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Résumé L’approche au premier ordre, qui consiste à remplacer la contrainte d’incitation

de l’agent à produire un effort adéquat par sa condition de premier ordre, est très souvent

utilisée dans les problèmes d’agence pour lesquels le principal ne peut observer le niveau

d’effort de l’agent. Cette substitution ne remet pas en cause les conditions suffisantes de

l’optimisation si la distribution des revenus, ou de la perte, satisfait la propriété de mono-

tonicité du ratio de vraisemblance ainsi que la condition de convexité dans l’effort. Mal-

heureusement, très peu de distributions des revenus satisfont à la fois ces deux propriétés.

Nous en proposons deux exemples dans cette note et nous donnons leur équivalent en termes

de pertes.

Mots clés : principal-agent, risque moral, distribution, ratio de vraisemblance monotone,

convexité dans l’effort.

Abstract The first-order approach, which consists in replacing the incentive compatible

constraint by the agent’s first order condition, is widely used in agency problems where

the principal cannot observe the level of effort chosen by the agent. This substitution is

valid with the Monotone Likelihood Ratio Property and the Convex Distribution Function

Condition. Unfortunately, revenue distributions seldom present both properties. In this note,

we provide two examples of revenue distributions that satisfy MLRP and CDFC. We also

give their counterpart in terms of loss distributions.

Keywords: Principal-agent, moral hazard, distribution, monotone likelihood ratio, convex-

ity in effort.
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1 Introduction

One main feature in agency problems is that the principal and the agent do not have

the same information about the action chosen by the agent. If one thinks about profit

maximization, the level of effort that maximizes the expected profit of the principal

may be different from the one adopted by the agent. If effort is not verifiable by the

principal it is not contractible1. Accordingly, the principal has to take into account

the fact that the agent privately chooses the action that maximizes her own expected

revenue (or utility). This can be done by letting one constraint of his optimization

program be the first order condition of the agent’s one. This so-called first-order

approach is widely used in agency problems despite the fact that it is not always valid.

Indeed, the first-order condition of the agent refers to stationary points that may be

local minima, saddle-points or local but not global maxima if one does not check

that the sufficient conditions are satisfied. Because of the convenience of the first-order

approach, its validity is often assumed ad hoc. Mirrlees (1975) and also Rogerson (1985)

show that it is valid when the revenue distribution satisfies the Monotone Likelihood

Ratio Property (MLRP) and the Convex Distribution Function Condition (CDFC).

MLRP states that the likelihood ratio is non-decreasing in output, while CDFC deals

with the convexity of the distribution in effort. In a more intuitive way, MLRP permits

to get a positive relationship between effort and expected gross revenues. With CDFC,

it also permits to derive a positive relationship between the observed output and the

agent’s payoff. But, as mentioned by Jewitt (1988), only a few distributions display

both properties.

In this note we build two examples of revenue distributions that display MLRP

and CDFC. We also focus on loss distributions in accordance with MLRP and CDFC,

which can be used to illustrate many problems where effort affects losses or risks of

accident.

Section 2 briefly recalls the first-order approach. Section 3 provides two distribu-

tions of gross revenues consistent with MLRP and CDFC and also their counterpart

in terms of losses. Section 4 concludes this note.

1If the principal can infer some information about the agent’s effort, thanks for instance to an
imperfect signal, the contract may depend on that signal if it is a sufficient statistic of the level of
effort (Holmström, 1979; Jewitt, 1988). It is worth noticing that the level of effort is not a random
variable and using the term “sufficient statistic” only drives the idea that the signal carries valuable
information about effort.
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2 The first-order approach

Consider a principal-agent relationship where the agent privately chooses a level of

effort to perform a task delegated by the principal. This effort coupled with Nature

yields some random gross revenues that have to be optimally shared between both

participants. Effort affects output2 in the sense of the first order stochastic dominance.

The principal’s objective is to maximize his expected utility (1) knowing that the payoff

to the agent must give her3 sufficient utility to participate (participation constraint

(2.i)) and to adopt the adequate action (incentive constraint (2.ii)).

