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Résumé

Parmi les caractéristiques clés de tout modèle d�allocation de portefeuille se trouvent les

hypothèses concernant la structure de dépendance des facteurs de risque sous-jacents. Une

modélisation inappropriée peut entamer une interprétation inadéquate de l�exposition au

risque et ainsi mener à des choix de portefeuille sous-optimaux. La corrélation linéaire a été

l�outil traditionnel dans l�analyse de la dépendance dans un cadre statique ou dynamique,

mais des études récentes ont démontré son incapacité de re�éter la dépendance entre des

événements extrêmes, dont l�asymétrie prononcée est devenue un fait stylisé de la distribu-

tion des rendements : les titres ont la tendance d�évoluer dans la même direction lorsque le

marché est en baisse que lorsque le marche est en hausse (Poon et al., 2004). Au contraire,

la théorie des copules fournit un environnement approprié pour la recherche de mesures de

dépendance qui conviennent mieux à l�asymétrie des co-mouvements extrêmes. Le caractère

parcimonieux des fonctions de copules les rend appropriées pour la modélisation de risques

multiples et ainsi pour les problèmes de choix de portefeuille.

Malgré la prolifération d�articles sur les copules, qui sont concentrés majoritairement sur

la spéci�cation, l�estimation et les tests de validité de l�ajustement, il n�y a pas beaucoup de

recherche faite sur la modélisation de la dépendance spatiale des processus stochastiques.

Les applications sur les copules existantes sont majoritairement concentrées sur la modélisa-

tion conditionnelle de processus stochastiques en temps discret dans le contexte des modèles

GARCH, et les modèles de choix de portefeuille correspondants traitent plutôt l�allocation

inconditionnelle sur la prochaine période (Patton, 2004; Jondeau and Rockinger, 2002, 2005).

Par conséquent, le but de la thèse présente a deux dimensions: proposer un processus sto-

chastique en temps continu capable de re�éter les asymétries dans les co-mouvements des

facteurs de risque sous-jacents, et examiner les implications d�un tel processus multidimen-

sionnel sur la couverture inter-temporelle d�un portefeuille.

Dans le premier chapitre de la thèse je propose une extension multi-variée de la con-

struction d�un processus stochastique avec une distribution stationnaire donnée, à la base

des fonctions des copules. Dans le contexte uni-varié les processus de prix construits à partir

d�une distribution stationnaire pré-spéci�ée ont été largement étudiés, et leur succès dans

la réplication des faits stylisés des rendements en termes de leurs propriétés dynamiques et

leur structure de dépendance statique a été établi. L�extension multi-varié, que je propose
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utilise la relation entre la mesure stationnaire du processus et sa spéci�cation de di¤usion

(Hansen and Scheinkman, 1995). La dépendance asymétrique dans les queues est prise en

considération à l�aide d�une mixture de fonctions de copules qui proviennent des familles

Elliptiques ou de Valeurs Extrêmes. Elle est isolée du comportement marginal, modélisé

avec la classe �exible de distributions généralisées hyperboliques.

Le processus de di¤usion proposé est un processus hautement non-linéaire ce qui pose

des sérieux problèmes d�estimation. Malgré le fait que la distribution stationnaire du proces-

sus soit connue explicitement, ceci n�est pas vrai pour la densité de transition, ce qui rend

inapplicables les techniques d�estimation standards comme le maximum de vraisemblance,

sauf si on fait recours à la discrétisation. Je propose d�utiliser les techniques d�estimation

MCMC basées sur l�augmentation de l�espace d�états a�n de diminuer le biais de discrétisa-

tion dans le sens de Durham and Gallant (2002), Roberts and Strammer (2001) et Golightly

and Wilkinson (2006a).

Dans le deuxième chapitre de la thèse j�étudie l�e¤et de la dépendance asymptotique

sur le choix de portefeuille dans un contexte de marché complet, où une solution explicite

des termes de couverture inter-temporelle du portefeuille est obtenue en utilisant la théorie

des martingales et l�application du calcul de Malliavin (Detemple et al., 2003). Je compare

l�évolution des termes de couverture inter temporels au �l du temps, induits par une struc-

ture de dépendance asymétrique dans les extrêmes à celles d�un modèle asymptotiquement

indépendant. Un exercice utilisant les vraies données et un autre basé sur les simulations

suggèrent un déplacement de la composition du portefeuille vers l�actif sans risque lorsque

la dépendance entre les événements de queue pour les actifs risqués est prise en compte.

J�évalue également l�importance économique de ce changement des parts de portefeuille,

principalement motivée par la nécessité de se couvrir contre les variations stochastiques

des variables d�état lorsque le processus générant les données incorpore un comportement

asymétrique dans les queues. A cet e¤et je calcule les coûts de l�équivalent certain engendrés

par le fait d�ignorer la dépendance entre les valeurs extrêmes et je trouve que la prise en

considération de ce fait stylisé mène à des gains économiques importants.

Dans le troisième chapitre de la thèse j�aborde le problème d�allocation optimale de

portefeuille dans un cadre dynamique lorsque la corrélation conditionnelle des rendements

des actifs risqués est modélisée avec des facteurs observables, ce qui me permet d�isoler la
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demande de couverture contre le risque de corrélation. Ainsi, je suis en mesure d�analyser

séparément l�impact de la dépendance de queues à travers la distribution inconditionnelle

et ce de la corrélation conditionnelle sur les parts optimales de portefeuille. Avec ces deux

approches di¤érentes de modéliser la dépendance je réplique le fait stylisé d�une dépen-

dance accrue pendant des périodes de chutes extrêmes du marché, de volatilité croissante

et d�aggravation des conditions macro-économiques. Je trouve que les termes de couver-

ture contre le risque de corrélation ainsi que ceux engendrés par la dépendance dans les

queues ont un impact distinct sur le portefeuille optimal et ne peuvent pas agir comme

des substituts les uns des autres. De plus, le fait d�ignorer la dynamique de la corrélation

conditionnelle ou la dépendance extrême engendre des coûts économiques non-négligeables.

Mots clés : Markov Chain Monte Carlo, allocation dynamique de portefeuille, simula-

tion Monte Carlo, dépendance extrême, fonctions de copules, di¤usion stationnaire multi-

variée, corrélation dynamique conditionnelle.



Abstract

A key feature of any portfolio allocation model is the assumption concerning the de-

pendence structure of the underlying risk factors. Its inappropriate modeling could lead to

a misunderstanding of the risk exposure and thus to suboptimal portfolio choices. Linear

correlation has been the traditional tool for describing dependence in both static and dy-

namic settings, but recent studies have demonstrated its inability to capture dependence

between extreme events, whose pronounced asymmetry has turned into an established styl-

ized fact for asset returns: assets tend to move together in extreme market downturns to

a greater extent than in extreme market upturns (Poon et al., 2004). Instead, copula the-

ory provides a natural environment for the search of dependence measures that are better

suited for capturing extreme co-movement asymmetries. The highly parsimonious nature of

copula functions makes them suitable for high-dimensional models, as those encountered in

portfolio choice problems.

Despite of the abundant literature on copulas, focusing mainly on their speci�cation,

estimation and goodness-of-�t tests, not much research has been done for the multivariate

dependence modeling of stochastic processes. Applications are mainly centered on con-

ditional modeling of discrete time processes within a GARCH framework, while portfolio

choice applications based on copulas mostly treat the unconditional one-period-ahead allo-

cation (Patton, 2004; Jondeau and Rockinger, 2002, 2005). The aim of the present thesis

is thus twofold: propose a continuous-time stochastic process that is able to accommodate

co-movement asymmetries in the underlying risk factors, and investigate its implications for

the hedging behaviour in a dynamic portfolio allocation setting.

In the �rst chapter of this thesis I propose a multivariate extension to the construction of

a stochastic process with a given stationary distribution, based on copula functions. In the

univariate setting, price processes with a prespeci�ed marginal distribution have been largely

studied and proven successful in replicating stylized features of asset returns in terms of their

dynamic properties and static dependence structure. The multivariate extension I propose

exploits the relationship between the stationary measure and the di¤usion speci�cation of the

process (see Hansen and Scheinkman, 1995). The asymmetric tail dependence is captured

by a mixture copula of the Elliptic and the Extreme Value families, which is isolated from

the marginal behavior, modeled by the �exible Generalized Hyperbolic class of distributions.
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The proposed di¤usion process that is highly non-linear poses a serious estimation prob-

lem. Even though the stationary measure of the process is explicitly known, the same is

not true for the transition density, thus rendering standard maximum likelihood estimation

impossible without resorting to discretisation. I propose a sequential MCMC estimation of

the process that relies on increasing the state space in order to subdue any discretisation

bias in the lines of Durham and Gallant (2002), Roberts and Strammer (2001) and Golightly

and Wilkinson (2006a).

In the second chapter of this thesis I study the e¤ect of asymptotic extreme value de-

pendence on portfolio choice in a complete market setup where optimal allocation rules are

obtained analytically under the Martingale technique using Malliavin calculus in the lines

of (Detemple et al., 2003). I compare the evolution of the intertemporal hedging terms over

time induced by a data generating process that allows for asymmetric dependence in the

extremes to those of an asymptotically independent model. A real-data experiment and a

simulation exercise both suggest a shift in the portfolio composition towards the risk-free

asset when dependence between tail events for the risky assets is accounted for. I further

assess the economic importance of this change in portfolio shares, mainly driven by the

need to hedge against changes in the stochastic opportunity set when the data generating

process incorporates the above-mentioned asymmetric tail behavior, through the certainty

equivalent cost of ignoring extreme value dependence and �nd that taking it into account

leads to signi�cant economic gains.

In the third chapter of the thesis I address the problem of solving for optimal portfolio

allocation in a dynamic setting, where conditional correlation is modeled using observable

factors, which allows me to isolate the demand for hedging correlation risk. I am able to

analyze separately the impact of tail dependence through the unconditional distribution and

that of conditional correlation on portfolio holdings. With those distinct ways of modeling

dependence I aim at replicating the stylized fact of increased dependence during extreme

market downturns, rising market-wide volatility, or worsening macroeconomic conditions.

I �nd that both correlation hedging demands and intertemporal hedges due to increased

tail dependence have distinct portfolio implications and cannot act as substitutes to each

other. As well, there are substantial economic costs for disregarding both the dynamics of

conditional correlation and the dependence in the extremes.
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Chapter 1

Stock Market Asymmetries: A Copula Di¤usion

Model

1.1 Introduction

There is wide spread evidence that the distribution of �nancial asset returns deviates from

the assumption of normality both in terms of univariate properties of the data such as excess

kurtosis or thick tails, as well as the dependence structure: multivariate normality imposes

independence between extreme realizations of the variables, whereas returns are known to

be highly correlated during large market downfalls. In a study of several major international

market indices Longin and Solnik (2001) provide strong evidence of increased correlation of

tail events of asset returns, especially during bear markets.

For risk management applications, multivariate option pricing or portfolio choice deci-

sions it is important to introduce relatively parsimonious models that can capture the above

mentioned features of the data. There has been a proliferation of studies in recent literature

that propose models for incorporating the asymmetric response of conditional correlation to

returns, mainly building upon the Dynamic Conditional Correlation model of Engle (2002).

Alternatively, in a jump di¤usion framework, Das and Uppal (2004) model high correlation

across large changes in asset returns and study their e¤ect on portfolio allocation. Ang and

Chen (2002) compare several discrete time models in terms of their ability to reproduce the

asymmetric dependence pattern present in stock return data. None of the models, however,

succeeds in either picking up the extremal dependence pattern of the data or explaining the

degree of correlation asymmetry.

In this chapter we propose a model that is able to accommodate this extremal depen-

dence structure, based on the construction of a multivariate di¤usion with a pre-speci�ed

stationary distribution that relies on copula theory. Despite of the abundant literature on

copulas, not much research has been done for the multivariate dependence modeling of sto-
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chastic processes. The study of the dynamic multivariate spatial dependence structure of

stochastic processes has found several model applications in a discrete time setting (Jondeau

and Rockinger, 2002; Patton, 2004; Fermanian and Wegkamp, 2004). However, the spatial

dependence structure of multivariate di¤usions in the wider copula context has not been ex-

tensively studied. Kunz (2002) proposes a framework for modeling extremes in multivariate

di¤usions of the gradient �eld type via the use of copula functions, but limits the attention

to a speci�cation with a constant di¤usion term that inevitably restricts the ability of the

model to account for certain dynamic properties of the data, while �tting the stationary

distribution. Instead, we propose a more general model for which the above mentioned

construction is a special case. We aim at answering the following issues:

(a) The stochastic process for asset prices should be able to imply a dependence structure

that allows for increased dependence between extreme realizations, but should be

�exible enough to include the case of asymptotic independence (as implied by the

Gaussian distribution). The latter condition comes from the concern, raised by Poon

et al. (2004) that using a model which precludes independence in the tails may lead

to serious overestimation of the joint risks. To this end we use a mixture of copula

functions to tailor the multivariate distribution, as they allow for �exibility in terms

of choice of the marginals, and can also be modeled to allow or not for dependence

between tail realizations. Based on the copula decomposition between the dependence

structure and the marginal distributions, we build a multivariate di¤usion with a

pre-speci�ed stationary density. Its construction relies on restricting the drift for a

given speci�cation of the di¤usion term and the stationary density (see Hansen and

Scheinkman, 1995; Chen et al., 2002). Thus we obtain a �exible process for asset

prices that is able to accommodate a wide array of dependence structures.

(b) While replicating di¤erent types of dependence patterns, we would like our model to

keep track of univariate properties of asset returns, such as a leptokurtic univariate

distribution as compared to the normal, semi-heavy tails (Barndor¤-Nielsen, 1995), or

volatility clustering expressed as serial correlation of squared log returns. To achieve

this, the copula construction leaves us with the �exibility to chose the appropriate mar-

ginals. We turn to the Generalized Hyperbolic family of distributions, as their ability
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to replicate the tail behavior of asset returns, as well as certain dynamic properties

as persistence in auto-correlation in squared returns, has been recorded in literature

in the context of univariate di¤usion modeling (Eberlein and Keller, 1995; Rydberg,

1999; Bibby and Sorensen, 2003). We show that this property is retained in the mul-

tivariate model we propose. As well, Jaschke (1997) points out that one could obtain

a process for returns with a Generalized Hyperbolic stationary distribution with sto-

chastic volatility as a weak limit of a GARCH model in the sense of Nelson (1990).

The copula functions that we study are the tail-independent Gaussian copula, the sym-

metric tails Student�s t copula and the extreme value Gumbel copula that allows for asym-

metric tail behavior in combination with its survival counterpart. The tail dependence

coe¢ cients that we estimate point towards a structure with extremal dependence, and the

Gaussian di¤usion is rejected in favour of an alternative that takes into account tail depen-

dence.

While the stationary distribution of the proposed process is known in closed form, the

same cannot be said in general for the transition density, which raises a serious estimation

challenge, as an exact likelihood approach cannot be applied. Instead of relying on ap-

proximations of the likelihood function in the spirit of Aït-Sahalia (1999) and Aït-Sahalia

(2003), as such an approach may prove to be too computationaly intensive when explicit

solutions for the density approximation coe¢ cients cannot be obtained, we resolve to a

Markov Chain Monte Carlo (MCMC) method to estimate model parameters, following a

sequential inference procedure of Golightly and Wilkinson (2006a) in the spirit of Roberts

and Strammer (2001) and Durham and Gallant (2002). Further discussion on the available

estimation approaches is provided in the subsequent sections.

We also address the question of model selection, using the traditional Bayesian approach

based on the marginal likelihood functions of alternative models. Results suggests that

models that disregard asymmetric dependence between extreme realizations are rejected in

favour of those that take these particular features of the dependence structure into account.

The remainder of the chapter is organized as follows. Section 1.2 discusses the issue

of modeling dependence through the use of copula functions. Section 1.3 introduces the

process for asset prices, its construction and the particular assumptions on the univariate

marginals as well as the dependence structure. Section 1.4 reviews the estimation method-
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ology of the proposed multivariate di¤usion based on copula functions using an MCMC

estimation algorithm. Section 1.5 discusses the estimation results, focusing on the degree of

tail dependence that could be achieved under the proposed model speci�cation, and Section

1.6 concludes.

1.2 Copula functions and dependence modeling

The pitfalls of using the linear correlation coe¢ cient as a dependence measure have been

largely discussed in literature. Linear correlation fully describes the dependence patterns

only in the elliptical class of distributions that are inevitably characterized by symmetry.

It is also an inadequate tool for discerning dependence when it comes to extreme events.

Among the de�ciencies of linear correlation comes the fact that second moments have to

be �nite in order for it to be de�ned. As well, it is not invariant under non-linear strictly

increasing transformations of the variables (a transformation that is known to leave the

dependence structure unchanged). In contrast, all concordance measures of dependence

depend only on the copula property and are invariant to increasing changes in the marginals,

while the tail dependence coe¢ cient characterizes the extreme dependence using only the

copula speci�cation.

Thus, copula theory provides a natural environment for the search of dependence mea-

sures that are better suited for capturing extreme co-movement asymmetries. The main

concept behind copulas is the separation of the distribution structure from the univariate

marginals, as they are functions that link marginals to their multivariate distribution, follow-

ing Sklar�s theorem. Their parsimonious nature makes them suitable for high-dimensional

models, as the ones encountered in portfolio selection problems, while their functional speci�-

cation could be �exible enough to allow for asymptotic extreme (in)dependence: dependence

structures range from those generated by elliptical copulas that maintain the validity of the

mean-variance framework , to copulas that are able to express extreme value dependence

(like the Gumbel copula, consistent with multivariate extreme value theory). Various de-

pendence measures useful for �nancial applications (comonotonicity, concordance, quadrant

(orthant) and tail dependence) can be expressed in terms of copulas.

Copula functions are a useful tool to construct multivariate distributions. They are used

to disentangle the information contained in the marginal distributions from that pertaining
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to the dependence structure. As they are de�ned as multivariate distribution functions,

they contain all the relevant information with respect to the dependence structure. As well,

as copulas are de�ned over transformed uniform marginals, they contain the information

on dependence regardless of the marginal distributions, as these transformed variables are

Uniform (0; 1) regardless of the particular marginal distributions. This last feature makes

copulas particularly suitable for developing �exible models based on di¤erent univariate

distributions that best suit the marginal properties of the data, while leaving the freedom

to de�ne separately the most appropriate dependence structure.

1.2.1 Copulas and the dependence structure

A standard treatment of copulas can be found in the monographs of Joe (1997), Nelsen

(1999), Embrechts et al. (2002), and Frees and Valdez (1998). Cherubini et al. (2004) o¤er

a comprehensive review of the application of copula functions in �nance. The main concept

behind them is the separation of the distribution structure from the univariate marginals. A

copula can be viewed as a multivariate distribution function on the unit cube, with uniformly

distributed marginals. Alternatively, it can be de�ned as a function C : [0; 1]n ! [0; 1] with

the following properties:

(P1) for every u in [0; 1]n, C (u) = 0 if at least one coordinate of u is 0; C (u) = uk if all

coordinates of u except uk equal 1;

(P2) C is n-increasing if for each a; b 2 [0; 1]n such that a � b, the volume of the hypercube

with corners a and b is positive, that is VC ([a; b]) =
P
sgn (c)C (c) � 0 where c

are the vertices of [a; b], and sgn (c) = 1 if ck = ak for even k, sgn (c) = �1 if

ck = ak for odd k. For the bivariate case this translates into VC ([u1; u2]� [v1; v2]) �

C (u1; v1)+C (u2; v2)�C (u1; v2)�C (u2; v1) � 0 for all u1; u2; v1; v2 2 [0; 1] such that

u1 � u2 and v1 � v2.

An important result concerning copulas is Sklar�s representation theorem (Sklar, 1959):

For a multivariate joint distribution function F with marginals F1; :::; Fn, there exists

an n-copula C, such that for all x in Rn we have that:

F (x 1; :::; xn) = C (F1 (x1) ; :::; Fn (xn)) (1.2.1)
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The copula is uniquely determined if all marginal distributions F1; :::; Fn are continuous,

otherwise C is unique on RangeF1 � ::: � RangeFn. The converse statement also holds,

i.e. for a given copula C with marginals F1; :::; Fn, the function F de�ned above is an n-

dimensional multivariate distribution function. Sklar provides the following corollary: for a

multivariate joint distribution function F with continuous margins F1; :::; Fn and copula C,

satisfying the above theorem, and for any u 2 [0; 1]n, the following holds:

C (u1; :::; un) = F
�
F�11 (u1) ; :::; F

�1
n (un)

�
(1.2.2)

In the subsequent sections we will use the copula density decomposition formula that

follows from (1.2.1):

f (x1; :::; xn) = c (F1 (x1) ; :::; Fn (xn))

nY
i=1

fi (xi)

where c (�) is the copula density and fi (�) are the univariate PDFs.

A key property of copulas, that makes them particularly well suited for dependence

structure modeling, is their invariance under strictly increasing transformations of the mar-

ginals. However, this property is true for the linear correlation as a dependence measure

only for a¢ ne strictly increasing transformations. In particular, if we consider the functions

� (X) and � (Y ) of two random variables X and Y , then the following transformations

change the copula functions in a deterministic way (see Nelsen, 1999):

(i) if �; � are strictly increasing, then C�(X);�(Y ) (u; v) = CX;Y (u; v);

(ii) if � is strictly increasing and � is strictly decreasing, then C�(X);�(Y ) (u; v) = u �

CX;Y (u; 1� v);

(iii) if �; � are both strictly decreasing, then C�(X);�(Y ) (u; v) = u+v�1+CX;Y (1� u; 1� v).

If C is an n-dimensional copula, then it has a known upper and lower bound (the

Frechet-Hoe¤ding bounds):
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Ln (u) � C (u) � Un (u) (1.2.3)

where Ln (u) = max

 
nX
i=1

ui � n+ 1; 0
!

Un (u) = min (u1; :::; un)

For n = 2 the upper and the lower bound are copulas, but for n � 3, Ln is the lower

bound in the sense that for any u 2 [0; 1]n there exists such a copula C, that C (u) = Ln (u)

(see Nelsen, 1999).

