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Abstract 
 

This article makes a bridge between the theory of optimal auditing and the scoring methodology in 

an asymmetric information setting. Our application is meant for insurance claims fraud, but it can be 

applied to many other activities that use the scoring approach. Fraud signals are classified based on the 

degree to which they reveal an increasing probability of fraud. We show that the optimal auditing strategy 

takes the form of a “Red Flags Strategy” which consists in referring claims to a Special Investigative Unit 

(SIU) when certain fraud indicators are observed. The auditing policy acts as a deterrence device and we 

explain why it requires the commitment of the insurer and how it should affect the incentives of SIU 

staffs. The characterization of the optimal auditing strategy is robust to some degree of signal 

manipulation by defrauders as well as to the imperfect information of defrauders about the audit 

frequency. The model is calibrated with data from a large European insurance company. We show that it 

is possible to improve our results by separating different groups of insureds with different moral costs of 

fraud. Finally, our results indicate how the deterrence effect of the audit scheme can be taken into account 

and how it affects the optimal auditing strategy. 
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1.  Introduction 

Auditing has been a major topic of interest in the economic and financial literature since the path-

breaking articles of Townsend (1979) and Gale and Hellwig (1985). The emphasis has been put on the 

informational asymmetries between principals (bankers, insurers, regulators, tax inspectors…) and agents 

(borrowers, insureds, regulated firms, tax payers…), asymmetries which lead to implement costly state-

verification strategies. The trade-off between the reduction of monitoring costs and the mitigation of 

informational asymmetries has thus been the core of the economic analysis of auditing. 

On the empirical side, the importance of auditing in corporations, financial institutions or 

governmental agencies has given rise to serious analysis of the design of optimal auditing procedures (e.g. 

Should auditing be internal or external? How should auditors be rewarded? How can collusion between 

auditors and those audited be avoided? How frequent should auditing be? …) and has motivated firms and 

governments to search for relevant information on ways to cut auditing costs. Nowadays, the search for 

optimal auditing procedures is a major concern for a number of players: banks and insurance companies 

seeking better risk assessment of their customers; prudential regulators of the banking and insurance 

industries investigating risk management activities; financial markets introducing enforcement actions 

against accounting misconduct; governments pursuing better compliance by taxpayers; and regulatory 

agencies in the field of environmental law, food safety or working conditions. 

On the theoretical side, many extensions of the basic models have been proposed. In particular, 

Mookherjee and Png (1989) have shown that random auditing dominates deterministic models. Among 

many other issues, the effect of collusion between auditees and auditors has received special attention 

(Kofman and Lawarrée, 1993). The consequences of commitment vs. no-commitment assumptions in an 

auditing procedure have also been examined with the analytical tools of modern incentives theory (Graetz, 

Reinganum and Wilde, 1986; Melumad and Mookherjee, 1989). 

Optimal auditing has been extensively analyzed in the accounting literature. Strategic auditing in 

financial reporting games is developed by Morton (1993), Newman, Patterson and Smith (2001) and Pae 

and Yoo (2001), just to name a few. The emphasis is put on the interaction between internal and external 
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monitoring and on the trade-off between types 1 or 2 errors in financial auditing by Shibano (1990), 

Baiman and Rajan (1994), and Caplan (1999), on the links between accounting systems, audit policies and 

managers’incentives by Christensen, Demski and Frimor (2002), on the auditor’s legal liability by Dye 

(1993) and Narayanan (1994), and on the conflicts of interest when auditors also provide management 

advisory services by Simunic (1984) and more recently by Antle et al. (2006) among others. 

In such an asymmetric information setting, it is in the interest of principals to use signals on agents’ 

types or actions when deciding whether a costly verification should be performed. Scoring techniques are 

then most useful since they help to identify suspicious files to be audited as a priority by associating 

scores. However, almost all theoretical approaches have completely ignored the role of scoring in the 

design of an optimal auditing strategy1. The present paper tries to fill this gap by bringing together 

auditing and scoring within a unified costly state verification approach and by applying the model to 

insurance claim fraud. In doing so, we shall build a model of optimal auditing which is much more closely 

related to auditing procedures actually used by insurers (or other principals) than abstract auditing models. 

Scoring will signal whether an audit should be performed or not, depending on the signals perceived by 

the insurer: This will be called a “red flags strategy”. In fact, we shall build a model where the optimal 

auditing strategy actually takes the form of such a red flags strategy. 

Insurance fraud provides a fascinating case study for the theory of optimal auditing, and particularly 

for connecting the scoring methodology with the theory of optimal costly state verification. In recent 

years, the economic analysis of insurance fraud has developed along two branches. The first branch is 

mostly theoretical. It aims at analyzing the strategy adopted by insurers faced with claims or application 

fraud. The most usual setting for this literature is a costly state-verification model in which insureds have 

private information about their losses and insurers can verify claims by incurring an audit cost. Important 

assumptions are made relative to the ability of insurers to commit to an auditing policy and to the skill of 

defrauders in manipulating audit costs, i.e. to make the verification of claims more difficult.2 The second 

branch of the literature on insurance fraud is more statistically based: It focuses mainly on the significance 

of fraud in insurance portfolios, on the practical issue of how insurance fraud can be detected, and on the 
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scope of automated detection mechanisms in lowering the cost of fraudulent claims.3 The scoring 

methodology is one of the key ingredients in this statistical approach. 

Using scoring techniques to predict fraudulent behavior is also the purpose of active research in other 

fields and particularly in accounting. A number of studies have investigated the relationship between 

financial statement fraud and corporate governance features (Dunn, 2004; Dechow et al., 1996; Beasley, 

1996) or financial-related warning variables (Dechow et al., 1996; Beneish, 1997; Summers and Sweeney, 

1998). More recently, Skousen and Wright (2006) and Dechow et al. (2007) have used data on Accounting 

and Auditing Enforcement Releases (AAERs) issued by the Security and Exchange Commission to 

identify variables that are correlated with accounting fraud. In particular, Dechow et al. (2007) develop a 

logistic model to estimate the probability of misstatements as a function of accruals quality measures, 

performance measures and market-related measures. The output of this analysis is a fraud score, i.e. the 

probability that a firm has engaged in an earnings misstatement, which can be used as a screening device 

to signal the need for more thorough audit investigation. 

The present paper shares a common interest with this strand of research in the sense that we develop 

a scoring approach to fraud detection. However instead of limiting ourselves to a purely statistical 

approach (i.e. identifying fraud signals and estimating the probability of fraud), we put the insurance fraud 

detection problem into the context of a cost minimizing insurance company where the behavior of 

defrauders is explicitly described. We characterize the optimal scoring based audit strategy in a setting 

where the audit cost, the deterrence effect of fraud investigation, the insurer’s commitment to fraud 

detection and the ability of defrauders to manipulate signals are taken into account. 

Our approach reconciles an important result of optimal audit theory with the widespread practice of 

insurance companies. Indeed, on one hand, theory predicts that an optimal auditing strategy should be 

random. In other words, claims should be audited with probability less than one. Indeed, filing fraudulent 

claims is a strictly dominated strategy for opportunistic policyholders if claims are always audited 

(assuming that audit allows the insurer to detect fraud with certainty). In such a case, slightly decreasing 

the audit probability would allow insurers to reduce their audit costs without inciting policyholders to 
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fraud. On the other hand, factual evidence suggests that insurers tend to systematically audit certain claims 

and to directly pay the other ones, depending on the available information on policyholders’ and on the 

perceived red flags. Our model will show that such a red flag strategy is in fact the key ingredient of a 

random auditing strategy, when individuals cannot perfectly control the fraud signals perceived by the 

insurers. From the insurers’ standpoint, the auditing strategy is deterministic (the optimal audit decision is 

actually a non-random function of red flags) but it is random for the policyholders. 

We will also derive some consequences of our results for the implementation of the optimal auditing 

strategy. Firstly, it will be shown that such a strategy requires a strong commitment from insurance 

companies. More explicitly, the optimal strategy does not amount to perform an audit if and only if the 

expected benefits of auditing (i.e. the expected value of possibly detected fraudulent claims) exceed the 

audit cost. Indeed, claims are verified in order to detect fraud but auditing also acts as a deterrence device. 

The deterrence objective requires auditing some claims although the investigation cost may exceed the 

expected benefits that the insurer may get from verification. Secondly, we will show that the optimal 

proportion of successful audits depends on the policyholders’ type (more precisely on the particulars that 

can be observed by the insurer)4, which affects the incentive scheme that should be offered to the 

insurance staffs in charge of verifying claims. 

In the empirical part of the paper, we will calibrate our model by using data on automobile insurance 

(theft and collision) from a large European insurance company and we will derive the optimal auditing 

strategy. As a final outcome, our analysis yields an easily automated procedure which may be viewed as a 

prototype for the kind of insurance fraud detection mechanisms that are now more and more used by large 

insurance companies. 

Section 2 presents the theoretical model while Section 3 derives the optimal auditing strategy and its 

main implications. Section 4 extends the model to the cases where defrauders can manipulate fraud signals 

or have imperfect information about the insurer’s auditing strategy. The application of the model to the 

portfolio of an insurer begins with Section 5 where the regression analysis is presented. Sections 6 and 7 
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outline the model calibration and its results. Section 8 concludes. Proofs, robustness tests, and variables 

description are in the appendices available at http://neumann.hec.ca/gestiondesrisques/Opt-Auditing.pdf. 

2.  The model 

We consider a population of policyholders who differ from one another in the moral cost of filing a 

fraudulent claim. For the sake of notational simplicity, all individuals own the same initial wealth and they 

all face the possibility of a monetary loss L with probability π with 0 < π < 1. We simply describe the 

event leading to this loss as an “accident”. 

All individuals are expected utility maximizers and they display risk aversion with respect to their 

wealth. Let u be the state dependent utility of an individual drawn from this population. u depends on final 

wealth W but it also depends on the moral cost incurred in case of insurance fraud: ( ,u u W )ω=  in case of 

fraud and  otherwise, where ω is a non-negative parameter which measures the moral cost of 

fraud to the policyholder. We assume that  where  is for the first derivative 

and  is for the second derivative and that ω is distributed over 

( ,0u u W= )

1 11 20, 0 and 0u u u> < < iu

iiu R+  among the population of 

policyholders. In other words, individuals who choose to defraud incur more or less high moral costs. 

