire
l'antisélection.

Mots clés :  Antisélection, test empirique, classification des risques, coûts de
transaction.
Classification JEL :  D80.
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Introduction

Adverse selection is potentially present in many markets. In automobile insurance, it is

often documented that insured drivers have information not available to the insurer

about their individual risks. This explains the presence of many instruments like risk

classification based on observable characteristics (Hoy, 1982 and Crocker and Snow,

1985, 1986), deductibles (Rothschild and Stiglitz, 1976 and Wilson, 1977) and bonus-

malus schemes (Dionne and Lasserre, 1985, Dionne and Vanasse, 1992 and Pinquet,

1998). But the presence of deductibles can also be documented by moral hazard

(Winter, 1992) or simply by transaction costs proportional to the actuarial premium, and

the bonus-malus scheme is often referred to moral hazard. It is then difficult to isolate a

pure adverse selection effect from the data. However, the presence of adverse selection

is necessary to obtain certain predictions that would not be obtained with only

transaction costs and moral hazard.

This difficulty of isolating a pure adverse selection effect is emphasized by the absence

in the published literature of theoretical predictions when both problems of information

are present simultaneously. Very few models consider both information problems (see

however Dionne and Lasserre, 1988 and Chassagnon and Chiappori, 1996). The

literatures on moral hazard and adverse selection were developed separately and

traditionally faced different theoretical issues : in the adverse selection literature, the

emphasis was put on the existence and efficiency of competitive equilibria with and

without cross-subsidization between different risk classes while in the moral hazard one

the emphasis was on the endogenous determination of contractual forms with few

discussion on equilibrium issues (see however Arnott, 1992). The same remarks apply

to multi-period contracting. Moreover, both literatures have neglected accident cost

distributions : the discussion was mainly on the accident frequencies with few

exceptions (Winter, 1992; Dionne and Doherty, 1992 and Doherty and Schlesinger,

1995).
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What are then the most interesting predictions for empirical research ? If we limit the

discussion to single-period contracting1 and adverse selection, the presence of

separating contracts with different insurance coverages to different risk classes remains

the most interesting one. This is the Rothschild-Stiglitz result obtained from a model

describing a simple competitive insurance market with two different risk types and two

states of nature : when the proportion of high risk individuals is sufficiently high, a

separating equilibrium exists with less insurance coverage for the low risk individuals.

There is no subsidy between the different risk classes and private information is

revealed by contracting choices. Recently Puelz and Snow (1994) obtained results from

the data of a single insurer and concerning collision insurance : they verified that

individuals of different risk type self-selected through their deductible choice and no

cross-subsidization between the classes was measured.

In this paper we focus our attention on such an empirical test. We will first present in

Section 1 a theoretical discussion on adverse selection in insurance markets by

introducing different issues related to transaction costs, accident costs and moral

hazard. In Section 2, we discuss in detail the article of Puelz and Snow (1994).

Particularly we analyze one important issue related to their empirical findings : we

question their methodology of using the accident variable to measure the presence of

residual adverse selection in risk classes. In Section 3, we present an econometric

modeling based on latent variables and its relationship with the structural equations

which may be useful to analyze the presence of adverse selection in the portfolio of an

insurer. Finally, we present our results derived from a new data set. We replicate on this

data set the analysis of Puelz and Snow, and then propose some extensions about the

methodology used. We show that their conclusion is not robust and that residual

adverse selection is not present when appropriate risk classification is made.

                                               
1 But we know that the data may contain effects from long-term behavior.
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1. Adverse selection and optimal choice of insurance

1.1 All accidents have the same cost

Let us first consider the economy described by Rosthschild and Stiglitz (1976) (see

Akerlof, 1970, for an earlier contribution). There are two types of individuals (i = H,L)

representing different probabilities of accidents with pH > pL. We assume that at most

one accident may arrive during the period. Without insurance their level of welfare is

given by :

V (pi) = (1 − pi) U (W) + pi U (W − C), (1)

where :

pi is the accident probability of individual type i, i = H,L

W is initial wealth

C is the cost of an accident

U is the von Neumann-Morgenstern utility function (U'(•) > 0, U''(•) ≤ 0)

assumed, for the moment, to be the same for the two risk categories (same

risk aversion).

Under public information about the probabilities of accident, a competitive insurer will

offer full insurance coverage to each type if there is no proportional transaction cost in

the economy. In presence of proportional transaction costs the premium can be of the

form P = (1 + k)pili where li is insurance coverage and k is loading factor. With k > 0, less

than full insurance is optimal. However an increase in the probability of accident does

not necessarily imply a lower deductible if we restrict the form of the optimal contracts to

deductibles for reasons that will become evident later on. In fact we can show :

Proposition 1 : In presence of a loading factor (k > 0), sufficient conditions to obtain

that the optimal level of deductible decreases when the probability of

accident increases are constant risk aversion and pi < ½ (1 + k).

The sufficient condition is quite natural in automobile insurance since pi is lower than

10% while k is higher than 10%. This means that individuals with high probabilities of
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accidents do not necessarily choose a low deductible under full information and non

actuarial insurance. However, in general, different risk types have different insurance

coverage even under perfect information. Under private information, many strategies

have being studied in the literature (Dionne and Doherty, 1992, Hellwig, 1987 and

Fombaron, 1997). The nature of equilibrium is function of the insurers' anticipations of

the behavior of rivals. Rothschild and Stiglitz (1976) assume that each insurer follows a

Cournot-Nash strategy. Under this assumption, it can be shown that a separating

equilibrium exists if the proportion of high risk individuals in the market is sufficiently

high. Otherwise there is no equilibrium. The optimal contract is obtained by maximizing

the expected utility of the low risk individual under a zero-profit constraint for the insurer

and a binding self-selection constraint for the high risk individual who receive full

insurance.

If we restrict our analysis to contracts with a deductible, the optimal solution for the low-

risk individual is obtained by maximizing V (pL) with respect to DL under a zero profit

constraint and a self-selection constraint :

      

),PW(U)p1()PDW(Up)CpW(U

)k1()DC(pP.t.s

)PW(U)p1()PDW(UpMax

LHLLHH

LLL

LLLLL

DL

−−+−−=−

+−=

−−+−−

(2)

where PL is the insurance premium of the L type. The solution of this problem yields

DL* > 0 while DH* = 0 when the loading factor (k) is nul.

If now we introduce a positive loading fee (k > 0) proportional to the net premium, the

total premium for each risk type becomes Pi = (1 + k) pi (C – Di) and we obtain, from the

above problem with the appropriate definitions, that DL* > DH* > 0 which implies that

pH (C – DH*) > pL (C – DL*) or that PH* > PL*.

We then have as second result :
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Proposition 2 : When we introduce a proportional loading factor (k > 0) to the basic

Rothschild-Stiglitz model, the optimal separating contracts have the

following form : 0 < DH* < DL.

This result indicates that the traditional prediction of Rothschild-Stiglitz is not affected

when the same proportional loading factor applies to the different classes of risk.

1.2 Introduction of different accident costs

If now we take into account different accident costs in the basic Rothschild and Stiglitz

model, the optimal choice of deductible may be affected by the distributions of costs

conditional to the risk classes (or types). Fluet (1994) and Fluet and Pannequin (1994)

obtained that a constant deductible will be optimal only when the conditional likelihood

ratio 
)C(f

)C(f
L

H

 is constant for all C, where fi (C) is the density of costs for type i which

implies that the two conditional distributions are identical and the observed amounts of

loss do not provide any information to the insurer. By a constant (or a straight)

deductible it is mean that the deductible is not function of the accident costs.