Following Drouet-Mari and Kotz (2001), the continuity of a copula can be established

for each u; v 2 [0; 1]n, if it satis�es the stronger Lipschitz condition:

jC (u2; v2)� C (u1; v1)j � ju2 � u1j+ jv2 � v1j (1.2.4)

Further on, as C(u) is increasing and continuous in u, it is di¤erentiable almost every-

where, and the following holds:

0 � @

@ui
C (u) � 1; i = 1; :::; n

For each copula we can de�ne a survival function: C (u; v) = 1� u� v+C (u; v) for the

bivariate case, and more generally:

C (u1; :::; un) = Pr (U1 > u1; :::; U1 > u1)

Below we discuss brie�y several dependence concepts in a copula framework. Following

the Frechet-Hoe¤ding inequality, it can be shown that the upper and the lower bound are

both copulas in the bivariate case, and can be thought of as the joint distribution functions

of two couples of univariate vectors: (U; 1 � U) for the lower bound and (U;U) for the

upper bound. Thus, the lower bound describes the state of perfect negative dependence

(two vectors having this copula are said to be countermonotonic), whereas the upper bound

corresponds to the state of perfect positive dependence (and the two vectors having this

copula are comonotonic).
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Following Embrechts et al. (2002), a proper dependence measure � should have the

following properties:

(i) � should be de�ned for every pair X;Y ;

(ii) � (X;Y ) = � (Y;X);

(iii) �1 � � (X;Y ) � 1;

(iv) � (X;Y ) = 1 i¤ X and Y are comonotonic, and � (X;Y ) = �1 i¤ X and Y are

counter-monotonic;

(v) � (' (X) ; Y ) = � (X;Y ) for a strictly increasing function ', and � (' (X) ; Y ) =

�� (X;Y ) for a strictly decreasing function '.

(vi) � (X;Y ) = 0 i¤X;Y are independent.

As there is no dependence measure that satis�es properties (v) and (vi), then we should

modify the following properties if we require (vi):

(iii-a) 0 � � (X;Y ) � 1;

(iv-a) � (X;Y ) = 1 i¤X and Y are co/counter-monotonic;

(v-a) � (' (X) ; Y ) = � (X;Y ) for a strictly monotone function ':

Concordance measures can also be de�ned in terms of the copula. Following Embrechts

et al. (2002), if (X;Y ) and
� eX; eY � are two couples of independent vectors with common

marginals, then the di¤erence between the probability of concordance and discordance (Q)

can be expressed in terms of their corresponding copulas:

If Q � Pr
h�
X � eX��Y � eY � > 0i� Pr h�X � eX��Y � eY � < 0i ;

then Q = Q
�
C; eC� = 4Z Z

[0;1]2

eC (u; v) dC (u; v)� 1
Kendall�s tau � (X;Y ) and Spearman�s rho �S (X;Y ) are two measures of concordance

that also have copula representation:
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� (X;Y ) � Q (C;C) = 4

Z Z
[0;1]2

C (u; v) dC (u; v)� 1 (1.2.5)

�S (X;Y ) � 3Q (C;�) = 12
Z Z
[0;1]2

uvdC (u; v)� 3 (1.2.6)

where �n (u) = u1u2:::un is the independence copula.

When both Kendall�s tau and Spearman�s rho are equal to 1(�1), then the copula of

the two vectors is the upper (lower) Frechet bound.

As we are interested in modeling dependence asymmetries in the tails of the distribution,

then the tail coe¢ cient, as a measure of dependence in the lower and the upper tail is of

particular interest. The coe¢ cient of upper tail dependence is de�ned as the probability of

an extreme event in Y , conditional on an extreme event in X:

�U = lim
u!1

Pr
�
Y > F�1Y (u) j X > F�1X (u)

�
(1.2.7)

= lim
u!1

Pr
�
Y > F�1Y (u) ; X > F�1X (u)

�
Pr
�
X > F�1X (u)

�
provided that the limit exists. If �U 2 (0; 1] then the two vectors of random variables are

said to be asymptotically dependent in the right tail. Asymptotic independence is reached

for the case of �U = 0. Joe (1997) shows that the concept of tail dependence can be related

to that of the copula by the following alternative de�nition of the coe¢ cient for upper tail

dependence of a bivariate copula, for which the following limit exists:

�U = lim
u!1

1� 2u+ C (u; u)
1� u (1.2.8)

The coe¢ cient of lower tail dependence can be derived in a similar fashion:

�L = lim
u!0

Pr
�
Y � F�1Y (u) j X � F�1X (u)

�
(1.2.9)

= lim
u!0

Pr
�
Y � F�1Y (u) ; X � F�1X (u)

�
Pr
�
X � F�1X (u)

�
= lim

u!0

C (u; u)

u
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and the notions of asymptotic dependence and independence are analogous to those in the

right tail. Having in mind the relationship between a copula and its survivor copula, it can

be shown that the coe¢ cient of upper tail dependence of a copula is in fact the coe¢ cient of

lower tail dependence of the survivor copula. We will rely on this property in the subsequent

modeling of the extreme-value di¤usion process.

Despite these asymptotic measures of dependence, we are interested as well in the behav-

ior of random variables as they approach the extremes. This �near�tail dependence measure

is called quantile dependence and it is de�ned in the following way for quantiles q:

� (q) =
Pr [U � q j V � q] if q � 0:5

Pr [U > q j V > q] if q > 0:5
(1.2.10)

1.2.2 Degree of tail dependence asymmetry in the data

In order to get an impression of the degree of tail dependence asymmetry present in the

data, consider daily CRSP US stock capitalization decile indices for the period 1990-2005.

These indices represent yearly rebalanced portfolios based on market capitalization. The

stock universe includes stocks listed on NYSE, AMEX, and NASDAQ. All ten capitalization

decile indices were grouped in three sub-categories: small-cap (deciles 1-3), mid-cap (deciles

4-7), and large-cap (deciles 8-10).

The degree of �near� tail dependence for all three couples of data is displayed using

quantile plots on Figure 1.2.1. The dependence does not decay to zero as we go further in

the left tail as it would be the case under bivariate normality. As well, for the Large-Mid

cap couple quantile dependence is high for both tails, while for the other couples of data it

tends towards zero for the right tail, pointing towards asymmetric (�near�) tail dependence.

In order to test the signi�cance in the di¤erences in correlation patterns between the

left and the right tail, we use the model-free test of dependence symmetry, developed by

Hong et al. (2003). The test statistic under a null hypothesis of symmetry exploits the

estimates of the exceedence correlations
�
��q ; �

+
q

�
at di¤erent quantile levels q and their

variance covariance matrix 
:

J = n
�
�+ � ��

�

�1

�
�+ � ��

� d! �2m
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Figure 1.2.1: Quantile dependence plots
Plots of quantile dependence for all three couples of de-trended log-prices of the three CRSP indices
formed on the basis of size deciles for the period 1986-2005 (small-cap (deciles 1-3), mid-cap (deciles
4-7), and large-cap (deciles 8-10)).
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Table 1.2.1: Test of symmetry in the exceedence correlations
The Hong et al. (2003) test of exceedence correlations symmetry in the lower and upper quartiles
for the de-trended log-prices of the three CRSP indices formed on the basis of size deciles for the
period 1986-2005 (small-cap (deciles 1-3), mid-cap (deciles 4-7), and large-cap (deciles 8-10)). The
test statistic is given by:

J = n
�
�+ � ��

�

�1

�
�+ � ��

� d! �2m

where �+ and �� are the exceedence correlations calculated at the corresponding quantile levels, n
is the sample size andm is the number of quantile levels considered. Results for three quantile levels
(0.85, 0.90, 0.95) are given below:

Large vs. Mid cap Large vs. Small cap Small vs. Mid cap
Test statistic (J) 1.9351 17.6046 13.3933
p-values (0.5860) (5.3065e-004) (0.0039)

where n is the sample size and m is the number of quantile levels considered. Table 1.2.1

summarizes the results of the test, rejecting symmetry for all but the Mid-Large cap couple,

for which the quantile dependence plots indicated as well high dependence in both tails.

In the sections that follow we will build a di¤usion process that accounts for those

dependence features of the data with the help of copula functions. It also accommodates

desirable univariate properties of asset returns such as volatility clustering, heavy tails,

and slowly decaying autocorrelation function of squared returns, without reverting to a

stochastic volatility speci�cation or the introduction of jumps.

1.3 The multivariate copula di¤usion model

In the discrete time literature there exist numerous models that are able to replicate both

stylized facts of univariate asset returns series, such as thick-tailed asymmetric marginals,

volatility clustering, slowly decaying autocorrelation function of squared returns, and asym-

metric dependence structure in the extremes of the multivariate distribution. Copula func-

tions have become increasingly popular in multivariate discrete time models, as in Patton

(2004), Jondeau and Rockinger (2002) among others. Astonishingly, much less e¤ort has

been spent in this respect in continuous time modeling, except for scalar di¤usions. Exam-

ples include stochastic volatility models (Heston, 1993) or di¤usions with jumps in returns

and volatility (Eraker et al., 2003), hyperbolic di¤usions (Bibby and Sorensen, 1997), gen-
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eralized hyperbolic di¤usions (Rydberg, 1999), time-changed Lévy processes (Carr and Wu,

2004). However, the multivariate spatial dependence structure modeling of di¤usions has

attracted much less attention. Here we propose a construction of a multivariate di¤usion

with pre-speci�ed stationary density with arbitrary marginals, coupled by a su¢ ciently

parsimonious copula dependence function that avoids the curse of dimensionality problem,

normally encountered in modeling multivariate datasets. The aim is to provide a su¢ ciently

�exible treatment of the univariate return series that is able to accommodate the stylized

features of the data, as well as to allow for possible asymmetries in the tail dependence of

the multivariate distribution via the copula function.

1.3.1 Constructing a di¤usion with a pre-speci�ed stationary distribution

We assume that uncertainty is driven by a d-dimensional standard Brownian motion and

that the price of the risky asset can be expressed as 1:

Sit = exp (�i (t) +Xit) ; i = 1; :::; d (1.3.1)

for some deterministic function of time �i (t), which we assume to be linear in t, �i (t) = kit

with a linear trend parameter ki, and where

dXt = � (Xt) dt+ �(Xt) dWt (1.3.2)

Thus, applying Itô�s lemma we obtain for the price process for i = 1; :::; d:

dSit = Sit�
S
i (lnSit � kit) dt+ Sit

dX
j=1

�ij (lnSit � kit) dWjt (1.3.3)

where �Si (Xt) = �i (Xt) + ki +
1

2

dX
j=1

�ij (Xt)
2

where �ij are entries of the matrix � in the di¤usion term of the process for the de-trended

log-price X. As pointed out in Bibby and Sorensen (1997), there is empirical evidence that

the increments of the process for the log-price are nearly uncorrelated but not indepen-

dent, which motivates the speci�cation in (1.3.1). It is chosen as the most straightforward

1Following the parametrization of Bibby and Sorensen (1997) and Rydberg (1999)
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generalization of the Black Scholes model. The exact parametrization of the drift and the

di¤usion term will be discussed in the subsequent sections, where we present a method to

construct a di¤usion with a pre-speci�ed stationary distribution.

Before proceeding to the speci�c construction of the multivariate di¤usion process for

the state variables X, we �x several conditions that the model speci�cation should satisfy.

First, we would like to be able to allow for possibly di¤erent univariate processes for each of

the state variables. Second, the dependence structure should be constructed independently

from the margins, and it should allow for asymptotic dependence and independence. Third,

we would desire that the dependence structure be modeled parsimoniously, in order to allow

for the treatment of a highly multivariate dataset. The copula construction we pursue allows

answering all these conditions.

Following Chen et al. (2002), we construct a multivariate stationary di¤usion by exploit-

ing the relationship that exists between the invariant density, the drift and the di¤usion

term for the process in (1.3.2):

�j =
1

2q

dX
i=1

@ (vijq)

@xi
(1.3.4)

� = ��| with entries vij

where � is a lower triangular matrix, q is a strictly positive continuously di¤erentiable

multivariate density function, and � is a continuously di¤erentiable positive de�nite matrix.

Using this construction, q is the stationary density of the Markov process, and the drift

vector � is determined by the choice of q and the volatility matrix �. Thus, in order

to model the stationary di¤usion (1.3.2), we need to specify its invariant density and its

di¤usion term. For the latter, we propose a constant conditional correlation speci�cation,

given by:

vij = �ij�
X
i �

X
j (1.3.5)

�Xi = �i

h ef i (xi)i� 1
2
�i

which is a multivariate generalization of the di¤usion term proposed by Bibby and Sorensen
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(2003) for the case of univariate di¤usion, where
�
�Xi
�2
> 0 and �i 2 [0; 1] ; i = 1; :::; d. The

function ef i (xi) / f i (xi), i.e. it is proportional to the ith univariate marginal distribution

whose choice will be discussed in the subsequent section. If all parameters � are set equal

to zero, and the correlation matrix is assumed to be diagonal with unit entries, this will

reduce the di¤usion to one with a constant volatility term, which is the case discussed in

Kunz (2002).

In what follows, we will discuss the particular choice for the marginal distributions and

the way they are joined using the copula function to obtain the stationary multivariate

distribution q that determines the drift (1.3.4) of the di¤usion in (1.3.2).

Choice of the marginal distributions

A much exploited distribution speci�cation for the univariate return series in recent litera-

ture has been that of the family of the Generalized Hyperbolic distributions. Introduced by

Barndor¤-Nielsen (1977) for studying the particle-size distribution of wind-blown sand, it

has consequently found application in numerous �elds, including �nance. Distributions in

that family have been successfully �tted to �nancial time series, while stochastic processes,

built on the basis of generalized hyperbolic laws, have been proposed to model the dynamics

of �nancial markets. Eberlein and Keller (1995) introduce the hyperbolic Levy motion in

modeling the dynamic behavior of asset returns. Their model is further extended in Prause

(1999) to the generalized hyperbolic case. Bibby and Sorensen (1997) �t a hyperbolic di¤u-

sion model to individual stock price data, while Rydberg (1999) proposes a one-dimensional

Normal Inverse Gaussian di¤usion that accommodates thick tails in log returns, and Bauer

(2000) investigates the usefulness of hyperbolic distributions for risk management in the

context of VaR modeling. As the family of Generalized Hyperbolic distributions covers a

vast spectrum of tail behavior (from Gaussian to power tails), it is particularly suited for

modeling the marginal distributions in the present context of investigating the extremal

behavior of return series.

Form, properties and subclasses of the univariate Generalized Hyperbolic (GH)

family of distributions. The family of GH distributions is constructed as normal mean-

variance mixtures with the Generalized Inverse Gaussian (GIG) as the mixing distribution.

Thus, the density function for the GH distribution is expressed as:
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fGH (x;�; �; �; �) =

1Z
0

N (x;�+ �s; s)GIG
�
s;�; �2; �2 � �2

�
ds (1.3.6)

where N (�) is the normal density with mean � + �s and variance s, and the GIG density

has the form:

GIG (x;�; �;  ) =
( =�)�=2

2K�

�p
 �
�x��1e� 1

2(�x
�1+ x) (1.3.7)

x > 0; � 2 R;  ; � 2 R+

where K� is the modi�ed Bessel function of the third kind with index �, whose integral

representation, following Barndor¤-Nielsen and Blaesid (1981) is given by:

K� (x) =
1

2

1Z
0

y��1e�
x
2 (y+y

�1)dy; x > 0

The fact that the GH class of distributions is obtained via this convolution operation is

exploited when simulating random GH variables.

Solving this integral form gives the following probability density function of the univari-

ate GH distribution:

fGH (x;�; �; �; �) = c (�; �; �; �)
�
�2 + (x� �)2

���1=2
2 � (1.3.8)

K�� 1
2

�
�

q
�2 + (x� �)2

�
e�(x��)

where c (�; �; �; �) =

�
�2 � �2

��
2

p
2����

1
2 ��K�

�
�
p
�2 � �2

�
x 2 R

c (�; �; �; �) is the normalizing constant, and the parameters have the following interpreta-

tions in terms of the distribution: � determines the shape, � the skewness, � is a location

parameter and � is a scaling parameter. The parameter domain is:
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� � 0; � > j�j for � > 0

� > 0; � > j�j for � = 0

� > 0; � � j�j for � < 0

� 2 R

GH distributions have semi-heavy tails, given by2:

lim
x!�1

fGH (x;�; �; �; �; �) � jxj��1 exp f(��+ �)xg (1.3.9)

Thus the class can easily accommodate any tail behavior ranging from power to expo-

nential decline, and can account for tail asymmetries.

The GH family of distributions has the normal distribution as a limiting case for � !1,

�=�! �2, and the Student�s t distribution as a limit for � < 0, � = � = � = 0 (Barndor¤-

Nielsen, 1978; Prause, 1999). The tail behavior for those limiting cases is as follows. For

the normal distribution we have very thin exponential tails:

lim
x!�1

fGa (x) � c exp

�
�x

2

2

�
while for the Student�s t distribution with � degrees of freedom we have power tails:

lim
x!�1

ft (x) � c jxj���1

Various special cases can be obtained for a di¤erent parameterization of the GH distri-

bution. For � = 1 the hyperbolic distribution is obtained:

fH (x;�; �; �; �) = c (�; �; �) e��
p
�2+(x��)2+�(x��) (1.3.10)

where c (�; �; �) =

p
�2 � �2

2��K1

�
�
p
�2 � �2

�
x 2 R

2See Prause (1999) and Barndor¤-Nielsen and Blaesid (1981).
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where � > 0, � > j�j, � 2 R. This parametrization has been widely exploited in literature

because of the ease of implementation, as the Bessel function appears only in the normalizing

constant. However, it limits the possible tail behavior cases one could obtain, as the tails

are allowed exponential decay: limx!�1 fH (x;�; �; �; �) � e(��+�)x, but nevertheless it

has proved to be successful in modeling the dynamic behavior of �nancial time series.

Another subclass of the GH family is that of the Normal Inverse Gaussian (NIG) distri-

bution, obtained for � = �1=2, whose density is given by:

fNIG (x;�; �; �; �) = c (�; �)
�
�2 + (x� �)2

�� 1
2 � (1.3.11)

K1

�
�

q
�2 + (x� �)2

�
e�
p
�2��2+�(x��)

where c (�; �) =
��

�

x 2 R

where � > 0, � � j�j � 0, � 2 R. This speci�cation has been successfully used as the

stationary measure of a univariate di¤usion in Rydberg (1999) for modeling US stock price

data. It has a somewhat richer speci�cation for the tail decay as compared to the hyper-

bolic distribution: limx!�1 fNIG (x;�; �; �; �) � jxj�3=2 e(��+�)x. Also, it is one of the

two members of the GH class that are closed under convolution (the other one being the

Variance Gamma distribution), so that for the sum of two independent random variables

Xi � NIG (x;�; �; �i; �i) ; i = 1; 2 we have that X1 +X2 � NIG (x;�; �; �1 + �2; �1 + �2).

This property is exploited in Rydberg (1999) when modeling log prices as NIG di¤usions in

that log returns are expected to be also approximately NIG distributed as the time horizon

goes to in�nity, provided that there is almost no autocorrelation in the increments of log

prices.

The moment generating function for the Generalized Hyperbolic distribution is given by

Prause (1999):

M (u) = eu�
�

�2 � �2

�2 � (� + u)2

��
2
K�

�
�
q
�2 � (� + u)2

�
K�

�
�
p
�2 � �2

� (1.3.12)

j� + uj < �
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The characteristic function takes the form:

' (u) = ei�u
�

�2 � �2

�2 � (� + u)2

��
2
K�

�
�
q
�2 � (� + iu)2

�
K�

�
�
p
�2 � �2

� (1.3.13)

The mean and variance in this class of distributions are given by:

E [X] = �+
��K�+1 (�
)


K� (�
)
(1.3.14)

V ar (X) =
�K�+1 (�
)


K� (�
)
+
�2�2


2

 
K�+1 (�
)

K� (�
)
�
K2
�+1 (�
)

K2
� (�
)

!

where 
2 = �2 � (� + x)2. These expressions have a particularly simple form for the NIG

distribution, following the property of the Bessel function that:

Kn+ 1
2
(x) =

r
�

2x
e�e

 
1 +

nX
i=1

(n+ i)!

(n� i)!i! (2x)
�i
!
; n = 0; 1; 2; :::

So that for NIG we obtain3:

E [X] = �+
��




V ar (X) =
��2


3

Skew (X) = 3��2�
�5

Kurt (X) = 3��2
�
�2 + 4�2

�

�7

In our empirical application we choose the general form of the GH distribution, or its

special case �the NIG distribution, because of the general tail behavior allowed under these

speci�cations.

Univariate di¤usion speci�cations with Generalized Hyperbolic stationary dis-

tribution. Before turning to the more complex case of multivariate dependence modeling,

let us �rst concentrate on di¤usion speci�cations for the state variables governing the market

price of risk process that are susceptible of reproducing features of univariate return data

3See Bibby and Sorensen (2003).
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like fat tailedness and distribution asymmetry.

We thus consider the construction of a univariate di¤usion process with a prespeci�ed

stationary distribution. The typical construction of a scalar di¤usion exploits the relation-

ship between the stationary density and the densities of the speed and the scale measure.

If we assume a univariate state variable di¤usion process de�ned on S = (l; u) 2 R, given

by the stochastic di¤erential equation (SDE):

dXt = � (Xtj�) dt+ � (Xtj�) dWt

where W is a standard Wiener process, and the drift and the di¤usion terms � (xj�) and

� (xj�), for a parameter vector � 2 �, are such that a unique weak solution exists. We also

assume that � (xj�) > 0 for all x 2 S. Then under certain conditions on the density of the

speed and the scale measure of the solution to the above process (see Bibby and Sorensen

(2001)) and for a function ~f that is integrable on S, the process is ergoric and its invariant

density �� is proportional to ~f . More speci�cally, the scale measure of the solution to the

above SDE has density with respect to the Lebesgue measure de�ned as:

s (x) = exp

0@� xZ
x�

2� (u)

v (u)
du

1A ; x 2 S (1.3.15)

for some x� 2 S, where v (x) = [� (x)]2, and where we have suppressed the conditioning on

the parameter vector � for the sake of brevity. The speed measure of the solution to the

above SDE has density with respect to the Lebesgue measure given by:

m (x) =
1

v (x) s (x)
; x 2 S

Then under the assumptions that m (x) is �nite and that
R u
x� s (x) dx =

R x�
l s (x) dx =

1 the process X is ergodic and its invariant measure has density proportional to m (x).

Further, the relationship between the function ~f (x), proportional to the invariant density,

and the drift and di¤usion coe¢ cients of the SDE can be shown to verify:

2� (x)� v0 (x) = v (x)
~f 0 (x)
~f (x)

(1.3.16)

This allows us to construct a stationary univariate di¤usion with a prespeci�ed invariant



21

density. As this construction leaves either the drift or the di¤usion coe¢ cient free to be

speci�ed, once the form of the stationary density has been chosen, Bibby and Sorensen (2003)

suggest the following speci�cation of the drift, that holds for any di¤usion coe¢ cient:

� (x) =
1

2
v (x)

d

dx
ln
�
v (x) ef (x)� (1.3.17)

It can be shown that this drift speci�cation is a special case of the multivariate drift restric-

tion (1.3.4) for the univariate case.