Some of them are purely opportunistic (their moral cost is very low) whereas others have a higher sense of 

honesty (their moral cost is thus higher). Note that moral cost is private information held by the insured.5 

For notational simplicity we assume that all the individuals have taken out the same insurance 

contract. This contract specifies a level of coverage t in case of an accident and a premium that should be 

paid to the insurer. If there is no fraud, we have W = 0W L t− +  in case of an accident and W =  if no 

accident occurs where  is the initial wealth net of the insurance premium. Each individual in the 

population is characterized by a vector of observable exogenous variables 

0W

0W

θ , with θ   Θ ∈ ⊂ mR . The 

moral cost of fraud may be statistically linked to some of these variables.6 Let ( )H ω θ  be the conditional 

cumulated distribution of ω over the population of type-θ  individuals, with a density ( )h ω θ . 
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Our model describes insurance fraud in a very crude way. A defrauder simply files a claim to receive 

the indemnity payment t although he has not suffered any accident. If a policyholder is detected to have 

defrauded, he will receive no insurance payment and must in addition pay a fine B to the government.7 Let 

fQ  be the probability that a fraudulent claim is detected; this probability is the outcome of the insurer's 

antifraud policy and it depends on the observable variables θ  as we shall see in Section 3. 

When an individual has not suffered any loss, his utility is written as ( )0 ,0u W  if he does not 

defraud. If he files a fraudulent claim (i.e. if he claims to have suffered an accident although this is not 

true), his final wealth is  if he is not detected and 0W W t= + 0W W B= −  if he is detected. An individual 

with moral cost ω decides to defraud if he expects greater utility from defrauding than staying honest, 

which is written as: 

( ) ( ) ( ) (0 01 , ,f fQ u W t Q u W B u Wω ω− + + − ≥ )0 ,0 .  

This inequality holds if ( ) ,fQω φ≤  where function ( ) [ ]: 0,1p Rφ +→  is implicitly defined by: 

( ) ( ) ( ) ( )0 01 , ,p u W t pu W B u Wφ φ− + + − = 0,0 00 p p if ≤ ≤  

and  if ( ) 0pφ = 0 1p p≤ ≤  where  is given by 0p

( ) ( ) ( ) ( )0 0 0 0 01 ,0 ,0p u W t p u W B u W− + + − = ,0  

with 0 <  < 1 if B > 0 and  if B = 0.  is the audit probability that deters an individual with no 

moral cost (ω = 0) from defrauding. We have

0p 0 1p = 0p

( )0 0>φ , ( )0 0pφ =  and ( )' 0pφ <  if  00 .p p< < ( )fQφ  

is the critical value of the moral cost under which cheating overrides honesty as a rule of behavior. When 

 the higher the probability of being detected, the lower the threshold of the moral cost and thus 

the lower the frequency of fraud. When , there is no more fraud.

0pfQ <

0p≥fQ 8 

 When a policyholder files a claim — be it honest or fraudulent — the insurer privately perceives a 

k-dimensional signal { }1 2, ,...,σ σ σ σ∈ l = ∑ . Hereafter, k will be interpreted as the number of fraud 
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indicators (or red flags) privately observed by insurers. Fraud indicators are claim-related signals that 

cannot be controlled by the defrauder and that should make the insurer more suspicious9. When all 

indicators are binary, then  and 2k=l σ  is a vector of dimension k all of whose components are 0 or 1: 

component j is equal to 1 when indicator j is “on” and it is equal to 0 when it is “off”. 

 Let f
ip  and  be respectively the probability of the signal vector n

ip σ  taking on configuration iσ  

when the claim is fraudulent and when it corresponds to a true accident (non-fraudulent claim), i.e.: 

( );= =f
iip P Fσ σ  ( )n

i ip P Nσ σ= =  

with i = 1,...,ℓ, where F and N refer respectively to “fraudulent” and “non-fraudulent” and P(•) denotes 

probability10. Of course, we have: 

1 1
1fn

i i
i i

p p
= =

= =∑ ∑
l l

. 

The probability distribution of signals is supposed to be common knowledge to the insurer and to the 

insureds. For simplicity of notations, we assume n
ip  > 0 for all i = 1,...,ℓ and w.l.o.g. we rank the possible 

signals in such a way that11 

1 2

1 2
...

f f f

n n n
p p p

p p p
< < < l

l

. 

This ranking allows us to interpret { }1,...,∈ li  as an index of fraud suspicion. Indeed let ( )P F θ  be 

the proportion of fraudulent claims among the claims filed by type-θ  individuals. Section 3 will show 

how ( )P F θ  can be deduced from the insurer’s auditing strategy. Bayes law shows that the probability of 

fraud conditional on signal  and type iσ θ  is: 

( )
 ( )

( ) ( )( )
,

1

f
i

i f n
ii

p P F

p P F p P F

θ
P F σ θ  (1) 

θ θ+ −
=

which is increasing with i. In other words, as index i increases so does the probability of fraud. 
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3.  Auditing strategy 

The insurer may channel dubious claims to a Special Investigative Unit (SIU) where they will be 

verified with scrupulous attention. Other claims are settled in a routine way. The SIU referral serves to 

detect fraudulent claims as well as to deter fraud. We assume for simplicity that an SIU referral always 

allows the insurer to determine beyond the shadow of a doubt whether a claim is fraudulent or not. In 

other words, the SIU performs perfect audits. An SIU claim investigation costs c to the insurer with c < t. 

The insurer’s investigation strategy is characterized by the probability of an SIU referral, this 

probability being defined as a function of individual-specific variables and claim-related signals. Hence, 

we define an investigation strategy as a function [ ]:q Θ×∑→ 0,1 .  A claim filed by a type-θ policyholder 

is transmitted to the SIU with probability ( ),q θ σ  when signal σ  is perceived. 

Let ( )fQ θ  – respectively ( )nQ θ  – be the probability of an SIU referral for a fraudulent –non-

fraudulent – claim filed by a type-θ individual. ( )fQ θ  and ( )nQ θ  result from the insurer's investigation 

strategy through: 

 ( )fQ θ = ( )
1

,f
ii

i
p q θ σ

=
∑
l

;  ( )nQ θ = (
1

,n
i

i
p q )iθ σ

=
∑
l

 (2) 

In particular, a type-θ defrauder knows that his claim will be subjected to careful scrutiny by the SIU 

with probability ( )fQ θ . The insurer knows that, given his investigation strategy, truthful claims filed by 

type-θ individuals are mistakenly channeled to the SIU with probability Q ( )n θ . 

The total expected cost of fraud includes the cost of investigation in the SIU and the cost of residual 

fraud (fraudulent claims not detected). A type-θ individual has an accident with probability π and in such a 

case his claim will be channeled to the SIU with probability ( )nQ θ . If he has not had an accident, he may 

decide to file a fraudulent claim, and he will actually do so if his moral cost ω is lower than ( )( )fQφ θ  

which occurs with probability ( )( )( )fH Qφ θ θ . Hence, the expected investigation cost is: 
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 cπ Eθ  ( )nQ θ + c(1 – π) Eθ ( )fQ θ ( )( )( )fH Qφ θ θ  (3) 

where Eθ  denotes the mathematical expectation operator with respect to the probability distribution of θ  

over the whole population of insureds. The cost of residual fraud is written as: 

 t (1 – π) ( )( )1 fE Qθ θ− ( )( )( )fH Qφ θ θ  (4) 

The total expected cost of fraud is obtained by adding up (3) and (4). An optimal investigation 

strategy minimizes this total expected cost with respect to ( ) [ ]: 0q ⋅ Θ×Σ→ ,1 . Such a strategy is 

characterized in the following proposition. 

Proposition 1:  An optimal investigation strategy is such that 

 ( ), 0iq θ σ =  if ( )*i i θ< ;  ( ) ( ], 0iq θ σ ∈ ,1  if ( )*i i θ= ;  ( ), 1iq θ σ =  if ( )*i i θ>  

where ( ) { }* 1,...,i θ ∈ l  is a critical suspicion index that depends on the vector of individual-specific 

variables. 

Proposition 1 says that an optimal investigation strategy consists in subjecting claims to an SIU 

referral when the suspicion index i exceeds the individual-specific threshold ( )*i θ , or equivalently when 

the probability of fraud is larger than a type-dependent threshold. Hence the insurer plays a so-called red 

flags strategy: for some signals iσ  − those for which  i > ( )*i θ − claims are systematically audited at 

SIU, while there is no audit when ( )*i i θ< 12. Furthermore the optimal red flags strategy is type-

dependent: if iσ  is perceived and ( ) ( )*i0*i i 1θ θ< < , then the claim should be sent to SIU if it has been 

filed by a type- 0θ  individual but no special investigation should be performed for a type- 1θ  insured. 

Let ( ) ( ) ( )( ), 1= −Q H Qτ θ π φ θ  and ( ) ( ) ( )( ) ( )( ), ' 0= − >Q Q Q h Q H Qη θ φ φ θ φ θ . ( ),Qτ θ  

is the fraud rate, i.e. the average number of fraudulent claims for a type-θ  insured, when the probability 

of being detected is equal to Q.13 ( 1,Q )η θ  is the elasticity of the fraud rate (in absolute value), i.e. the 

percentage decrease in the fraud rate following a one percent increase in the probability of detection. 
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Proposition 2: Assume that ( ) ( )( )1−Q H Qφ θ  is convex in Q. If ( ) (1 0, ,Q Q )τ θ τ θ≥  and 

( ) ( )1, ,Q Q 0η θ η θ≥ , with at least one strong inequality, then ( ) )1 0
f fQ Q ( ) ( ) (1, n nQ Q 0θ θ θ> > θ  and 

( ) ( )1 0* *i iθ θ≤ . 

( ) ( )( )1−Q H Qφ θ  is the rate of undetected fraud among the type-θ  individuals who have not 

suffered any accident. It is decreasing from ( )( )0H φ θ  > 0 to 0 when Q goes from 0 to . The 

convexity assumption made in Proposition 2 conveys the decrease in the marginal deterrence effect when 

the fraud detection probability is increasing. Auditing will cut fraud costs all the more efficiently if the 

insured belongs to a group with a high fraud and/or elasticity rate, hence the statement in Proposition 2. 

0p

The conditional probability of fraud ( ),iP F σ θ  is given by (1) with 

 ( )
( ) ( )( )( )
( ) ( )( )( )

1

1

f

f

H Q
P F

H Q

π φ θ θ
θ

π π φ θ θ

−
=

+ −
. (5) 

When signal iσ  is perceived, the expected benefit of an SIU investigation is ( ),i t cσ θP F − . 

Proposition 3 shows that the optimal investigation strategy involves transmitting suspicious claims 

to the SIU in cases where the expected benefit of such a special investigation may be negative and 

consequently it highlights the importance of the insurer’s commitment. 

Proposition 3: If ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )2
* * * 1 * 1/ / , ,− −− < − − +f fn n

i i i ip p p p c Q Q t c t c c Qθ θ θ θ , ,πη θ τ θ η θ
 

then the optimal investigation strategy is such that ( )( )* , .<iP F t cθσ θ  

The condition introduced in Proposition 3 ensures that the increase in ( ),iP F σ θ  is small when we 

go from ( )* 1= −i i θ  to ( )*=i i θ , which makes sense when l  is large. The Proposition means that there 

exists ( )**i θ  larger than ( )*i θ  such that: 

 ( )( ) ( )( )** ** 1, +≤ <i iP F t c P F tθ ,θσ θ σ θ . (6) 
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Forwarding the claim to the SIU is profitable only if the suspicion index i is larger than ( )**i θ . 