We can show that the results of Fluet and Pannequin (1994) are robust to the

introduction of a proportional loading factor. We consider two costs levels C1,C2 and we

denote i
2

i
1 p,p  the distribution of the cost conditional to the occurrence of an accident in

class i. In other words, the conditional expected cost of accident for individual i is equal

to :

                                    .CpCp)C(E 2
i
21

i
1

i += (3)

We also assume that pH > pL and pH (EH(C)) > pL (EL(C)). Under the assumption that

C1 > i
1D  and C2 > i

2D , (i = H,L) it can be shown that .
p

p

p

p
asDD

L
1

H
1

L
2

H
2*L

2
*L

1

>

<

>

<
==

When k > 0, *H*H
2

*H
1 DDD == > 0 whatever Cj and the same relative results are obtained

for the low risk individual. In other words :
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Proposition 3 : Let 
L
j

H
j

p

p
 be conditional likelihood ratio for accident costs of type H

relative to type L and let *HD  be the optimal deductibles of type H in

the presence of a proportional loading factor k ≥ 0, then the optimal

deductibles of individual L have the following property :

                                   2,1jfor0DD *H*L
j =≥> (4)

               .
p

p

p

p
asDDand

L
1

H
1

L
2

H
2*L

2
*L

1

>

<

>

<
== (5)

The intuition of the result is the following one. The optimal contract of the low risk

individual will be a straight or constant deductible if the observed amount of loss does

not provide information to the insurer. Otherwise, the level of coverage vary with the size

of the loss. In the extreme case where the observed loss reveals all the information,

both risk types will buy the same deductible when k = 0 (Doherty and Jung, 1993). Since

in the above analysis it was assumed that both costs distributions have the same

support, all the information cannot be revealed by the observation of an accident. For

the analysis of other definitions of likelihood ratios see Fluet (1994).

1.3 Adverse selection with moral hazard

The research on adverse selection with moral hazard is starting (see however Dionne

and Lasserre 1988). We know that a constant deductible may be optimal under moral

hazard if the individual can modify the occurrence of accidents but not the severity

(Winter, 1992). Here to keep matters simple we assume that an insured can affect his

probability of accident with action ai but not the severity. Moreover, 
L
j

H
j

p

p
 is independent

of the cost level j and k = 0. Under these assumptions, Chassagnon and Chiappori

(1996) have shown that some particularities of the basic Rothschild-Stiglitz model are

preserved. Particularly, a higher premium is always associated to better coverage and

individuals with a lower deductible are more likely to have an accident, which permits to
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test the association between deductible and accident occurrence. However, the

presence of moral hazard may reduce differences between accident probabilities.

1.4 Cross-subsidization between different risk types

One difficulty with the pure Cournot-Nash strategy lies in the fact that a pooling

equilibrium is not possible. Wilson (1977) proposed the anticipatory equilibrium concept

that always results in an equilibrium (pooling or separation). When the proportion of high

risk individuals is sufficiently high, a Wilson equilibrium coincides with a Rothschild-

Stiglitz equilibrium.

Moreover, welfare of both risk classes can be increased by allowing subsidization : low

risk individuals can buy more insurance coverage by subsidizing the high risks (see

Crocker and Snow, 1985 and Fombaron, 1997, for more details).

1.5 Different risk aversions

The possibility that different risk types may also differ in risk aversion was considered in

detail by Villeneuve (1996). It is then necessary to control for risk aversion when we test

for the presence of residual adverse selection. We will see that the risk classification

variables do, indeed, capture some information on risk aversion. In other words, we can

also test for the presence of residual risk aversion in risk classes.

1.6 Risk categorization

In many insurance markets, insurers use observable characteristics to categorize

individual risks. It was shown by Crocker and Snow (1986) that such categorization is

welfare improving if its cost is not too high and if observable characteristics are

correlated with hidden knowledge. The effect of risk categorization is to reduce the gap
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between the different risk types and to decrease the possibilities of separation by the

choice of different deductibles.

This result suggests that a test for the presence of adverse selection should be applied

inside different risk classes or by introducing categorization variables in the model. It is

known that the presence of adverse selection is sufficient to justify risk classification

when risk classification variables are costless to observe. Now the empirical question

becomes :

Empirical question : Given that an efficient risk classification is used in the market,

should there remain residual adverse selection in the data ?

Another result of Crocker and Snow is to show that, with appropriate taxes and

subsidies on contracts, no insureds loose as a result of risk categorization. This result

can be obtained for many types of equilibrium and particularly for both Rothschild-Stiglitz

and Wilson (or Wilson-Miyazaki-Spence) equilibria.

Since risk categorization facilitates risk separation within the classes, it may reduce the

need of cross-subsidization between risk types of a given class. However, there should

be subsidization between the risk classes according to the theory.

2. Empirical measure of adverse selection : some
comments on the current literature

Different tests can be used to verify the presence of adverse selection in a given market

and their nature is function of the available data. If we have access to individual data

from the portfolio of an insurer and want to test that high risk individuals in a given class

of risk choose the lower deductible, the test will be function of the different risk classes

used by the insurer, and consequently of the explanatory variables introduced in the

model. Intuitively, when the list of explanatory variables is large and the classification is

appropriate, the probability to find residual adverse selection in a portfolio is low.
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Very few articles have analyzed the significance of residual adverse selection in

insurance markets. Dahlby (1983, 1992) reported evidence of some adverse selection in

Canadian automobile insurance markets and suggested that his empirical results were

in accordance with the Wilson-Miyazaki-Spence model that allows for cross-

subsidization between individuals in each segment defined by a categorization variable.

His analysis was done with aggregate data. Until recently, the only detailed study with

individual data was that of Puelz and Snow (1994) (see Chiappori, 1998, for an overview

of the recent papers and Richaudeau, 1997, for a thesis on the subject).

In their analysis they considered four different adverse selection models. They found

evidence of adverse selection with market signaling and no-cross-subsidization between

the contracts of different risk classes. In other words, they found evidence of separation

in the choice of deductible with non-linear insurance pricing and no-cross-subsidization.

To obtain their results they estimated two structural equations : a demand equation for a

deductible and a premium function that relates different tarification variables to the

observed premia.

The demand equation can be derived from the low risk individual maximization problem

in a pure adverse selection model with a positive loading factor. This yields DL* > DH* > 0

with two types of risk in a given class (Proposition 2). Unfortunately, it cannot be

obtained from the first order condition (4) in Puelz and Snow which corresponds to the

first order condition of the result presented in Proposition 1 above.

Another criticism concerns the relationship on non-linear insurance pricing and

Rothschild-Stiglitz model. In fact from the discussion above, the separation result is due

to the introduction of a self-selection constraint in the low-risk individual problem and not

from the fact that insurance pricing is non-linear. The two problems yield different

empirical tests. From Proposition 2, we do not need the non-linearity of the premium

schedule to verify that a separating contract is chosen.