In this note we focus on the case where no information on action is available to the

principal.

The optimization program is as follows:

max
w(π),a

EF [V (π̃ − w(π̃))] (1)

s.t. (i) EF [U(w(π̃))]− a ≥ U0

(ii) a ∈ arg max
a∈[a,a]

(EF [U(w(π̃))]− a)
(2)

With:

π̃ the gross revenue: π ∈ [π, π], π ≥ 0.

F (π/a) the distribution of π̃.

a the level of effort: a ∈ [a, a], a ≥ 0.

U(.) the agent’s VNM utility : U ′(.) > 0, U ′′(.) < 0.

V (.) the principal’s VNM utility : V ′(.) > 0, V ′′(.) ≤ 0.

E the expectation operator.

The cost of effort is identified to the level a chosen by the agent. Assume that

F (π/a) is a distribution twice continuously differentiable in its two arguments and

that its density is well-defined. Still assume a solution to (1)-(2.i)-(2.ii) exists and is

differentiable4. When a is a continuous variable, the main problem in Program (1)-

(2.i)-(2.ii) is that constraint (2.ii) is not tractable such as it stands. An alternative

2We will interchangeably use the expressions output and (gross) revenue.
3We use the masculine to denote the principal and the feminine to denote the agent.
4For a discussion of these statements, the reader is referred to Mirrlees (1974).

4



method, called the first-order approach, consists in replacing constraint (2.ii) by the

first order condition of the agent’s optimization program, namely by:

π∫
π

U(w(π))fa(π/a)dπ = 1 (3)

Program (1)-(2.i)-(3) can be directly solved. Denote its solution (a∗∗, w∗∗(π)).

Without specific conditions on the revenue distribution, a∗∗ may not coincide with

solution a∗ of (1)-(2.i)-(2.ii), neither does w∗∗ with w∗. Indeed, Equation (3) may

yield local minima, saddle-points or local but not global maxima, while the initial pro-

gram implies that the optimal sharing rule w∗(π) must be such that the effort level

requested by the principal be the one that maximizes the agent’s expected utility.

Hence Problem (1)-(2.i)-(3) (called the relaxed Pareto-optimization program by Roger-

son, 1985) is different from (1)-(2.i)-(2.ii) without additional hypotheses. Actually, the

equivalence between both programs holds if the distribution of revenues conditional on

effort satisfies the Monotone Likelihood Ratio Property (MLRP) and also the Convex

Distribution Function Condition (CDFC).5 Since the settlement of these results, the

first-order approach has been widely used in many agency problems.

MLRP states that the likelihood ratio fa(π/a)/f(π/a) must be non-decreasing in

output π: it is more likely to observe large revenues for a high level of effort. This

property implies the first order stochastic dominance (Fa(π/a) < 0). (But the reverse is

not true). Statistics books display several kinds of density functions satisfying MLRP;

for instance the normal, the exponential, the Poisson, etc. (with the required mean).

CDFC implies the convexity of F (π/a) in a: effort improves the distribution but at

a decreasing rate. Unfortunately very few distributions satisfying MLRP also present

a convex curve in effort. To our knowledge, the economic literature displays only one

example, due to Rogerson (1985):

F (π/a) =
(π
π

)a−a
(4)

Let us notice that this distribution has no density function. Indeed, if the support

of the revenues is a strictly positive interval [π, π] then F is defined for any a and for

any π and it displays a mass point at π: F (π/a) > 0. On the other hand, if one works

5Mirrlees (1975) was the first having pointed out this result. See also Grossman and Hart (1983),
and Rogerson (1985).
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on [0, π] then F (0/a) equals zero for any a > a. But its derivative with respect to

π evaluated at π = 0 is no more defined. This specificity of F does not invalidate

Rogerson’s approach since the author works with discrete variables.

Section 3 presents two continuous revenue distributions that meet both MLRP and

CDFC, and for which a density function exists. We also present their counterpart

in terms of losses. In the framework of the first-order approach, the latter distribu-

tions conditional on action must provide a non-increasing likelihood ratio and must be

concave in effort.