Hence, it is optimal to channel the claim to the SIU when ( ) ( )* *i i i *θ θ≤ ≤ , although in such a case the 

expected profit drawn from investigation is negative. Indeed the investigation strategy acts as a deterrent: 

It dissuades some insureds (those with the highest moral costs) from defrauding. Such a strategy involves 

a stronger investigation policy than the one that would consist in transferring a claim to the SIU when the 

direct monetary benefits expected from investigation are positive. A consequence of this result is that the 

SIU should not be organized as a profit center of the insurance company, for otherwise its objective would 

be in conflict with the implementation of the optimal auditing strategy. 

In practice, when  is large, l n
ip  and f

ip  are very small and we can write ( ) ( )( )*fQ iθ λ θ=  and 

( ) ( )( )*nQ iθ μ θ= , where14 

 ( ) f
j

j i
i pλ

=
= ∑

l

 and ( ) n
j

j i
iμ

=
= p∑

l

. (7) 

( )iλ  and , which are decreasing functions, respectively denote the probability of channeling a 

fraudulent claim and a non-fraudulent claim to the SIU when the critical index of suspicion is i. Using 

Proposition 1 allows us to reduce the insurer’s optimization problem to the choice of the type-dependent 

suspicion threshold: i

( )iμ

( )* θ  minimizes the total expected cost of fraud 

 ( ) ( ) ( )( )( ) ( ) ( )( )( )1c i H i c i t iπμ π φ λ θ λ λ+ − + −1  (8) 

with respect to i ∈ {1,...,ℓ}. For a type-θ  individual, the expected cost attributable to fraud is the sum of 

 ≡ cπμ(i) which is the expected investigation cost of non-fraudulent claims that are incorrectly 

referred to the SIU (i.e. the cost of type-2 errors) and of 

( )nC i

 ( ) ( ) ( )( )( ) ( ) ( )( )( ), 1 1fC i H i c i t iθ π φ λ θ λ λ= − + −  

which is the expected cost of fraudulent claims. This cost includes the investigation cost of the claim 

channeled to the SIU and the cost of paying out unwarranted insurance indemnities.  and ( )nC i ( ),fC iθ  
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are respectively decreasing and increasing15 with respect to i. The optimal investigation strategy trades off 

excessive auditing of non-fraudulent claims against inadequate deterrence and detection of fraudulent 

claims. The optimal critical suspicion index ( )*i θ  minimizes  + ( )nC i ( ),fC iθ . 

(Figure 1 about here) 

The optimal auditing policy is illustrated by the full lines in Figure 1. When i* decreases from ℓ to 

1,  and ( )*iμ ( )*iλ

)

 go from 0 to 1. In the literature on classification techniques, the locus 

( )( ( ){ }* ,μ λ * ...li i , * 1,=i  is known as the Receiver Operating Characteristic (ROC) curve (Viaene, et 

al., 2002). The monotonicity of /f n
iip p  with respect to i implies that the ROC curve is concave. The 

optimal auditing procedure minimizes the expected cost of fraud with respect to (μ, λ), under the constraint 

that (μ, λ) is on the ROC curve. Figure 1 shows the dependence of the optimal solution on the agent's type. 

If the fraud rate and the fraud elasticity are larger for 1θ  than for 0θ , then isocost curves single cross as in 

Figure 1, with larger optimal audit probability for , which illustrates Proposition 2. 1θ

In practice (and particularly for the calibration on real data), we may assume that the activity of the 

SIU is budget-constrained: Antifraud expenditures should be less than some (exogenously given) upper 

limit K, which gives the following additional constraint:16 

 ( ) ( ( )) ( )( )( )1c E Q c H Qπ θ θ φ θ+ −n fE Qθ θπ f Kθ ≤ . (9) 

An optimal investigation strategy then minimizes the total expected cost of fraud with respect to 

 subject to (9). Corollary 1 shows that the qualitative characterization of the antifraud 

policy is not affected by the addition of this upper limit on possible investigation expenditures. 

( ) [:q ⋅ Θ×∑→ ]0,1

Corollary 1: Propositions 1 and 2 are still valid when the investigation policy is budget constrained. 

Under the optimal decision rule, a claim with signal iσ  is audited when ( )*≥i i θ . For type-θ 

individuals, the hit rate (i.e. the proportion of successful audits for each investigator at SIU) is then: 
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( )

( ) ( )
( ) ( ) ( ) ( )

1
1 1

≡
+ ⎡ ⎤+ −⎣ ⎦

f

f
P F Q

X P F Q P F Qθ

θ θ
nθ θ θ θ

)

. (10) 

We may check that this hit rate varies with θ. In other words, the optimal investigation policy does 

not equalize the probability of success (i.e. of catching defrauders) across individuals’ types. See 

Appendix A2 for an illustration. 

The fact that the optimal hit rate is type-dependent affects the incentive mechanism that should be 

used by the insurance company to stimulate the activity of its staffs at SIU. In particular, paying a constant 

bonus each time SIU staffs catch a defrauder whatever his type is not an optimal incentive mechanism 

since it would lead investigators to concentrate on the claims with the highest hit rates and to neglect the 

other claims. At equilibrium, the hit rate would be the same for all audited claims and it would be lower 

for non-audited claims, which would not be optimal. On the contrary, if SIU staffs receive a bonus 

(1b K Xθ θ= +  for any type-θ hit, with K > 0, and if they are risk neutral with respect to their global 

earnings, then their own financial interest will not be in conflict with the optimal audit policy of the 

insurance company. In other words, the lower the probability of success, the larger must be the bonus to 

the auditor when a defrauder is caught.17 

4.  Extensions 

4.1  Signal manipulations by defrauders 

So far we have assumed that fraud signals cannot be manipulated by policyholders. We now extend 

our model to a case where defrauders may affect signals perceived by the insurer. To keep matters as 

simple as possible, we assume that there are k binary fraud indicators, each of them taking value 0 or 1, 

with . In what follows, “switching off” indicator 2k=l j  means changing ijσ  from 1 to 0 in the case 

indicator j would have been equal to 1 if there were no signal manipulation activity. 

Potential defrauders are heterogeneous with respect to their ability to manipulate signals and this 

ability cannot be observed by the insurer. The distribution of manipulation ability among policyholders is 

described by random vector , where the random variable ( ) [ ]1,..., 0,1= ∈ k
ks s s js  denotes the probability 
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for the defrauder to be able to switch off indicator j. When a type-s individual knows in advance (i.e. 

before filing a fraudulent claim) whether he will be able or not to switch off indicator j, we have 1=js  or 

0. However our formulation includes the case where defrauders are unsure as to whether they will be in a 

position to switch off some indicators. Hence an individual is now characterized by observable 

characteristics θ and two unobservable characteristics: the moral cost of fraud ω and the signal 

manipulation ability s. For notational simplicity, we assume that s is not correlated with θ and ω.18 Let 

f
jα  be the probability that indicator j is on when the file is fraudulent, assuming that the defrauder does 

not engage in signal manipulation activity. Likewise indicator j is on with probability n
jα  when the claim 

is not fraudulent with f
jα  > n

jα . Hence, in the absence of signal manipulation, indicator j is more 

frequently generated when the claim is fraudulent than when it is honest. 

A high degree of manipulability may fully cut out some fraud indicators of their informativeness. In 

what follows we consider a simple case where this is not the case, which requires that jEs  is not too large 

for all indicators j = 1,…,k. We also assume that the probability distributions of the k indicators are 

independent conditional on the fact that the claim is fraudulent or non fraudulent. Under this conditional 

independence assumption, when defrauders do not manipulate signals, we have: 

( ) ( )
1 0

1f f f
ii j

ij ijj j
F

σ σ
σ σ α α

= =
= = = − jp P Π Π  (11) 

 ( ) ( )
1 0

1n n n
i i j j

ij ijj j
N

σ σ
p P σ σ α α

= =
= = = −Π Π

i

 (12) 

for all . Defrauders with manipulation ability s generate signal 1,...,= li σ  with probability 

( ) ( ) ( )
1 0

1 1
= =

= − − +Π Πf f f f
j ji j j

ij ijj j
p js s s

σ σ
α α α . (13) 

The optimal audit strategy minimizes the total expected cost of fraud which may be written as 

( ) ( ) ( ) ( )( ) ( )( )( ),1 , ,f f
sc E Q E t t c Q s H Q sθ θ

n
 

π θ π+ − θ φ θ θ− −  (14) 
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where ( )nQ θ  is given by (2) and 

 ( ) ( ) (,
1

f f
iiQ s p s q

i
), .θ θ σ=

=
∑
l

 (15) 

Proposition 4:  An optimal investigation strategy under manipulation of fraud signals is characterized by 

a threshold  and weights  for all θ, s such that ( ) 0>L θ ( ), 0>sδ θ

( ), 0iq θ σ =   if  ( ) ( )
f
i

n
i

p
L

p

θ
θ<  

( ), 1iq θ σ =   if  ( ) ( )
f
i

n
i

p
L

p

θ
θ>  

where  ( ) ( ) ( ),⎡= ⎣
f f

s ii
⎤
⎦p E s p sθ δ θ  for all i and ( ), 1.=sE sδ θ  

Proposition 4 extends our results on the optimality of the red flags strategy to the case where fraud 

indicators can be manipulated by defrauders. Claims are not audited when the insurer perceives signals iσ  

such that ( ) ( )
f
i

n
i

p
L

p

θ
θ<  and they are systematically audited when ( ) ( )

f
i

n
i

p
L

p

θ
θ> , where ( )f

ip θ  is a 

weighted average of the ( )f
ip s , with weight ( ), sδ θ .19 Equivalently a SIU referral should be triggered 

when the probability of fraud is large enough, under the assumption that the population of type-θ 

defrauders is similar to a representative defrauder who sends out signal iσ  with probability ( )f
ip θ . 

For the sake of consistency, it remains to be checked that it is in the interest of defrauders to switch 

off fraud indicators when possible. Consider two vector signals iσ  and 'iσ , and indicator h such that 

0ihσ = , ' 1i hσ =  and 'ij i jσ σ=  for all ≠j h . Let 

( ) ( ) ( )'
'

'

f f
i i

ii n n
i i

p p
A

p p

θ θ
θ ≡ − . 
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Proposition 4 shows that ( ) ( )', ,≥i iq qθ σ θ σ  if ( )' 0≥iiA θ . Hence a sufficient condition for 

switching off indicator h to be an optimal strategy of defrauders may be written as  for all 

signals 

( )' 0≥iiA θ

iσ  and 'iσ  with the above characterization.20 A simple calculation gives 

 ( ) ( )
( ) ( )

( ) ( )
'

1 0

111
,

11

f fff n jj jjjh hh
ii s n nn n

j jh h
j h j h
ij ijj j

sss
A E s

σ σ

α ααα α
θ δ θ

α αα α
≠ ≠
= =

⎧ ⎫
⎪ ⎪− +−− −⎪ ⎪= ⎨ ⎬

−−⎪ ⎪
⎪ ⎪⎩ ⎭

Π Π . 