In Rothschild-Stiglitz model this is the self-selection constraint that separates the risk

types. Therefore what we need to test is the fact that different risk types choose different

deductibles in the controlled classes of risk and that the self-selection constraint of the
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high risk individuals is binding. In that perspective, the estimation of both equations (6)

and (7) in Puelz and Snow (1994) remain useful if we do not have access to the

tarification book of the company. Otherwise, the estimation of (6) is not useful. For

discussion we reproduce here their equations (6) and (7) :

∑∑

∑∑ ∑ ∑

==

== = =

ε+×β+×β+××β+××β+

××β+××β+×β+×β+

×β+××β+××β+×β+×β+×β+β=

14

11i
1872ii61i

14

11i
i5

10

7i
2ii41i

10

7i

14

11i

10

7i
i3ii2ii1

62514322110

PERAGEMALEDTDT

DSYMDSYMTSYM

MRDADAADDP

(6)

,PERAGE

MALEWWWĝRTD

27

6352413d210

ε+×α+

×α+×α+×α+×α+×α+×α+α=
(7)

where A is the age of the automobile; MR = 1 for a multirisk contract and 0 otherwise;

SYM is the symbol of the automobile; T is the territory; D  = 0 for D = $100, D  = 1 for

D = $200, and D  = 2 for D = $250; W1, W2, W3 = wealth dummy variables; MALE = 1 for

a male and 0 for a female; PERAGE is the age of the individual; RT is for risk type

measured by the number of accidents; and dĝ is the deductible price on which we will

come back.

The dependent variable of equation (6) is the gross premium paid by the insured and

both D1 and D2 are dummy variables for deductible choice. Puelz and Snow used

equation (6) to generate a marginal price variable and to test for the non-linearity of the

premium equation. Equation (6) yields the values of deductible prices and equation (7)

indicates if different risks choose different deductibles given that we have controlled for

the different prices and other characteristics that may influence that choice. They also

estimated a price equation to determine their price variable dĝ  in the demand equation

for a deductible (7) and used the number of accidents (RT) at the end of the current

period to approximate the individual risks. Both variables have significant parameters

with right signs. But it is not clear that they had to estimate dĝ . It would have been
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easier to use directly the values obtained from equation (6). Finally, very few variables

are used in (7): the age and the symbol of the automobile are not present.

3. A new evaluation of adverse selection in
automobile insurance

In this section we present an econometric model and empirical results on the presence

of adverse selection in an automobile insurance market. The data come from a large

private insurer in Canada and concern collision insurance since the insured has the

choice for a deductible for that type of insurance only. There is no bodily injuries in the

data and liability insurance for property damages is compulsory. In that respect we are

close to Puelz and Snow (1994).

3.1 Latent model

3.1.1 Pure adverse selection model

In order to perform carefully the analysis of adverse selection in this portfolio from a

structural model, it is important to design a basic latent model. The discussion

presupposes that two deductibles D1 < D2 are available.

The latent variables of interest are for the individual i :

− the tarification variables from the insurer :

P1i the premium for the contract with the deductible D1

P2i the premium for the contract with the deductible D2.

Since D1 < D2, it is clear that P1i > P2i.

− the individual risk variables :

This risk can be measured by accident occurrences and costs. For the moment,

we limit the number of potential accidents in a given period to one :
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Yi  =  




;otherwise,0
,accidentanhasiindividualif,1

Ci  =  potential cost of accident for individual i.

− the deductible choice variable :

Finally, we must analyze the deductible choice by individual i. Since we have

only two possible choices, this yields a binary variable :

Zi  =  




.otherwise,0
,Ddeductiblechoosesindividualtheif,1 1

A latent model may correspond to :

p1i = log P1i = g1(xi,θ) + ε1i,

p2i = log P2i = g2(xi,θ) + ε2i,

Yi = ,),x(gYwith, i3i3
*
i0*

iY
ε+θ=

>

ci = log Ci = g4(xi,θ) + ε4i

Zi = ,),x(gZwith, i5i5
*
i0z*

i
ε+θ=

>

where    denotes the indicator function.

The latent model would be very simplified if the different error terms are uncorrelated

εi = (ε1i, ε2i, ε3i, ε4i, ε5i) ~ N(0,Ω). However these correlations may be different from zero

and have to be analyzed. In fact, they will become very important in the discussion of

the test for the presence of adverse selection in the insurer portfolio.

Moreover, the above dependent variables are not necessarily observable. At least two

dependent sources of bias have to be considered :

1)  Accident declarations

The insurer observes only the accidents for which a payment has to be made, that is

only the accidents that generate a cost higher than the chosen deductible. Moreover, the
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insured may also take into account of the intertemporal variation of his premia when he

files a claim and declares only the accidents that will not increase to much his future

premia. For example, in our data set, we observe very few reimbursements below $250

for the insured individuals with a deductible of $250 which means that they do not file

claims between $250 and $500 systematically. The same remark applies for those who

choose the $500 deductible.

Therefore, limiting ourselves to a static scheme, the observed accidents are the claims

filed :



=

;otherwise,0
,claimafiledandaccidentanhadDdeductiblewithiindividualif,1

Ŷ 1
i1



=

.otherwise,0
,claimafiledandaccidentanhadDdeductiblewithiindividualif,1

Ŷ 2
i2

Similarly, accident costs faced by the insurer correspond to their true values C1i, C2i only

when 1Ŷ i1 =  and 1Ŷ i2 =  respectively. Therefore, when appropriate precautions are not

taken, we should obtain an undervaluation of the accident probabilities and an

overvaluation of the accident costs.

2) Available premia

When the tarification book of the insurer is available, all premia P1i, P2i considered by

each individual are observable for the determination of the two functions g1(x1,θ) and

g2(x2,θ). In practice, we may often be limited to the chosen premium 




=
=

.0Zif,P
,1Zif,P

P̂
ii2

ii1
i

3.1.2  Introducing moral hazard

Under moral hazard, the agent effort is not observable. The insurer can introduce

incentive schemes to reduce the negative moral hazard effects on accident and costs

distributions, but does not eliminate all of them in general. This is the standard trade-off



14

between insurance coverage and effort efficiency. This means that there may remain a

residual moral hazard effect in the data that is not taken into account even by an

extended latent model with moral hazard.

Residual moral hazard can affect accident occurrences and costs jointly with deductible

choice : non observable low effort levels imply high accident probabilities and high

accident costs. Moreover, residual moral hazard can explain why, for example, predicted

low risk individuals in an adverse selection model with moral hazard may choose the

lowest deductible D1, when they anticipate low effort activities in the contract period.

In order to take into account of the moral hazard effect, we extend the above model by

introducing a non observable variable ai that summarizes all the efforts of individual i not

already taken into account explicitly. This variable can be affected by non observable

costs and incentive schemes. But some of them are observable. Particularly, the bonus-

malus scheme of the insurer may influence the premia, both accidents numbers and

effort costs distributions and deductible choice. An insured that is not well classified

according to his past accidents record (high malus) at the beginning of the period, may

want to improve his record by increasing his safety activities (less speed, no alcohol

while driving, …) during the current period. These activities should reduce accident

occurrences and accident costs. They may also influence the deductible choice if the

anticipated actions affect particularly low cost accidents.