3 Two examples of distribution functions

Assume gross revenues are randomly distributed over [π, π]. π is zero in Example 1.a

and may be positive in Example 2.a. The level of effort a takes continuous values in

[a, a] with a ≥ 0.

Example 1.a

Consider the following function:

F 1(π/a) =

[
1

(a+ 1)π
(π − π) + 1

]
.
π

π
(5)

This function is twice continuously differentiable over [0, π] and over [a, a]. It is

equal to zero at π = 0, strictly positive for any value in ]0, π[, and equal to one at

π = π, whatever the value of a. Also it is increasing in π:

d

dπ
F 1(π/a) = f 1(π/a) =

[
1

(a+ 1)π
(π − 2π) + 1

]
.
1

π
≥ 0 (6)

Due to these properties, F 1 is a distribution of π conditional on the effort level a

and f 1 is the associated density. Let us look at the first and second derivatives of F 1

with respect to a. We have

F 1
a (π/a) =

−π
(a+ 1)2π2 (π − π) ,

with {
(i) F 1

a (π/a) < 0, ∀π ∈]0, π[

(ii) F 1
a (0/a) = Fa(π/a) = 0

(7)
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Property (7.i) refers to the first order stochastic dominance, which is implied by

MLRP. But since the reverse is not true we still have to show that F 1 does satisfy

MLRP. By calculating the likelihood ratio f 1
a (π/a)/f1(π/a) (for a > 0) and by dif-

ferentiating it with respect to π, one can show that it is increasing in π, so that F 1

satisfies MLRP. This is demonstrated in section A of Appendix 1. Function (5) also

satisfies CDFC. Indeed:

F 1
aa(π/a) =

2π

(a+ 1)3.π2 (π − π) > 0, ∀a, ∀π ∈ ]0, π[ (8)

Hence F 1 satisfies MLRP and CDFC. �

Density f 1 is depicted on Figure 1 with respect to the gross revenue, which variate

in [0, 100], and for two different levels of effort. It is decreasing in π. Distribution F 1

is related to gross revenues and, consequently, to a problem where the objective of the

principal is to maximize profits through a task performed by an agent. But some agency

problems also deal with damages, such as in insurance for instance. The agent (the

insured person) may influence her conditional accident cost by choosing some specific

action like driving carefully (or fast), carrying (or not) her seat belt, etc. If the insurer

cannot observe the level or the type of action chosen by the insured when fixing the

price of insurance, one has to cope with ex ante moral hazard (Winter, 1992). In such

a context MLRP says that the higher the level of effort, the higher the likelihood of

observing a damage with not too large severity. As a direct consequence of MLRP, the

loss distribution increases in effort. Furthermore, when the insurer wants to maximize

his profits under participation and incentive constraints the sufficient condition for a

global maximum now refers to the concavity of the loss distribution with respect to a.

In summary, if we denote l̃ the risk of damage with l ∈
[
l, l
]
, l ≥ 0, and a the effort

with a ∈ [a, a], we should have:{
(i) ∂

∂l

(
fa(l/a)
f(l/a)

)
≤ 0

(ii) Faa(l/a) < 0 ∀l ∈
]
l, l
[ (9)

Condition (9.i) implies Fa(l/a) > 0. The following function, which is the counter-

part of Example 1.a, displays both properties:
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Example 1.b

F 2(l/a) =
[

(a+1)1/2

k
(l − l) + 1

]
. l
l
,

with k > l(a+ 1)1/2 and l ∈
[
0, l
] (10)

�

The condition imposed on the scalar k ensures the strict positivity of the density

function. The properties of F 2 are given in section B of Appendix 1. Density f 2 is

depicted on Figure 2 with respect to l, which varies in [0, 150], and for two different

levels of effort. It is decreasing in loss.

An other environment where the properties of F 2 are welcome deals with the

bank/entrepreneur relationship. Assume the firm needs some external funds in or-

der to start a risky project. She can take some actions to prevent an accident within

the production process for instance. The ex post profits depend on the occurrence of a

damage and, consequently, the chances for the bank to be reimbursed are affected by

the level of prevention adopted by the firm. Still here, the distribution of losses should

satisfy Properties (9).