Notice that the relationship determining the drift of the stationary di¤usion depends

only on the ratio f 0(x)
f(x) , thus it is su¢ cient to specify the invariant density up to a constant

of proportionality. Thus we consider the function ef (x) / f (x) that is proportional to the

density of the univariate GH distribution (1.3.8). This function enters the volatility term

(1.3.5) of the multivariate speci�cation.

If we remain in the univariate context, then the volatility term is given by � (x) =

� ef (x)� 1
2
�, and we obtain the general form of a stationary di¤usion process for the state

variable X as the one proposed in Bibby and Sorensen (2003):

dXt =
1

2
�2 (1� �)

h ef (Xt)
i���1 @ ef (Xt)

@Xt
dt+ �

h ef (Xt)
i� 1

2
�
dWt (1.3.18)

This speci�cation nests the special cases of a zero drift di¤usion (in the case of � = 1)

or constant di¤usion term (in the case of � = 0).

The above mentioned models in the family of the Generalized Hyperbolic di¤usions

are preferred to an alternative speci�cation of Normal Inverse Gaussian Levy processes,

proposed in Barndor¤-Nielsen (1995), that have grown considerably popular in modeling

log returns, because the latter su¤er from the de�ciency of being incapable of replicating

the persistence in correlation in absolute and squared log returns because of the independent

Levy increments. This is not shared by the Generalized Hyperbolic di¤usions, as pointed

out in Rydberg (1999).

In our empirical application we use (1.3.18) to model the de-trended log-prices with

the aim of �tting the potentially heavy tails and distributional asymmetry of asset returns

in the scalar di¤usion case. This univariate treatment will later be used as a guidance

as to which marginal distributions to choose when modeling the multivariate dependence
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structure. This is particularly important, because the use of a given copula function is

sensitive to the correct choice of the marginals, and failing to do so would entail model

misspeci�cation.

Univariate model validation. In order to check the �t of the proposed model, we pro-

ceed to a formal validation procedure for the scalar di¤usions, proposed in Pedersen (1995)

and applied in Rydberg (1999), which is based on the univariate residuals:

uti = F
�
ti; Xti j ti�1; Xti�1 ; 

�
(1.3.19)

where F (�) is a transition function F (x; t j y; s; ) for a given parameter vector  that

can be estimated via simulation using the dynamic probability transform for a discretized

sample of the process fX�tgni=1 over the period t = 1; :::; n with a discretization step �:

but = Xt�Z
�1

f
�
t�; x j (t� 1)�; X(t�1)�

�
dx (1.3.20)

Under the hypothesis of correct model speci�cation, the series fbutgnt=1 is i:i:d:U (0; 1).
Having chosen the appropriate univariate model, we can now proceed to the problem

of building the multivariate distribution with the use of copula functions. However, let us

note that there exists a multivariate version of the GH distribution that could be a po-

tential candidate for a straightforward generalization to higher dimensions. Still, there is

one important caveat: it is tail-independent. Thus we proceed to the multivariate di¤usion

construction based on copula functions that allow us to address the problem of modeling

di¤erent dependence structures independently of the marginals that could di¤er across the

separate univariate data series (another feature that could not be addressed by the multi-

variate form of the GH distribution).

Choice of the copula and the multivariate stationary di¤usion

We now turn to the construction of the n-variate di¤usion that has its spatial dependence

structure in the stationary density modeled by a speci�c parametric copula. Following

Sklar�s theorem, we de�ne the invariant density as:
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q (x1; :::; xn) � ec (x1; :::; xn) nY
i=1

efi (xi) (1.3.21)

where ec (x1; :::; xn) = c
�
F 1 (x1) ; :::; F

n (xn)
�
, efi (�)is proportional to the univariate GH dis-

tribution (1.3.8), and F i (�) is its corresponding CDF.

In order to account for di¤erent degrees of upper and lower tail dependence, we consider

several parametric families of copulas that have either no tail dependence (Gaussian cop-

ula), or symmetric tail dependence (Student�s t copula), or that allow for di¤erent degrees

of dependence in the left and in the right tail (several Archimedean copulas). Below we

discuss the form and properties of the copula functions that we consider for the stationary

distribution of the multivariate di¤usion for the state variables driving asset prices, and the

alternatives we have to build truly multivariate copula functions (of a dimension higher than

two) that maintain some degree of parsimony.

Elliptic copulas. We consider two elliptical copulas, the Gaussian and the t copula, that

are characterized by symmetry in the dependence structure. Our benchmark model relies

on the Gaussian copula. In this case, dependence is governed by the correlation matrix RGa.

Its CDF is de�ned as:

CGa (u1; u2; :::; ud j RGa) (1.3.22)

=

��1(u1)Z
�1

:::

��1(ud)Z
�1

1

2� jRGaj1=2
exp

�
�1
2
x|R�1=2Ga x

�
dx1:::dxd

where ��1 (u) denotes the inverse of the univariate standard normal CDF. The Gaussian

copula generates a multivariate normal distribution i¤ the marginal distributions are also

normal. It has no upper or lower tail dependence for imperfectly correlated random variables.

Thus, for any pair(ui; uj) the bivariate tail dependence coe¢ cients are zero: �UGa = �LGa = 0.

The Student�s t copula, however, allows for both upper and lower tail dependence, but

the tail dependence coe¢ cients are equal. Its CDF is given by:
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Ct (u1; u2; :::; ud j RT ; �) (1.3.23)

=

t�1� (u1)Z
�1

:::

t�1� (ud)Z
�1

�
�
�+d
2

�
jRT j1=2

�
�
�
2

�
(��)d=2

�
1 +

1

�
x|R�1T x

�� �+d
2

dx1:::dxd

where � is the degrees of freedom parameter,RT is the correlation matrix, and t�1� (u)

is the inverse of the univariate CDF of the Student�s t distribution with � degrees of

freedom. For any pair (ui; uj) the tail dependence coe¢ cient is given by �UT = �LT =

2t�+1

�
�
p
v + 1

p
1� �ij=

p
1 + �ij

�
, where �ij is the (i; j)

th o¤-diagonal element of RT .

Thus, the tail dependence coe¢ cient decreases for higher values of the degrees of freedom

parameter and in the limit it goes to zero as � ! 1 (in this case the Student�s t copula

converges to the Gaussian copula). One interesting property of the t copula is the fact that

it can still show tail dependence even if the correlation is zero.

Archimedean copulas. Copulas in this family are constructed using a continuous, de-

creasing and convex generator function ' (u) : [0; 1] ! [0;1) that has a de�ned pseudo-

inverse '[�1] (' (u)) = u for all u in [0; 1]:

'[�1] (u) =

8<: '�1 (u) for 0 � u � ' (0)

0 for ' (0) � u � 1

9=;
The pseudo-inverse is given by the usual inverse for the cases when we have a strict generator

function '. Then the Archimedean copulas are de�ned in terms of the generator function

as follows:

C (u1; u2; :::; un;�) = '�1 (' (u1;�) + ' (u2;�) + :::+ ' (un;�)) (1.3.24)

for a given dependence parameter �. The density of Archimedean copulas for the bivariate

case is given by (see Nelsen, 1999):

c (u1; u2) =
�'0 (C (u1; u2))'0 (u1)'0 (u2)

('0 (C (u1; u2)))
3

Archimedean copulas have the useful property that most dependence measures, including

the coe¢ cients of upper and lower tail dependence, can be expressed in terms of the generator
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function. Joe (1997) provides the following result with respect to tail dependence: for a

strict generator ' (u), if '0 (0) is �nite and di¤erent from zero, then the copula has no tail

dependence. The copula has upper tail dependence for 1='0 (0) = �1, given by:

�U = 2� 2 lim
z!0+

'0 (z)

'0 (2z)

and lower tail dependence, given by:

�L = 2 lim
z!+1

'0 (z)

'0 (2z)

Kendall�s tau also has a representation in terms of the generator function, given by

Genest and MacKay (1986):

� = 4

Z
[0;1]

' (z)

'0 (z)
dz + 1

A member of the Archimedean family of copulas that we consider is the Gumbel copula,

introduced by Gumbel (1960). It is a parsimonious one-parameter copula, whose generator

is given by ' (x) = (� log (x))
1
� ; � 2 (0; 1], so that its CDF can be expressed as:

CG� (u1; u2; :::; un) = exp

 
�
 

nX
i=1

(� log ui)
1
�

!�!
; � 2 (0; 1] (1.3.25)

Its Kendall�s tau is given by �� = 1 � �, and the coe¢ cient of upper tail dependence is

given by �UG = 2� 2� , while the coe¢ cient of lower tail dependence is zero. Independence

is achieved for � = 1, in this case both tail dependence coe¢ cients are zero.

As we are particularly interested in the lower tail dependence, we have to use the survival

Gumbel copula to allow for it. The survival copula for the bivariate case can be de�ned

in terms of the copula function (see Theorem 4.7 in Cherubini et al. (2004) for dimensions

bigger than 2):

C
G
� (u; v) = u+ v � 1 + exp

�
�
h
(� log (1� u))

1
� + (� log (1� v))

1
�

i��
(1.3.26)

� 2 (0; 1]

Its Kendall�s tau is given by �� = 1 � �, and the coe¢ cient of lower tail dependence is
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given by �LSG = 2� 2� while the coe¢ cient of upper tail dependence is zero.

The symmetrized Joe-Clayton (SJC) copula. A bivariate copula function that has

both upper and lower tail dependence is the �BB7�copula of Joe (1997), also known as the

Joe-Clayton copula. It is given by:

CJC
�
u1; u2 j �L; �U

�
= 1�

�
1�

h
(1� (1� u1)�)�
 + (1� (1� u2)�)�
 � 1

i� 1



� 1
�

where � =
1

log2 (2� �U )


 = � 1

log2 (2� �L)
�U 2 (0; 1) ; �L 2 (0; 1)

The two parameters of the Joe-Clayton copula are indeed the coe¢ cients of upper (�U )

and lower (�L) tail dependence. As it is claimed in Patton (2004), this copula function

su¤ers from the drawback that even if both parameters are equal, there is still some residual

asymmetry in the copula due to its functional form. So we consider instead its �symmetrized�

version, proposed by Patton (2004), whose form is as follows:

CSJC
�
u1; u2 j �L; �U

�
=

1

2

�
CJC

�
u1; u2 j �L; �U

�
+ CJC

�
1� u1; 1� u2 j �L; �U

�
+ u1 + u2 � 1

�
However, this copula function has only a bivariate representation, while the one-parameter

Archimedean copulas can easily be extended to higher dimensions. In what follows, we con-

sider a nested version of the Archimedean copula that provides an extension to higher

dimensions without imposing excessive restrictions on the dependence structure.

Nested Archimedean copulas. Popular approach in literature consists in choosing the

same dependence parameter for all univariate marginals, as in (1.3.24), but this seems an

implausible restriction on the dependence structure for more than two dimensions, as the

pairwise dependence between each couple of random variables would be exactly the same.
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A remedy to this problem has been proposed in recent literature in terms of the so-called

nested copula construction for the family of Archimedean copulas (Whelan, 2004; Embrechts

et al., 2002). The idea of the construction is as follows. Instead of using (1.3.24), we could

construct a multivariate Archimedean copula by repeatedly nesting bivariate copulas. For

the tri-variate case the copula will thus have the form:

C (u1; u2; u3) = '�12
�
'2
�
'�11 ('1 (u1) + '1 (u2))

�
+ '2 (u3)

�
(1.3.27)

where each generating function 'i (ui) has its own dependence parameter �i. With this

construction we achieve (n� 1) di¤erent pairs of variables, which are still below the gen-

eral case, but this is a considerable improvement compared to the simple form in (1.3.24).

However, there are certain conditions that the parameters should satisfy in order for the

nested copula to be a valid copula function (see Embrechts et al. (2002) for a discussion).

For the parameterization of the Gumbel copula it can be shown that the parameters in each

generating function have to satisfy the condition �1 � �2, i.e. dependence should be higher

in the more deeply nested copulas4.

The parsimonious structure of the Gumbel copula makes it a suitable candidate for a

nested copula, so we consider it in our application. However, it allows for only upper tail

dependence, so we combine it in a mixture copula with its survival counterpart in order to

allow for lower tail dependence as well, as we describe over the following lines.

The mixture copulas. Combining both Gumbel and survival Gumbel copulas in a mix-

ture copula, where each function is assigned a certain weight, is a way to construct a copula

that has both lower and upper tail dependence with di¤erent tail dependence coe¢ cients.

However, if we mix only extreme value copulas, we will implicitly assume asymptotic tail

dependence for all cases where � 6= 1. Following the Poon et al. (2004) critique, and in order

to allow for asymptotic tail independence, we include the Gaussian copula in this mixture

model, to obtain:

4Usually the Gumbel copula parameter is de�ned as 
 = 1
�
; 
 2 (1;1), and higher dependence will

translate in higher levels of 
. But for estimation purposes, we chose the alternative parametrization, using
� 2 (0; 1], so that higher dependence requires a lower level of �.
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CGam (u;RGa; �; �; !; !) = !CG (u;�) + !C
G
(u;�) + (1� ! � !)CGa (u;RGa) (1.3.28)

or the Student�s t copula:

Ctm (u;RT ; �; �; �; !; !) = !CG (u;�) + !C
G
(u;�) + (1� ! � !)CT (u;RT ; �) (1.3.29)

where we are mixing the two extreme value copulas: the nested Gumbel copula CG (u;�),

where � is the vector of dependence parameters �i that determine upper tail dependence, the

nested survival Gumbel copula C
G
(u;�), where � is the vector of dependence parameters

�i that determine lower tail dependence, with two elliptic copulas: the Gaussian copula

CGa (u;RGa) with correlation matrix RGa in (1.3.28), or the Student�s t copula with a

correlation matrix RT and a degrees of freedom parameter � in (1.3.29). The key di¤erence

between the two mixture copulas consists in the fact that the one based on the Gaussian

copula allows for tail independence by setting the extreme value copula weights to zero,

while for the Student�s t case there is still some degree of tail dependence, even if the

correlation parameter of the Student�s t copula is zero. Thus, we achieve varying degrees of

tail dependence or asymmetry. Further, u = (u1; u2; :::; un)
| is the vector of marginal CDFs

of the random variables, and f!; !g 2 [0; 1] ; ! + ! � 1 are the corresponding weights for

the Gumbel and the survival Gumbel copulas.

So far we have collected all the building blocks of the multivariate di¤usion for the

state variables driving the stock price process, so in what follows we turn to the task of its

estimation.

1.4 MCMC estimation of the multivariate copula di¤usion

The above construction of a stationary di¤usion with a prespeci�ed stationary density

(1.3.1)-(1.3.5) poses a serious estimation problem. Even though the invariant density is ex-

plicitly known, this cannot be said for the conditional density of the state variables. Thus,

exact likelihood estimation cannot be applied in this case. There is a variety of methods

proposed in literature to deal with the estimation of a di¤usion with an unknown conditional

distribution. Aït-Sahalia (2003) proposes closed-form expansions of the likelihood function
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both for univariate and multivariate discretely sampled di¤usions, based on Hermite poly-

nomials and Taylor expansion of some �xed order. While this method seems well suited

for the problem at hand, it could become too computationaly intensive in the cases where

no explicit solutions for the coe¢ cients of the density approximation can be found. Bibby

and Sorensen (1995) and Rydberg (1999) propose another estimation technique that relies

on approximating the conditional density by a normal density and applying a martingale

estimation technique. However, even though the martingale estimator is consistent and

asymptotically normally distributed, it rests ine¢ cient.

To solve this problem, Tse et al. (2004) propose an alternative way of dealing with the

problem of unknown transition density - the MCMC estimation for a hyperbolic di¤usion.

Relying on a discretization of the underlying di¤usion, they apply a random-walk Metropolis

Hastings algorithm in order to estimate parameters. However they assume that the discrete

time intervals given by observation times are accurate enough to approximate the transition

density. If the available data is not �ne enough, this approach would introduce discretization

bias.

A suitable alternative to deal with the problem of the discretization bias for a highly

non-linear (multivariate) di¤usion that we apply in this setting, is data augmentation, i.e.

introducing latent data points between each pair of observations. This technique has been

used in Pedersen (1995) for simulated maximum likelihood estimation of di¤usions, or in

Jones (2003), Elerian et al. (2001), Roberts and Strammer (2001), and Eraker (2001) for

MCMC analysis. The simulated maximum likelihood method relies on a discretization

scheme such as the Euler scheme to approximate the one-period-ahead transition density.

The MCMC approaches on the other hand propose simulated paths of latent data that

bridge two consecutive observations, constraining both ends of the simulated path to be

equal to the actual data. Thus, conditioning on both the beginning and the end of each

observation sub-period reduces the variance of the simulated latent data and augments the

e¢ ciency of the algorithm.

However, augmentation schemes are susceptible to causing slow rates of convergence of

the resulting Markov chain due to the dependence between the latent data points and the

volatility of the di¤usion as the degree of augmentation increases (known as the Roberts and

Strammer (2001) critique). There have been several remedies to this issue proposed in recent
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literature, as the particular transformation of the di¤usion process to one with constant

volatility proposed by Roberts and Strammer (2001), the simulation �lter for multivariate

di¤usions of Golightly and Wilkinson (2006a) that builds upon the sequential parameter

estimation procedure of Johannes et al. (2004) for discrete-time stochastic volatility models,

or the Gibbs sampler of Golightly and Wilkinson (2006b) that iterates between updates of

parameter and states and relies upon conditioning on the Brownian increments instead of

the underlying latent data in order to overcome the dependence with volatility parameters.

The estimation scheme we propose to apply in the present setup relies on an MCMC

estimation algorithm with data augmentation for both the univariate and the multivari-

ate di¤usion speci�cations. It follows the sequential inference procedure of Golightly and

Wilkinson (2006a) and is closely related to the work of Roberts and Strammer (2001) and

Durham and Gallant (2002). As the augmentation of the parameter and state space with

latent data points is the corner stone in each MCMC algorithm for di¤usion estimation, we

will �rst discuss the particular scheme that was chosen and the motivation behind it.

1.4.1 Data augmentation

Consider a d-dimensional Itô di¤usion given by:

dYt = � (Yt) dt+ � (Yt) dWt (1.4.1)

Let data be observed at times t0 < t1 < ::: < tn�1 < tn with a time increment �� =

ti+1 � ti. We divide each subinterval between observations in m equidistant points, so that

we obtain an augmented data matrix:

Y aug = [ Y t0;0 Yt0;1 ::: Yt0;m Y t1;0 ::: Y tn�1;0 ::: Ytn�1;m Y tn;0
];

where Yti;j is a d-dimensional vector of latent data points at time ti + j��= (m+ 1) and

Y ti;0 is the vector of observations at time ti. The augmented data matrix could also consist

of unobservable state variables, whose treatment would be similar to that of the latent data.

Working with the Euler discretization of the process, the joint posterior of data and model

parameters � is given by:
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� (Y ; �) _ � (�)

tn�1Y
t=t0

8<:
mY
j=0

� (Yt;j+1 j Yt;j ; �)

9=; (1.4.2)

where � (�) is the prior density for the parameter vector, and � (Yt;j+1 j Yt;j ; �) comes from

the Gaussian transition density implied by the Euler discretization:

� (Yi+1 j Yi; �) = � (Yi + � (Yi)�t; � (Yi)� (Yi)
|�t)

where �t = ��= (m+ 1) is the time increment between successive data points in the aug-

mented vector Y aug, and � (e�; e�) denotes the Gaussian density with mean e� and covariance
matrix e�.

Inference procedures that rely on a Gibbs sampler use the conditional posterior for pa-

rameters given data and the conditional posterior of missing data given parameters and

observations, rather than the joint posterior (1.4.2), and iteratively propose parameters and

missing data from each one of them, so that the obtained simulated sequence of parameters

and missing data (after an initial burn-in stage) forms a Markov chain whose stationary

distribution is the posterior in question. The alternative approach that we apply is the joint

update of parameters and states, which overcomes the problem of increasing correlation

between the volatility parameters and latent data as the degree of augmentation becomes

large. But as it is virtually infeasible to update all latent data in one single block, this sam-

pling scheme can be applied in a sequential manner, updating parameters and unobserved

state variables as each observation becomes available.

A straightforward procedure for sampling the latent data points has been proposed by

Eraker (2001). It can easily deal with high-dimensional problems, including unobserved

state variables. It consists of designing an Accept-Reject Metropolis Hastings algorithm for

updating one column of data at a time, where the conditional posterior of one column of

missing data is de�ned as:

�
�
Yi j Yni; �

�
_ p (Yi j Yi�1; Yi+1; �)

following the Markov property of the di¤usion. At each iteration h the algorithm pro-

poses a latent data point Y �i from some proposal density (Eraker uses a normal proposal

q
�
� j Y h

i�1; Y
h�1
i+1 ; �

h
�
), which is then accepted or not following the acceptance procedure of
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the Accept-Reject Metropolis Hastings algorithm of Tierny (1994). The sampling scheme,

proposed by Elerian et al. (2001), is essentially the same, but instead of updating one column

vector at a time, they propose updating blocks of missing data with random size. However,

increasing the number of imputed data points m, while reducing the discretization bias of

the Euler approximation, seems to adversely a¤ect the mixing properties of the algorithm

because of the increasing correlation of the di¤usion parameters and the simulated path as

m increases. In fact, when the number of latent data points tends to in�nity, one could very

precisely estimate the di¤usion term by the quadratic variation, so that when updating the

di¤usion parameter, its posterior distribution given the simulated latent path tends towards

a point mass at its previous iteration value, rendering it impossible to update the parameter.

Roberts and Strammer (2001) propose a reparametrization of the missing data that

circumvents the problem of reducible data augmentation. The basic idea behind their scheme

is a construction of the latent path that does not depend on the di¤usion term. They apply

the sampling algorithm on a univariate di¤usion with constant di¤usion term, as well as on

a reducible di¤usion in the sense of Aït-Sahalia (2003) that has a deterministic time-varying

di¤usion term, and that could be transformed to a constant volatility di¤usion following the

Doss transformation.

Their methodology could easily be extended to the estimation of a reducible multivariate

di¤usion, such as the constant volatility speci�cation considered in Kunz (2002), that is a

special case of the model we propose, but for a general multivariate di¤usion as in (1.3.5)

it is almost impossible to solve for the volatility transformation. Therefore, we use a more

promising approach that is applicable for the multivariate speci�cation we are proposing,

which consists in the joint update of parameters and states following the sequential MCMC

method of Golightly and Wilkinson (2006a). It does not rely on a volatility transformation

for the di¤usion and at the same time overcomes the Roberts and Strammer critique to

data augmentation. As a direct draw from the joint posterior of the model�s parameters

and the latent state variables is virtually impossible due to the dimension of the state space,

a solution to proceed is to revert to Bayesian sequential �ltering, devising an MCMC scheme

that updates parameters as each new observation becomes available. This idea has been

exploited in Stroud et al. (2004), Johannes et al. (2004), Liu and West (2001) among others.