The explicit introduction of moral hazard goes as follows : let ai a continuous variable

measuring non observable individual's i action be a function of a vector of different

observable explanatory variables ix~  and of non observable variables. The former are

called explicit moral hazard variables while the second take into account of the residual

moral hazard. One can extend the latent model in the following way : premium functions

are naturally affected by the observable explanatory variables for the explicit moral

hazard while the two distributions for cost and accidents and the deductible choice are

function of two ingredients: the explicit and the residual moral hazard. Introducing the

relation ai = ,x~ ii ε+δ  the three relationships can be rewritten as follows :

Yi =   ,x~),x(gYwith i3i3i3i3
*
i,0Y *

i
εγ+ε+δγ+θ=

>
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,x~)x(gc i4i4i4i4i εγ+ε+δγ+θ=

Zi =  .x~),x(gZwith i5i5i5i5
*
i,0Z*

i
εγ+ε+δγ+θ=

>

For the premium function we just have to introduce the ix~  variables in the regression

component. We must say that this form of moral hazard may introduce some

autocorrelation between the different equations (same iε ) and some link between the

parameters ( δγδγδγ 543 ,, ).

3.2 Some specification tests

Comparison of the observed and the theoretical premia

The observed premia P1i and P2i can be compared to the individual underlying risks, for

instance through the pure premia. The pure premia may be taken equal to the expected

claims, contract by contract, i.e. deductible by deductible.

For the contract with deductible D1 the corresponding pure premium is given by :

( )( iiii1 DCYE −=Π   ).1Z/ iDC 1i
=>

Equivalently, we have :

( )( 2iii2 DCYE −=Π   ).0Z/ iDC 2i
=>

If we assume that there is no correlation between Zi, Yi and Ci when the explanatory

variables are taken into account, we obtain :

( ) ( )( ).DCE1YP
1i DC1iii1 >−==Π

( ) ( )( ).DCE1YP
2i DC2iii2 >−==Π
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Then using the cost equation we deduce :

( )( ) ( )( ) ( )( ),DugexpEDCE Dugexp44DC 44 >σ+> −σ+=−

where u is a normal variable N(0,1). We then have :
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This last expression is like a Black-Scholes price equation for an European call option.

In fact, we obtain ( )( ) ( )+
> −=− DCEDCE DC . This is an option on the

reimbursement cost (C) where the deductible (D) is the exercise price. For the insured,

the contract valuation includes a private option of non declaration.

From the above expression and the corresponding expression P (Yi = 1) we obtain :

( ) ( ) ( ) ( ) ( )





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Dlog,xg
D

Dlog,xg
2

,xgexpx
xg

and a corresponding expression ( )θΠ i2  by replacing D1 by D2.

After the estimation of the different parameters of the model, pure and observed premia

can be compared by using a regression model of the type ( ) ( ) kkikik
ˆˆ,xg β+θΠα=θ  which
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will measure the links between premia and individual risks and the estimated coefficients

will provide information on marginal profits or fix costs. We can also compare marginal

profits for different deductibles by comparing ( )11, βα  to ( )22, βα . We may also verify

whether the insurance tarification is set mainly from accident frequencies or if the pure

premia is significant by doing a regression of g1(x,θ) on 
( )









σ

θ
φ

3

i3 ,xg
 and then testing

the significance of the effect on average cost. Finally, we may also consider some

aspects related to the risk aversion by considering if V(C – D)+ influences also the

premium.

Comparison of the observed and theoretical deductible choices

Another important structural aspect is the individual choice of deductible. Suppose there

are only two possibilities D1 < D2 and let us assume risk neutrality for the moment. When

individual i chooses the premium k, his payments are equal to :

( ) ( )
kiki DCkiiiikiDCkkDiCiiki DCYCYPDCYP >−>< −+=+

In expected value we obtain :

( ) ).x/)DC(Y(Ex/CYEP ikiiiiiki
+−−+

D1 is prefered to D2 by individual i if :

( )( ) ( )( )

( )( ) ( )( ) .0x/DCYEx/DCYEPP

x/DCYEPx/DCYEP

i1iii2iii1i2

i2iii2i1iii1

>−+−−−

⇔

−−<−−

++

++

Therefore it is possible to check this kind of behavior by comparing the observed

choices Zi to the one ( )( ) ( )( ) 0x/DCYEx/DCYEPP
*
1

i1iii2iii1i2
Z

>−+−−− ++=  corresponding to this

modeling (as soon as P1i and P2i are known).
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It is clear that, if the tarification is based on pure premia only, the insured would be

indifferent between the two deductibles. It becomes also evident that we must study

jointly the two structural aspects related to the insurance tarification and the deductibles

choice to verify the presence of some adverse selection effects. This is the topic of the

next section.

3.3 Econometric results

We now present econometric results from two structural equations like those proposed

in Puelz and Snow and different extensions. At this point we have not yet analyzed the

accident costs and not taken into account moral hazard explicitly. However, we will use

some tarification variables of the insurers that take into account accident costs indirectly

and moral hazard. These variables are: 1) the tarification group variable for different

automobile characteristics; 2) the age of the car; and 3) the bonus-malus variables.

Different contracts corresponding to various levels for a straight deductible are proposed

by the insurer. From the data, we observe that the deductible choice does matter for

only two deductible levels $250 and $500 and in fact the choice of $500 is done only by

about 4% of the overall portfolio, while it is made by nearly 18% of the young drivers.

The next figure shows how the choice of the $500 does matter for risk classes higher

than 3. We will then concentrate our analysis to these classes. (See Appendix I for

formal definitions of classification variables.)
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A preliminary analysis of the data showed that the choice of the $500 deductible was

significant only for groups of vehicles 8 to 15 and for drivers in driving classes 4 to 19 or

for 4,772 policy holders of the entire portfolio : in these classes, 13.5% of potential

permit holders choose the $500 deductible while 86.5% choose the $250 deductible.

The corresponding accident frequencies are 0.081 for the $500 deductible and 0.098 for

the $250 deductible.

Many factors can explain these observations. The most important one is the type of car.

We will control for this pattern by using the "group of vehicle" variable. Another factor

may be risk aversion. As in Puelz and Snow (1994), we use the "chosen limit of liability

insurance" variable to approximate individuals' wealth. The rebate associated to a larger

deductible can also influence the choices since this is a price variable. This marginal

price variable will also be considered and the information comes from the tariff book of

the insurer. It is important to notice here that since we do have access to this price

variable directly, we do not have to estimate (as in Puelz and Snow, 1994) this price

information. However, for matter of comparison, we will compare results obtained from

both methods. The whole list of variables is presented in Appendix 1.

Let us first consider the choice of the deductible. As discussed in the previous section, if

we want to test the prediction of Rothschild and Stiglitz (1976) that low residual risk

individuals choose the higher deductible, we must use a measure of individual's risk.

That measure of individual risk has to represent some asymmetrical information

between the insurer and the insured in the sense that, at the date of contract choice, the

Figure 1
Observed Deductible Choices According to Classes
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insured has more information than the insurer about his individual (residual) risk during

the contractual period. A first risk variable is the expected number of accidents. Since

we have access to all claims we can estimate the ex-ante probability of accident the

insured knew at the beginning of the period. In that sense we may have more

information than the insurer but probably less than the insured since we have access to

only part of his private information. However, since the estimated probability of accident

is obtained by using observable characteristics, its value does not contain asymmetrical

information. We may also use the number of accidents as in Puelz and Snow (1994), but

precautions have to be made on its interpretation.

To obtain the individual probabilities of accident we estimated the regression coefficients

for the equations associated with the individual's risks in the latent model and we used

the prediction of this regression to construct the individual expected number of

accidents. In this section we do not take into account of the accident costs but we allow

for more than one accident during the period. Results are presented in Table 1. They

come from the estimation of an Ordered Probit Model where the dependent variable

considers three categories : no accident (with a claim higher than $500) during the

period, one accident and 2 and more accidents (see Appendix 2 for a description). Since

only one individual had three accidents, this last category was grouped with that of two

accidents. (See Dionne et al, 1997, for results with the Negative binomial model. The

results are identical.) Claims between $250 and $500 were not used to eliminate

potential selection biais associated to the fact that these claims are not observable for

those who have the $500 deductible.