Hereafter, we provide a second example of revenue distribution.

Example 2.a

Consider the following function:

G1(π/a) = (a+ k)(π−π).

(
π − π
π − π

)
; k > 1 (11)

Here, the lower bound π may be positive or zero. G1(π/a) is twice continuously

differentiable over [π, π] and over [a, a]. It displays the following properties:{
G1(π/a) > 0, ∀a, ∀π > π

G1(π/a) = 0, G1(π/a) = 1

With k > 1 it is also strictly increasing in π whatever the value of a:

∂G1(π/a)

∂π
= g1(π/a) =

(a+ k)(π−π)

(π − π)
[1 + ln(a+ k).(π − π)] > 0 (12)

Thus G1 displays the properties of a distribution function and g1 is the associated

density function.
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The first derivative ofG1 with respect to a isG1
a(π/a) = (π−π)(a+k)(π−π−1).

(
π−π
π−π

)
.

So that: {
G1
a(π/a) < 0, ∀π ∈ ]π, π[

G1
a(π/a) = G1

a(π/a) = 0

Moreover:

G1
aa(π/a) = (π − π − 1)(π − π)(a+ k)(π−π−2).

(
π − π
π − π

)
> 0, ∀π ∈ ]π, π[

Distribution G1 satisfies the first order stochastic dominance and also CDFC. Now,

we have to show that it still satisfies MLRP. This is demonstrated in section C of

Appendix 1.

Finally, Function G1 satisfies both MLRP and CDFC. �

It is worth noticing that g1 increases in output, whereas f 1 decreases. Density g1

is depicted on Figure 3 with π ∈ [0, 10].

Hereafter, we give the counterpart of G1 in terms of losses. Distribution G2 is

defined for levels of effort between [a, 1], a ≥ 0. 6 Properties and computations are

given in section D of Appendix 1.

Example 2.b

For l ∈
[
l, l
]
, with l ≥ 0, and a ∈ [a, 1], with a ≥ 0:

G2(l/a) = (a+ 1)

(
l−l
l−l

)
.

(
l − l
l − l

)
�

Since l may be positive or zero, the distribution G2 can be used for risks of dam-

age having a continuous distribution over all states of nature (the no-accident state

included) or for situations where the no-accident state presents a mass point, while

positive damages have a continuous distribution. Density g2 is depicted on Figure 4

with respect to l, which takes values in [0, 10], and for two different levels of effort.

6This hypothesis is made in order to simplify the calculus already complicated with G2. The
generalization to any positive interval for the level of effort states as:

G3(l/a) = (a+ 1)
(
l−l
l−l

)k
.

(
l − l
l − l

)
, with k > 0
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Before concluding, we give the means and variances for each example of distribution

in Table 1. They are calculated in Appendix 2, with π ∈ [0, π] and l ∈
[
0, l
]
.

Table 1

Mean Variance

F 1(π/a) π
2

(
1− 1

3(a+1)

)
π3

12
(4 + b(3b− 6))

G1(π/a) π + 1
ln(a+k)

(
1

π ln(a+k)

(
1− (a+ k)(−π)

)
− 1
)

π3

3
+ πc(π + c)

F 2(l/a) l
2

(
1− l(a+1)1/2

3k

)
l
3

3

(
1− h+ h2

3

)
G2(l/a) l

(
1 + 1

ln(a+1)

(
1− a

ln(a+1)

))
l
3 (1

3
+m+m2

)

with



b =
(

1− 1
3(a+1)

)
c = 1

ln(a+k)

(
1

π ln(a+k)

(
1− (a+ k)(−π)

)
− 1
)

h = 1
2

(
3− l(a+1)1/2

k

)
m = 1

ln(a+1)

(
1− a

ln(a+1)

)
and a ∈ ]0, 1]

4 Conclusion

We have provided two examples of revenue distributions that satisfy MLRP and CDFC.

Accordingly, they can be used to illustrate many agency problems - such as em-

ployee/employer relationships, sharecropping, bank/firm relationships or law enforce-

ment7 - solved with the first-order approach.