When the js  are independently distributed, we can check that 

 ( )
( )

( )

Max ,
1 Min ,

f n
h hh

ssEs
ss

δ θ
α α

δ θ
− ≥  (16) 

is a sufficient condition for ( )' 0≥iiA θ . The case where all defrauders have the same manipulation ability 

s is simpler. (16) is then replaced with ( )1− >f n
hh s hα α , which simply means that indicator h is still 

informative about fraud despite the fact that a proportion hs  of defrauders are able to switch it off. The 

ROC curve shifts downward when the manipulation ability of the representative defrauder goes from 0 to 

s, hence an efficiency loss as shown by the dotted lines in Figure 1. 

4.2  Imperfect information on the auditing strategy 

So far we have assumed that potential defrauders can observe the audit probability ( )fQ θ .21 

Although such an assumption is widely made in the literature on optimal auditing, one may argue that 

individuals have imperfect information about the insurer's auditing strategy: they just have beliefs about 

the probability of being spotted if they defraud. However beliefs may be affected by actual auditing 

decisions either when insurers spread information about their claims verification procedure or from other 

insureds by word of mouth. We can check that our conclusions still hold in such a setting. 

Let us focus on the case where signals cannot be manipulated. Assume that policyholders do not 

know ( )fQ θ . Prior to the current period, they just have subjective beliefs ( )%Q θ  about the audit 
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frequency. ( )%Q θ  is a random variable which is distributed on [0,1]. Let T be the number of fraudulent 

claims an individual has heard of during the current period before making up his (her) mind to file a 

fraudulent-claim or not.22 T is random with probability ( )P T  for T = 0,1,2... and . For each 

claim in this sample, the individual knows whether it has been audited or not. Let 

( )
0

1
t

P T
+∞

=
=∑

{ }0,1,...,X T∈  denote 

the number of claims which have been audited among the T claims sample. X is distributed according to a 

binomial law ( )( ), fQB T θ . Type-θ individuals decide to defraud on the basis of the revised belief 

( )( ),%E Q Xθ T , which is the expected value of ( )%Q θ  conditionally on X,T.23 Since type-θ individuals file 

a fraudulent claim if ω ≤ ( )( )( ),%E Q X Tφ θ , their average fraud rate is written as 

 ( ) ( ) ( ))( ( )(( ))1 , ,
+∞

⎡
0 0= =

⎤− ⎣ ⎦∑ ∑ %
T

T X
P T P X E Q X TfT Q Hπ θ φ θ θ  (17) 

Substituting (17) to ( ) (( ))1 fH Qπ φ θ θ⎡
⎢⎣

⎤
⎥⎦

(fQ

−  in (3) and (4) lets our results qualitatively unchanged. 

Indeed the fraud rate remains a decreasing function of )θ  because, for any value of T, an increase in 

( )fQ θ  shifts the distribution of X in the sense of first order dominance and ( ),( )%E Q X Tθ  is increasing 

in X. In particular, Proposition 1 on the optimality of red flags strategies and its consequences still hold. 

This approach can be easily extended to the case where individuals can manipulate signals by substituting 

 to ( ,fQ θ ) fQ ( )θ  and possibly by conditioning prior beliefs ( )%Q θ  on s. s

5.  Regression Analysis 

Data are drawn from the automobile claims (theft and collision) of a large European insurer. Its 

audit strategy uses fraud indicators that are analyzed by an investigators team. Some of these claims had 

been spotted as fraudulent by the investigators, while other ones could be reasonably considered as 

truthful. The first group of files (A) comes from the company’s SIU. This is the population of claims 

referred to this unit over a given period by claims handlers suspecting fraud. Of the 857 files referred to 
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the SIU, 184 contained no fraud and 673 were classified as cases of either established or suspected fraud. 

As in Belhadji et al. (2000), we considered all these 673 files as fraudulent. The second group of files (B) 

was selected from the population of claims that the insurer did not think contained any type of fraud 

during the same period of time. We first chose to randomly select only about 1,000 files in the control 

group, because the cost of compiling information on fraud indicators is very high. Over the 1,000 selected 

claims in group B, 945 were classified as without fraud. The 55 remaining files contained some indication 

of fraud. The 184 files without any fraud in A were transferred to B, yielding two groups of files (A’ with 

fraud and B’ without fraud) and showing that 37% of the files contained established or suspected fraud. 

The 55 files with some suspicion of fraud in B were not included in A’. 

The econometric analysis allowed us to identify relevant variables that are correlated with the 

frequency of fraudulent claiming, i.e. fraud indicators or individual characteristics. For that purpose, we 

used the standard Logit model for binary choice. 

(Table 1 about here) 

Table 1 reports the regression results. A detailed description of the variables is presented in 

Appendix A4. The first column (without θ  variables) in Table 1 is limited to variables identifying fraud 

indicators (the so-called red flags jσ )24. All these variables are significant in explaining (positively) the 

probability that a file may contain either suspected or established fraud at a level of at least 95% (with one 

exception at 90%). The second column yields similar results but takes into account two additional θ  

variables that represent characteristics of policyholders. In connection with the theoretical part of the 

paper, these variables are used to approximate the individual private cost of fraud which includes a pure 

moral cost component but also a monetary cost component. For the sake of brevity, we here restrict 

attention to two significant variables: 7θ  and 16θ  indicate owners of vehicles whose value does not match 

the policyholder’s income and which are not covered by damage insurance (i.e. have third party insurance 

only). Implicitly, it is suggested that such people have a lower moral cost, hence a higher probability for 

filing a fraudulent claim.25 
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6.  Model Calibration 

Our sample didn’t include a realistic proportion of fraudulent claims. Having the true proportion of 

fraudulent claims is not important for regression analysis but it is essential for the calibration of the 

optimal auditing model. We used bootstrapping techniques in order to obtain a final sample representing 

the estimated proportion of fraudulent claims in the company’s portfolio (8%). Details are in Appendix 

A5. We now tackle the innovative part of the empirical analysis related to the calibration of the theoretical 

model. 

Let ( )π̂ θ  be the probability that a type-θ individual files a claim during a one-year time period 

when there is no auditing (which is supposed to correspond to the status quo situation in the insurance 

company) and let t be the average cost of a claim for the insurer (average amount paid above the 

deductible). For the time being, we do not distinguish the groups of insureds: a type-θ  individual is thus a 

representative policyholder of the company. Data from the company give ( )π̂ θ  = 22% and t = €1,284. 

The audit cost c of a claim is equal to €280 (including investigation costs, lawyers fees, SIU overheads, 

…) and the current proportion of claims with fraud is ( ) ( ) 8%.θ =z P Fθ =  Since ( )π̂ θ  contains 

fraudulent claims, the true loss probability π  is given by ( ) ( )( )1 θˆ 0.2zπ π θ= − = 024 . From the above 

data ( ) ˆ(0, )τ θ τ= θ  can be approximated by ( )τ̂ θ =  ( ) ( ) 0.0176zπ θ θ =ˆ , which amounts to assuming 

that the observed current anti-fraud policy of the company does not entail any deterrence effect. 

Estimating the elasticity of fraud with respect to the audit probability can only be a matter of 

approximation: Indeed, the elasticity ( ,Q )η θ  depends on the distribution of moral costs in the population 

of policyholders as well as on the relationship between the audit probability, the moral cost, and the 

decision to file a fraudulent claim. In short, the elasticity of fraud with respect to Q depends on 

( )( )H Qφ θ  and θ . Such information is obviously unobservable. This is why we will content ourselves 

with an approximation of ( ),Qτ θ . We will assume: 
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 ( ) ( )( ) ( )ˆ, 1Q Q γ θτ θ τ θ= −  

where ( )γ θ  is a parameter used to define ( ) ( ) ( ),Q Qη θ γ θ 1 Q= − , the elasticity of the fraud rate with 

respect to Q . Increasing ( )τ̂ θ  and/or ( )γ θ  allows us to perform simple comparative static analysis in 

order to illustrate the effect of the fraud rate and/or the fraud elasticity on the optimal audit strategy. The 

expected cost of fraud can then be rewritten as: 

 ( ) ( ) ( )( ) ( ) ( )( )(ˆ 1c i i t i t cγ θπμ τ θ λ λ+ − − − )  (18) 

where ( )iλ  and  are given by (7). We will assume that the fraud indicators are independent 

conditional on the fact that the file is F or N.

( )iμ

26 f
ip  and  are then given by (11) and (12) which allows 

us to compute 

n
ip

( )iλ  and  for all i.( )iμ 27 The optimal threshold  is obtained by minimizing (18) with 

respect to i. 

*i

7.  Calibration results 

The calibration results are summarized in Table 2. Column 1 presents the identification indexes i of 

the signals iσ  including the threshold i*. Table 2 has 213 = 8,192 lines because the regression analysis 

identified 13 significant binary indicators. Signals in Column 2 result from various combinations of 0 and 

1 where 0 (resp. 1) means that an indicator is off (resp. on). For example, the first line in Column 2 

indicates that no significant fraud indicator is on. Line 2 indicates that only the 9th fraud indicator is on. 

Signals are ranked in such a way that /f n
iip p  is increasing, as shown in Column 3. 

(Table 2 about here) 

Columns 4 and 5 yield ( )iλ  and ( )iμ . Column 6 provides ( ) ( ),n fC i C iθ+ , the expected cost of 

fraud under the assumption ( ) 0γ θ = , i.e. ignoring the deterrence effect. Column 7 gives the average audit 

rate. Finally, the hit rate is at column 8. The optimal solution is at line 194 = (*i )θ  where the expected 

cost of fraud reaches its minimal value at €13.21. We then have ( )*iλ  = 0.67 and  = 0.04, which ( *iμ )
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means that 67% of the fraudulent claims are audited while only 4% of the non-fraudulent claims are 

audited. The optimal strategy entails auditing 9.23% of the files (column 7) with hit rate 

( )* 57.8%. P F i i> =

Sensitivity analysis allows us to illustrate Proposition 2. Restricting our sample to the claims files by 

policyholders such that 7 16 0θ θ= =  yields the fraud rate ( ) 5,83%z θ = , while ( ) 10.01%z θ =  when 

7 0θ =  and 16 1θ = . Still assuming ( ) 0γ θ =  gives * 25i 0=  with audit rate 6.44% and hit rate 62.10% 

when 7 16 0θ θ= =  and , with audit rate 15.84% and hit rate 69.52%. when * 157=i 7 0θ =  and 16 1θ = . 