Table 1
Ordered Probit on Claims

(0, 1, 2 and more)

Variable Coefficient T-ratio

Intercept −1.0661 −(7.201)
Intercept µ 1.1440 (17.230)
SEXF −0.1365 −(2.218)
MARRIED 0.0692 (1.082)
AGE −0.0028 −(0.885)
NEW 0.1719 (2.964)
Group of vehicles
G9 −0.0119 −(0.189)
G10 0.0228 (0.280)
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G11 0.0732 (0.484)
G12 0.1797 (0.984)
G13 0.4049 (2.040)
G14 0.0003 (0.001)
G15 0.0769 (0.185)
Territory
T2 −0.2749 −(0.958)
T3 −0.1509 −(0.963)
T4 −0.4247 −(2.555)
T5 −0.0694 −(0.499)
T6 −0.2981 −(1.509)
T7 −0.2194 −(1.912)
T8 −0.4901 −(2.040)
T9 −0.1359 −(0.787)
T10 −0.0059 −(0.026)
T11 −0.4585 −(3.333)
T12 −0.3850 −(1.534)
T13 −0.0998 −(0.549)
T14 −0.3203 −(2.490)
T15 0.1225 (0.504)
T16 −0.5180 −(1.577)
T17 0.2480 (0.712)
T18 −0.3416 −(1.859)
T19 −0.5231 −(3.256)
T20 −0.5287 −(2.887)
T21 −0.2689 −(1.837)
T22 −0.2703 −(2.016)
Number of observations 4,772
Log-Likelihood −1,509.0790
Observed Frequencies 0 4,350

1 390
2 31
3 1

In order to introduce a price in the deductible equation, we used two different

approaches. The first one was to calculate the premia variations from the insurer's book

of premia for different deductibles where the risk classes are identified by the control

variables in the regression. This yielded the GD variable. In the second approach we

estimate a premium equation and calculate the premia variations by using the deductible

coefficient which yielded the DĜ  variable. We have to emphasize here that the DĜ

variable in the deductible equation is different from the Dĝ  variable in Puelz and Snow.

Their Dĝ  variable was obtained from a regression, where a DĜ  variable like ours was
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the dependent variable ! The estimation results are given in Tables 2 and 3 for GD while

those for DĜ  are in Tables A1 and A2 in the Appendix.

Our results for the frequencies of accidents goes in the expected direction. The

observed statistics indicated that the individuals who choose the larger deductible have

an average frequency of accident (0.081) lower than the average one (0.098) of those

who choose the smaller deductible. In fact, from Table 2, we observe in Model 2 that the

predicted probability of accident E(acc) (which should be the right variable to measure

the individual observable risk if we do not take care of the accident costs) is significant

and has a negative coefficient (−5.30) to explain the choice of the higher deductible.

However, this variable may take into account of some non-linearities that are not

modelized yet.

Table 2
Probit on Deductible Choice with GD

(Z = 1 if $500 deductible)

Model 1

Conditional on the
number of claims

Model 2

Conditional on the
expected number of
claims

Model 3

Conditional on the
number of claims and
expected number of
claimsVariable

Coefficient T-ratio Coefficient T-ratio Coefficient T-ratio

Intercept −0.75045 −(5.006) −0.49080 −(3.123) −0.48891 −(3.111)
Acc −0.15791 −(1.983) −0.11662 −(1.457)
E(acc) −5.30850 −(6.417) −5.21290 −(6.278)
GD −0.00985 −(5.275) −0.01449 −(7.123) −0.01452 −(7.132)
SEXF −0.50974 −(8.296) −0.59015 −(9.334) −0.59041 −(9.338)
AGE −0.02508 −(7.975) −0.02440 −(7.784) −0.02445 −(7.792)
Liability limit
W2 −0.01330 −(0.177) −0.03525 −(0.465) −0.03695 −(0.487)
W3 −0.20162 −(1.872) −0.20000 −(1.848) −0.20139 −(1.860)
W4 0.01147 (0.172) 0.04013 (0.597) 0.03929 (0.584)
W5 −0.23370 −(2.990) −0.17042 −(2.156) −0.17123 −(2.166)
Group of vehicles
G9 0.14844 (2.683) 0.13889 (2.494) 0.13897 (2.494)
G10 0.24281 (3.359) 0.26775 (3.685) 0.26877 (3.698)
G11 0.42420 (3.267) 0.49196 (3.769) 0.49244 (3.770)
G12 0.69343 (4.346) 0.85845 (5.262) 0.85981 (5.270)
G13 0.79738 (4.485) 1.34750 (6.802) 1.34670 (6.783)
G14 1.14240 (4.937) 1.10390 (4.795) 1.10690 (4.813)
G15 1.05820 (3.541) 1.10420 (3.667) 1.10700 (3.680)
YMALE 0.11269 (0.734) 0.06126 (0.401) 0.06569 (0.429)
Number of observations 4,772 4,772 4,772
Log-likelihood −1,735.406 −1,716.054 −1,714.961
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For comparison we did also estimate the same equation by using the numbers of

accidents as in Puelz and Snow (RT). The variable "accident" (Acc) yielded a similar

result but its coefficient is less important in absolute value (−0.16) than that of E(acc) in

Model 2. However, if we compare the log likelihood values of the two regressions

(−1735.4 compared to −1716.0), any test will choose the regression with the expected

number of claims. Another possibility is to include both variables in the same equation

which is a natural method for introducing a correction for misspecification problems (see

Dionne et al, 1997, for more details). As shown in Table 2, only the E(acc) variable is

significant when both variables are introduced in the same regression (Model 3).

This result is very important for our main purpose. It indicates that when we control for

the individuals' observable risk by using the E(acc) variable, there is no residual adverse

selection in the portfolio since the Acc variable is no more significant. It also indicates

that a conclusion on the presence of residual adverse selection obtained from a

regression without the E(acc) variable is misleading : the coefficient of the accident

variable is significant because there is a misspecification problem. By introducing the

E(acc) variable, we introduce a natural correction to this problem (see Dionne,

Gouriéroux, Vanasse, 1997, for more details).