We have still given their counterpart in terms of loss distributions, so that insurance

problems (Winter, 1992), models with environmental risk (Boyer and Laffont, 1997;

Dionne and Spaeter, 1998) and, more generally, models with risks of losses (Brander

and Spencer, 1989; Dionne, Gagné, Gagnon and Vanasse, 1997) may also be illustrated

thanks to them. Up to now only one distribution, due to Rogerson (1985), was pre-

sented in the literature and illustrations were seldom possible notably when the agency

7See for instance Harris and Raviv (1978) for formalizations of such problems.
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problem deals with two random variables. The examples we just provided here enlarge

the set of admissible distributions.

Our distributions can also be applied to problems where a risk-averse agent has to

split his initial wealth between a risky asset and a safe one. Indeed, it is known that

intuitive comparative static results can be obtained about the behavior of the agent

following an increase in risk that satisfies MLRP (Landsberger and Meilijson, 1990;

Ormiston and Schlee, 1993). Lastly, the distributions presented in this paper still hold

for the MPR (Monotone Probability Ratio) Property established by Eeckhoudt and

Gollier (1995) and related to the ratio of cumulative distributions rather than to that

of density functions.

APPENDIX 1

A. Example 1.a.

For Example 1.a we have: f 1(π/a) =
[

1
(a+1)π

(π − 2π) + 1
]
. 1
π

f 1
a (π/a) = −1

(a+1)2.π2 (π − 2π)

After simplification the likelihood ratio equals:

f 1
a (π/a)

f 1(π/a)
=

2π − π
(a+ 1) (π − 2π) + (a+ 1)2π

Differentiating it with respect to π and simplifying the result leads to

∂

∂π

(
f 1
a (π/a)

f 1(π/a)

)
=

2(a+ 1)2π

[(a+ 1) (π − 2π) + (a+ 1)2π]2
,

which is always strictly positive (for a > 0). Consequently, F 1 satisfies MLRP. �

B. Example 1.b.

We have for any l ∈
[
0, l
]
:

F 2(l/a) =

[
(a+ 1)1/2

k
(l − l) + 1

]
.
l

l
, with k > l(a+ 1)1/2
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Distribution F 2 satisfies: F 2(0/a) = 0 and F 2(l/a) = 1. Also F 2 is strictly positive

for any l > 0. The associated density function is:

f 2(l/a) =

[
(a+ 1)1/2

k
(l − 2l) + 1

]
.
1

l

It is strictly positive for any l and any a if the term into brackets is strictly positive

at point (l, a) because f 2 is increasing in a and decreasing in l. This is satisfied for any

k strictly larger than l(a+ 1)1/2.

Concerning F 2 we have:
F 2
a (l/a) = (a+1)−1/2

2k
(l − l). l

l
> 0 ∀a,∀l > 0

F 2
a (0/a) = Fa(l/a) = 0

F 2
aa(l/a) = − (a+1)−3/2

4k
(l − l). l

l
< 0, ∀a, ∀l > 0

Now, let us show that F 2 also satisfies MLRP. We have f 2
a (l/a) = (a+1)−1/2

2k
(l−2l).1

l
.

And after simplification:

f 2
a (l/a)

f 2(l/a)
=

(a+ 1)−1(l − 2l)

2[(l − 2l) + k]

Differentiating this likelihood ratio with respect to l leads to:

∂

∂l

[
f 2
a (l/a)

f 2(l/a)

]
=
−4(a+ 1)−1

[
(l − 2l) + k

]
+ 4(a+ 1)−1(l − 2l)

4
[
(l − 2l) + k

]2
=

−(a+ 1)−1k[
(l − 2l) + k

]2 < 0

Then F 2 also satisfies MLRP. �

C. Example 2.a.

For Example 2.a we have: g1(π/a) = (a+k)(π−π)

(π−π)
[1 + ln(a+ k).(π − π)]

g1
a(π/a) = (a+k)(π−π−1)