We can also check that optimal auditing intensifies when ( )γ θ  is positive and the fraud elasticity 

increases (see Table 3 in Appendix). 

The monetary gains of auditing can be estimated as follows. The claims rate (over the whole 

portfolio) of the insurer is 22%, which represents about 500,000 claims for the corresponding time period. 

Without auditing, the total claim cost is 500,000 ×  €1,284 = €642 M, including 8% of fraudulent claims 

(€51 M). When the optimal auditing strategy of Table 2 is implemented, then 9.23% of the files are 

audited at average cost €280. Furthermore, 67% of the fraudulent claims are audited without any insurance 

coverage. However, 33% of the fraudulent claims would not be audited. The total cost (including paid 

claims and audit costs) will then be equal to 9.23% ×  500,000 ×  €280 + €591 M + 33% ×  €51 M = €621 

M. The optimal audit strategy thus entails a saving of €21 M, which represents 41% of the current cost of 

fraudulent claims. This reduction in cost would even be larger if the audit probability depends on the 

policyholders’ type and if the deterrence effect were taken into account. Appendix A7 shows how our 

numerical estimates are affected by the possibility of fraud manipulation. 

8.  Conclusion 

This article aimed at making a bridge between the theory of optimal auditing and the actual claims 

auditing procedures used by insurers. More generally, we have developed an integrated approach to 

auditing and scoring which is much more closely related to the actual auditing procedures used by 

insurers, bankers, tax inspectors or governmental regulatory agencies than the abstract costly state-
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verification modeling. A complete modeling has been developed for the detection of insurance fraud, but 

the same methodology could be adapted to other hidden information problems. 

We have shown that the optimal auditing strategy takes the form of a type dependent red flags 

strategy which consists in referring claims to the SIU when some fraud indicators are observed. The 

classification of fraud indicators corresponds to an increasing order in the probability of fraud and such a 

strategy remains optimal if the investigation policy is budget constrained. It is robust to some degree of 

signal manipulation and to imperfect information of policyholders. Because of its deterrence function, the 

optimal investigation strategy may lead to an SIU referral in cases where the direct expected gain of such 

a decision is negative. A strong commitment of the auditor is thus necessary for such a policy to be fully 

implemented. Finally the optimal hit rate depends on the policyholder’s type, which affects the optimal 

incentive mechanism of SIU staffs. The properties of the optimal audit strategy have been implemented by 

building a simple model of automobile insurance calibrated with data from a large European insurance 

company. 

Among the various possible extensions of this model, it would be particularly interesting to consider 

a multiperiod setting in order to analyze the adaptative behavior of defrauders who may progressively 

learn how to better conceal evidence on fraudulent claiming, as well as the reaction of insurers who adapt 

the set of red flags to the change in defrauders’ behavior. Another useful extension would consist in 

inserting the audit problem into a more global model of the insurance market. In particular some 

characteristics of the policyholders may then be affected by the audit strategy (e.g. an individual may 

choose to purchase an expensive car while thinking of cheating on his insurance contract). The interaction 

between the specification of the insurance contract and the audit strategy would then be of crucial 

importance. 
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Notes 

1 The papers by Knowles et al. (2001) and Persico (2002) are noteworthy exceptions to this separation between the 

literature strands on audit and scoring. They are about auditing strategies (more specifically automobile control by 

police officers) in a setting where auditors can condition the audit probability on the agents’ observable particulars 

and they focus on the detection of possible bias in the auditors’ behavior (e.g. racial bias in vehicle searches). 

2 Crocker and Morgan (1997) have developed a costly state falsification approach to insurance fraud which has 

conceptual similarities with the models of costly state verification with audit cost manipulation. Other references on 

this issue are Crocker and Tennyson (2002), and Picard (1999). See Picard (2000) for an overview. 

3 See Dionne and Gagné (2001, 2002), Derrig and Weisberg (2003), Artis et al. (2002) and Crocker and Tennyson 

(2002) for different econometric applications, and volume 69, no 3, of the Journal of Risk and Insurance, September 

2002, for a state-of-the-art presentation of claims fraud detection methods. 

4 A similar result is obtained by Persico (2002) in a different context. He analyses the behavior of police officers who 

choose whom to investigate when citizens of two groups may engage in crime. The equilibrium search is obtained 

when both groups have the same fractions of criminals, while maximal search effectiveness usually entails different 

hit rates between the two groups. 

5 The differences in moral cost may more generally reflect the heterogeneity in the private economic gains and losses 

derived from fraud. For instance, some defrauders may need to reach a more or less costly collusive agreement with 

service providers (e.g. car repairers) or, in a slightly different version of the model, some policyholders may face 

wealth constraints and those who have less to lose would choose to defraud. Our qualitative conclusions would be 

unchanged in such settings. 

6 θ  gathers the whole information about the policyholders that may be available to the insurer, including civil status, 

occupation, urban or rural environment and possibly income and wealth. θ  thus corresponds to a bundle of 

individual characteristics that may affect moral cost, hence the statistical link between ω and θ. There is no intrinsic 

ordering with respect to fraud propensity in the components of θ and moral cost may be affected by the interactions 

of these characteristics. For instance, in the case of car insurance, data may reveal that on average young urban 

drivers have less morality than older urban drivers (or conversely), while age does not affect the morality of rural 

drivers. A limitation of our study is that we consider the distribution of types among policyholders as well as their 

insurance contract as given. A most useful extension of the present paper would consist in inserting our analysis of 
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the optimal audit strategy in an insurance market model where insurers would interact and try to attract specific types 

of customers by making more or less advantageous offers to insurance seekers (and possibly by not offering any 

coverage to some types). Ideally, the (type dependent) insurance contracts, the distribution of policyholders’ types 

among insurers and their auditing strategies could then be jointly determined at the equilibrium of such a more 

general model. 

7 The penalty B does not play any crucial role in the model and B = 0 is a possible case. In a dynamic setting the cost 

to individuals caught defrauding may include a non-monetary reputation cost when defrauders have difficulty to get 

insurance in the future. 

8 If W0 and t were type dependent, then φ would be a function of p and θ without entailing any substantial 

consequence in the model. Note that laws prohibiting discrimination may prevent insurers from conditioning 

coverage or premium on type. 

9 See Section 4.1 on signal manipulation. 

10 We assume that f
ip  and n

ip do not depend on θ . See Appendix A8 for tests of this assumption. 

11 Of course if n
ip  = 0 and f

ip  > 0 then the optimal investigation strategy involves channeling the claim to SIU (see 

the definition and the role of SIU hereafter) when σ = σi. Indeed the claim is definitely fraudulent in such a case. 

12 The only case where a random investigation may be optimal is for i  = i*(θ). 

13 If type 0θ  morality dominates type 1θ  in the sense of moral cost first-order stochastic dominance, then 

( ) ( )0 1, ,Q Qτ θ τ θ<  for all Q. 

14 Hence, we here disregard the fact that we may have q(θ, σi) < 1 when i = i*(θ ). 

15 If c > t then C ( ),f iθ  may be (at least locally) decreasing in i and a corner solution at i  is possible. ( )* θ = l

16 Constraint (9) may also be the consequence of a fixed number of investigators at SIU, each of them being able to 

audit at most a certain number of claims. K/c then denotes the maximum number of audits per policyholder. 

17 See Appendix A3.1 for a simple model of auditors’ incentives that leads to this result and Appendix A3.2 for a 

discussion on the revelation principle in relation with the model of this article. 
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18 In a multiperiod setting, manipulation ability could be the outcome of a learning process. Since low moral cost 

individuals derive more advantage from learning how to cheat on their insurance policy, a negative correlation 

between manipulation ability and moral cost would then make sense. 

19 The proof of Proposition 4 shows that weights ( ), sδ θ

( ),f θ

( )(

 are proportional to the decrease in the expected cost of 

fraud from type θ,s individuals following a unit increase in the audit probability for these individuals. Hence, when 

increasing the audit probability entails more beneficial effects for type θ,s than for type θ,s’, the weight of group s 

should be larger than the weight of group s′. 

20 More precisely, under this condition it is optimal to manipulate indicators when all defrauders do so. 

21 When there is no signal manipulation, individuals do not need to know that the audit decision is made on the basis 

of fraud indicators: they just know the probability of being spotted if they file a fraudulent claim. Under signal 

manipulation, type θ,s individuals know that they will be spotted with probability Q s . 

22 In this modeling T cannot be chosen by defrauders, i.e. the defrauders’ learning procedure is exogenous. The 

model could be extended to a more realistic setting in which the T claims sample includes unknown proportions of 

fraudulent and non-fraudulent claims. 

23 The probability distribution of the revised beliefs follows from Bayes’ law by using the fact that X follows a 

binomial law ), fB T Q θ . If ( )Q θ% ( ) has a beta distribution, then ( ),E Q X Tθ%

/X T

 is a weighted average of the prior 

expected value and . 

24 Some indicators were directly available in the data warehouse while others were in the paper files. 

25 See footnote 5 for alternative interpretations. 

26 The conditional correlations are very small in our data set. The correlation tables are in Appendix A5. 

27 This procedure allows us to estimate the ROC curve. It is known in the literature as the simple Bayes classifier 

method which is equivalent to the Bayes optimal classifier only when all predictors are independent in a given class. 

It has been shown that this simple Bayes classifier often outperforms more powerful classifiers (Duda et al., 2001). 