In what follows, we will brie�y discuss the algorithm that has been applied in Golightly
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and Wilkinson (2006a) for the estimation of a general multivariate di¤usion. It has proved

to have better convergence properties than the standard Gibbs sampler that iteratively

updates parameters and states.

1.4.2 The sequential parameter and state estimation scheme

Let us consider that we are at time tj+m = tM and that we observe Y tj+m = Y tM , and

also suppose that we have a sample of size MC from the marginal parameter posterior

distribution �
�
� j Y tj

�
,where Y tj denotes all the observed data up to time tj . As we are

interested in sampling the set of parameters from their marginal posterior �
�
� j Y tM

�
, we

could do so by formulating the joint posterior for parameters and latent data �
�
�; YtM j Y tM

�
and then integrating out the latter, where YtM denotes all the latent data points up to time

tM . Notice that the marginal parameter posterior at time tM can be rearranged as follows:

�
�
� j Y tM

�
=

Z
Y augtM

� (�)
M�1Y
i=0

�
�
Y aug
ti+1

j Y aug
ti

; �
�

(1.4.3)

= �
�
� j Y tj

� Z
Y augtM

n
n
Y augtj

o
M�1Y
i=j

�
�
Y aug
ti+1

j Y aug
ti

; �
�

So that our target density at time tM would be

�
�
� j Y tM

�
= �

�
� j Y tj

�M�1Y
i=j

�
�
Y aug
ti+1

j Y aug
ti

; �
�

with the augmented data for the interval (tj ; tM ) integrated out.

In order to sample from this target density, we need to devise a Metropolis-Hastings

algorithm that will propose parameter and latent data points and will accept or reject those

proposals given a certain probability.

The parameter proposal

The approach taken by Golightly and Wilkinson (2006a) that we apply here, and also used

in Liu and West (2001), consists in proposing the parameter set � using a kernel density

estimate of the marginal parameter posterior �
�
� j Y tj

�
with the kernel shrinkage correction

of Liu and West (2001) that takes care of the over-dispersion of the kernel density function
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compared to the posterior sample. Thus, we draw the proposal sample of parameters from

the following density:

�� � �
�
��u + (1� �) �; h2V

�
(1.4.4)

�2 = 1� h2

h2 = 1� ((3� � 1) =2�)2

for a discount factor �, where � denotes the Gaussian density, and u is an integer that

has been drawn uniformly from f1; 2; :::;MCg. This parameter proposal scheme simpli�es

considerably the expression for the acceptance probability, as at each observation time tj

we sample from the previous posterior density �
�
� j Y tj

�
, so that it will enter both the

target posterior density and the proposal, and thus be cancelled out in the calculation of

the acceptance probability.

The latent data points proposal

The idea behind the proposal density q from which the proposal latent data points will be

sampled is that it should satisfy sup (q) � sup (p) where p denotes the target density � in

its unnormalized form. A good proposal would be one that makes the ratio p=q as close to

a constant as possible. This is especially important for independence samplers, as the one

used in this setting, as pointed out in Tierny (1994), in order to avoid that the algorithm

spends too much time in a certain region of parameter space that it explores.

We apply a Modi�ed Di¤usion Bridge proposal for the latent data, based on an Euler

scheme for the transition density. The idea behind it is quite simple: a Brownian bridge is

in fact a Brownian motion that is conditioned upon terminating at a speci�c value within

the interval of interest, that is, it bridges the values at each end of the interval. Using such

a Brownian bridge is a way to reduce variance in Monte Carlo integration and Durham and

Gallant (2002) show that it compares nicely to other transition density approximations like

the Milstein scheme. Thus, the proposal for the latent data points takes the form:
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q
�
Yti+1 j Yti ; Y tM ; �

�
= �

�
Yti+1 ; Yti + e�i; e�i� (1.4.5)

where e�i =
1

M � i
�
Y tM � Yti

�
e�i = �t

1

M � i (M � i� 1)� (Yti)

where � denotes the Gaussian density and � (Yti) is the volatility term of the process

for Y from (1.4.1). Thus for each iteration s = 1; :::;MC we sample a latent data path

Y �tj ; :::; Y
�
tM�1 , so we have the joint proposal sample

�
Y �tj ; :::; Y

�
tM�1 ; �

�
� �

�
� j Y tj

�M�2Y
i=j

q
�
Y �ti+1 j Y

�
ti ; Y

�
ti ; Y tM ; �

�
(1.4.6)

A Metropolis-Hastings algorithm moves as follows: provided that we have obtained

the proposed sample at iteration s and that we have a parameter and latent state sample

obtained from the previous iteration s � 1, we decide whether to keep the parameters and

latent data from the previous iteration or alternatively replace them with the ones from the

proposal. To this end we form the ratio

A =
p (Y �s ; �

�
s) eq (Ys�1; �s�1)

p (Ys�1; �s�1) eq (Y �s ; ��s)
where (Y �s ; �

�
s) =

�
Y �tj ; :::; Y

�
tM�1 ; �

�
�
s
is the proposed sample at iteration s, (Ys�1; �s�1) =�

Ytj ; :::; YtM�1 ; �
�
s�1 is the previously accepted sample at iteration s�1, p denotes the target

posterior density in its unnormalized form, and eq is the proposal density (1.4.6). Replacing
all terms in the expression, we obtain for the ratio A:

A =

M�1Y
i=j

�
�
Y �ti+1 j Y

�
ti ; �

�
�M�2Y

i=j

q
�
Yti+1 j Yti ; Yti ; Y tM ; �

�
M�1Y
i=j

�
�
Yti+1 j Yti ; �

�M�2Y
i=j

q
�
Y �ti+1 j Y

�
ti
; Y �ti ; Y tM ; �

�
� (1.4.7)

The standard Metropolis Hastings algorithm then accepts the new draw with probability

� = min (1; A), or else the draw is rejected and the last accepted draw is retained.
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The algorithm

The algorithm for carrying out the Metropolis-Hastings scheme for sampling from the con-

ditional posterior of parameters and latent data can be summarized as follows:

Initialization. Set j = 0. Initialize the augmented data points for each of the s =

1; :::;MC iterations by linearly interpolating between observations for the �rst interval.

Initialize the parameter set for all s by sampling from a prior density � (�).

1. For each s = 1; :::;MC :

� Propose the parameters �� using (1.4.4)

� Propose the latent data Y � for the interval (tj ; tj+m) using (1.4.5) for each i = j +

1; :::;M � 1

� Accept the parameter and latent data proposal with probability � = min (1; A) with

A given by (1.4.7), and set (Ys; �s) = (Y �s ; �
�
s), or else set (Ys; �s) = (Ys�1; �s�1).

2. Set j = j +m and go to (1).

The resulting draws of latent data and parameters form a Markov chain, whose stationary

distribution after an initial burn-in period is given by (1.4.2). The number of imputed data

points that are needed could be determined by running the sampler for low values of m and

consequently increasing the discretization points until there is no signi�cant change in the

posterior parameter samples.

Convergence

In order to assess the accuracy of the parameter estimates obtained as ergodic averages of

the form:

b�MC =
1

MC

MCX
i=1

�
�i
�

we estimate their variance �2� using the batch-mean approach (see Roberts, 1996; Tse et al.,

2004). To this end, we run the MCMC scheme for MC = m� n iterations with m batches

of n draws each. We compute the mean of each batch k = 1; :::;m with:
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b�k = 1

n

knX
i=(k�1)n+1

�
�i
�

Then we obtain an estimate of �2� using:

b�2� = n

m� 1

mX
k=1

�b�k � b�MC

�2
(1.4.8)

and the Monte Carlo standard errors are obtained as
q b�2�

MC .

As well, as a diagnostic tool that allows us to see how well the Markov chain mixes, we

compute the simulation ine¢ ciency factor (SIF) (see Kim et al., 1998), estimated as the

variance of the ergodic averages �2�, divided by the variance of the sample mean from a hy-

pothetical sampler that draws independent random variables from the parameter posterior.

In order to compute the latter variance, we use the output of the MCMC runs, as in Tse

et al. (2004), and obtain:

�2� =
1

MC � 1

MCX
i=1

�
�i � b�MC

�2
so that the SIF is estimated as:

SIF =
b�2�
�2�

(1.4.9)

Model comparison through Bayes factors

In order to compare the estimated multivariate di¤usion models of asset returns, we follow

the traditional Bayesian approach that makes use of the marginal likelihood of each (poten-

tially nonnested) model. The marginal likelihood is obtained by integrating the likelihood

function of each modelMi with respect to the prior density:

p (Y j Mi) =

Z
p (Y j �i;Mi) p (�i j Mi) d�i

where �i are the parameters, corresponding to model Mi. Then the Bayes factors for

comparing modelMi againstMj are simply the ratio of the marginal likelihoods:

Bij =
p (Y j Mi)

p (Y j Mj)
(1.4.10)
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We use the Laplace-Metropolis estimator of the marginal likelihood, proposed by Lewis

and Raftery (1997) that relies on the posterior simulation output from the individual es-

timation of each model and approximates the integral using the Laplace method. Let us

denote by ��i the posterior parameter mean (or any other high density point of the parameter

posterior). Then the logarithm of the marginal likelihood is estimated as:

log (p (Y j Mi)) �
d

2
log (2�) +

1

2
log (jH�j) + log (p (��i )) + log (p (Y j ��i ;Mi))

where d is the dimension of the di¤usion, p (��i ) is the parameter prior under modelMi, H�

is the inverse Hessian of log (p (��i ) p (Y j ��i ;Mi)), jH�j is its determinant, and p (Y j ��i ;Mi)

is the likelihood function, evaluated at ��.

Lewis and Raftery (1997) propose to estimate H� by the sample covariance matrix of

parameters from the MCMC output, so the only quantity that is left to be estimated is

the likelihood function. The most straightforward estimator would be the one proposed

by Pedersen (1995) that consists in averaging over the transition density implied by the

Euler discretization. But as estimation was done by exploiting the information in both ends

of each observation interval, we revert to a more e¢ cient approach that is similar to the

Metropolis-Hastings update used for latent data. Thus, the importance sampling estimator

of the likelihood function has the following form5:

p
�
Y tM j Y tj ; �

�
=

Z
p
�
Y tM ; YtM j Y tj ; �

�
q
�
YtM j Y tj ; Y tM ; �

�q �YtM j Y tj ; Y tM ; �
�
dYtM

for an interval between two successive observations Y tM and Y tj . Thus, the modi�ed Brown-

ian bridge proposal density that we used for the Metropolis-Hastings update could be used

in this setup as the importance density q, which leads us to the following estimator of the

likelihood function:

bp �Y tM j Y tj ; �
�
=
1

M

MX
k=1

p
�
Y tM ; Y

k
tj j Y tj ; �

�
q
�
Y k
tj
j Y tj ; Y tM ; �

�
where Y k

tj ; k = 1; :::;M is a set of latent vectors between each pair of observations.

5See Elerian et al. (2001)
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1.5 Estimation results

Although a joint estimation of each of the multivariate models is feasible, we propose to

use a two step procedure, as this allows us to choose the appropriate marginal distribution

for each data series. Such a two-step approach is commonly used in discrete-time copula

models (Patton, 2004), as it allows to avoid copula model misspeci�cations. A misspeci�ed

univariate model would directly entail copula misspeci�cations, as the latter relies on the

probability integral transform of each univariate series to model the dependence structure. A

two step approach is possible in our continuous time setup as well, as a system of independent

univariate di¤usions is obtained under the product copula, assuming an identity correlation

matrix for the di¤usion term. Thus we �rst estimate each marginal di¤usion separately, and

then the obtained parameters are plugged in the multivariate model in order to estimate the

dependence parameters pertaining to the chosen copula function, as well as the conditional

correlation parameters for the multivariate di¤usion.

1.5.1 Univariate di¤usion

As the copula construction leaves us the freedom to choose any marginal distribution that

should not be the same across all univariate series, we chose to estimate a NIG stationary

distribution for all series, except the Mid caps, for which the more general GH construction

appears to be appropriate (a NIG di¤usion for the Mid caps is rejected on the basis of

the uniform residuals obtained by the probability integral transform discussed in section

1.3.1; as well Bayes factors comparison between a NIG and a GH di¤usion point towards

the latter for Mid caps). The chosen marginal distribution is thus given by (1.3.11) for

Small and Large caps, with the Bessel function parameter � set to -0.5, while the marginal

distribution for Mid caps is given by (1.3.8) with a free � parameter. Table 1.5.1 summarizes

the estimation results for the parameters speci�c to each univariate series.

It is interesting to note that the parameter � for all three series of data is signi�cantly

di¤erent from 0 or 1, which would correspond to either a constant volatility di¤usion for

the state variables (� = 0) or a zero drift di¤usion (� = 1). Thus we retain that more

general speci�cation for the subsequent multivariate di¤usion modeling. As well, correct

modeling of both the drift and the di¤usion term for the state variables would be crucial

for �ltering out the market price of risk, which in turn could have a signi�cant impact on
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Table 1.5.1: Parameter estimates for the univariate series
The table summarizes the posterior parameter estimates from the MCMC output. Monte Carlo
standard errors are reported in parenthesis (multiplied by a factor of 1000) (obtained using the batch-
mean approach). SIF refers to the simulation ine¢ ciency factor for each parameter (its integrated
autocorrelation time).

Smallcap Midcap Largecap
� 3.0502 18.7839 10.6904
(MC s.e.) (0.1616) (0.5220) (0.2193)
(SIF) (0.0938) (0.6694) (0.6912)
� -0.5911 0.4476 -1.5737
(MC s.e.) (0.6329) (2.9453) (1.5404)
(SIF) (0.1104) (1.5392) (1.7637)
�2 0.0301 0.0721 0.0410
(MC s.e.) (0.0024) (0.0011) (0.0031)
(SIF) (0.1219) (1.0535) (1.8122)
� 6.7059 6.3101 6.5360
(MC s.e.) (0.0249) (0.0129) (0.0102)
(SIF) (0.1038) (0.5407) (0.4991)
�2 0.0406 0.0400 0.0082
(MC s.e.) (0.0022) (0.0030) (0.0006)
(SIF) (0.1142) (1.4686) (1.2930)
� 0.6490 0.4670 0.5102
(MC s.e.) (0.0373) (0.0235) (0.0850)
(SIF) (0.0955) (1.4322) (1.7551)
� -0.5 -1.4295 -0.5
(MC s.e.) - (0.0519) -
(SIF) - (1.1704) -



41

portfolio decisions based on this model for stock prices.

Further analysis of the MCMC output is o¤ered on Figure 1.5.1, where we present the

sample paths of the estimated parameter for the Small cap data series6, as well as autocor-

relation plots for a lag up to 100, and kernel density estimate of the posterior parameter

output. We do not have any signi�cant autocorrelation for any of the parameters, which is

a consistent result with Golightly and Wilkinson (2006a), who show a signi�cant reduction

in sample autocorrelations of the Simulation Filter as compared to the Gibbs sampler.

In order to examine whether the proposed multivariate di¤usion replicates certain dy-

namic properties of the data, we simulate a very long series (of length 100 000) from the

univariate NIG di¤usion model for log prices Xit (1.3.18) and parameters corresponding to

the Large cap series in Table 1.5.1, and examine the implied properties of their increments7.

A stylized fact of asset returns is the persistence in autocorrelation in squared returns in

contrast to the lack of autocorrelation in the original return series (except for possibly the

�rst lag). If we examine the autocorrelation patterns in the data and the long simulated

series, we �nd that this property is actually captured by the model, as displayed on Figure

1.5.2.

This �nding is not surprising, if we consider the fact that the Euler discretization of

a univariate di¤usion of the generalized hyperbolic family can be considered as a special

case of a nonlinear ARCH model (Tse et al., 2004), and thus it can be expected to exhibit

volatility clustering and long memory properties. The same behavior is preserved in the

multivariate speci�cation as well.

Another important aspect of our analysis is the �t of each of the univariate di¤usions

to the empirical distribution of the data, as they will provide the inputs for the probability

integral transform in the copula construction. Figure 1.5.3 illustrates the close replication

of the stationary distribution by the considered marginal processes.

Note that the construction of a stationary di¤usion leaves us with the freedom to choose

either the volatility or the drift speci�cation. Models that were proposed in literature treat

either one or the other as a constant, that signi�cantly facilitates estimation but leaves

open the question as to whether such a simpli�ed model would reproduce the dynamic

6Results for the Mid and Large caps series are qualitatively the same and we do not report them for
brevity.

7Similar results are obtained for any of the univariate data series considered.
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properties of the data as well. As we estimate a general di¤usion with nonconstant drift

or volatility term through the parameters �i in (1.3.5), it would be of interest to examine

how closely this chosen speci�cation can account for the variability in the data. Following

Bibby and Sorensen (1997), we contrast the parametric speci�cation of the volatility term

�i

h ef (Xit)
i� 1

2
�i
against a nonparametric estimator of the squared di¤usion coe¢ cient, based

on quadratic variation, as proposed in Florens-Zmirou (1993):

Vn (x) =

Pn
j=1 1

���Xi;tj�x���<h
�
Xi;tj �Xi;tj�1

�2Pn
j=1 1

���Xi;tj�x���<h (tj � tj�1)
with a bandwidth parameter h. Figure 1.5.4 displays the �t of the volatility speci�cation

for each of the univariate models. The U-shaped parametric volatility form (1.3.5) matches

closely the non-parametric estimator. A constant volatility speci�cation (achieved by setting

�i to zero) would thus underestimate volatility in the cases when returns are in either tail

of the distribution and fail to reproduce the empirical stylized fact that returns are highly

volatile in extreme market downturns.

A check of the �t of the univariate models is done via the dynamic probability integral

transform that uses the transitional probabilities of the discretized version of the di¤usion

between two consecutive observations with the Euler discretization scheme, as discussed in

Section 1.3.1. For the model to be well speci�ed, the series of uniform residuals should be

i:i:d:U(0; 1). The residuals could then be analyzed using quantile plots, as illustrated on

Figure 1.5.5. A formal test could be conducted using the statistic stat = �2
Pn

i=1 logUi �

�22n, following Bibby and Sorensen (1997). For 3997 observations, the test statistic for the

Small caps is 7.8677e+003, for the Mid cap it is 7.8797e+003, and for the Large cap it is

8.1278e+003, none of which gives reasons to reject the correct model speci�cation.

Finally, we proceed to a simulation study in order to validate the proposed MCMC

estimation scheme. We simulate a sample from the univariate NIG di¤usion with parameters

corresponding to the estimates for the Large cap series (Table 1.5.1). The simulated series

corresponds to 5 years of data and is simulated using Euler discretization. We then run the

Simulation Filter for 100 000 iterations at each time step and with m = 5 or 15 latent data

points between observations. Figure 1.5.6 summarizes the results.

The upper panel of Figure 1.5.6 plots the evolution of the sequential parameter estimates
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Figure 1.5.5: A formal check of the univariate di¤usion models
Quantile plots and autocorrelation plots of the uniform residuals for each of the univariate di¤usion
models.
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Figure 1.5.6: MCMC estimation output: simulated series
The �gure displays the output from the MCMC estimation of the NIG di¤usion for a simulated
series with parameters taken from the estimates of the NIG di¤usion for Large caps. The top
�gure represents the sequential parameter plots from 100000 replications with m = 15 latent data
points between observations; the line in the middle is the smoothed posterior mean, and the two
dashed lines represent the 95th and the 5th quantiles from the posterior parameter distribution. The
bottom �gure plots the kernel density estimate of the parameter posterior distributions for m = 5
and m = 15.
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across time: the smoothed posterior mean, as well as the 5th and the 95th quantile of the

parameter posterior. The lower panel shows the kernel density estimates of the parameter

posteriors after running the Simulation Filter through the whole period for the two dis-

cretization cases of m = 5 or 15. The estimated parameters �, �, �, and �, corresponding to

the stationary NIG distribution, are fairly close to the true ones for both choices of number

of latent data points m.

1.5.2 The importance of modeling asymmetric tail dependence: a bivariate
di¤usion example

Having obtained estimates of the univariate marginal distributions for each data series, we

now turn to estimating the model parameters that pertain to the dependence structure. The

bivariate quantile plots for all three couples of data on Figure 1.2.1 have shown a substantial

degree of quantile �near�tail dependence that does not fade away as we approach the tails

of the distribution, especially the left one. That is, in periods of extreme market downturns

stocks continue being dependent - a feature that could possibly wipe out any diversi�cation

bene�ts of an all-stock portfolio. As well, the non-parametric test of exceedence correlations

symmetry with exceedence levels chosen close to the tails, whose results are shown in Table

1.2.1, rejects symmetry for all couples of data, except the Large cap - Mid cap couple, for

which in both tails exceedence correlations are high. In what follows, we verify whether a

multivariate copula di¤usion model could reproduce these properties of the data.

A good candidate for the purpose of modeling an asymmetric tail behavior is the bivariate

Symmetrized Joe-Clayton copula, discussed in previous sections. It has two parameters, each

one directly linked to the upper or lower tail dependence coe¢ cient. So before we estimate

a bivariate di¤usion model based on this copula function, let us �rst look at the levels of tail

dependence that could be achieved through it. In order to do so, we need to obtain the levels

of its parameters, implied by the data, so we �rst estimate the copula parameters from the

unconditional distribution of each couple of the state variables X, pertaining to each of the

CRSP size indices. We apply the Canonical Maximum Likelihood estimation method which

consists in �rst transforming the data into uniform variables using the empirical distribution,

that is without imposing any parametric restrictions on the univariate marginals, and then

estimating the copula parameters � with MLE:
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b� = argmax
�

TX
t=1

ln c
� bFi (xi) ; bFj (xj) ; �� ; i; j = 1; 2

where bFi (xi) is the empirical CDF of xi, and c (�) is the chosen parametric copula function.
We estimate the copula parameters for two choices of copulas - the tail independent Gaussian

and the asymmetric tail dependent SJC copula. Then for each dependence function we trace

quantile plots (Figure 1.5.7), where the levels of quantile dependence are obtained using

(1.2.10), which are then contrasted against the quantile plots for the data itself.

The coe¢ cients of upper and lower tail dependence for the Large cap - Mid cap couple

are both high, which corresponds to the symmetric tail behavior in terms of exceedence

correlations that we reported in Table 1.2.1. However, the upper tail coe¢ cients for the

other two couples of data are low, especially for the Large cap - Small cap couple, where

�U = 0, while the lower tail dependence coe¢ cients are signi�cantly higher, con�rming

the evidence of asymmetric tail behavior. Quantile dependence plots, implied by the so

estimated coe¢ cients, con�rm the �nding of higher dependence as we go further in the

left tail. The quantile dependence plots for the SJC copula are closer to the data, while

those corresponding to a Gaussian copula deviate from it, especially in the left tail, where

Gaussian dependence fades away for decreasing quantile levels, while SJC copula-implied

dependence maintains higher level, closer to the data.