Results in Table 3 introduce a further step by adding more risk classification variables in

the model. We observe that when sufficient classification variables are present, both Acc

and the E (acc) variables are not significant. In other words, an insurer that uses

appropriate risk classification variables can eliminate the presence of residual adverse

selection and can take into account the non linearities. Our results indicate clearly that

there is no residual adverse selection in the portfolio studied.
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Table 3
Probit on Deductible Choice with GD

and More Risk Classification Variables
(Z = 1 if $500 deductible)

Model 1'

Conditional on the number of
claims

Model 2'

Conditional on the number
of claims and expected
number of claims

Variable
Coefficient T-ratio Coefficient T-ratio

Intercept −1.22120 −(4.547) −1.30590 −(2.490)
Acc −0.10517 −(1.276) −0.10553 −(1.280)
E(acc) 0.58938 (0.188)
GD −0.00201 −(0.545) −0.00202 −(0.550)
W2 0.06887 (0.859) 0.06879 (0.858)
W3 −0.11428 −(1.001) −0.11423 −(1.000)
W4 0.12576 (1.727) 0.12584 (1.728)
W5 −0.02418 −(0.277) −0.02432 −(0.278)
G9 0.17841 (3.054) 0.17944 (3.058)
G10 0.30520 (4.021) 0.30279 (3.933)
G11 0.44785 (3.318) 0.43993 (3.112)
G12 0.68037 (4.144) 0.65893 (3.297)
G13 0.84015 (4.641) 0.78287 (2.209)
G14 1.11860 (4.763) 1.11900 (4.764)
G15 1.29860 (4.230) 1.28800 (4.128)
YMALE 0.25763 (1.588) 0.25703 (1.584)
Territory
T2 −0.03209 −(0.105) 0.00336 (0.009)
T3 0.25254 (1.564) 0.27327 (1.398)
T4 0.20936 (1.271) 0.25921 (0.831)
T5 −0.16668 −(1.093) −0.15676 −(0.971)
T6 −0.16993 −(0.798) −0.13253 −(0.455)
T7 −0.42383 −(2.983) −0.39531 −(1.902)
T8 0.04565 (0.215) 0.09895 (0.279)
T9 −0.77727 −(3.293) −0.75859 −(2.962)
T10 −0.37822 −(1.364) −0.37624 −(1.356)
T11 0.07027 (0.478) 0.12135 (0.393)
T12 0.00237 (0.011) 0.04693 (0.144)
T13 −0.07428 −(0.391) −0.05999 −(0.293)
T14 −0.25654 −(1.697) −0.21748 −(0.846)
T15 −0.59145 −(1.753) −0.61204 −(1.725)
T16 −0.35069 −(1.157) −0.29534 −(0.699)
T17 −0.55868 −(0.882) −0.60648 −(0.886)
T18 −0.10787 −(0.569) −0.06671 −(0.230)
T19 −0.03533 −(0.222) 0.01937 (0.058)
T20 −0.06699 −(0.373) −0.01027 −(0.029)
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T21 −0.17568 −(1.097) −0.14160 −(0.586)
T22 0.28629 (2.054) 0.32019 (1.405)
Driver's class
CL7 −0.61323 −(7.384) −0.61280 −(7.376)
CL8 0.52957 (1.491) 0.52165 (1.458)
CL9 −0.08160 −(0.822) −0.08974 −(0.829)
CL10 −3.20880 −(0.092) −3.21030 −(0.092)
CL11 0.83600 (5.470) 0.83427 (5.450)
CL12 0.44447 (3.435) 0.44263 (3.412)
CL13 0.22995 (2.464) 0.22891 (2.449)
CL18 −0.24645 −(1.859) −0.23576 −(1.634)
CL19 −0.64555 −(6.869) −0.63486 −(5.782)
NEW −0.25013 −(4.402) −0.26935 −(2.304)
AGECAR 0.05673 (3.247) 0.05686 (3.252)
Number of observations 4,772 4,772
Log-likelihood −1,646.41 −1,646.392

In Appendix, we reproduce similar results (Tables A1, A2) when DĜ  (instead of GD) is

used. Its value is obtained from the regression of the premium equation presented in

Table A3. The same conclusions on the absence of residual adverse selection are

obtained.

In the premium equation we verify that the average effect of having a $500 deductible

(deductible variable and interactions with age, sex, marital status, use of the car,

territories…) on the premia is negative and significant (−$24). This is the sum of the

direct and interaction effects.

Table 4 summarizes the different results. Again we observe that the use of GD instead

of DĜ  does not affect the conclusions of the paper.
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Table 4
Summary of econometric results

DH = $ 250 EH(acc) = 0.098

DL = $ 500 EL(acc) = 0.081

Coefficient of E(acc) in a regression of the deductible choice with GD −5.30

(Table 2, Model 2)

Coefficient of GD (in the same regression) taken from the insurer book −0.01

(Table 2, Model 2)

Coefficient of Acc in a regression of the deductible choice with GD −0.16

(Table 2, Model 1)

Coefficient of GD (in the same regression) taken from the insurer book −0.01

(Table 2, Model 1)

Coefficient of Acc in a regression on the deductible choice with GD and

E(acc) Not significant

(Table 2, Model 3) (no residual adverse selection)

Coefficients of E(acc) and Acc in Table 3 Not significant

(Models 1' and 3')

Coefficient of E(acc) in the regression of the deductible choice with DĜ −3.80

(Table A1, Model 5)

Coefficient of DĜ  (in the same regression) obtained from results in table A3 −0.006

(Table A1, Model 5)
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Average effect of $500 deductible on the premia (Sum of the interaction

variables and deductible variable) −$24

Coefficient of Acc in the regressions of the deductible choice with DĜ −0.16

(Table A1, Model 4)

Coefficient of DĜ  (in the same regression) obtained from results in

Table A3 −0.006

(Table A1, Model 4)

Coefficient of Acc in a regression on the deductible choice with DĜ  and

E(acc) Not significant

(Table A1, Model 6) (No residual adverse selection)

Coefficients of E(acc) and Acc in Table A2 Not significant

(Models 4' and 6')

4. Conclusion

In this paper we have proposed a new empirical analysis on the presence of adverse

selection in an insurance market. We have presented a theoretical discussion on how to

test such presence in a market with transaction costs where moral hazard may be

present and where accident costs may differ between the insurance policies. Our

econometric results were derived, however, from a model without different accident

costs. They show that individuals who choose the larger deductible have an average

frequency of accident lower than the average one of those who choose the smaller one.

However, since the expected numbers of accidents were obtained from observable

variables, this result does not mean that there is adverse selection in the portfolio.

Further analyses show that, in fact, there is no residual adverse selection in the portfolio

studied. The insurer is able to control for adverse selection by using an appropriate risk

classification procedure. In this portfolio, no other selfselection mechanism (as the

choice of deductible) is necessary for adverse selection. Deductible choices may be

explained by proportional transaction costs as suggested by Proposition 1.
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Appendix 1
Definition of variables

AGE : Age of the principal driver.

SEXF : Dummy variable equal to 1, if the principal driver is a female.

MARRIED : Dummy variable equal to 1, if the principal driver of the car is
married.

Z : Dummy variable equal to 1, if the deductible is $500 [equal to 0
for a $250 deductible].

T1 to T22 : Group of 22 dummy variables for territories. The reference
territory T1 is the center of the Montreal island.

G8 to G15 : Group of 8 dummy variables representing the tariff group of the
insured car. The higher the actual market value of the car, the
higher the group. G8 is the reference group.

CL4 to CL19 : Driver's Class, according to age, sex, marital status, use of the
car and annual mileage. The reference class is 4.

NEW : Dummy variable equal to 1 for insured entering the insurer's
portfolio.

YMALE : Dummy variable equal to 1, if there is a declared occasional
young male driver in the household.

AGECAR : Age of the car in years.

N (acc) : Observed number of claims [for accidents where the loss is
greater than $500] (range 1 to 3).

E (acc) : Expected number of accidents obtained from the ordered probit
estimates.

GD : Marginal price (rebate) for the passage from the $250 to the $500
deductible. This amount is negative and comes from the tariff
book of the insurer.

W1 to W5 : Chosen limit of liability insurance. W1 is the reference limit.

DĜ  : Estimated marginal price obtained from the premium equation.

RECB1 to RECB6 : Driving record (number of years without claims) for Chapter B
(collision).

RECA1 to RECA6 Same as above for Chapter A (liability).