Tables and Figures 
 
 

Figure 1 
 
 
 θ0 

μ(i) 

λ(i) 
θ1 

1 

ROC 
curves 

Isocost 
curves 

i* =1 

 
 
 
 

1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0  
 
 

i* = ℓ  
  

 30 



Table 1 
Regression Results 

 

  Without θ  variables With θ  variables 

jσ  Variable Parameter P Parameter P 

 Intercept 5.8157 <0.0001 6.4780 <0.0001 
1σ  Fraud alert by expert 1.6365 <0.0001 1.6299 <0.0001 
2σ  Fraud alert by external organizations 1.4072 <0.0001 1.4387 <0.0001 

12σ  Retroactive effect of the contract 0.2103 0.0674 0.2329 0.0455 
18σ  Delay in filing accident claim 0.1808 0.0087 0.1567 0.0247 
19σ  Falsified documents or duplicated bills 1.2227 <0.0001 1.2287 <0.0001 
20σ  Reluctance to provide original documents 0.6099 <0.0001 0.5980 <0.0001 
21σ  Variation in the initial claim 0.5681 <0.0001 0.5218 <0.0001 
22σ  Harassment to obtain quick settlement 0.6197 0.0001 0.5933 0.0004 
30σ  Lack of clarity in the accident description 0.3590 <0.0001 0.3546 <0.0001 
32σ  Abnormal high frequency of accident 0.2352 0.0075 0.2404 0.0068 
34σ  Claim maker different to policyholder 0.2044 0.0246 0.1999 0.0297 
35σ  Too long lag between car purchase and guarantee 0.6714 <0.0001 0.6340 <0.0001 
36σ  Date of subscription to guarantee too close 0.4520 <0.0001 0.4264 <0.0001 

7θ  Too high value of vehicle   0.7742 0.0002 

16θ  No damage insurance   0.2302 0.0009 

Log Likelihood –694.72 –682.55 
Number of observations 1,802 1,802 
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Table 2 
Calibration Results 

 

1 2 3 4 5 6 7 8 

i or i* iσ  /f n
iip p  ( )iλ  ( )iμ  ( ) ( ),n fC i C iθ+  ( ) ( ) ( )( ) ( )1+ −z i z iθ λ θ μ ( )/ *>P F i i  

1 0000000000000 0.0779 1.0000 1.0000 61.600 1.0000 0.08000 

2 0000000010000 0.1146 0.9816 0.7633 48.513 0.7808 0.10057 

…        

10 1000010000000 0.2019 0.9382 0.4364 30.750 0.4765 0.15751 

…          

…          

i* = 194 0000110001000 3.1979 0.6672 0.0423 13.208 0.0923 0.57810 

…         

…         

8 192 1111111111111 63291108.94 0.0000 0.0000 22.598 0.0000 1.00000 
 
 

 



Supplement 
 

Table 3 
Sensitivity of Optimal Solutions With Respect to γ(θ) and z(θ) 

 

Parameters Optimal 
Threshold

Expected Cost of 
Fraud 

Expected Audit 
Probability 

Audit Probabiliy of 
Defrauders 

( )z θ  ( )η θ (1) ( )γ θ  π ( )τ θ  i* 
( )( )
( )( )

*

, *

n

f

C i

C i

θ

θ θ+
 

( ) ( ) ( )( )
( )

* 1

*

z i z

i

θ λ θ

μ

+ −

×
 ( )*iλ  

0.0800 0.00 0.00 0.2024 0.0176 194 13.21 0.0923 0.6672 

0.0800 0.10 0.05 0.2024 0.0176 187 12.63 0.0937 0.6709 

0.0800 0.21 0.10 0.2024 0.0176 183 12.08 0.0971 0.6798 

0.0800 0.75 0.35 0.2024 0.0176 178 9.74 0.0979 0.6818 

0.0583 0.00 0.00 0.2024 0.0128 250 10.15 0.0644 0.6210 

0.0583 0.08 0.05 0.2024 0.0128 246 9.75 0.0646 0.6216 

0.0583 0.17 0.10 0.2024 0.0128 240 9.37 0.0652 0.6238 

0.0583 0.59 0.35 0.2024 0.0128 223 7.71 0.0669 0.6295 

0.1001 0.00 0.00 0.2024 0.0220 157 15.84 0.1164 0.6952 

0.1001 0.11 0.05 0.2024 0.0220 155 15.10 0.1170 0.6965 

0.1001 0.23 0.10 0.2024 0.0220 153 14.39 0.1174 0.6974 

0.1001 0.85 0.35 0.2024 0.0220 149 11.45 0.1232 0.7095 

(1) ( ) ( )( ) ( )( ) ( )* /1 *i iη θ λ λ γ= − − θ  in absolute value. 
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Appendix A1:  Proofs 

Proof of Proposition 1 

If , there is no residual fraud and reducing ( ) 0
fQ θ ≥ p ( ), iq θ σ  for any i decreases the 

investigation cost, hence a decrease in the total cost. Thus the optimal investigation strategy involves 

, with . Using equations (2) to (4), pointwise minimization of the total 

expected cost of fraud with respect to 

( )fQ θ < 0p ( )( )' fQφ θ < 0

( ),q θ σ  gives: 

 ( ) ( )( )
( )

( )
( )

1

0 , 1
1 , 0 0 ,

0 , 0

i
fn f

i ii

i

if q
c p A Q p if q

if q

θ σ
π π θ θ θ σ

θ σ

⎧≤ =
⎪+ − = < <⎨
⎪≥ =⎩

1 

where A (Q,θ ) = ( )( ) ( )( )1+ −cQ t Q H Qφ θ  and denotes the partial derivative of A with respect to Q. 

Note that 

1A

'φ  < 0 and t > c give < 0, which proves the proposition, with i*(1A θ ) given by: 

 ( )

( ) ( ) ( )( )
( )

( )

* 1 *

1* 1 *1 ,

f f
i
n f
i i

p pc
p pA Q

θ

θ θ

π

π θ θ

−

−

−
<

−

i
n
θ

≤  (19) 

  Q.E.D. 

Proof of Proposition 2 

Let 0θ  and 1θ  in Θ such that ( ) ( )1 0, ,Q Qτ θ τ θ≥  and ( ) ( )1,Q Q 0,η θ η θ≥  with at least one strong 

inequality. Assume moreover that ( )1*i θ  > ( )0i* θ , which gives ( ) ( )1 0
fQ Q fθ θ< . Let i ∈{1,...ℓ} such 

that ( ) ( )0 *≤ <i i 1* iθ θ . Writing optimality conditions as in the proof of Proposition 1 yields: 

 ( ) ( )( )1 0 01 , fn f
i ic p A Q pπ π θ θ+ − ≤ 0  (20) 

and  ( ) ( )( )1 1 11 , fn f
i ic p A Q pπ π θ θ+ − ≥ 0  (21) 

Using ( ) ( )1
f fQ Q 0θ θ<  and the convexity of Q → A(Q,θ ) gives: 

 ( )( ) ( )( )1 0 1 1 1,f fA Q A Q 1,θ θ θ> θ . (22) 
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(21) and (22) give: 

 ( ) ( )( )1 0 11 , fn f
i ic p A Q pπ π θ θ+ − > 0 . (23) 

(20) and (23) then imply: 

 ( )( ) ( )( )1 0 1 1 0,f fA Q A Q 0,θ θ θ> θ . (24) 

We have 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 , 'A Q c t H Q Q h Q cQ t Qθ φ θ φ φ θ= − + + −1  

which may be rewritten as: 

( ) ( ) ( ) ( )1
, 1

, ,
1
Q cQ t Q

A Q t c Q
Q

τ θ
θ η θ

π
⎛ + −

= − − +⎜ ⎟− ⎝ ⎠

⎞
. 

The assumptions on ( ),Qτ θ  and ( ),Qη θ  give 

( )( ) ( )( )1 0 1 1 0, ,f fA Q A Q 0θ θ θ< θ  

which contradicts (24). Hence, we may conclude that i*( 1θ ) ≤ i*( 0θ ), which completes the proof. Q.E.D. 

Proof of Proposition 3 

We have 

 ( )( ) ( ) ( )( )( )1 , .f fA Q c t H Qθ θ φ θ< − θ  

Hence 

 
( ) ( )( ) ( )( ) ( )( )( )11 , 1f f

c c

A Q c t H Q

π π

π θ θ π φ θ

− −
<

− − − θ
 (25) 

which gives: 

 ( )

( ) ( ) ( ) ( )( )( )
*

* 1

f
i
n f
i

p c
p c t H Q

θ

θ

π

π φ θ θ

−
<

− −
 (26) 

when ( ) ( )( ) ( ) ( )( )* * * 1 * 1/ /−−f fn
i i i ip p p pθ θ θ θ −

n  is small enough. We can check that this is the case under the 

condition stated in the Proposition. 
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Using (6), (26) and 

( )

( )

( )( ) ( )( )
( ) ( )( )( )

**

* *

1 ,

1 ,

f
ii

n
i i

P F P Fp

p P F P F

θθ

θ θ

θ σ θ

θ σ θ

−
=

−
 

gives ( )( )* ,iP F t cθσ θ < .  Q.E.D. 

Proof of Corollary 1 

Let χ  be a (non-negative) Kuhn-Tucker multiplier associated with (9) when the total expected cost 

of fraud is minimized with respect to q(θ, σ) subject to (6) and (9). Pointwise minimization gives: 

( ) ( ) ( )( )
( )

( )
( )

1

0 , 1
1 1 , 0 0 ,

0 , 0

⎧≤ =
⎪+ + − = < <⎨
⎪≥ =⎩

%
i

fn f
i ii

i

if q
c p A Q p if q

if q

θ σ
π χ π θ θ θ σ

θ σ
1  

where ( ) ( ) ( )( ) ( )( ), 1 1= + + −%A Q c Q t Q H Qθ χ φ θ 1 and A%  is the partial derivative of  with respect to 

Q. Corollary 1 can then be proved in the same way as Propositions 1 and 2. Q.E.D. 

%A

Proof of Proposition 4 

Using equations (2) and (15), pointwise minimization of total expected cost of fraud with respect to 

( ,q )θ σ  gives 

( ) ( )( )
( )

( )
( )

1

0  if  , 1
1 , , 0  if  0 < , 1

0  if  , 0

i
f fn

i s iis

i

q
c p E A Q s p q

q

θ σ
π π θ θ θ σ

θ σ

⎧≤ =
⎪+ − = <⎨
⎪≥ =⎩

. 

Let 

( )
( )( )
( )( )

1

' 1

, ,
, .

, ' ,

f

f
s

A Q s
s

E A Q s

θ θ
δ θ

θ θ
=  

We then get 

( ) ( ) ( )( )
( )

( )
( )

1

0  if  , 1
1 , , 0  if  0 < , 1

0  if  , 0

i
f fn

i si

i

q
c p p E A Q s q

q

θ σ
π π θ θ θ θ σ

θ σ

⎧≤ =
⎪+ − = <⎨
⎪≥ =⎩

i . 
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Proposition 4 then follows from 

 ( )
( ) ( )( )1

0.
1 ,f

s

cL
E A Q s

πθ
π θ θ

= − >
− ,

 Q.E.D. 
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Appendix A2:  Illustration of a Type-dependent Investigation Policy  

Let ( )( )*iθλ λ θ≡  and ( )( *iθ )μ μ θ≡ . When (9) is binding, the optimal audit strategy minimizes 

the expected cost of residual fraud  

( )( )( ){ }1−E tHθ θ θφ λ θ λ  

with respect to θλ  and θμ , θ ∈Θ , subject to the upper limit on the number of audits: 

 ( ) ( )( ){ }1+ − ≤
KE H
cθ θ θ θπ μ π φ λ θ λ

 
(27) 

with ( ),θ θλ μ  on the ROC curve. For type-θ policyholders, the hit rate is 1 1+ Xθ  with: 

 
( ) ( )

( ) ( ) ( ) ( )( )
1

1

⎡ ⎤−⎣ ⎦= =
−

n

f

P F Q
X

HP F Q
θ

θ
θ θ

θ θ π μ
π φ λ θ λθ θ

. 