We now turn to the estimation of a bivariate di¤usion whose stationary distribution has

a dependence structure governed by the asymmetric tail SJC copula. Using the Simulation

MCMC �lter, we estimate the bivariate model for all three couples of data, while keeping

�xed the univariate marginal distribution parameters at their estimated values from the

previous section. Results are reported in Table 1.5.2.

Note that the estimates of the upper and lower tail dependence parameters for the

di¤usion models are fairly close to the values obtained for the unconditional distribution,

estimated using the Canonical Maximum Likelihood with uniform variates from the em-

pirical distribution (Figure 1.5.7). Again upper tail dependence coe¢ cients are lower than

their corresponding lower tail dependence counterparts for all couples of data. Upper tail

dependence is still relatively high for the Large cap - Mid cap couple.

The obtained parameter estimates are then used to simulate long series from each of the
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Table 1.5.2: Parameter estimates for a bivariate Symmetrised Joe-Clayton
copula di¤usion

The table summarizes the posterior parameter estimates from the MCMC output. Parameters �U

and �L refer to the upper and lower tail dependence of the bivariate Symmetrised Joe-Clayton copula,
while parameter � is the conditional correlation parameter of the bivariate di¤usion. The rest of the
parameters, pertaining to the marginals, are not estimated and are kept �xed at their corresponding
values from Table 1.5.1. Monte Carlo standard errors are reported in parenthesis (multiplied by a
factor of 1000) (obtained using the batch-mean approach). SIF refers to the simulation ine¢ ciency
factor for each parameter (its integrated autocorrelation time).

Large cap - Mid cap Large cap - Small cap Small cap - Mid cap
�U 0.4171 0.0484 0.1835
(MC s.e.) (0.1568) (0.1209) (0.1934)

(SIF) (0.2890) (1.0160) (0.5710)

�L 0.6724 0.2700 0.6602
(MC s.e.) (0.1585) (0.2359) (0.0608)

(SIF) (1.0040) (1.0279) (1.1880)

� 0.5968 0.6514 0.6682
(MC s.e.) (0.0107) (0.0049) (0.0050)

(SIF) (1.4428) (0.9354) (2.0860)

three SJC copula di¤usions. Further, we calculate the levels of quantile dependence for each

bivariate series using (1.2.10). From each bundle of simulated series and their corresponding

levels of quantile dependence, we then determine the obtainable degrees of dependence for

each quantile level in bands between the 5th and the 95th percentile. Thus, for each quantile

level we show the degrees of quantile dependence that can be reached in 90% of the cases

with a SJC copula di¤usion. Results are presented on Figure 1.5.8.

For the case of the Large cap - Mid cap couple, quantile dependence implied by the data

generally falls within the bounds reachable under the estimated parameters for the SJC

copula, with the exception of the extreme left tail, which would require an even higher left

tail dependence parameter in order to accommodate the dependence found in the data. For

the other two couples, the parameters for the SJC di¤usion can reasonably well replicate

the quantile dependence for the left tail.

1.5.3 A generalization to higher dimensions

Even though the SJC copula is intuitively appealing as its parameters are directly linked to

the coe¢ cients of upper and lower tail dependence, it could not be easily generalized to a
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higher dimension. Copula functions that can be extended in a straightforward manner to

dimensions higher than 2 are the Elliptic copulas, whose form is given in (1.3.22) for the

n-variate Gaussian copula and in (1.3.23) for the n-variate Student�s t copula. However,

they imply either no tail dependence or symmetric tail dependence (governed by the degrees

of freedom parameter), while we have seen that data generally asks for a copula function

that can accommodate asymmetric dependence between extreme realizations.

That is why we turn to copula functions in the Archimedean family that allow an exten-

sion to higher dimensions without imposing symmetry. One such candidate is the Gumbel

copula and its survival counterpart, that model either upper or lower tail dependence. The

most straightforward way that these copulas be generalized to n dimensions is to allow for

the same parameter � to govern the dependence structure for all n random variables, as in

(1.3.25) for the Gumbel copula and in (1.3.26) for the survival Gumbel.

However, we have seen that for the three couples of CRSP indices that we have consid-

ered the degrees of upper or lower tail dependence vary substantially between the couples

(e.g. the Large cap - Mid cap couple are both upper and lower tail dependent, while the

lower tail dependence for the Large cap - Small cap couple is close to zero). Thus, im-

posing the same dependence parameter across all variables could be seriously misleading.

A remedy to this problem is the nested copula construction for the Archimedean family

that we have discussed in the previous sections. It nests the Archimedean generator func-

tions with di¤erent parameters and can thus impose di¤erent degrees of dependence for

the random variables (the highest dependence being achievable for the most deeply nested

couple). The three-variate nested Archimedean copula, expressed in terms of the cop-

ula generator and its inverse is given by (1.3.27). Thus, we may pick up the size decile

couple that has the highest dependence and model it as the most deeply nested couple.

The generating function for this couple will then be '1 with a dependence parameter �1.

Thus we obtain the �rst copula, C (u1; u2;�1) = '�11 ('1 (u1) + '1 (u2)). We then couple it

with the third remaining data series using a second generating function '2 with a depen-

dence parameter �2 that implies lower dependence than �1 and obtain the nested copula

C (u1; u2; u3;�1; �2) = '�12 ('2 (C (u1; u2;�1)) + '2 (u3)). This subsequent nesting of gen-

erating functions requires that they are quite parsimonious in nature in order to keep the

resulting copula function tractable, and the Gumbel copula that we use is a good candidate
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for that. In our application we use either of the size decile couples as the most deeply nested

one, although the most �tted couple for that is the Large cap - Mid cap one, as it implies

high dependence in both tails.

When using the extreme value Gumbel copula, there is also some concern that we are

implicitly imposing asymptotic dependence between extreme realizations of the random vari-

ables (see Poon et al., 2004). In order to allow for asymptotic independence, we consider

instead the mixture copula function as de�ned in (1.3.28) which combines the two extreme

value Gumbel copulas with the tail independent Gaussian one. If the estimate of the weight

for the Gaussian copula goes close to 1, then our series is asymptotically independent. Oth-

erwise there is some degree of dependence in either of the tails, depending on the weighting

of the Gumbel copula or its survival counterpart. As well, in order to allow for richer para-

metrization of the dependence structure, we consider a mixture copula of the two extreme

value ones with the Student�s t as in (1.3.29). In this case we always have asymptotic

dependence, unless the degrees of freedom parameter goes to in�nity, and the importance

of dependence in each tail is again determined by the weight of the corresponding extreme

value copulas.

Estimation results for the multivariate di¤usion with a Gaussian dependence structure

is given in the �rst column of Table 1.5.3. Then we add the three alternative cases of a

di¤usion with tail dependence as implied by the nested mixture copula ((1.3.28) with nested

Gumbel and Survival Gumbel), and �nally we consider the most parsimonious speci�cation

where there is only one parameter that determines upper tail dependence, and one for lower

tail dependence ((1.3.28) with non-nested Gumbel and Survival Gumbel copulas).

First, note that for both the Gumbel and the Survival Gumbel copulas, the parameters

corresponding to the most deeply nested couple (�G1 and �
G
1 respectively) have lower values

than the corresponding parameters for the second generating function (�G2 and �
G
2 ), as they

have to respect the condition that assures that the obtained nested Gumbel function is

indeed a copula.

The relatively high and symmetric lower and upper tail dependence coe¢ cients for the

Mid-Large cap couple that we found earlier are indeed re�ected in the estimation results

for the nested Gaussian-Gumbel-Survival Gumbel di¤usion for the case where it is most

deeply nested in the copula speci�cation (Table 1.5.3, second column). The two parameters
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Table 1.5.3: Parameter estimates for the dependences structure (tri-variate
di¤usion, Gaussian underlying)

Estimation results for the trivariate di¤usions using the Gaussian copula, the nested Gaussian-
Gumbel-Survival Gumbel (Ga-G-SG) mixture copula (the most deeply nested couple is given in
parenthesis), the nonnested Gaussian-Gumbel-Survival Gumbel (Ga-G-SG) mixture copula. Monte
Carlo standard errors (multiplied by a factor of 1000), and Simulation Ine¢ ciency Factors (SIF)
are given in parenthesis. The �rst three parameters (R12; R13; R23) correspond to the o¤-diagonal
entries of the correlation matrix RGa for the Gaussian copula. The parameters �G1 and �G2 are
the dependence parameters for the nested Gumbel copula, and the parameters �G1 and �G2 are
the dependence parameters for the nested Survival Gumbel copula. For the nonnested case, the
relevant parameters are �G1 for the Gumbel copula and �

G
1 for the Survival Gumbel copula. !

G and
!G are the corresponding weights for the Gumbel and the survival Gumbel copula for the mixture
model. The parameters �12, �13 , and �23 are the o¤-diagonal entries of the correlation matrix in
the di¤usion speci�cation. Results are obtained for 50000 Monte Carlo replications with a thinning
factor of 5 with 10 latent data points simulated between each pair of observations.

Gaussian Ga-G-SG Ga-G-SG Ga-G-SG Ga-G-SG
(Large-Mid cap) (Large-Small cap) (Small-Mid cap) (nonnested)

R12
MC s.e.
SIF

0.5671
0.3701
0.8621

0.5347
0.3326
1.0437

0.4636
0.7224
2.3408

0.6634
0.6114
0.6891

0.5758
0.3537
0.9540

R13
MC s.e.
SIF

0.2723
0.7875
0.7359

0.5179
0.4191
0.7188

0.7443
0.6868
2.7202

0.3907
0.4915
0.8441

0.2571
0.5131
0.7251

R23
MC s.e.
SIF

0.5207
0.4399
0.9162

0.4152
0.3302
1.6992

0.6110
0.6260
0.8855

0.3085
0.5521
1.2236

0.4698
1.3536
1.5260

�G1
MC s.e.
SIF

-
-
-

0.2972
0.3546
0.5754

0.3358
0.8711
1.5005

0.3318
0.3463
1.5945

0.4494
0.3541
1.2328

�G2
MC s.e.
SIF

-
-
-

0.6335
0.1928
0.9156

0.6238
0.4072
2.6644

0.7235
0.7235
1.0750

-
-
-
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Table 1.5.3: Parameter estimates for the dependences structure (tri-variate di¤usion,
Gaussian underlying) (cont.)

Gaussian Ga-G-SG Ga-G-SG Ga-G-SG Ga-G-SG
(Large-Mid cap) (Large-Small cap) (Small-Mid cap) (nonnested)

�G1
MC s.e.
SIF

-
-
-

0.3618
0.1998
0.2375

0.1993
0.3006
1.8385

0.2613
0.5387
1.3787

0.4354
1.0229
1.6558

�G2
MC s.e.
SIF

-
-
-

0.6544
0.4667
0.8040

0.6415
0.3408
1.0323

0.6107
0.7371
1.1141

-
-
-

!G

MC s.e.
SIF

-
-
-

0.3321
1.0111
2.0983

0.2107
0.5641
1.3229

0.2431
0.3543
0.8943

0.3832
0.7265
1.0348

!G

MC s.e.
SIF

-
-
-

0.2853
0.3789
1.4739

0.2752
0.2519
0.7950

0.2531
0.6596
1.2326

0.2324
0.3619
2.1457

�12
MC s.e.
SIF

0.7894
0.0195
1.2371

0.7917
0.0086
0.2271

0.7795
0.0080
0.7370

0.6935
0.0095
0.6121

0.8287
0.0104
1.2730

�13
MC s.e.
SIF

0.5078
0.0189
0.8625

0.5089
0.0229
0.9588

0.5185
0.0291
1.5205

0.4685
0.0236
0.5720

0.5499
0.0105
0.6771

�23
MC s.e.
SIF

0.7162
0.0209
0.8581

0.7158
0.0067
0.7418

0.6760
0.0102
1.1571

0.5676
0.0159
0.9287

0.7366
0.0137
1.1969
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that determine upper and lower tail dependence for this couple, �G1 and �
G
1 respectively, are

almost equal, pointing to tail symmetry. As well, given the fact that for the Gumbel copula

the tail dependence coe¢ cient can be determined using �UG = 2 � 2�, while for the lower

tail dependence implied by the Survival Gumbel we have that �LG = 2 � 2�, then for this

particular couple we have �UG = 0:7712 and �
L
G = 0:7150. These values are higher than what

we obtained under the alternative bivariate di¤usion with dependence modeled following a

SJC copula, but it is still not surprising as now in the mixture speci�cation these extreme

value copulas are weighted with the tail independent Gaussian copula, so the resulting tail

dependence should be lower.

Further, for the two alternative cases for which Large-Small or Mid-Small are the most

deeply nested couples the lower tail dependence parameter �G1 is lower than the upper tail

dependence parameter �G1 , indicating higher dependence in the left tail, again con�rming

the previously found evidence.

When we consider the multivariate di¤usion with extreme dependence modeled with the

non-nested version of the Gumbel and Survival Gumbel copulas, we �nd almost symmetric

tail dependence (the values for the parameters �G1 and �
G
1 imply tail dependence coe¢ cients

of �UG = 0:6345 and �LG = 0:6477). As in this case there is only one parameter governing

dependence in either the left or the right tail across all data series, extreme dependence for

some couples may be over/underestimated.

We then repeat the same estimation experiment, but with a Student�s t copula used to

model the dependence structure of the multivariate di¤usion. Results for it are reported

in the �rst column of Table 1.5.4. We proceed as before by adding the two extreme value

copulas in their nested speci�cation as in (1.3.29). The second column of Table 1.5.4 contains

the results for this case when the Mid-Large cap couple is taken to be the most deeply

nested one. Finally we consider a non-nested version, but it has a di¤erent form from

that of the mixture di¤usion with a Gaussian underlying. As the Student�s t copula can

model symmetric upper and lower tail dependence, which is di¤erent for all alternative

couples considered, as it is determined by the degrees of freedom parameter 
, as well as

the correlation matrix, then, in order to add tail asymmetry, we need only to consider one

of the tails and add an extreme value copula that accounts for dependence in it. We chose

to model separately the left tail and thus we add to the t-copula a Survival Gumbel that
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has lower tail dependence. Results for this speci�cation are reported in the third column.

As with the case when we had a Gaussian underlying copula in the mixture model, here

again the parameters, driving upper and lower tail dependence for the most deeply nested

couple (the Large-Mid cap one) are very close, and imply tail coe¢ cients of �UG = 0:7870

and �LG = 0:7917. However, unlike the Gaussian case, the Gumbel copula claims almost

half of the weight in the mixture speci�cation, so it has the major role in determining

upper tail dependence. For the nonnested version of the t-mixture copula, adding only the

lower tail dependent Survival Gumbel copula increases its weight, but leaves the dependence

parameter almost unchanged.

1.5.4 Model selection through Bayes factors

The multivariate di¤usion models considered above imply di¤erent dependence structures

through their stationary distributions. Bayes factors provide us with a guideline of how to

select a model among the alternatives. So far we have seen that the mixture model with

either a Gaussian or a t-copula, combined with the nested version of the extreme value

Archimedean copulas provide the richest speci�cation in terms of tail dependence modeling.

In what follows we will verify whether either one of these two models will be indeed selected

on the basis of the Bayes factor criterion.

We compute the log of Bayes factors, following (1.4.10) as log (p (Y j Mb))�log (p (Y j Mj)).

As a benchmark model (Mb) we take either the Gaussian or the Student�s t - extreme value

nested mixture copula di¤usion (with the Large-Mid cap couple being the most deeply

nested one).The alternatives considered (Mj) are the tail independent Gaussian di¤usion,

the symmetric tail dependent t-copula di¤usion, or any of the non-nested speci�cations

considered. Results are provided in Table 1.5.5.

The Bayes factor selection criterion suggests that each of the benchmark models will be

preferred to the alternatives. Results point even more strongly in favour of the extreme value

nested mixture copulas when the nonnested models are taken as alternatives. This suggests

that the highly parsimonious dependence structure, implied by the nonnested copulas, is

detrimental to the models, at least for the purposes of selection through Bayes factors.

Further, when we compare the two benchmark models, Bayes factors point in favour of

the Student�s t mixture copula, with a value for the log of the Bayes factor of 9:06 when the
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Table 1.5.4: Parameter estimates for the dependences structure (tri-variate
di¤usion, Student�s t underlying)

Estimation results for the trivariate di¤usions using the Student�s t copula, the Student�s t �
nonnested Survival Gumbel mixture copula, and the Student�s t �nested Gumbel - Survival Gumbel
mixture copula (the most deeply nested couple is given in parenthesis). Monte Carlo standard errors
(multiplied by a factor of 1000), and Simulation Ine¢ ciency Factors (SIF) are given in parenthesis.
The �rst three parameters (R12; R13; R23) correspond to the o¤-diagonal entries of the correlation
matrix RT for the Student�s t copula. The parameters �G1 and �

G
2 are the dependence parameters

for the nested Gumbel copula, and the parameters �G1 and �
G
2 are the dependence parameters for

the nested Survival Gumbel copula. For the nonnested case, the relevant parameters are �G1 for the
Gumbel copula and ��G1 for the Survival Gumbel copula. !

G and �!G are the corresponding weights
for the Gumbel and the survival Gumbel copula for the mixture model. � is the degrees of freedom
parameter for the Student�s t copula. The parameters �12, �13 , and �23 are the o¤-diagonal entries
of the correlation matrix in the di¤usion speci�cation. Results are obtained for 50000 Monte Carlo
replications with a thinning factor of 5 with 10 latent data points simulated between each pair of
observations.

t t-G-SG t-SG
(Large - Mid cap) (nonnested)

R12
MC s.e.
SIF

0.4408
0.5433
1.3619

0.2574
1.4015
0.7629

0.5266
0.6040
1.3392

R13
MC s.e.
SIF

0.5273
0.6911
0.9564

0.2362
0.9873
1.0469

0.4154
0.6353
0.8209

R23
MC s.e.
SIF

0.3334
0.5146
1.1373

0.3161
0.5147
1.1320

0.4461
0.9027
0.9049

�G1
MC s.e.
SIF

-
-
-

0.2786
0.2191
0.5660

-
-
-

�G2
MC s.e.
SIF

-
-
-

0.6570
0.5395
1.0512

-
-
-
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Table 1.5.4: Parameter estimates for the dependences structure (tri-variate di¤usion, Stu-
dent�s t underlying) (cont.)

t t-G-SG t-SG
(Large - Mid cap) (nonnested)

�G1
MC s.e.
SIF

-
-
-

0.2730
0.2961
0.6114

0.3434
0.5440
0.7326

�G2
MC s.e.
SIF

-
-
-

0.6660
0.5939
1.3265

-
-
-

!G

MC s.e.
SIF

-
-
-

0.5118
0.4382
0.7870

-
-
-

!G

MC s.e.
SIF

-
-
-

0.1529
0.2248
1.4495

0.2829
0.9130
1.9105

�
MC s.e.
SIF

5.4774
4.8170
0.8904

3.9575
2.4907
0.7732

4.8266
5.8874
0.9437

�12
MC s.e.
SIF

0.8184
0.0074
0.3969

0.7837
0.0223
1.1166

0.8166
0.0171
1.2428

�13
MC s.e.
SIF

0.5113
0.0286
1.5033

0.4922
0.0296
0.9770

0.5522
0.0085
0.6370

�23
MC s.e.
SIF

0.7165
0.0085
0.3875

0.7045
0.0129
0.8620

0.7372
0.0092
0.6073
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Table 1.5.5: Bayes factors
Log Bayes factors for tri-variate di¤usions with dependence modeled using alternative copula func-
tions. Benchmark models (Mb) are those involving the mixed copula di¤usions with an Elliptic
copula and the nested version of the extreme value Gumbel - Survival Gumbel copulas (Large-
Mid cap being the most deeply nested couple). Two choices for the Elliptic copula are considered:
the Gaussian one (Gauss-G-SG), and the Student�s t one (t-G-SG). The four alternative di¤usions
(Mj ; j = 1; :::; 4) are a Gaussian, a Student�s t (t), and two nonnested versions of the mixture cop-
ula di¤usion: the Gaussian-Gumbel-Survival Gumbel (Gauss-G-SG (nonnested)) and the Student�s
t - Survival Gumbel (t-SG (nonnested)).

Gaussian Student�s t Gauss-G-SG t-SG
(nonnested) (nonnested)

Gauss-G-SG (Large - Mid cap)
Bayes factors 206.52 208.67 464.89 386.32
t-G-SG (Large - Mid cap)
Bayes factors 215.58 217.73 473.95 395.02

latter is taken as the benchmarkMb. But still this is far from the signi�cantly higher values

of the factors when the other alternative models are considered. This is not surprising, as

the two nested mixture models are close in the way they treat the dependence structure,

while the model with the Student�s t underlying copula provides a more versatile way to

account for dependence between extreme realizations.

1.6 Discussion and concluding remarks

In this chapter we introduce a multivariate di¤usion model for stock prices based on copula

functions that is able to reproduce a number of stylized facts for both the univariate return

series and the dependence structure. It extends the univariate stationary di¤usion modeling

based on the Generalized Hyperbolic family of distributions that has proved successful in

replicating dynamic return characteristics as a slowly decaying autocorrelation function of

squared returns (or volatility clustering e¤ect, as alternatively modeled under stochastic

volatility or an ARCH process), or static properties like thick tails and excess kurtosis.

Seeking to reproduce increased dependence when there are extreme market downturns, we

extend the copula-GARCH approach to a continuous-time di¤usion framework where the

stationary distribution of the process is modeled using a copula function that can account for

tail dependence. As well, it is achieved without including jumps in the stock price process,
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as in Das and Uppal (2004) or Liu et al. (2003). Such a process may prove useful for

dynamic portfolio allocation applications, as tractable portfolio solutions can be obtained

in this continuous time framework under market completeness.

There are a number of ways in which the model can be extended. There is overwhelming

empirical evidence that the correlation of asset returns changes dynamically through time.

Popular discrete time approaches include the GARCH-DCC model of Engle (2002), while

in continuous time a promising alternative is the Wischart process of Bru (1991). Our

model speci�cation imposes constant conditional correlation for asset returns, that we have

assumed for simplicity, but that can be extended to a more general model where correlation is

modeled as either a function of the state variables of the model itself, or rendered stochastic

by being represented as a function of exogenous factors. There is empirical evidence that

the dynamics of asset return correlations are linked to the phase of the business cycle and

tend to increase in periods of recession (e.g. Ledoit et al., 2003; Erb et al., 1994). As

well, Longin and Solnik (1995) �nd that correlations for international stock market indices

increase during hectic periods of high volatility.