GOODA to GOODF Bonus programs according to driving record of both Chapter A
and B and seniority.

PROFESSIONAL
REBATE GROUP

Dummy variable equal to one if the main driver is a member of
one of the designated professions admissible to an additional
rebate.



Table A1

Probit on Deductible Choice with DĜ
(Z = 1 if $500 deductible)

Model 4

Conditional on the
number of accidents
and predicted GD

Model 5

Conditional on the
expected number of
accidents and
predicted GD

Model 6

Conditional on the
number of accidents
and expected number
of accidents and
predicted GD

Variable

Coefficient T-ratio Coefficient T-ratio Coefficient T-ratio

Intercept −0.59938 −4.990 −0.24400 −1.722 −0.24439 −1.724
Acc. −0.16361 −2.042 −0.12928 −1.606
E(Acc.) −3.80580 −4.899 −3.69290 −4.733

DĜ −0.00583 −6.314 −0.00623 −6.677 −0.00629 −6.720

SEXF −0.56096 −9.455 −0.64578 −10.379 −0.64603 −10.383
AGE −0.02105 −6.449 −0.02186 −6.691 −0.02184 −6.681
Liability limit
W2 −0.00431 −0.057 −0.02250 −0.297 −0.02429 −0.321
W3 −0.19344 −1.801 −0.18530 −1.724 −0.18693 −1.739
W4 0.03076 0.460 0.05540 0.824 0.05427 0.807
W5 −0.18271 −2.343 −0.12793 −1.622 −0.12906 −1.636
Groups of vehicles
G9 0.19945 3.559 0.19517 3.470 0.19581 3.480
G10 0.11705 1.560 0.12420 1.652 0.12429 1.653
G11 0.54925 4.170 0.60081 4.542 0.60259 4.552
G12 0.72856 4.554 0.84384 5.179 0.84570 5.190
G13 0.60624 3.352 0.99577 5.033 0.99204 5.000
G14 1.23100 5.362 1.20330 5.258 1.20830 5.287
G15 −0.24092 −0.661 −0.30273 −0.823 −0.31143 −0.847
YMALE 0.18868 1.243 0.19079 1.263 0.19551 1.291
Number of observations 4,772 4,772 4,772
Log-likelihood −1,729.084 −1,718.887 −1,717.555



Table A2

Probit on Deductible Choice with DĜ
and More Risk Classification Variables

(Z = 1 if $500 deductible)

Model 4'

Conditional on the number
of accidents and predicted
GD

Model 6'

Conditional on the number
of accidents and expected
number of accidents and
predicted GDVariable

Coefficient T-ratio Coefficient T-ratio

Intercept −1.18420 −7.191 −1.35560 −2.783
Acc. −0.10446 −1.268 −0.10522 −1.276
E(acc) 1.18280 0.374

DĜ −0.00249 −1.308 −0.00260 −1.349

W2 0.06937 0.866 0.06925 0.864
W3 −0.11466 −1.005 −0.11456 −1.004
W4 0.12695 1.744 0.12716 1.746
W5 −0.02300 −0.263 −0.02323 −0.266
G9 0.20576 3.315 0.20902 3.334
G10 0.25080 2.904 0.24361 2.754
G11 0.50262 3.548 0.48913 3.347
G12 0.69886 4.237 0.65661 3.285
G13 0.73866 3.742 0.61925 1.650
G14 1.16430 4.912 1.16720 4.922
G15 0.74599 1.423 0.70033 1.301
YMALE 0.26833 1.751 0.26680 1.740
Territory
T2 −0.01498 −0.049 0.05648 0.157
T3 0.24189 1.603 0.28386 1.509
T4 0.20172 1.340 0.30241 0.980
T5 −0.15344 −1.010 −0.13324 −0.826
T6 −0.19533 −0.953 −0.12053 −0.421
T7 −0.42620 −3.373 −0.36811 −1.838
T8 0.03137 0.160 0.13891 0.399
T9 −0.77733 −3.526 −0.73862 −3.032
T10 −0.35369 −1.273 −0.34859 −1.254
T11 0.06260 0.479 0.16574 0.543
T12 −0.00809 −0.038 0.08189 0.254
T13 −0.08406 −0.460 −0.05501 −0.277
T14 −0.26498 −1.976 −0.18593 −0.743
T15 −0.56614 −1.677 −0.60689 −1.709
T16 −0.36035 −1.213 −0.24888 −0.591
T17 −0.55716 −0.889 −0.65308 −0.960
T18 −0.11687 −0.665 −0.03365 −0.119
T19 −0.04111 −0.285 0.06936 0.211
T20 −0.08157 −0.490 0.03258 0.094
T21 −0.18741 −1.239 −0.11875 −0.499



T22 0.27224 2.111 0.34042 1.524
Driver's class
CL7 −0.59306 −7.362 −0.59073 −7.309
CL8 0.43937 1.314 0.42114 1.246
CL9 −0.13153 −1.286 −0.14982 −1.321
CL10 −3.43610 −0.099 −3.44830 −0.099
CL11 0.53978 1.896 0.52287 1.814
CL12 0.38650 3.002 0.37924 2.913
CL13 0.23058 2.656 0.22801 2.618
CL18 −0.23466 −1.811 −0.21309 −1.502
CL19 −0.69262 −7.811 −0.67270 −6.506
NEW −0.24305 −4.268 −0.28135 −2.401
AGECAR 0.05788 3.311 0.05819 3.324
Number of observations 4,772 4,772
Log-likelihood −1,645.699 −1,645.629



Table A3
Premium Equation

(Ordinary Least Squares)
Dependent Variable : Ln (Annual premium)

Variable Coefficient T-ratio

Intercept 7.084913 108.26
Deductible of $500 (dummy = 1 if $500) −0.054733 −2.789
SEXF=1 −0.260412 −3.103
Driver's class
Class 7 −0.38553 −5.333
Class 7 * SEXF 0.178657 2.118
Class 8 −0.06917 −0.283
Class 9 −0.157935 −1.276
Class 10 1.080943 9.382
Class 11 1.037563 5.157
Class 12 0.337937 3.636
Class 13 0.085396 0.915
Class 18 −0.017673 −0.144
Class 19 −0.087705 −0.768
Territory
T2 0.049853 1.558
T3 −0.32234 −12.887
T4 −0.428307 −16.876
T5 −0.186941 −11.311
T6 −0.314625 −11.301
T7 −0.556104 −25.089
T8 −0.631718 −21.777
T9 −0.605816 −22.812
T10 −0.335885 −10.216
T11 −0.430645 −18.698
T12 −0.43563 −14.307
T13 −0.263681 −9.763
T14 −0.460916 −20.157
T15 −0.258951 −7.293
T16 −0.206303 −6.263
T17 −0.038313 −0.752
T18 −0.41909 −16.002
T19 −0.49535 −20.614
T20 −0.401352 −15.64
T21 −0.253889 −10.604
T22 −0.270222 −18.002
Group of vehicles (ref. = group 8)
G9 0.192655 13.312
G10 0.416005 21.603
G11 0.478457 14.722
G12 0.609115 13.284
G13 0.617026 8.148
G14 0.955519 7.635
G15 1.058637 5.702