Writing the first-order optimality condition yields 

 
( ) ( )( )( )1 1 1
1

⎡ ⎤
= − − − +⎢ ⎥− ⎣ ⎦

t
X t θ
θ θ

θ θ

η
ξ π η

ξ π ν λ
 

where ξ  is a Lagrange multiplier associated to (27), ( ),θ θη η λ θ≡ , and θν  is the elasticity of the ROC 

curve at ( ),θ θλ μ . For illustrative purpose, assume that the ROC curve equation is = νμ λ  with 1>ν , 

which gives =θν ν  for all θ . Assume also θη η=  for all θ . We then have: 

 
( ) ( )( )( )1 1 1
1

⎡ ⎤
= − − − +⎢ ⎥− ⎣ ⎦

tX tθ
θ

ηξ π η
ξ π ν λ

 (28) 

for all θ . If 
1 0θ θλ λ> , which holds under the conditions stated in Proposition 2, then

1 0
X Xθ θ<  from 

(28). The hit rate is then larger for type 1θ  than for type 0θ . 
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Appendix A3:  Incentives of SIU’s Staffs and Revelation Principle 
 
Appendix A3.1:  Incentives of SIU’s Staffs 
 

Assume that scrutinizing claims allows the SIU auditors to discover with certainty whether these 

claims are fraudulent or truthful. The non contractible effort of auditors defines the number of claims that 

they actually scrutinize. In fact auditors may pretend to have carefully examined some claims without 

having found anything fraudulent, while they just have validated those claims without making any careful 

inquiry. The only verifiable outcome of their activity is the number of fraudulent claims they discover. 

Assume that auditors’ earnings include a fixed wage  and a bonus 0w ( )b θ  for each type θ  catch. 

Let ( )n θ  be the number of type ( )n θ  cannot be verified. θ  scrutinized claims: 

Let ( )R C N−  be the auditor’s net earnings, where R denotes the monetary earnings and N is the 

number of scrutinized files with effort cost ( )C N , C , . ' 0> ''C 0>

Let us assume that the auditors are risk neutral. We have 

( ) ( )
0 1

n b
ER w

Xθθ

θ θ

∈Θ
= +

+∑  

( )N n
θ

θ
∈Θ

= ∑  

Each auditor chooses ( ) :n R+⋅ Θ→  in order to maximize ( )ER C N− . His behavioral function 

 will be such that  for all ( )n ⋅ ( )n θ > 0 θ  only if ( ) ( )1b K Xθθ = + , with ( )' NK C= . 

 

Appendix A3.2:  Revelation Principle 

Using the ROC curve allows us to highlight the specificity of scoring-based audit procedures by 

referring to the Revelation Principle. Let { },x A N∈  by the insured’s type for given observable data. Here 

type is defined at the interim stage, i.e. after an accident has occurred ( )x A=  or not ( )x N= . A type-

dependent allocation may be written as { }, , ,f nQA Ny y Q  where [ ]0,1xy ∈  is the probability that a type-x 
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individual files a claim and ,f nQ Q

(

 are the audit probabilities for types N and A respectively, which are 

linked by the ROC curve )n fQ f= Q . 

For illustrative purpose let us focus on the simplest case where 0ω =  with probability 1 and 

where the insurer targets the allocation where fraud is deterred at the lowest cost, i.e. 

( ) ( )11, 0, .f nQ =

$

f

}

0 ,A Ny y Q f Qφ−= = =

{ ,

 Consider a direct revelation game where (at the interim 

stage) (1) the insured announces a type x A N∈ , (2) the allocation is a function of $x , i.e. $( )*y y x=  

and $( )*Q Q x= , where y is the probability of filing a claim and Q is the audit probability. 

Implementing the desired allocation at a truthful equilibrium of this revelation game would require 

 and ( ) ( ) ( )* 1, *y A y N= = = ( ) ( )( )1*Q A f φ−=( ), *Q N 10 φ− 0 0 . In this case, type-N individuals 

are deterred from announcing $x A=  if Q A , which is not the case since ( )* ≥ ( )1 0φ− ( )f Q Q<  for all Q

. 

Hence the Revelation Principle does not apply in this setting. Intuitively this comes from the fact 

that scoring allows the insurer to use auditing as a type-dependent threat. Indeed if a type-N individual 

announces that he is a type-A, he would not be subject to the same audit probability than if he actually 

were a type-A. This takes us out of the costly state verification environment contemplated by Townsend 

(1988) where the outcome of strategic interactions can be replicated through a truthful revelation 

mechanism. 
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Appendix A4:  Detailed Description of Variables in Regression Analysis 

1σ  Fraud alert by expert (expert warns that damages to vehicle do not correspond to those 
claimed by policyholder). 

2σ  Fraud alert by ARGOS or ALFA professionals (ARGOS alerts by mail, telephone, or 
via ARVA, a telematic management link with experts). 

12σ  Retroactive effect of the contract or guarantee (when the date of accident report is close 
to the guarantee or contract date). 

18σ  
Delay in filing accident claim (refer to periods stated in contract: more than 5 business 
days for all types of accidents and more than 2 days after the accident occurs and/ or 
the theft is noticed.) 

19σ  
Production of questionable or falsified documents means that the policy holder is 
submitting fraudulent invoices. The anti-fraud agent is alerted when the policyholder 
submits photocopies or duplicates of bills. 

20σ  Refusal or reluctance to provide original documents. 

21σ  Variations in or additions to the policyholder’s initial claims (additional reports…). 

22σ  Harassment from policyholder to obtain quick settlement of a claim (abnormally 
frequent letters or calls from the policyholder). 

30σ  
Description of circumstances surrounding the accident either lack clarity or seem 
contrived (accident report is too perfect; policyholder’s descriptions of accident are too 
detailed or too vague). 

32σ  Abnormally high frequency of accidents (more than 3 accidents a year). 

34σ  Claimant not the same as policyholder (this can be detected in the claim or police 
report). 

35σ  
Too long a lag between date of purchase and date of guarantee: policyholder takes out 
insurance a week after purchasing the vehicle whereas, logically, this should be done 
the same day. 

36σ  Date of guarantee subscription and/or date of its modification too close to date of 
accident (< 1 month). 

7θ  Vehicle whose value does not match income of policyholder (ex: an unemployed 
person or a welfare recipient with a Porsche). 

 

Policyholder with no damage insurance and/or one who would suffer harm if found at 
fault (for example, a policyholder who is insured only for third party damages may 
collude with a friend to stage an at-fault accident in order to split the total payment 
from his insurer). 

16θ
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Appendix A5:  Calibration 

To obtain the estimated fraud rate of the insurer (8% according to the views of the company 

managers), we first replicated the non fraud sub-sample six times, yielding 6,774 observations (6 × 1,129). 

Then we took a random sample (with replacement) from these 6,774 observations in order to obtain the 

additional 953 observations needed to produce a fraud rate of 8%. The final sample contains 8,400 files, 

673 files with fraud and 7,727 files without fraud. For a matter of robustness, we did also select randomly 

(with replacement) 6,598 non-fraud files from the original population of 1,129 to obtain the 7,727 non-

fraud files. The results are very similar and are available from the authors. 
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Appendix A6:  Correlation tables 

Table A – Correlations conditional on F 

 12σ  18σ  19σ  21σ  30σ  32σ  36σ  35σ  34σ  22σ  20σ  1σ  2σ  
12σ  1 -0.02 -0.05 0.02 -0.04 0.02 0.05 -0.02 -0.01 -0.03 -0.00 0.01 -0.00
18σ   1 0.04 0.02 -0.01 0.01 -0.02 0.06 0.09 0.01 -0.04 -0.11 0.04
19σ    1 0.16 0.12 -0.02 0.02 -0.01 -0.02 0.06 0.01 0.07 0.01
21σ     1 0.20 0.05 -0.05 -0.01 0.09 0.03 0.12 0.11 0.07
30σ      1 0.03 0.04 -0.00 -0.01 0.03 0.12 0.08 0.02
32σ       1 -0.06 -0.05 0.12 0.04 0.04 0.00 0.02
36σ        1 0.19 -0.06 0.08 0.10 -0.11 0.02
35σ         1 -0.07 0.10 0.10 -0.04 -0.00
34σ          1 0.05 -0.03 -0.06 -0.05
22σ           1 0.14 -0.02 -0.02
20σ            1 0.05 0.05
1σ             1 -0.15
2σ              1 

 

Table B – Correlations conditional on N 
 12σ  18σ  19σ  21σ  30σ  32σ  36σ  35σ  34σ  22σ  20σ  1σ  2σ  

12σ  1 -0.04 0.06 -0.00 -0.02 -0.02 0.06 0.00 -0.03 0.01 0.00 0.07 -0.02
18σ   1 0.04 -0.02 0.06 -0.06 0.08 0.04 0.08 -0.03 0.03 0.02 0.03
19σ    1 0.13 0.07 -0.01 0.04 0.02 0.01 0.10 0.05 0.00 -0.01
21σ     1 0.03 0.00 -0.03 0.03 0.03 0.08 0.03 0.05 -0.01
30σ      1 -0.02 0.02 -0.04 0.02 0.01 0.05 0.01 0.01
32σ       1 -0.10 -0.07 0.02 -0.02 0.01 0.04 0.01
36σ        1 0.13 0.02 0.12 0.09 0.00 -0.03
35σ         1 0.04 -0.02 0.01 -0.02 -0.01
34σ          1 -0.03 0.04 0.03 0.01
22σ           1 0.02 0.14 -0.01
20σ            1 0.07 -0.01
1σ             1 -0.01
2σ              1 
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Appendix A7: Fraud indicators manipulation 
 

Section 4.1 of the paper has extended our theoretical model to the case where insureds can 

manipulate fraud signals. Here we show how our numerical estimates are affected by the possibility of 

fraud manipulation. The results are summarized in Table A7.1. 

We first consider five indicators that are likely to be manipulated (18, 21, 22, 30, 34). In the first 

row, the manipulation rate s —the same for all individuals— ranges from 1/20 to 1/5 and is assumed, for 

the moment, to be the same for these five indicators. Technically, we cannot go much further under this 

uniformity assumption because 18s  must be lower than 0.22 in order to have ( )18 1818 1f nsα α− ≥ . Indicator 

18 would not be informative any more for higher manipulation rates. As the results clearly show, these 

levels of fraud manipulation do not significantly affect the benefits of the audit policy. They drop from 

$21.1 millions to $19.9 millions when the manipulation rate increases from 0 to 1/5.  

If now we use different manipulation rates and we move the five indicators near their informative 

limit, the benefit of the audit policy drops to $18.2 millions, which is not yet a large decrease. This result 

suggests that the five indicators subject to manipulation are not the most important in terms of 

informativeness since their manipulation does not strongly affect the outcome of the auditing process. 