Another possible extension concerns the dependence structure of the assets, modeled

through a copula function. The present speci�cation assumes that the parameters govern-

ing dependence are �xed. A number of studies have addressed time variation in dependence

through a dynamic copula approach. In the case of modeling asymmetric dependence be-

tween exchange rates, Patton (2004) �nds signi�cant implications of the time variation in

the copula dependence parameters, while Goorbergh et al. (2003) �nd substantial pricing

di¤erences for multivariate options when a dynamic copula model is used contrary to one

with a �xed dependence structure, especially for market conditions marked with increased

volatility. In our setup, time variation in the dependence parameter could be achieved by

modeling it as a function of exogenous factors that are stochastically time varying themselves

and that have a potential of explaining increased dependence in extreme down markets.



Chapter 2

Dependence Modeling of Joint Extremes via

Copulas: A Dynamic Portfolio Allocation

Perspective

2.1 Introduction

Modeling the dependence between asset returns is the corner stone for portfolio allocation

decisions or risk management in general. Failing to account for speci�c features of the

dependence structure of the data may lead to an improper assessment of the risk exposure

and thus to suboptimal portfolio decisions. An already established stylized fact of asset

returns is the co-movement asymmetry present in their dependence structure in that assets

tend to be more correlated during bear markets than during bull markets. Using Extreme

Value Theory, Longin and Solnik (2001) provide evidence of the dependence asymmetries

present in several major stock market indices. Poon et al. (2004) con�rm the evidence

of stronger left tail dependence, but stress on the importance of considering parametric

models that allow for asymptotic independence and thus avoid the risk of overestimating

the probability of joint occurrence of tail events. There are also studies that provide a

theoretical justi�cation to this empirical fact: in a rational expectations equilibrium model

Ribiero and Veronesi (2002) obtain endogenously excess stock return comovements during

market downturns as a result of increased uncertainty about the state of the economy.

In this chapter we adopt a multivariate di¤usion process for stock prices that is able to

accommodate the above mentioned stylized facts. It has a predetermined stationary density

that we model using copula functions that incorporate possibly asymmetric dependence in

the upper or the lower tail of the distribution. The copula di¤usion construction with a

pre-speci�ed stationary density relies on a result in Chen et al. (2002) and allows us to

obtain increased tail dependence when markets su¤er from extreme downturns. As the

copula function underlying the stationary distribution of the process captures the needed
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dependence structure, we do not have to revert to the inclusion of jumps in prices and

volatility as in Liu et al. (2003), or to systemic jumps common for all assets, as in Das and

Uppal (2004), in order to replicate this stylized dependence feature.

From a portfolio allocation perspective, analyzing the extremal behavior that could be

achieved through a multivariate di¤usion by a copula construction is worthwhile, as tractable

portfolio allocation rules and hedging behavior could be obtained by applying the martin-

gale solution technique in a complete market setting. While copulas are widely studied in

the context of multivariate option pricing and in credit risk modeling (mainly pricing of

multiname credit derivatives), there are few applications for portfolio choice, all existing

studies being focused on the unconditional portfolio behavior. As copulas can be designed

to allow for a fairly general (possibly time varying) dependence structure, independently of

the marginals, it is of interest to examine the in�uence of such a modeling approach on the

dynamic hedging component of a portfolio, which constitutes the main motivation for the

present chapter. Numerous studies have pointed out the adverse e¤ect of high dependence

among assets during market downturns on diversi�cation bene�ts, but to our knowledge

none has yet addressed the issue of isolating dynamic hedging demands that arise when

the data generating process of asset returns incorporates this extremal dependence from

the mean-variance component or hedging demands that arise from stochastically varying

interest rates.

Unconditional portfolio selection under the in�uence of higher moments and dependence

asymmetries has been studied by Chunhachinda et al. (1997) and Prakash et al. (2003) via

polynomial goal programming. However, no extension for moments higher than the third

one can be obtained using that approach. Jondeau and Rockinger (2005) overcome this

problem by studying asset allocation by using a Taylor series approximation of expected

utility as a function of higher moments. A study relying on copula speci�cation for the

dependence structure of asset returns is that of Patton (2004); however no extension to

conditional allocation is o¤ered. Das and Uppal (2004) examine dynamic portfolio choice in

the presence of dependence asymmetries in the form of asymmetric conditional correlation

by building a jump di¤usion model with perfectly correlated (systemic) jumps across assets.

An alternative speci�cation aimed at capturing the same stylized behavior is that of Ang

and Bekaert (2002) who review asset allocation under asymmetric response of correlation to
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returns in a regime-switching model. Surprisingly, in this context hedging demands (de�ned

as the di¤erence between a one-period ahead and a multi-horizon portfolio allocation) are

found to be negligible, so that an investor loses little by acting myopically. However, these

results are obtained under the CRRA assumption. An alternative preference speci�cation

could potentially increase the e¤ect of extreme dependence asymmetries on dynamic port-

folio choice (as for example a general utility speci�cation like the HARA utility that models

intolerance towards wealth levels under a certain boundary).

Having in mind the mixed evidence on the intertemporal hedging component of port-

folio choice, conditional on either utility or distributional assumptions, we investigate its

importance by generalizing the dependence framework beyond correlation modeling, which

is a relevant dependence measure only in an elliptic distributions context. We also extend

the utility speci�cation beyond the CRRA case, and also consider the more general HARA

utility. We rely on a simulation-based technique for portfolio selection, following Detemple

et al. (2003) , where the need to accommodate a fairly general data-generating process is

coupled by the need to overcome the curse of dimensionality of a large-scale problem. The

solution methodology uses an extension of the Ocone and Karatzas (1991) formula under

the complete markets assumption to obtain explicit expressions for the optimal portfolio

and its hedging components for a general multivariate di¤usion speci�cation. The optimal

investment strategy is represented as the sum of a myopic (mean-variance) component and

two dynamic terms that represent hedges against changes in the short-term interest rate

and the market price of risk. The explicit solutions for those terms involve expectations of

random variables and their Malliavin derivatives that can be simulated using a standard dis-

cretization scheme. The approach remains tractable in large-scale problems, which matches

one of the merits of dependence modeling via copula functions.

We use the above solution methodology to address the following questions. First, we

isolate the intertemporal hedging demands that arise from a data generating process based

on a Gumbel-Gaussian copula mix, that allows for asymptotic independence or dependence

(possibly asymmetric) through varying weights in the mixture copula. We �nd substantial

hedging demands, that increase with the investment horizon and decrease with the agent�s

degree of relative risk aversion. Those dynamic hedges are then compared to the ones

obtained under the nested case of a Gaussian copula that serves as a tail independence
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benchmark model. An agent that uses the latter data generating process would then allocate

more wealth to the risky assets as compared to an investor who is conscious of the existence

of tail dependence. The extreme value Gumbel copula generates less risky asset demand

than its symmetric tail counterpart �the Student�s t copula.

Second, we study the economic signi�cance of taking into account extreme tail depen-

dence by quantifying it through the certainty equivalent cost (or the utility cost of behaving

suboptimally).

Third, we check the robustness of our results to the choice of the utility function. We

consider the benchmark CRRA case, as well as the more general HARA utility speci�cation,

that can be modeled to allow intolerance towards wealth shortfalls.

The reminder of the chapter is organized as follows. In section 2.2 we present the model,

based on the asymmetric tail copula di¤usion process. We further address the portfolio

allocation problem, and the solution methodology in a complete market setting. In section

2.3 we study the importance of modeling extreme value dependence for dynamic portfolio

selection. Section 2.4 concludes.

2.2 The model and the complete market portfolio solution

The evidence of increased dependence during market downturns than during market upturns

has been shown to have a considerable impact on unconditional portfolio allocation when

short sales are allowed and dependence is modeled within the copula framework (Patton,

2004). Ang and Bekaert (2002) also �nd signi�cant costs of ignoring this dependence struc-

ture for the alternative way to replicate it through a regime-switching model that links high

correlation with high volatility in the presence of a conditionally risk-free asset. Despite of

that, they �nd insigni�cant intertemporal hedging demands, so that an investor would not

lose much if he behaves myopically and solves just a one-period problem. However, in a

recent paper Buraschi et al. (2007) show considerable hedging demands induced by time-

varying correlation, their e¤ect on total portfolio weights being the strongest in periods of

market downturns. This would suggest that a model accounting for extremal dependence

would be able to incite signi�cant intertemporal demands. In order to isolate the e¤ect

of the spatial dependence structure of a process from that of time-changing correlation, we

consider a process with a constant conditional correlation, but whose stationary distribution
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allows for possibly asymmetric dependence in the extremes. In what follows, we solve for

the intertemporal hedging demands induced by such a model and study the implications of

this particular tail behavior on optimal portfolio allocation.

We consider an investor with CRRA or the more general HARA utility over terminal

wealth, allocating it between 1 riskless and 3 risky assets for a �nite horizon T . The model

could be extended to include any number of assets without rendering it intractable because

of the �exibility o¤ered by copula functions.

2.2.1 The general complete market setup

In a general complete market setup we assume that uncertainty is driven by a d-dimensional

standard Brownian motion and that the price of the risky asset can be expressed as 1:

Sit = exp (�i (t) +Xit) ; i = 1; :::; d (2.2.1)

for some deterministic function of time �i (t), which we assume to be linear in t, �i (t) = kit

with a linear trend parameter ki, and where

dXt = � (Xt) dt+ �(Xt) dWt (2.2.2)

Thus, applying Itô�s lemma we obtain for the price process for i = 1; :::; d:

dSit = Sit�
S
i (lnSit � kit) dt+ Sit

dX
j=1

�ij (lnSit � kit) dWjt

where �Si (Xt) = �i (Xt) + ki +
1

2

dX
j=1

�ij (Xt)
2

where �ij are entries of the matrix � in the di¤usion term of the process for the de-trended

log-price X. As pointed out in Bibby and Sorensen (1997), there is empirical evidence that

the increments of the process for the log-price are nearly uncorrelated but not indepen-

dent, which motivates the speci�cation in (2.2.1). It is chosen as the most straightforward

generalization of the Black Scholes model. The exact parametrization of the drift and the

di¤usion term will be discussed in the subsequent section, where we present a method to

1Following the parametrization of Bibby and Sorensen (1997) and Rydberg (1999)
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construct a di¤usion with a pre-speci�ed stationary distribution.

The short rate rt is the (d+ 1)�th state variable in the model and its dynamics are given

by:

drt = �rt (rt) dt+ �
r
t (rt) dWt (2.2.3)

i.e. it depends on the same Brownian motion that drives the uncertainty for the log-price

process. The money market account Bt follows:

dBt = Btrtdt (2.2.4)

The vector of state variables is then given by Y = (X|r)and satis�es the SDE:

dYt = �Yt (Yt; t) dt+ �
Y
t (Yt; t) dWt (2.2.5)

where �Yt (Yt; t) =
�
� (Xt)

| �rt (rt)

�|
, and �Yt (Yt; t) is obtained by stacking the corre-

sponding volatility terms from the SDEs for Xt and rt.

As the market is assumed to be complete (given an invertible � matrix), we can de�ne

the market price of risk as:

� (Xt; rt) = � (Yt) = �t = �(Xt)
�1 ��S (Xt)� rt1

�
(2.2.6)

assumed to be continuously di¤erentiable and satisfying the Novikov condition:

E

24exp
0@1
2

TZ
0

�|s�sds

1A35 <1:
The associated state price density can be expressed as:

�t � exp

8<:�
tZ
0

rsds�
tZ
0

�|sdWs �
1

2

TZ
0

�|s�sds

9=; (2.2.7)

and it satis�es the stochastic di¤erential equation:

d�t = ��trtdt� �t�
|
t dWt (2.2.8)
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2.2.2 The multivariate copula di¤usion model

The process that we use for the state variables X, governing stock prices, is able to replicate

certain univariate properties of asset returns as a leptokurtic distribution with respect to

the normal density, volatility clustering and semi-heavy tails. The correct modeling of

the tail behavior is particularly important as it is the impact of dependence between tail

realizations on optimal portfolio decisions that we aim to study. Also, the model allows for

a parsimonious treatment of the dependence structure and nests an array of dependence

features, ranging from asymptotic dependence to tail independence. It is achieved through

a �exible construction using copula functions that allow us to separate the impact of the

properties of the marginal distributions from that of the dependence structure.

The construction of the multivariate di¤usion for X that we discuss below follows the

lines of Chapter 1 and relies on a result in Chen et al. (2002) and exploits the relationship

that exists between the invariant density, the drift and the di¤usion term for the process in

(2.2.2):

�j (x1; :::; xn) =
1

2q (x1; :::; xn)

dX
i=1

@ (vij (xi; xj) q (x1; :::; xn))

@xi
(2.2.9)

� = ��| with entries vij (xi; xj)

where � is a lower triangular matrix, q is a strictly positive continuously di¤erentiable

multivariate density function, which is indeed the stationary density of the process, and �

is a continuously di¤erentiable positive de�nite matrix. Thus, in order to specify the process

for X, we need to determine its invariant density and propose a certain form for its di¤usion

term � (X).

The invariant density q of the n-variate di¤usion is obtained using the copula decompo-

sition formula following Sklar�s theorem that builds a multivariate distribution with density

q using a dependence (copula) function ec and marginal densities f i; i = 1; :::; n, or rather

functions ef i / f i that are proportional to them, as we do not need the normalizing constant:

q (x1; :::; xn) � ec (x1; :::; xn; �c) nY
i=1

ef i �xi; �i;M� (2.2.10)

where ec (x1; :::; xn; �c) = c
�
F 1 (x1) ; :::; F

n (xn) ; �
c
�
. The copula function c is de�ned on the
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probability integral transforms F i corresponding to each univariate series, so that it contains

information on the dependence structure of the multivariate distribution regardless of the

individual marginal speci�cations, as the latter are distributed as Uniform (0; 1). Thus, the

parameters �c, pertaining to the copula, can be considered as driving dependence between

the random variables x1; :::; xn. On the other hand, the univariate properties of each series

are determined by the distributional assumptions on f i and its corresponding parameters

�i;M .

For the marginal series we chose the Generalized Hyperbolic (GH) family of distribu-

tions, introduced by Barndor¤-Nielsen (1977) and further used in a number a studies for

modeling stochastic processes for stock prices (e.g. Eberlein and Keller, 1995; Bibby and

Sorensen, 1997; Prause, 1999; Rydberg, 1999). It allows us to address univariate static prop-

erties of stock returns as departures from normality through high kurtosis or tails thicker

than those implied by a Gaussian distribution, as well as dynamic features as persistence

in autocorrelation for the squared increments of log prices, similar to stochastic volatility

or GARCH models. From the perspective of the portfolio allocation application that we

consider, correct accounting for univariate properties of the data is important, as it allows

us to determine any demands that arise beyond those that could be attributed to the sen-

sitivity of the investment in the risky assets to higher moments (as studied in Jondeau and

Rockinger (2005) or Cvitanic et al. (2008)). Thus, we are interested in the portfolio impli-

cations of increased tail dependence that is ignited by the dependence structure, regardless

of the marginals.

The form and properties of the GH family of distributions, as well as its di¤erent sub-

classes are discussed in the Appendix. One important property they have is the semi-heavy

tails, expressed as:

lim
x!�1

fGH (x;�; �; �; �; �) � jxj��1 exp f(��+ �)xg (2.2.11)

(Prause, 1999; Barndor¤-Nielsen and Blaesid, 1981).

Thus, the class can easily accommodate any tail behavior ranging from power to expo-

nential decline, and can account for tail asymmetries.

The dependence structure is entirely modeled by the copula c (�) and its corresponding

parameters �c. As we aim at determining the impact of tail dependence on optimal portfolio
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demands, we consider several parametric families of copulas that allow for di¤erent degrees

of dependence between extreme realizations. Before reviewing the alternative choices for the

copula, recall that lower (�L) or upper (�U ) tail dependence coe¢ cients have the following

representations in terms of the copula C:

�UT = lim
u!1

1� 2u+ C (u; u)
1� u

�LT = lim
u!0

C (u; u)

u

First, we model dependence for the di¤usion process for the state variables X using

Elliptic copulas. A member of this family, the Gaussian copula, de�nes our benchmark de-

pendence structure. Its tail coe¢ cients are both zero, indicating no asymptotic dependence

between the state variables. The second member of the Elliptic class of copulas that we

consider is the Student�s t copula, which allows for tail dependence, however symmetric,

through its additional degrees of freedom parameter �. The tail dependence coe¢ cient for

the t-copula is given by �UT = �LT = 2t�+1
�
�
p
� + 1

p
1� �=

p
1 + �

�
, where � is an o¤-

diagonal element of the correlation matrix and t�1� (u) is the inverse of the univariate CDF

of the Student�s t distribution. Tail dependence decreases for increasing levels of the de-

grees of freedom parameter and eventually goes to zero when � !1, i.e. when the t-copula

converges to the Gaussian one.

Next we consider the Archimedean family of copulas, and more speci�cally the extreme

value Gumbel copula that can model upper tail dependence through its dependence para-

meter �G, rendering �UGumbel = 2� 2� , while �LGumbel = 0, and its survival counterpart for

which the roles of upper and lower tail dependence switch places. Combining those copulas

by assigning weights to each one of them renders a dependence function that has asymmet-

ric upper and lower tail dependence, determined by the corresponding Gumbel (�G) and

Survival Gumbel (�G) parameters. In order to take into account the possibility that the

state variables do not exhibit asymptotic dependence, we add to the above mixture copula

the Gaussian one, so that we obtain:
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CGam
�
u;RGa; �

G; �G; !; !
�

(2.2.12)

= !CG
�
u;�G

�
+ !C

G �
u;�G

�
+ (1� ! � !)CGa (u;RGa)

where CG refers to the Gumbel copula, C
G
- to the Survival Gumbel, and CGa - to the

Gaussian, and the parameters f!; !g are their corresponding weights. Thus, our benchmark

tail independent model is obtained by setting the weights ! and ! to zero, while any

weight parameter di¤erent from zero would entail possibly asymmetric upper (lower) tail

dependence. In order to obtain our symmetric tail benchmark, we alternatively build a

mixture dependence function using the Student�s t copula instead:

Ctm
�
u;RT ; �; �

G; �G; !; !
�

(2.2.13)

= !CG
�
u;�G

�
+ !C

G �
u;�G

�
+ (1� ! � !)CT (u;RT ; �)

where CT refers to the t-copula.

For the above mixture copulas we consider the nested version of the Gumbel copula,

as described in the Appendix. It allows for di¤erent dependence parameters between con-

secutively nested couples of variables, and thus permits a more general treatment of the

dependence structure than the usual n-variate Gumbel copula which imposes the same pa-

rameter across all variables. The latter (non-nested) speci�cation has a more parsimonious

nature, but potentially restraints the achievable degrees of tail dependence. As the con-

struction of a nested Archimedean copula is not so straightforward in higher dimensions

and in order to investigate the portfolio implications of assuming a homogenous dependence

structure across assets, we also consider the above mixture copulas for non-nested versions

of the Gumbel and the Survival Gumbel copulas:

CGa
�

m (u;RGa; ��; ��; !; !) (2.2.14)

= !CG� (u;��) + !C
G
� (u;��) + (1� ! � !)CGa (u;RGa)

when using the Gaussian copula, or:
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Ct
�
m (u;RT ; �; ��; !) = !C

G
� (u;��) + (1� !)CT (u;RT ; �) (2.2.15)

for the Student�s t copula, where �� is the dependence parameter for the nonnested Gumbel

copula that determines upper tail dependence, and �� is the parameter of the nonnested

Survival Gumbel copula that determines lower tail dependence. Note that in the last case

we have used only the Survival Gumbel dependence function. It is the most parsimonious

mixture that allows for asymmetric behavior in the tails, as the t-copula already models both

upper and lower tail dependence, while the Survival Gumbel parameter adds asymmetry to

the structure by adding additional weight for the dependence in the left tail. This is indeed

the stylized fact of stock returns that we seek to reproduce: increased dependence when

markets jointly decline.

The form of the copula functions used above is given in more detail in the appendix.

Finally, the only term that is left to be determined in (2.2.9) is the speci�cation of the

di¤usion term of the process. For it we chose a constant conditional correlation speci�cation,

given by:

vij (xi; xj) = �ij�
X
i (xi)�

X
j (xj) (2.2.16)

�Xi (xi) = �i

h ef i (xi)i� 1
2
�i

which extends the univariate speci�cation of Bibby and Sorensen (2003) to the case of a

multivariate di¤usion, where
�
�Xi
�2
> 0 and �i 2 [0; 1] ; i = 1; :::; d. The function ef i (xi) /

f i (xi), i.e. it is proportional to the ith univariate marginal distribution, chosen to belong to

the GH family. Note that for the sake of simplicity we have assumed a constant conditional

correlation speci�cation through the time invariant parameter �ij . This setup could be

further extended by modeling the correlation parameter as a function of stochastic state

variables, but as we are interested in the dependence achievable through the unconditional

distribution of the process, we restrain from considering this more general case.

In what follows, we will brie�y present the martingale solution technique for the portfolio

allocation problem at hand that gives rise to the solution for the optimal terminal wealth

(Cox and Huang, 1989) and the �nancing portfolio (Ocone and Karatzas, 1991), as well as
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the Monte Carlo solution method for �nding optimal portfolio shares proposed by Detemple

et al. (2003).

2.2.3 The investor�s problem and the optimal portfolio policy

Considering the case of no intermediate consumption, the evolution of wealth equation is

given by:

d!t = rt!tdt+ !t�
|
t

��
�St � rt1

�
dt+ �tdWt

�
; !0 = ! (2.2.17)

where !t denotes the wealth at time t and �t - the amount of wealth invested in the risky

assets. Working under the assumption of time-separable von Neumann-Morgenstern prefer-

ences, the investor�s problem of optimally allocating terminal wealth !T for an investment

horizon T between 1 riskless and d risky assets is as follows:

max
!T

U (!T ) � E [u (!T )] (2.2.18)

conditional on the dynamic budget constraint given by (2.2.17), and the nonnegativity of

wealth constraint !t � 0, where u (�) is a strictly increasing and concave utility function

that satis�es the Inada conditions limx!1 u0 (x) = 0 and limx!0 u0 (x) <1.