(π−π)
[(π − π) + (π − π) (1 + ln(a+ k)(π − π))]
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After simplification the likelihood ratio equals:

g1
a(π/a)

g1(π/a)
=

(a+ k)−1 [(π − π) + (π − π) (1 + ln(a+ k)(π − π))]

(1 + ln(a+ k).(π − π))

Differentiating this last ratio with respect to π leads to

∂

∂π

(
g1
a(π/a)

g1(π/a)

)
= {(2 + (2π − π − π) ln(a+ k)) (1 + ln(a+ k).(π − π))

− ((π − π) + (π − π) (1 + ln(a+ k)(π − π))) ln(a+ k)} /D,

with D = (a + k) (1 + ln(a+ k).(π − π))2. By developing each term in the right-

hand-side and by simplifying we obtain finally

∂

∂π

(
g1
a(π/a)

g1(π/a)

)
=

2 (1 + (π − π) ln(a+ k)) + (π − π)2 [ln(a+ k)]2

D
,

which is strictly positive. As a result, G1 satisfies MLRP. �

D. Example 2.b.

We have G2(l/a) = (a + 1)

(
l−l
l−l

)
.
(
l−l
l−l

)
. Assume l ∈

[
l, l
]

with l ≥ 0 and a ∈ [a, 1]

with a ≥ 0.

In the course we use the following notation: C(l) =
(
l−l
l−l

)
and D(l) =

(
l−l
l−l

)
.

We have: 0 ≤ C(l) ≤ 1 and 0 ≤ D(l) ≤ 1. G2 satisfies the following properties:

G2(l/a) = 0 and G2(l/a) = 1. Also G2 is strictly positive for any l > l. The associated

density function is:

g2(l/a) =
(a+ 1)C(l)

(l − l)
− 1

(l − l)
ln(a+ 1).(a+ 1)C(l).D(l)

=
(a+ 1)C(l)

(l − l)
[1− ln(a+ 1).D(l)]

This function is strictly positive for any a and any l if the term into brackets is

strictly positive. To get this property it is sufficient that this term be positive at point

(a, l). With a = 1 this is always true.

We also have:
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G2
a(l/a) = C(l)(a+ 1)C(l)−1D(l) > 0, ∀l < l < l

G2
a(l/a) = G2

a(l/a) = 0

G2
aa(l/a) = C(l)(C(l)− 1)(a+ 1)C(l)−2D(l) < 0, ∀l < l < l

Now, let us show that G2 also satisfies MLRP. We have:

g2
a(l/a) = C(l)

(a+ 1)C(l)−1

(l − l)
[1− ln(a+ 1).D(l)]− (a+ 1)C(l)

(l − l)
1

(a+ 1)
D(l)

=
(a+ 1)C(l)−1

(l − l)
[(1− ln(a+ 1).D(l))C(l)−D(l)]

Hence:

g2
a(l/a)

g2(l/a)
=

(a+ 1)−1 [(1− ln(a+ 1).D(l))C(l)−D(l)]

(1− ln(a+ 1).D(l))

Differentiating this likelihood ratio with respect to l leads to:

∂

∂l

[
g2
a(l/a)

g2(l/a)

]
= {(1− ln(a+ 1).D(l))[(1− ln(a+ 1).D(l))C ′(l)− ln(a+ 1)D′(l)C(l)

−D′(l)] + ln(a+ 1)D′(l) [(1− ln(a+ 1).D(l))C(l)−D(l)]}
/(a+ 1)(1− ln(a+ 1).D(l))2

Knowing that C ′(l) = −1/(l− l) and that D′(l) = 1/(l− l) we obtain after simpli-

fications:

∂

∂l

[
g2
a(l/a)

g2(l/a)

]
=

−1− (1− ln(a+ 1).D(l))2

(a+ 1)(l − l)(1− ln(a+ 1).D(l))2
< 0

So, G2 also satisfies MLRP. �
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APPENDIX 2

In this appendix, we compute the means and the variances for each example of

distribution. Revenues variate in [0, π] and losses in
[
0, l
]
.