Driving record (Collision)
RECB1 0.041914 0.21
RECB2 −0.134967 −1.194
RECB3 −0.228689 −2.774
RECB4 −0.293009 −3.881
RECB5 −0.317626 −1.585
RECB6 −0.696749 −11.102
Driving record (Liability)
RECA1 −0.063876 −1.091
RECA2 −0.096978 −1.484
RECA3 −0.002518 −0.049
RECA4 −0.071683 −1.671
RECA5 −0.213864 −1.104
Bonus program
GOODA −0.083631 −6.423
GOODB −0.119077 −5.14
GOODC −0.174539 −16.196
GOODD −0.194518 −9.845
GOODE −0.070396 −1.809
GOODF 0.012065 0.53
YMALE 0.286499 15.985
Professional rebate group 0.045926 2.48
NEW −0.049648 −1.314
YIELDED −0.032502 −1.366
MARRIED −0.071916 −6.804
Interactions of class and driving record
Class 7 * RECB1 0.141226 0.698
Class 7 * RECB2 0.195843 1.588
Class 7 * RECB3 0.19459 2.113
Class 7 * RECB4 0.1854 2.167
Class 7 * RECB5 0.070982 0.968
Class 7 * RECB6 0.100558 1.405
Class 8 * RECB3 0.312208 1.152
Class 8 * RECB4 0.14898 0.578
Class 9 * RECB1 0.030102 0.122
Class 9 * RECB2 −0.253693 −1.449
Class 9 * RECB3 −0.036103 −0.261
Class 9 * RECB4 −0.106038 −0.793
Class 9 * RECB5 −0.066021 −0.525
Class 9 * RECB6 −0.060992 −0.492
Class 11 * RECB3 −0.432049 −2.133
Class 11 * RECB4 −0.382129 −1.888
Class 12 * RECB3 −0.08459 −0.795
Class 12 * RECB4 −0.069648 −0.678
Class 12 * RECB5 −0.047533 −0.496
Class 12 * RECB6 −0.03493 −0.37
Class 13 * RECB1 −0.052951 −0.233
Class 13 * RECB2 0.271941 1.822
Class 13 * RECB3 −0.062888 −0.553
Class 13 * RECB4 0.000224 0.002



Class 13 * RECB5 −0.007535 −0.078
Class 13 * RECB6 0.006852 0.073
Class 18 * RECB1 −0.026089 −0.107
Class 18 * RECB2 0.431126 1.947
Class 18 * RECB3 −0.06275 −0.636
Class 18 * RECB4 0.041668 0.426
Class 19 * RECB1 −0.141484 −0.687
Class 19 * RECB2 0.058235 0.267
Class 19 * RECB3 −0.144316 −1.611
Class 19 * RECB4 −0.066468 −0.758
Class 19 * RECB5 −0.091214 −1.144
Class 19 * RECB6 −0.055647 −0.712
Interactions of professional rebate group and vehicle
group
Prof * G9 0.0013 0.049
Prof * G10 0.007034 0.138
Prof * G11 −0.010439 −0.161
Prof * G12 −0.044153 −0.234
Prof * G13 −0.020836 −0.196
Prof * G14 −0.111709 −0.751
SEXF * professional rebate group −0.048515 −2.084
Interactions of SEXF and vehicle group
SEXF * G9 0.006607 0.239
SEXF * G10 0.023595 0.688
SEXF * G11 0.060012 0.836
SEXF * G12 0.143218 1.42
SEXF * G13 −0.000809 −0.01
SEXF * G14 −0.0437 −0.564
SEXF * G15 0.631914 3.014
Interactions of group of vehicle and driver's class
G9 * Class 7 0.016709 0.906
G9 * Class 8 −0.161462 −1.292
G9 * Class 9 0.03871 1.456
G9 * Class 10 0.242653 1.139
G 9 * Class 11 −0.001598 −0.035
G9 * Class 12 0.034983 1.158
G9 * Class 13 0.024637 0.98
G9 * Class 18 0.035378 0.82
G9 * Class 19 0.022656 0.669
G10 * Class 7 −0.019087 −0.787
G10 * Class 8 −0.428632 −2.76
G10 * Class 9 −0.020901 −0.576
G10 * Class 10 −0.268559 −1.257
G10 * Class 11 −0.076604 −1.159
G10 * Class 12 −0.05897 −1.382
G10 * Class 13 −0.0222 −0.66
G10 * Class 18 0.009635 0.162
G10 * Class 19 −0.01693 −0.384
G11 * Class 7 0.039974 1.007
G11 * Class 8 −0.086491 −0.326



G11 * Class 9 0.143368 1.424
G11 * Class 11 −0.71324 −3.751
G11 * Class 12 0.112595 1.204
G11 * Class 13 0.062381 0.944
G11 * Class 18 −0.002747 −0.014
G11 * Class 19 0.052501 0.544
G12 * Class 7 0.011695 0.207
G12 * Class 9 −0.025601 −0.249
G12 * Class 11 0.152149 1.088
G12 * Class 12 −0.042248 −0.409
G12 * Class 13 0.005722 0.061
G12 * Class 18 −0.015306 −0.098
G12 * Class 19 0.006389 0.051
G13 * Class 7 0.128514 1.538
G13 * Class 9 0.197948 1.306
G13 * Class 12 0.075903 0.509
G13 * Class 13 0.2423 2.546
G13 * Class 18 0.290609 1.897
G13 * Class 19 0.212369 1.562
G14 * Class 7 −0.020646 −0.164
G14 * Class 13 −0.070231 −0.432
G14 * Class 19 0.189302 0.806
G15 * Class 7 0.069737 0.361
Interactions of $500 deductible and driver's class
$500 deductible * (Class 7) 0.033987 1.261
$500 deductible * (Class 8) −0.010424 −0.07
$500 deductible * (Class 9) −0.063634 −2.013
$500 deductible * (Class 11) −0.098077 −2.235
$500 deductible * (Class 12) −0.049638 −1.586
$500 deductible * (Class 13) −0.010831 −0.407
$500 deductible * (Class 18) 0.003292 0.025
$500 deductible * (Class 19) −0.045019 −0.352
Interactions of $500 deductible and group of vehicle
$500 deductible * G9 0.03751 1.92
$500 deductible * G10 −0.019147 −0.767
$500 deductible * G11 0.06299 1.353
$500 deductible * G12 0.041928 0.814
$500 deductible * G13 −0.027005 −0.451
$500 deductible * G14 0.058139 0.79
$500 deductible * G15 −0.26241 −2.583
Urban territory * $500 deductible −0.001154 −0.061
SEXF * $500 deductible −0.003106 −0.025
SEXF * Class 7 * $500 deductible −0.044678 −0.332
Professional rebate group* $500 deductible −0.055141 −1.401
YMALE * $500 deductible −0.005919 −0.11
NEW * $500 deductible 0.005266 0.288
Number of observations 4,772
R2 0.8318
Adjusted R2 0.8253



Appendix 2

Ordered Probit Model

Let *
iY  be the individual i risk. As usual, *

iY  is unobservable. What we do observe is iY ,

the number of claims of individual i.

If

*
iY  = Xiβ +εi,

then
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If ε is normally distributed across observations and if we normalize the mean and

variance of ε respectively to zero and one, we obtain:

),x(1)2Y(P

),x()x()1Y(P

),x()0Y(P

i

ii

i

β−µΦ−==

β−Φ−β−µΦ==

βΦ==

where Φ (•) is the cumulative distribution function of the normal distribution, xi is a vector

of exogenous variables, β is a vector of parameters of appropriate dimension to be

estimated along with µ the threshold parameter.