The equivalent static optimization problem, as shown in Cox and Huang (1989), is

reduced to maximizing expected utility of terminal wealth, subject to a static budget con-

straint:

E [�T!T ] � ! (2.2.19)

and the non-negativity of wealth constraint. After forming the Lagrangian for this static

constrained optimization problem, the �rst order conditions for optimality are expressed as:

u0 (!T ) = y�T

E [�T!T ] � !

where y is the Lagrange multiplier or the shadow price for the budget constraint. Letting

I (�) denote the inverse of the marginal utility function, it follows from Cox and Huang (1989)
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that the optimal terminal wealth is given explicitly by !�T = max (I (y�T ) ; 0) and y satis�es

the static budget constraint E [�T max (I (y�T ) ; 0)] = !. Thus the optimal expression for

terminal wealth leads us to the optimal wealth at time t < T :

�t!
�
t = Et [�T max (I (y�T ) ; 0)] (2.2.20)

In order to �nd the optimal portfolio policy that generates this optimal wealth process,

Ocone and Karatzas (1991) use the Clark-Ocone formula which allows expressing optimal

portfolio shares as expectations of the state variables and their Malliavin derivatives. Ac-

cording to the Clark-Ocone formula, any random variable X can be decomposed into an

expectation part and a volatility part that involves Malliavin derivatives: X = E [X] +R T
0 Et [DtX] dWt. In fact, this formula identi�es the integrand in the Martingale Repre-

sentation theorem. Using this result, Ocone and Karatzas (1991) proceed to explicitly

determining the optimal portfolio policy ��t by considering the discounted wealth process

�t!
�
t . On one hand, using Itô�s lemma on (2.2.17) and (2.2.8), the volatility of the process is

given by ��t!�t �
|
t +�t!

�
t�
|
t�t. On the other hand, an application of the Clark-Ocone formula

states that the volatility of �t!
�
t is given by its Malliavin derivative Dt (�t!�t ). Equating both

terms leaves us with the following explicit expression for the optimal portfolio:

��t = (�
|
t )
�1
�t + (�t!

�
t )
�1 (�|t )

�1
(Dt (�t!�t ))

| (2.2.21)

where �t!
�
t is given by (2.2.20). Thus, to solve for the optimal portfolio, we need to evaluate

the expression involving the Malliavin derivative of the discounted wealth process. In order

to do so, we need to revert to the chain rule of Malliavin calculus2:

Dt (�t!�t ) = Dt (Et [�T max (I (y�T ) ; 0)]) (2.2.22)

= Et
�
Dt
�
�T I (y�T )

+��
= Et

��
I (y�T )

+ + y�T
@I (y�T )

@ (y�T )
1I(y�T )>0

�
Dt�s

�
2For a random variable X and a di¤erentiable function ' (X), the Malliavin derivative of X is given by

Dt' (Xs) =
@'(X)
@X

DtXs.
The Malliavin derivative of a stochastic process satisfying a SDE given by Yt = Y0 +

R t
0
� (Ys) ds +R t

0
� (Ys) dWs satis�es DtYs =

R s
t

@�(Ys)
@Y

(DtYv) dv +
R s
t

@�(Ys)
@Y

(DtYv) dWs.
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where we have used the fact that the conditional expectation operator and the Malliavin

derivative operator commute. Applying further the chain rule on Dt�s and using the SDE

satis�ed by the state price density process (2.2.8), we obtain:

Dt�s = ��s

24 sZ
t

(Dtrv + �|v (Dt�v)) dv +
sZ
t

dW |
v � (Dt�v) + �

|
t

35 (2.2.23)

As the short rate rt and the market price of risk �t processes depend in turn on the state

variables Yt, we can develop further the above expression for the Malliavin derivative of the

state price density process, by realizing that:

Dtrv =
@r (Ys)

@Y
DtYs (2.2.24)

Dt�v =
@� (Ys)

@Y
DtYs

and that the Malliavin derivatives of the state variables satisfy:

d (DtYs) =
@�Y (Ys)

@Y
(DtYs) ds+

d+1X
j=1

@�Y�j (Ys)

@Y
dWjs (DtYs) (2.2.25)

where �Y�j (Ys) is the j
th column of the volatility term for Yt. Thus, the solution for the opti-

mal portfolio weights is reduced to the computation of conditional expectations of state vari-

ables and their Malliavin derivatives. Realizing that I (y�T )+y�T
@I(y�T )
@(y�T )

= !T

�
1� 1

R(!T )

�
,

where R (!T ) is the coe¢ cient of relative risk aversion, leads us to the explicit expressions

for the optimal portfolio weights given by Theorem 1 in Detemple et al. (2003) as repre-

sented below, whose contribution to the Ocone and Karatzas formula lies in the realization

that Malliavin derivatives satisfy stochastic di¤erential equations and can thus be simulated

using Monte Carlo methods and standard discretization schemes like the Euler scheme. The

optimal portfolio rules are decomposed into a mean-variance term and two hedging expres-

sions, that are given in terms of conditional expectations involving the Malliavin derivatives

of the interest rate process and the market price of risk process:
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�t = �MV
t + �IRHt + �MPRH

t (2.2.26)

�MV
t = (�t (Xt)

|)�1
1

R (!t)
� (Yt)Et

�
�t;T

!T
!t

R (!t)

R (!T )
I!T>0

�
�IRHt = � (�t (Xt)

|)�1

Et

24�t;T !T!t
�
1�R (!T )�1

�
I!T>0

TZ
t

Dtrsds

35
= � (�t (Xt)

|)�1 a (Xt; rt)

�MPRH
t = � (�t (Xt)

|)�1

Et

24�t;T !T!t
�
1�R (!T )�1

�
I!T>0

TZ
t

(dWs + �sds)
|Dt�s

35
= � (�t (Xt)

|)�1 b (Xt; rt)

Thus, the mean-variance component �MV
t gives the portfolio allocation for a single-

period investor or one with a log-utility function, while the other two terms re�ect the

behavior of an investor who hedges against future changes in the short rate (the �IRHt

term) and the market price of risk (the �MPRH
t term), as the Malliavin derivatives mea-

sure the sensitivity of the state variables to innovations in the Brownian motions that drive

uncertainty. If we have a constant opportunity set or a log-utility investor with unit rel-

ative risk aversion, the hedging terms disappear and the portfolio is entirely determined

by mean-variance optimization. Alternatively, if relative risk aversion tends to in�nity, the

mean-variance component will tend to zero and the portfolio will be entirely given by the

intertemporal hedging terms in the limit.

As we are interested in the e¤ect of extreme value dependence in the state variable

process on optimal allocation rules, this ability to split the portfolio terms into a mean-

variance term and an intertemporal hedging term is particularly appealing, as we could

then test whether future changes in the opportunity set driven by this particular form of

dependence have an e¤ect on the hedging demand in the following two perspectives: whether

it can induce a substantial hedging demand as a part of the total allocation, and whether

hedging demands actually diminish the total portfolio allocation in the risky assets and shift

it to the riskless money market account when extremal dependence is present, as compared

to a case with no extremal dependence in the stationary distribution of the state variables.
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Further, as the proposed state variable process is fairly general and includes substantial

non-linearities due to the copula functions and the form of the marginal distributions, the

ability to obtain portfolio shares through a simulation-based technique is crucial.

2.2.4 Implementation through Monte Carlo simulations

The Monte Carlo simulation technique implemented in Detemple et al. (2003) proceeds as

follows. The state variables and their Malliavin derivatives form a joint system (Ys;DtYs),

to which we add the relative state prices �t;s =
�s
�t
, as well as the two integrals in the hedging

terms:

HIR
t;s =

sZ
t

Dtrsds =
sZ
t

@r (Yv)

@Y
DtYvdv

HMPR
t;s =

sZ
t

(dWv + �vds)
|Dt�v =

sZ
t

(dWv + �vds)
| @� (Yv)

@Y
DtYvdv

As all these terms solve stochastic di¤erential equations, they can be simulated using a

standard discretization scheme, so that we obtain a set of MC estimates

�
Y i
s ;DtY i

s ; �
i
t;s;H

IR;i
t;s ;HMPR;i

t;s

�MC

i=1

where MC is the number of Monte Carlo paths that are being simulated.

The hedging terms depend further on the particular choice of a utility function. We

take into consideration two utility function speci�cations: the Constant Relative Risk Aver-

sion (CRRA) one and the Hyperbolic Absolute Risk Aversion (HARA) utility function, of

which CRRA is a special case. We choose CRRA because of the considerable simplicity

it introduces in the hedging term expressions, while the HARA utility not only introduces

more generality in the portfolio problem, but also allows for a more pronounced e¤ect of

the extremal dependence structure on portfolio hedging demands through the intolerance

towards wealth being below a certain threshold that it implies. The HARA utility function

is given by:

u (x) =
1

1�R (x+B)
1�R (2.2.27)
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where R and B are exogenous constants. The special CRRA case is obtained by setting

B = 0. The coe¢ cient of relative risk aversion is given by R (x) = R
x+Bx, which is simply

equal to R in the case of CRRA. When B < 0 the utility function displays intolerance

towards wealth falling below the threshold �B.

For the benchmark CRRA case, the portfolio weights simplify considerably. The inverse

of the marginal utility function is given by I (z) = z�
1
R , so that optimal terminal wealth

is !T = (y�T )
�1=R, and the constant y is given by y =

 
E0
h
�
1�1=R
T

i
!

!R
.The mean-variance

term is also simpli�ed to �MV
t = (�t (Xt)

|)�1 1R� (Yt), while the two hedging terms have

the following expressions, independent of wealth:

�IRHt = � (�t (Xt)
|)�1

�
1� 1

R

�
Et

24 �
(1�1=R)
t;T

Et

h
�
(1�1=R)
t;T

i TZ
t

Dtrsds

35 (2.2.28)

�MPRH
t = � (�t (Xt)

|)�1
�
1� 1

R

�

Et

24 �
(1�1=R)
t;T

Et

h
�
(1�1=R)
t;T

i TZ
t

(dWs + �sds)
|Dt�s

35 (2.2.29)

The conditional expectations could then be estimated by averaging over theMC terminal

values of the simulated paths. The rate of convergence of these estimated values to the true

ones depends on the number of Monte Carlo paths and is of order 1=
p
MC.

The solution in the case of HARA utility follows the same lines with the exception that

now optimal wealth enters the portfolio terms. What is more, in this case the non-negativity

of wealth constraint may become binding for the case of B > 0.

A key to improving e¢ ciency of the simulation method of Detemple et al. (2003) is

the transformation of the state variable process to one with unit volatility, which allows

eliminating the stochastic integral from the Malliavin derivatives. Even though this method

is quite appealing for univariate di¤usions, its generalization to a multivariate one is not

so straightforward. The di¤usions of the GH family are indeed impossible to transform in

closed form, unless the � coe¢ cient in their di¤usion term is set to 0. The same is true

for the multivariate construction as well, unless we consider the simple construction of a

di¤usion of the gradient �eld type with a constant volatility coe¢ cient.

Thus we need to resort to other methods that achieve variance reduction in the Monte
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Carlo simulations. The use of low discrepancy points is one such possibility. The low

discrepancy sequences are formed of selected deterministic points and have the property

of spanning the whole region of interest. Their advantage over random points in �nancial

applications have been established in numerous studies, among which Joy et al. (1996),

Boyle and Imai (2002). We have chosen the Sobol low discrepancy sequence for the Monte

Carlo simulations for �nding optimal portfolio shares.

2.2.5 The short rate process

The short rate does not enter the speci�cation for the adjusted log priceX, and for simplicity

we assume that it follows a Vasicek process:

drt = �r (�r � rt) dt+ �rdWt (2.2.30)

This allows for an analytic expression for the Malliavin derivative of the short rate, as

(2.2.25) can be explicitly solved, as all stochastic terms disappear:

Dtrs = �r exp (��r (s� t)) (2.2.31)

The estimated parameters for the short rate are �r = 0:2001, �r = 0:0293, �r =

�0:00693.

2.2.6 Induced hedging demands

We could further split the hedge terms into induced demands that arise from hedging �uctu-

ations in the sources of risk to which all the other state variables are exposed, and demands

that are related to the source of risk, speci�c only to the particular asset. Due to the fact

that �, whose terms are de�ned in (2.2.16), is a lower d-dimensional triangular matrix, the

asset d is the only one that is exposed to Wd risk. Thus, its demand is governed only by the

need to hedge against �uctuations in Wd, the other sources of risk being hedged away by

the rest of the assets. However, the asset d � 1 is no longer the only one exposed to Wd�1

risk, as the asset d shares this exposure as well. Thus, the position in asset d will induce

hedging demands in d � 1, and so forth. To see that more clearly, let �(i;j) represent the

3Data for the 3-month Treasury bill rates is from the H.15 Federal Reserve Statistical Release.
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terms of the inverse of the � matrix. Then the interest rate and the market price of risk

hedging terms for asset d� 1 can be decomposed into:

�IRHt;(d�1) = ��(d�1;d�1)a(d�1) (Xt; rt)� �(d;d�1)a(d) (Xt; rt) (2.2.32)

�MPRH
t;(d�1) = ��(d�1;d�1)b(d�1) (Xt; rt)� �(d;d�1)b(d) (Xt; rt)

The last term in those expressions thus refers to the induced hedging demands for asset

d� 1.

2.3 The importance of modeling extreme value dependence

Having established the solution technique and its implementation through Monte Carlo

simulations, we proceed to the core of our study that is establishing the e¤ect of extreme

value dependence in the state variable process on the optimal portfolio policy. To this end,

we consider a benchmark model for which the dependence tends to zero as we go further in

the tails of the stationary distribution (the Gaussian di¤usion model), and �ve models that

allow for tail dependence: one symmetric (the Student�s t di¤usion) and four asymmetric

(the extreme value mixture di¤usion of Gaussian, Gumbel and survival Gumbel copulas in

the stationary distribution as well as the mixture of Student�s t with Gumbel and survival

Gumbel copulas, in their nested and non-nested forms).

The empirical application of the portfolio solution described above relies on data from

the daily CRSP database. More speci�cally, we consider US stock capitalization decile

indices for the period 1990-2005. These indices represent yearly rebalanced portfolios based

on market capitalization. The stock universe includes stocks listed on NYSE, AMEX, and

NASDAQ. All ten capitalization decile indices were grouped in three sub-categories: small-

cap (deciles 1-3), mid-cap (deciles 4-7), and large-cap (deciles 8-10). This dataset has been

used in Ang and Chen (2002) to study the exceedence correlation patterns of the market

and stock portfolios, as well as in Patton (2004) for the portfolio implications of this form

of dependence in an unconditional context.

The above construction of a stationary di¤usion with a prespeci�ed stationary density

(2.2.9)-(2.2.16) poses a serious estimation problem, as its conditional density is not explic-

itly known. Thus, as with the implementation of the solution for the optimal portfolio, we
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rely on the standard Euler discretization scheme with data augmentation, i.e. introducing

latent data points between each pair of observations. This technique has been used in Ped-

ersen (1995) for simulated maximum likelihood estimation of di¤usions, or in Elerian et al.

(2001), Roberts and Strammer (2001), or Eraker (2001) for MCMC analysis. The estima-

tion scheme we apply in the present setup relies on an MCMC estimation algorithm with

data augmentation following the sequential inference procedure of Golightly and Wilkinson

(2006a). Details of the algorithm are presented in the appendix. We use a two-step esti-

mation procedure which allows us to choose the appropriate marginal distribution for each

data series. We estimate a NIG stationary distribution for all series, except the Mid caps,

for which the more general GH construction appears to be appropriate (a NIG di¤usion for

the Mid caps is rejected on the basis of the uniform residuals obtained by the probability in-

tegral transform). Table 2.3.1 summarizes the estimation results for the parameters speci�c

to each univariate series, while Table 2.3.2 gives the estimated parameters that describe the

dependence structure for the di¤usion speci�cations we consider.

As we are interested rather in the portfolio implications of tail dependence, we propose

two experiments. The �rst one consists in calculating portfolio shares along realized paths

of asset prices. Considering the state variable processes (the short rate and the de-trended

log-returns) as given by their realized paths, we simulate the Malliavin derivatives and the

hedging terms along these paths for the whole estimation horizon, and then compute optimal

allocations while keeping the investment horizon �xed at its terminal value. Thus we can

analyze the di¤erences in the hedging demands obtained under the alternative models over

a very long investment horizon, where the e¤ect of the stationary distribution would indeed

be the most visible. We repeat this exercise with a rolling-window horizon instead of a �xed

one in order to evaluate the impact of a long horizon on the hedging demands.

The second experiment is a simulation study for varying investment horizons and degrees

of risk aversion, while keeping the starting point �xed this time, in which all state variables

and hedging terms are simulated ahead. By looking at the pro�le of the optimal portfolio

policy for each horizon over di¤erent levels of risk aversion, we are able to determine to which

extent hedging demands are sensitive to the level of risk aversion in the utility function or

to the choice of utility function (CRRA or the more general HARA utility).
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Table 2.3.1: Parameter estimates for the univariate series
The table summarizes the posterior parameter estimates from the MCMC output. Monte Carlo
standard errors are reported in parenthesis (multiplied by a factor of 1000) (obtained using the batch-
mean approach). SIF refers to the simulation ine¢ ciency factor for each parameter (its integrated
autocorrelation time).

Small cap Mid cap Large cap
� 3.0502 18.7839 10.6904
(MC s.e.) (0.1616) (0.5220) (0.2193)
(SIF) (0.0938) (0.6694) (0.6912)
� -0.5911 0.4476 -1.5737
(MC s.e.) (0.6329) (2.9453) (1.5404)
(SIF) (0.1104) (1.5392) (1.7637)
�2 0.0301 0.0721 0.0410
(MC s.e.) (0.0024) (0.0011) (0.0031)
(SIF) (0.1219) (1.0535) (1.8122)
� 6.7059 6.3101 6.5360
(MC s.e.) (0.0249) (0.0129) (0.0102)
(SIF) (0.1038) (0.5407) (0.4991)
�2 0.0406 0.0400 0.0082
(MC s.e.) (0.0022) (0.0030) (0.0006)
(SIF) (0.1142) (1.4686) (1.2930)
� 0.6490 0.4670 0.5102
(MC s.e.) (0.0373) (0.0235) (0.0850)
(SIF) (0.0955) (1.4322) (1.7551)
� 0.5 -1.4295 0.5
(MC s.e.) - (0.0519) -
(SIF) - (1.1704) -
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Table 2.3.2: Parameter estimates for the dependences structure
Estimation results for the trivariate di¤usions using the Gaussian copula, the nested Gaussian-
Gumbel-Survival Gumbel mixture copula (the most deeply nested couple is given in parenthesis), the
nonnested Gaussian-Gumbel-Survival Gumbel mixture copula, the Student�s t copula, the Student�s t
�nonnested Survival Gumbel mixture copula, and the Student�s t �nested Gumbel - Survival Gumbel
mixture copula. Monte Carlo standard errors (multiplied by a factor of 1000), and Simulation
Ine¢ ciency Factors (SIF) are given in parenthesis. The �rst three parameters (R12; R13; R23 )
correspond to the o¤-diagonal entries of the correlation matrix RGa for the Gaussian copula or the
correlation matrix RT for the Student�s t copula. The parameters �G1 and �

G
2 are the dependence

parameters for the nested Gumbel copula, and the parameters �G1 and �G2 are the dependence
parameters for the nested Survival Gumbel copula. For the nonnested cases, the relevant parameters
are �G1 for the Gumbel copula and �G1 for the Survival Gumbel copula. !G and !G are the
corresponding weights for the Gumbel and the survival Gumbel copula for the mixture model. �
is the degrees of freedom parameter for the Student�s t copula. The parameters �12, �13, and �23
are the o¤-diagonal entries of the correlation matrix in the di¤usion speci�cation (3.11). Results are
obtained for 50000 Monte Carlo replications with a thinning factor of 5 with 10 latent data points
simulated between each pair of observations.

Gaussian Gauss-G-SG Gauss-G-SG t t-G-SG t-SG
(Large Mid cap) (nonnested) (Large-Mid cap) (nonnested)

R12
MC s.e.
SIF

0.5671
0.3701
0.8621

0.5347
0.3326
1.0437

0.5758
0.3537
0.9540

0.4408
0.5433
1.3619

0.2574
1.4015
0.7629

0.5266
0.6040
1.3392

R13
MC s.e.
SIF

0.2723
0.7875
0.7359

0.5179
0.4191
0.7188

0.2571
0.5131
0.7251

0.5273
0.6911
0.9564

0.2362
0.9873
1.0469

0.4154
0.6353
0.8209

R23
MC s.e.
SIF

0.5207
0.4399
0.9162

0.4152
0.3302
1.6992

0.4698
1.3536
1.5260

0.3334
0.5146
1.1373

0.3161
0.5147
1.1320

0.4461
0.9027
0.9049

�G1
MC s.e.
SIF

-
-
-

0.2972
0.3546
0.5754

0.4494
0.3541
1.2328

-
-
-

0.2786
0.2191
0.5660

-
-
-

�G2
MC s.e.
SIF

-
-
-

0.6335
0.1928
0.9156

-
-
-

-
-
-

0.6570
0.5395
1.0512

-
-
-
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Table 2.3.2: Parameter estimates for the dependences structure (cont.)

Gaussian Gauss-G-SG Gauss-G-SG t t-G-SG t-SG
(Large Mid cap) (nonnested) (Large-Mid cap) (nonnested)

�G1
MC s.e.
SIF

-
-
-

0.3618
0.1998
0.2375

0.4354
1.0229
1.6558

-
-
-

0.2730
0.2961
0.6114

0.3434
0.5440
0.7326

�G2
MC s.e.
SIF

-
-
-

0.6544
0.4667
0.8040

-
-
-

-
-
-

0.6660
0.5939
1.3265

-
-
-

!G

MC s.e.
SIF

-
-
-

0.3321
1.0111
2.0983

0.3832
0.7265
1.0348

-
-
-

0.5118
0.4382
0.7870

-
-
-

!G

MC s.e.
SIF

-
-
-

0.2853
0.3789
1.4739

0.2324
0.3619
2.1457

-
-
-

0.1529
0.2248
1.4495

0.2829
0.9130
1.9105

�
MC s.e.
SIF

-
-
-

-
-
-

-
-
-

5.4774
4.8170
0.8904

3.9575
2.4907
0.7732

4.8266
5.8874
0.9437

�12
MC s.e.
SIF

0.7894
0.0195
1.2371

0.7917
0.0086
0.2271

0.8287
0.0104
1.2730

0.8184
0.0074
0.3969

0.7837
0.0223
1.1166

0.8166
0.0171
1.2428

�13
MC s.e.
SIF

0.5078
0.0189
0.8625

0.5089
0.0229
0.9588

0.5499
0.0105
0.6771

0.5113
0.0286
1.5033

0.4922
0.0296
0.9770

0.5522
0.0085
0.6370

�23
MC s.e.
SIF

0.7162
0.0209
0.8581

0.7158
0.0067
0.7418

0.7366
0.0137
1.1969

0.7165
0.0085
0.3875

0.7045
0.0129
0.8620

0.7372
0.0092
0.6073
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2.3.1 Portfolio allocation along realized paths (�xed horizon)

This �rst experiment aims at determining the e¤ect of extremal tail dependence on portfolio

choice along the realized trajectories of the state variables. Keeping the horizon �xed,

we obtain optimal portfolio weights by simulating the remaining elements of the system�
Y i
s ;DtY i

s ; �
i
t;s;H

IR;i
t;s ;HMPR;i

t;s

�MC

i=1
. As the vector of market prices of risk is unobservable, we

�lter it from the data by simulating additional data points between each pair of observations,

while keeping the parameters �xed at their posterior means, and then integrating out the

latent data points over the simulated Monte Carlo trajectories. The optimal portfolio shares

are obtained for a CRRA investor with levels of relative risk aversion of 5 and 10, and are

recorded weekly. Table 2.3.3 reports the three components of the optimal portfolio of the

investor: the intertemporal hedging terms (against stochastic changes in the market price of

risk and the interest rate) and the mean-variance term for varying investment horizons and

for all of the alternative di¤usions considered. Summary statistics for the optimal portfolio

shares for each individual asset are given in Table 2.3.4.