� Example 1.a

Distribution F 1 is as follows: F 1(π/a) =
[

1
(a+1)π

(π − π) + 1
]
.π
π
.

Its density function is f 1(π/a) =
[

1
(a+1)π

(π − 2π) + 1
]
. 1
π
.

• The mean EF 1(π̃)

We have:

EF 1(π̃) =

π∫
0

(
1

(a+ 1)π2

(
ππ − 2π2

)
+
π

π

)
dπ

=

[
1

(a+ 1)π2

(
ππ2

2
− 2π3

3

)
+
π2

2π

]π
0

=
−π3

6(a+ 1)π2 +
π

2

And finally EF 1(π̃) = π
2

(
1− 1

3(a+1)

)
.

• The variance VF 1(π̃)

We have VF 1(π̃) =
π∫
0

(
π − π

2

(
1− 1

3(a+1)

))2

dπ.

Let us adopt the following notation:

b =

(
1− 1

3(a+ 1)

)
(13)
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Thus:

VF 1(π̃) =

π∫
0

(
π2 − ππb+

π2b2

4

)
dπ

=

[
π3

3
− π2πb

2
+
ππ2b2

4

]π
0

=
π3

3
− π3b

2
+
π3b2

4

= π3

(
1

3
− b

2
+
b2

4

)
And finally VF 1(π̃) = π3

12
(4 + b(3b− 6)), where b is given by (13).

� Example 1.b

Recall that F 2 is defined as follows

F 2(l/a) =

[
(a+ 1)1/2

k
(l − l) + 1

]
.
l

l
,

with k > l(a+ 1)1/2, and its density function is:

f 2(l/a) =

[
(a+ 1)1/2

k
(l − 2l) + 1

]
.
1

l

• The mean EF 2(l̃)

We have:

EF 2(l̃) =
1

l

l∫
0

(
(a+ 1)1/2

k
(ll − 2l2) + l

)
dl

=
1

l

[
(a+ 1)1/2

k
(
ll2

2
− 2l3

3
) +

l2

2

]l
0

=
−l2(a+ 1)1/2

6k
+
l

2

And finally EF 2(l̃) = l
2

(
1− l(a+1)1/2

3k

)
, which is positive because of the condition

imposed on k.
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• The variance VF 2(l̃)

We have VF 2(l̃) =
l∫

0

(
l − l

2

(
1− l(a+1)1/2

3k

))2

dl.

Let us adopt the following notation: e = l
2

(
1− l(a+1)1/2

3k

)
. Thus:

VF 2(l̃) =

l∫
0

(l2 − 2le+ e2)dl

=

[
l3

3
− l2e+ le2

]l
0

And finally VF 2(l̃) = l
3

3

(
1− h+ h2

3

)
, with h = 1

2

(
3− l(a+1)1/2

k

)
.

� Example 2.a

Distribution G1 is defined as follows: G1(π/a) = (a+ k)(π−π).
(
π−π
π−π

)
with k > 1.

Its density function is g1(π/a) = (a+k)(π−π)

(π−π)
[1 + ln(a+ k).(π − π)].

• The mean EG1(π̃)

With π = 0, we have:

EG1(π̃) =
1

π

π∫
0

(a+ k)(π−π)
(
π + π2 ln(a+ k)

)
dπ

=
1

π
{
[
(a+ k)(π−π)π

2

2

]π
0

−
π∫

0

ln(a+ k)(a+ k)(π−π)π
2

2
dπ

+

π∫
0

ln(a+ k)(a+ k)(π−π)π2dπ}

=
1

π

π2

2
+

π∫
0

ln(a+ k)(a+ k)(π−π)π
2

2
dπ


=

1

π

π2

2
+

[
(a+ k)(π−π)π

2

2

]π
0

−
π∫

0

(a+ k)(π−π)πdπ
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=
1

π

π2 −
[

(a+ k)(π−π)

ln(a+ k)
π

]π
0

+

π∫
0

(a+ k)(π−π)

ln(a+ k)
dπ


=

1

π

{
π2 − π

ln(a+ k)
+

[
(a+ k)(π−π)

(ln(a+ k))2

]π
0

}

And finally EG1(π̃) = π + 1
ln(a+k)

(
1

π ln(a+k)

(
1− (a+ k)(−π)

)
− 1
)

.