The last row of the table shows a much more radical manipulation case that moves all indicators 

near to the limit of their informative value. In such a case the benefit from the audit policy dramatically 

declines and only 24.1% of audited claims are fraudulent. This is of course much lower than 57,8%, the 

hit rate without manipulation. 
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Table A7.1 – Fraud indicators manipulations 

Manipulation 
rate 

1 3 4 5 10 12 Benefit of 
audit policy 
(thousand $) i* n

i
f

i pp /  ( )iλ  ( )iμ  ( ) ( )
( )( ) ( )1

z i
z i
θ λ
θ μ+ −

 ( )/ *P F i i>  

0 194 3.2138 0.6672 0.0423 0.0923 0.5781 21,119.2 
s = 1/20 195 3.2120 0.6547 0.0417 0.0910 0.5781 20,649.7 
s = 1/15 198 3.2165 0.6541 0.0415 0.0905 0.5779 20,689.1 
s = 1/10 199 3.2215 0.6477 0.0412 0.0897 0.5775 20,474.7 
s = 1/8 199 3.2214 0.6450 0.0416 0.0898 0.5743 20,323.0 
s = 1/5 209 3.2078 0.6493 0.0459 0.0942 0.5514 19,926.3 

18 21

22 30

34

0.20; 0.80;
0.80; 0.60;
0.25

s s
s s
s

= =
= =
=

 483 3.2167 0.6200 0.0497 0.0954 0.5200 18,264.0 

1 2

12 18

19 20

21 22

30 32

34 35

36

0.90; 0.90
0.35; 0.20;
0.80; 0.80;
0.80; 0.80;
0.60; 0.25;
0.25; 0.75;
0.50

s s
s s
s s
s s
s s
s s
s

= =
= =
= =
= =
= =
= =
=

 
2,666 3.2074 0.0077 0.0021 0.0025 0.2414 42.7 

 
1 2 12 18 19 20

21 22 30 32 34 35 36

0.93; 0.95; 0.40; 0.22; 0.90; 0.83;

0.83; 0.86; 0.63; 0.27; 0.28; 0.76; 0.52.

(1 )j s s s s s s

s s s s s s s

f n
j jsα α ⇔ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤

− ≥  
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Appendix A8: Distribution of f n
iip p  

 
In the paper it has been assumed that the probability distributions of signals (i.e. the f

ip  and ) 

are the same for all individuals, i.e. they do not depend on 

n
ip

θ . 

 We did take this assumption very seriously into account because implementing an optimal audit 

strategy with type-dependent signal distributions would require a much larger database. The practical 

implementability of the optimal audit strategy could then be jeopardized. We proceeded in two steps in 

order to test the relevance of our assumption. First we tested whether f
jα  and n

jα  statistically differ for 

all indicators j between the three different samples we have contemplated in our numerical analysis. 

Secondly, we analyzed the distributions of the ratio f n
iip p  obtained from these alpha values over the 

same three samples and we tested whether they statistically differ. 

The second regression in Table 1 has allowed us to identify two variables ( 7θ  and 16θ ) that are 

correlated with the fraud rate. So our tests compare f
jα  and n

jα  for all j and the distributions of the ratio 

f n
iip p  for three different samples. 

In Table A8.1 below we test whether the f
jα  and n

jα  are type dependent. For each indicator j we 

first present the f
jα  and n

jα  values obtained from the original sample with all files. We then present their 

corresponding values for each new sample. The test indicates that when the p-value is lower than 5%, we 

reject the hypothesis  where  is the proportion of claims with indicator j in the original 

sample and  is the proportion in the additional samples. It turns out that all the computed p-values are 

higher than 5% which means that the alpha values, in the two additional samples, do not significantly 

differ from those in the first sample. 

1 2p=:H p 1p

2p

In Table A8.2 we present the three distributions of f n
iip p  obtained from the three samples. The 

last column (sample A) is the distribution from the original sample and the two other columns come the 

two additional samples (sample B: 7 0θ =  and 16 0θ = ; sample C: 7 0θ =  and 16 1θ = . We applied the 
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Kolmogorov-Smirnov test in order to determine if the distributions differ significantly. The two p-values 

are 0.9334 and 0.3050. They permit to conclude to a non rejection of the null hypothesis that the 

distributions are identical for the two populations when each additional sample is compared with the 

original sample. 

For illustration we present the three histograms for values ≤ 500 which are those where the 

optimal values for i* are obtained (Figure A8.1). Since the potential values for the ratio range from 0 to 

more than 6 millions (see Table 2) it is difficult to draw histograms over all values. The histograms show 

clearly that the three distributions do not differ significantly. We obtained results from Kernel density 

estimation of the three distributions and we plot them in Figure A8.2. This figure confirms the 

Kolmogrov-Smirnov test that the three distributions are not different. Finally, Figure A8.3 represents the 

Kernel densities along with the corresponding histograms. 

Table A8.1 – Dependence of f
jα  and n

jα  

7θ  16θ  f
jα  (%) INF SUP p-value n

jα  (%) INF SUP p-value 

  12σ     

  12.1842 9.6386 14.7298  7.35 5.7835 8.9165  

0 1 13.068 9.4048 16.7312 0.6844 6.93 4.5059 9.3541 0.7690 

0 0 10.830 6.9898 14.6702 0.5564 7.79 5.6611 9.9189 0.7340 

  18σ         

  50.8172 46.9658 54.6686  39.77 36.8708 42.6692  

0 1 48.295 42.9326 53.6574 0.4432 44.59 39.9492 49.2308 0.0762 

0 0 52.708 46.6479 58.7681 0.5962 35.73 31.9837 39.4763 0.0906 

  19σ         

  46.3596 42.5177 50.2015  4.78 3.4912 6.0688  

0 1 43.750 38.4255 49.0745 0.4256 5.41 3.2390 7.5810 0.5994 

0 0 49.458 43.3896 55.5264 0.3846 4.27 2.6453 5.8947 0.6199 

  21σ         

  21.8425 18.6465 25.0385  3.63 2.4947 4.7653  

0 1 21.591 17.1506 26.0314 0.9262 4.33 2.3658 6.2942 0.5092 

0 0 20.578 15.6366 25.5194 0.6662 3.05 1.6567 4.4433 0.5157 

  30σ         
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f  (%) INF SUP p-value n
7θ  16θ  jα  (%) INF SUP p-value jα

  33.7296 30.0833 37.3759  12.58 10.6013 14.5587  

0 1 37.784 32.5768 42.9912 0.1966 12.34 9.2327 15.4473 0.8955 

0 0 28.159 22.6817 33.6363 0.0946 12.82 10.1834 15.4566 0.8832 

  32σ         

  22.5854 19.3519 25.8189  16.39 14.1863 18.5937  

0 1 21.591 17.1506 26.0314 0.7162 15.15 11.7724 18.5276 0.5406 

0 0 23.466 18.2948 28.6372 0.7689 17.40 14.4203 20.3797 0.5820 

  36σ         

  41.7533 37.9531 45.5535  19.84 17.4695 22.2105  

0 1 44.3182 38.9866 49.6498 0.4304 21.43 17.5800 25.2800 0.4742 

0 0 37.9061 32.0122 43.8000 0.2725 17.71 14.7101 20.7099 0.2695 

  35σ         

  9.8068 7.4855 12.1281  2.39 1.4548 3.3252  

0 1 9.9432 6.6750 13.2114 0.9445 2.60 1.0407 4.1593 0.8058 

0 0 8.6643 5.1709 12.1577 0.5847 1.83 0.7272 2.9328 0.4354 

  34σ         

  19.3165 16.2595 22.3735  13.99 11.9223 16.0577  

0 1 19.0341 14.7909 23.2773 0.9132 14.29 10.9905 17.5895 0.8759 

0 0 20.5776 15.6362 25.5190 0.6568 13.44 10.7515 16.1285 0.7453 

  22σ         

  12.4814 9.9100 15.0528  1.77 0.9566 2.5834  

0 1 10.227 6.9195 13.5345 0.2864 2.16 0.7262 3.5938 0.6034 

0 0 12.996 8.8555 17.1365 0.8282 1.37 0.4034 2.3366 0.5193 

  20σ         

  13.5215 10.8637 16.1793  2.30 1.3813 3.2187  

0 1 16.193 12.2025 20.1835 0.2479 3.46 1.6852 5.2348 0.1899 

0 0 10.108 6.3777 13.8383 0.1486 1.53 0.5137 2.5463 0.2648 

  2σ         

  34.0267 30.3727 37.6807  1.68 0.8860 2.4740  

0 1 33.807 28.7231 38.8909 0.9438 1.52 0.2961 2.7439 0.8192 

0 0 34.657 28.8723 40.4417 0.8524 1.83 0.7272 2.9328 0.7911 

  1σ         

  6.2407 4.3388 8.1426  0.44 0.0096 0.8704  

0 1 7.670 4.7479 10.5921 0.3858 0.00 -0.1082 0.1082 0.1533 
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f  (%) INF SUP p-value n
7θ  16θ  jα  (%) INF SUP p-value jα

0 0 5.054 2.2938 7.8142 0.4803 0.76 0.0186 1.5014 0.2998 

 
 

f n
iiTable A8.2 – Distribution of  p p

 Sample B Sample C Sample A 

f n
iip p 7θ  = 0 

N 
 16θ  = 0 

% 
7θ  = 0 
N 

16θ  = 1 
% 

N % 

(0 – 15] 574 7.01 601 7.34 567 6.92 
(15 – 50] 544 6.64 528 6.45 528 6.45 

(50 – 120] 534 6.52 520 6.35 526 6.42 
(120 – 250] 546 6.67 521 6.36 542 6.62 
(250 – 500] 571 6.97 555 6.77 573 6.99 

(500 – 1 000] 628 7.67 598 7.30 608 7.42 
(1 000 – 1 500] 374 4.57 358 4.37 372 4.54 
(1 500 – 3 000] 657 8.02 631 7.70 657 8.02 
(3 000 – 5 000] 476 5.81 448 5.47 477 5.82 
(5 000 – 10 000] 613 7.48 602 7.35 608 7.42 

(10 000 – 20 000] 569 6.95 561 6.85 574 7.01 
(20 000 – 40 000] 504 6.15 505 6.16 504 6.15 

(40 000 – 100 000] 547 6.68 572 6.98 561 6.85 
(100 000 – 350 000] 527 6.43 569 6.95 543 6.63 

> 350 000 528 6.45 623 7.60 552 6.74 
Total 8,192 100.00 8,192 100.00 8,192 100.00 

KS-test p-value = 0.9334 p-value = 0.3050  
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Figure A8.1: Histogram of f n
iip p  
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Figure A8.2: Kernel Density Estimate of  /f n
i ip p
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Figure A8.3: Histograms 
Sample A 
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Sample C 
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