• The variance VG1(π̃)

We have:

VG1(π̃) =

π∫
0

(
π − π − 1

ln(a+ k)

(
1

π ln(a+ k)

(
1− (a+ k)(−π)

)
− 1

))2

dπ

Let us adopt the following notation:

c =
1

ln(a+ k)

(
1

π ln(a+ k)

(
1− (a+ k)(−π)

)
− 1

)
(14)

Thus:

VG1(π̃) =

π∫
0

(
(π − π)2 − 2(π − π)c+ c2

)
dπ

=

π∫
0

(
π2 − 2ππ + π2 − 2(π − π)c+ c2

)
dπ

=

[
π3

3
− π2π + ππ2 − π2c+ 2ππc+ πc2

]π
0

=
π3

3
+ π2c+ πc2

And finally VG1(π̃) = π3

3
+ πc(π + c), with c defined by (14).

� Example 2.b

For a ∈ [a, 1], with a > 0, G2 is defined by:
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G2(l/a) = (a+ 1)

(
l−l
l−l

)
.

(
l − l
l − l

)

Its density function is g2(l/a) = (a+1)

(
l−l
l−l

)
(l−l)

[
1− ln(a+ 1).

(
l−l
l−l

)]
.

• The mean EG2(l̃)

We have:

EG2(l̃) =
1

l

l∫
0

(a+ 1)

(
l−l
l

)(
l − ln(a+ 1)

l2

l

)
dl

=
1

l
{
[
(a+ 1)

(
l−l
l

)
l2

2

]l
0

+

l∫
0

(a+ 1)

(
l−l
l

)
ln(a+ 1)

l2

2l
dl

−
l∫

0

(a+ 1)

(
l−l
l

)
ln(a+ 1)

l2

l
dl}

=
1

l

 l
2

2
−

l∫
0

(a+ 1)

(
l−l
l

)
ln(a+ 1)

l2

2l
dl


=

1

l

 l
2

2
−
[
−(a+ 1)

(
l−l
l

)
l2

2

]l
0

−
l∫

0

(a+ 1)

(
l−l
l

)
ldl


=

1

l

l2 −
−(a+ 1)

(
l−l
l

)
ln(a+ 1)

ll

l
0

−
l∫

0

(a+ 1)

(
l−l
l

)
ln(a+ 1)

ldl


=

1

l

l2 +
l
2

ln(a+ 1)
+

(a+ 1)

(
l−l
l

)
(ln(a+ 1))2 l

2

l
0


=

1

l

{
l
2

+
l
2

ln(a+ 1)
+

(
l
2

(ln(a+ 1))2 −
(a+ 1)

(ln(a+ 1))2 l
2

)}

And finally EG2(l̃) = l
(

1 + 1
ln(a+1)

(
1− a

ln(a+1)

))
, which is positive because a ≤ 1.
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• The variance VG2(l̃)

We have VG2(l̃) =
l∫

0

(
l − l

(
1 + 1

ln(a+1)

(
1− a

ln(a+1)

)))2

dl.

Let us adopt the following notation: j = l
ln(a+1)

(
1− a

ln(a+1)

)
. Thus:

VG2(l̃) =

l∫
0

(
(l − l)2 − 2(l − l)j + j2

)
dl

=

l∫
0

(
l2 − 2ll + l

2 − 2(l − l)j + j2
)
dl

=

[
l3

3
− l2l + ll

2 − l2j + 2llj + lj2

]l
0

=
l
3

3
+ l

2
j + lj2

And finally VG2(l̃) = l
3 (1

3
+m+m2

)
, with m = 1

ln(a+1)

(
1− a

ln(a+1)

)
. �
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Figure 1

Density f 1 when Revenues Vary

Figure 2

Density f 2 when Losses Vary

For k = 700



Figure 3

Density g1 when Revenues Vary

For k = 2

Figure 4

Density g2 when Losses Vary
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