For all of the selected horizons, the extreme value mixture di¤usions lead to lower market

price of risk hedging demands for the risky assets, thus shifting the portfolio allocation to

the riskless asset when the possibility of increased correlation during extreme down markets

is accounted for. Those demands increase in absolute terms with the coe¢ cient of relative

risk aversion. The mean-variance and the interest rate hedging terms do not show so much

disparity between the alternative speci�cations, so the di¤erences in the total risky demand

are driven primarily by the need to hedge changes in the market prices of risk for the di¤erent

data generating processes. This is clearly seen from Figure 2.3.1, which traces the di¤erent

decompositions of portfolio terms for the whole investment horizon under the assumption

of Gaussian �extreme value copula di¤usion (they display a similar pattern for all of the

alternative processes considered).

The market price of risk hedges show considerable variations along the sample path,

while the interest rate hedges are stable and decline steadily as the horizon decreases, due

to the �xed maturity e¤ect (Figure 2.3.1). The market price of risk hedge terms switch

signs throughout the period, and determine to a great extent the variations of the total

portfolio holdings in the risky assets, as displayed on the upper right panel of Figure 2.3.1,

which contrasts the mean-variance component to the total risky asset demand. The two
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Figure 2.3.1: Portfolio hedging terms along realized paths of the state
variables

The �gures represent the evolution of the hedging and mean-variance terms along realized trajectories
of the state variables for the whole 15 year estimation horizon for the nested Gaussian-Gumbel-
Survival Gumbel di¤usion (Large and Mid caps being the most deeply nested couple). On the
horizontal axes time increments are weekly. The top left �gure plots the intertemporal hedging
terms (MPRH stands for market price of risk hedge, IRH stands for interest rate hedge). The top
right �gure presents the mean-variance (MV) component as a part of the total asset demand. The
two bottom �gures plot the induced hedging demands: the left one plots the sum of the induced
MPRH terms vs. the total MPRH, while the one on the right plots the sum of the total induced
hedging demand vs. the total demand for the risky assets.
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lower panels display the evolution of the hedging demands throughout the period that are

induced by the positions in the rest of the assets. Induced hedges are considerable in

magnitude and are opposite in sign with respect to the total hedging demand.

An investor who uses the extreme value mixture di¤usion as a data generating process

consistently underinvests in the risky assets as compared to an investor who believes that

log-prices are driven by a tail independent Gaussian process. Thus disregarding the e¤ect of

extreme dependence in the tails leads to increased portfolio holdings in the risky assets for

the most part of the 15-year period we consider, as seen on Figure 2.3.2, which compares the

two elliptical models with their extreme-value mixture counterparts. However, the Student�s

t model performs almost identically as the Gaussian, the intertemporal market price of risk

hedging terms being virtually indistinguishable for most of the investment horizon. Figure

2.3.3 illustrates the impact of considering the more richly parametrized nested version of

the Archimedean copulas. The Gaussian mixtures do not display a signi�cant change in the

hedging demands, while for the Student�s t mixtures the nested version leads to substantially

lower demand for the risky assets.

So far we have analyzed the behavior of the portfolio hedging terms for the entire esti-

mation period. As it would be of greater interest to contrast periods of increased frequency

of tail events to considerably calm periods, we look at three subsamples: the period of

1992-1995, characterized with low volatility and no tail events, and the periods of 1997-2000

and 2001-2005, during which there were several market crashes, and asset return volatility

was substantially higher, as it can be seen from Figure 2.3.4, on which we have plotted the

GARCH volatility estimates for each of the return series. The last two subperiods thus

include the October 1997 crash caused by the economic crisis in Asia, and the bear market

in 2002, related to the �Internet bubble�.

For the intertemporal hedging terms we consider three competing di¤usion speci�cations:

the tail independent Gaussian benchmark, the symmetric tails Student�s t di¤usion and the

speci�cation based on the extreme-value copula mixture of Gaussian and Gumbel copulas

in its nested version. The investment horizon is kept �xed at the end of each period, so

that the hedging terms decline towards zero with the approach of the terminal date for

each subperiod. Figure 2.3.5 displays the market price of risk hedges, as well as the mean-

variance terms for the competing data generating processes, under the assumption of a
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Figure 2.3.2: Portfolio hedging terms along realized paths of the state
variables

Market price of risk hedge terms along realized trajectories of the state variables for the whole 15
year estimation horizon (left column) and for a rolling window horizon of 5 years (right column).
On the horizontal axes time increments are weekly. Plotted are the market price of risk hedges of
the Gaussian �extreme value mixture di¤usion (Large and Mid caps being the most deeply nested
couple, Ga-GSG) vs. the Gaussian di¤usion (Ga), and of the Student�s t �extreme value di¤usion
(T-G-SG) vs. the Student�s t di¤usion (T). In all cases we have a CRRA investor with relative risk
aversion of 5.
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Figure 2.3.3: Market price of risk hedging terms along realized paths for the
state variables: nested vs. nonnested Gaussian - Gumbel - Survival Gumbel
copulas; nested Student�s t Gumbel - Survival Gumbel vs. Student�s t -
nonnested Survival Gumbel

The sums of the market price of risk hedging terms for the three risky assets are reported for the
whole 15 years estimation period for a rolling window horizon of �ve years. Hedging terms are
reported every 10 days. Plotted are the hedging components for the nonnested Gaussian-Gumbel-
Survival Gumbel speci�cation against two nested alternatives (the most deeply nested couple for each
case is given in parenthesis), as well as the hedging terms for the Student�s t di¤usion (t) against
the extreme value mixture alternative represented by the Student�s t �nonnested Survival Gumbel
copula (t-SG). CRRA investor with a relative risk aversion parameter (RRA) of 5.

0 100 200 300 400 500 600 700 800
­3

­2

­1

0

1

2

3
Market price of risk hedge(Fixed horizon)

Ga­G­SG
nonnested Ga­G­SG

0 100 200 300 400 500 600
­5

­4

­3

­2

­1

0

1

2

3
Market price of risk hedge(Rolling window horizon)

Ga­G­SG
nonnested Ga­G­SG

0 100 200 300 400 500 600 700 800
­3

­2

­1

0

1

2

3

4
Market price of risk hedge(Fixed horizon)

T­G­SG
T ­ nonnested SG

0 100 200 300 400 500 600
­5

­4

­3

­2

­1

0

1

2

3
Market price of risk hedge(Rolling window horizon)

T­G­SG
T ­ nonnested SG



93

Figure 2.3.4: GARCH(1,1) volatility estimates for the three asset return
series

Plotted are the GARCH(1,1) estimates of the conditional standard deviations of the three return
series (Large, Mid and Small caps) for the whole estimation period 1990-2005.

CRRA investor with a coe¢ cient of relative risk aversion equal to 5. We have conducted

the same allocation experiment for a HARA investor as well, but the results are qualitatively

similar to the CRRA case.

The two elliptical di¤usions render similar hedging terms for the three subperiods, while

the extreme-value copula reduces considerably the demand for the risky asset. That is true

even for the �rst subperiod with no tail events and low volatility, even though in the second

part of the period all hedging demands are very close to each other, which is not the case

for the 2001-2005 period, marked with more extreme events. The mean-variance terms are

almost identical across the alternative speci�cations, so the di¤erence in risky asset demands

comes almost exclusively from the market price of risk hedges.

In order to gather more insight into the impact of considering lower tail dependence

during a �bear�market as compared to a period with no extreme events, we look at the

evolution of wealth generated by the portfolio allocation decisions for the alternative data

generating processes for each of the three subperiods. Optimal wealth at time t is given by

!�t = Et
�
�t;T I (y

��T )
�
, which for a CRRA investor reduces to !�t = Et

h
�t;T (y

��T )
�1=R

i
.
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Figure 2.3.6 illustrates the optimal wealth for an investor with CRRA preferences for a

coe¢ cient of risk aversion of 5. For the 1992-1995 period all three di¤usion speci�cations

render similar wealth growth. Thus, even though the intertemporal hedging terms for the

risky assets are lower when the investor takes into account the dependence between extreme

low returns, it does not translate into a change in her wealth evolution for this calm period

with no extreme events. To the contrary, the loss in terms of wealth for the subsequent

period of 1997-2000 is substantial for both elliptic speci�cations. The costs of ignoring tail

dependence will be further considered in more detail through the concept of the certainty

equivalent cost in the next sections.

2.3.2 Portfolio allocation along realized paths (rolling window horizon)

In order to examine the e¤ect of a varying horizon, we perform a second experiment along

the realized trajectories of the state variables, in which the only di¤erence with respect to the

above mentioned exercise is the fact that we keep the horizon �xed at 5 years. Table 2.3.5

reports results for the hedging terms and the mean-variance terms of optimal portfolios,

recorded each week, for periods of 14 to 6 years before the end of the sample horizon (not

to be confused with the investment horizon of 5 years for each allocation decision).

We again con�rm the previous �nding that the extreme value di¤usion model of the

nested Archimedean mixture leads to considerably lower hedging demands for the risky

assets as compared to the asymptotically independent Gaussian model. Overall, as seen

from the right column of Figure 2.3.1, the pattern of the market price of risk hedges for a

rolling window horizon remains similar to that of the �xed horizon case, and its volatility

again determines to a great extent the total portfolio allocations in the risky assets.

2.3.3 Portfolio allocation along simulated paths

Having established the impact of modeling extreme value dependence on portfolio terms

using actual data, we now turn to the case of simulating ahead the whole system of state

variables, Malliavin derivatives and hedging terms
�
Y i
s ;DtY i

s ; �
i
t;s;H

IR;i
t;s ;HMPR;i

t;s

�MC

i=1
for

any of the alternative di¤usion speci�cations for a CRRA and a HARA investor with levels

of relative risk aversion ranging between 2 and 10, for a horizon of up to 3 years. For the

HARA utility assumption, we consider the case of B = �0:2, and unit initial wealth, for
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which case the investor displays aversion towards wealth shortfalls below a certain threshold.

Results are illustrated on Figure 2.3.7 and 2.3.8 for the intertemporal hedging terms and

the considered di¤usion speci�cations.

The interest rate hedge, very close across all speci�cations, is positive and increases

with the horizon, as well as with the level of relative risk aversion. We �nd the opposite

behavior for the market price of risk hedging term that decreases with the coe¢ cient of

relative risk aversion. For all horizons considered and for all levels of risk aversion the

nested extreme value mixture di¤usion both in the Gaussian and the Student�s t cases

induces lower intertemporal demand for the risky assets, compared with its two elliptical

counterparts. This e¤ect is accentuated in the case of a HARA investor, who has lower

MPR hedging demands and higher IR hedging demands for all cases.

As in all of the above experiments, for either observed or simulated paths of the state vari-

ables, the di¤erences in the total asset demand across alternative data generating processes

are driven mainly by the Market price of risk hedging demands, we conduct a simple sim-

ulation study in order to reveal the sensitivity of the market price of risk hedging terms to

changes in the parameters that describe the dependence structure. To this end, we solve for

the optimal portfolio when the data generating process is the most parsimonious extreme-

value di¤usion �the nonnested Gaussian-Gumbel-Survival Gumbel, by simulating ahead the

state variables and their Malliavin derivatives for a horizon of 6 and 12 months for changing

values of the parameters that determine the weights of the extreme value copulas (!G and

!SG). Thus for !G+!SG = 0 we obtain the Gaussian copula with no tail dependence, while

for !G+!SG = 1 dependence is driven entirely by the extreme value Archimedean copulas,

and asymptotic tail dependence is at its highest values. Table 2.3.6 summarizes the results

of this comparative statics experiment.

When the part of the extreme-value copulas increases versus that of the Gaussian copula,

the market price of risk hedging terms decrease, re�ecting the higher risk of joint occurrence

of tail events.

2.3.4 The cost of ignoring extremal dependence

Having thus obtained the optimal portfolio shares, we proceed to the assessment of the

importance of the intertemporal hedging demands, induced by the asymmetric dependence
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Table 2.3.6: Sensitivity of the Market price of risk hedging term to changes
in the parameters describing the dependence structure

The table reports the sum of the Market price of risk hedging terms for varying parameters that
describe the dependence structure for a �xed horizon of 6 and 12 months and a CRRA investor
with coe¢ cients of relative risk aversion of 2, 5, 10 and 20. The model considered is the nonnested
Gaussian-Gumbel-Survival Gumbel model for changing values of the parameters that determine the
weights of the mixture copula (!G; !G ).

T = 6 months T = 12 months
RRA : 2 5 10 20 2 5 10 20

!G + !G (assuming equal weights for the Gumbel and the Survival Gumbel copulas)

0

0.2

0.4

0.6

0.8

1

0.4604

0.3865

0.3098

0.2411

0.2296

0.1915

0.3792

0.3257

0.2499

0.1666

0.1830

0.1447

0.2979

0.2642

0.1974

0.1144

0.1488

0.1126

0.2478

0.2264

0.1659

0.0840

0.1292

0.0944

0.7668

0.6609

0.5556

0.4443

0.4379

0.3851

0.6318

0.5724

0.4700

0.3353

0.3701

0.3457

0.5039

0.4829

0.3923

0.2580

0.3162

0.3124

0.4266

0.4290

0.3464

0.2137

0.2855

0.2939

structure, in terms of the cost of ignoring these asymmetries. To this end, we propose

to follow the approach, largely exploited in literature on portfolio allocation that uses as

criterion the utility cost of ignoring the particular data structure in terms of the certainty

equivalent (i.e. in the present case, the utility cost of using non-optimal weights that come

from a data generating process that assumes tail independence, whereas data is characterized

by asymmetries in the extremal dependence structure).

In order to �nd the additional wealth that is initially required by an investor to use a

suboptimal allocation strategy for a given horizon, we have to solve the following equation

for the value functions that have to be equal at the investment horizon:

E0 [u (!
�
T j !0 = 1)] = E0 [u (!T j !0 = !)] (2.3.1)

where !�T is the optimal terminal wealth obtained under the optimal data generating process,

!T is the terminal wealth obtained by using an alternative (suboptimal) data generating

process for the state variables, and ! is the initial wealth required by the investor in order

to form suboptimal portfolio shares. In the case of a CRRA utility, that is homogenous in

initial wealth, the above equation simpli�es to:

E0

h
(!�T )

1�R j !0 = 1
i
= E0

h
(!T )

1�R j !0 = !
i

(2.3.2)
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Table 2.3.7: The cost of ignoring extreme dependence as modeled by the
extreme value mixture di¤usion (Gaussian �Gumbel �Survival Gumbel)

The certainty equivalent costs (dollars) for using a suboptimal allocation strategy of assuming that
state variables are driven by a Gaussian di¤usion, a Student�s t di¤usion, or a nonnested Gaussian �
Gumbel �Survival Gumbel di¤usion while the true data generating process is the nested Gaussian
�Gumbel �Survival Gumbel di¤usion. Results for a CRRA and a HARA investor with levels of
relative risk aversion of 5 and 10, for a horizon of 6 months to 3 years. For the HARA utility
B = �0:1 or B = 0:1, and initial wealth is set to 1.

HARA (B = �0:1) CRRA HARA (B = 0:1)
Horizon RRA = 5 RRA = 10 RRA = 5 RRA = 10 RRA = 5 RRA = 10

vs. Gaussian
6 months

1 year

2 years

3 years

0.0319

0.0609

0.1030

0.1584

0.0198

0.0393

0.0672

0.1129

0.0344

0.0650

0.1085

0.1635

0.0210

0.0414

0.0698

0.1153

0.0370

0.0692

0.1139

0.1685

0.0223

0.0434

0.0725

0.1178

vs. Student�s t
6 months

1 year

2 years

3 years

0.0209

0.0414

0.0803

0.1365

0.0136

0.0294

0.0631

0.1197

0.0224

0.0438

0.0830

0.1384

0.0144

0.0306

0.0645

0.1207

0.0240

0.0462

0.0857

0.1404

0.0152

0.0318

0.0659

0.1217

vs. nonnested Gaussian �Gumbel �Survival Gumbel
6 months

1 year

2 years

3 years

0.0263

0.0432

0.0819

0.1438

0.0154

0.0241

0.0525

0.1100

0.0286

0.0470

0.0865

0.1476

0.0166

0.0259

0.0547

0.1118

0.0309

0.0507

0.0910

0.1514

0.0177

0.0278

0.0569

0.1137

The inverse of the marginal utility function for a CRRA investor has the form I (z) = z�
1
R ,

so that for ! we obtain ! =
n
E0

h
(��T )

1� 1
R

i
=E0

h
(�T )

1� 1
R

io R
1�R

.

We examine the certainty equivalent costs for two scenarios. First, the true data gener-

ating process for the de-trended log-prices is assumed to be the Gaussian �extreme value

nested mixture di¤usion (2.2.12) and we solve for the utility cost of using either one of the

Elliptical di¤usions instead or the alternative nonnested mixture model for a horizon of 6

months to 3 years. Results for a CRRA and a HARA investor are reported in Table 2.3.7.

We �nd signi�cant certainty equivalent costs for choosing a suboptimal data generating

process in this case, as high as 16 cents per dollar for the Gaussian copula and the longest

horizon. The costs increase with the investment horizon, and there are no signi�cant quali-

tative di¤erences between a HARA and a CRRA investor. The two HARA cases considered

with a positive or negative parameter B provide an upper and a lower limit for the certainty

equivalent cost of the benchmark CRRA investor. One loses the most if using a Gaussian
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Table 2.3.8: The cost of ignoring extreme dependence as modeled by the
extreme value mixture di¤usion (Student�s t �Gumbel �Survival Gumbel)

The certainty equivalent costs (in dollars) for using a suboptimal allocation strategy of assuming
that state variables are driven by a Gaussian di¤usion, a Student�s t di¤usion, or a Student�s t �
nonnested Survival Gumbel di¤usion while the true data generating process is the nested Student�s
t �Gumbel �Survival Gumbel di¤usion. Results for a CRRA and a HARA investor with levels
of relative risk aversion of 5 and 10, for a horizon of 6 months to 3 years. For the HARA utility
B = �0:1 or B = 0:1, and initial wealth is set to 1.

HARA (B = �0:1) CRRA HARA (B = 0:1)
Horizon RRA = 5 RRA = 10 RRA = 5 RRA = 10 RRA = 5 RRA = 10

vs. Gaussian
6 months

1 year

2 years

3 years

0.0545

0.0969

0.1987

0.3314

0.0344

0.0609

0.1445

0.2621

0.0587

0.1039

0.2067

0.3388

0.0364

0.0642

0.1483

0.2655

0.0629

0.1108

0.2146

0.3461

0.0385

0.0676

0.1521

0.2689

vs. Student�s t
6 months

1 year

2 years

3 years

0.0397

0.0690

0.1576

0.2691

0.0245

0.0428

0.1230

0.2312

0.0429

0.0741

0.1627

0.2732

0.0261

0.0453

0.1255

0.2331

0.0460

0.0792

0.1679

0.2773

0.0276

0.0477

0.1280

0.2351

vs. Student�s t �nonnested Survival Gumbel
6 months

1 year

2 years

3 years

0.0182

0.0200

0.0293

0.0557

0.0100

0.0061

0.0132

0.0422

0.0199

0.0227

0.0317

0.0572

0.0109

0.0074

0.0144

0.0430

0.0549

0.0254

0.0341

0.0587

0.0321

0.0088

0.0156

0.0437

model instead of the true process when allocating a portfolio, and the costs are lower for

the two alternative speci�cations, as they take into account the increased dependence for

tail events.

For our second experiment, we generate data from the Student�s t � extreme value

nested mixture di¤usion (2.2.13) and consider suboptimal allocations for its elliptical or

nonnested counterparts. Certainty equivalent costs are twice as large, as compared to the

previous experiment, and are the most important for the Gaussian data generating process.

However, the certainty equivalent costs are not as substantial for nonnested version in this

case, probably due to the richer parameter speci�cation of the Student�s t di¤usion.

The above simulation experiments have the underlying assumption of the true data

generating process being an Elliptic �Extreme value mixture, and we simulate the state

variables following the assumed process. We could alternatively look at the data itself and

compute the certainty equivalent costs along realized paths of the state variables, similarly



104

to the portfolio allocation experiments. We thus treat the paths of the state variables as

observed and we assume alternative data generating processes when simulating the state

price density. As its evolution depends only on the market prices of risk and the short rate

evolution, we do not need to simulate Malliavin derivatives of the state variables in this case.

We look at a rolling window horizon of 6 months to 3 years, in order to match the horizons

in the simulation experiment, and consider the two Elliptical and the two Elliptic �Extreme

value mixture nested di¤usions as data generating processes. Figure 2.3.9 displays the paths

of the certainty equivalent costs for the 3 rolling window horizons for the following three

cases: (i) Gaussian di¤usion while the copula underlying the true data generating process is

the nested Gaussian �Gumbel �Survival Gumbel; (ii) Student�s t di¤usion while the copula

of the true data generating process is the nested Student�s t �Gumbel �Survival Gumbel;

and (iii) Gaussian di¤usion while data is assumed to come from a Student�s t copula.

A value of 1 on the vertical axis would mean no certainty equivalent cost, while any

value above it translates into a cost of the corresponding value minus 1, in cents per dollar.

Alternatively, any value below 1 points to a gain, instead of loss, of using the alternative data

generating process. For the �rst half of the sample and for all horizons the investor loses

nothing by choosing a tail independent data generating process, while her costs are quite

substantial for the second more volatile period, characterized by several market crashes.

The costs increase with the investment horizon and are more pronounced for the case (i),

for which they remain at a high level for the second half of the period. The costs for the

Student�s t case (ii) are higher than those in (i) on several occasions, but often drop to zero,

as both di¤usions have a certain degree of tail dependence, and only the tail asymmetry

in the Extreme value di¤usion would drive the di¤erences between the two processes. The

investor looses the less in case (iii), where both competing di¤usions are in the Elliptic class.

2.4 Conclusion

In this chapter we analyze the importance of considering dependence between extreme re-

alizations of stock market returns on intertemporal portfolio choice. In order to achieve

this, we address two problems: develop a parametric model that replicates the extremal

dependence found in the data, and apply a solution methodology for portfolio allocation

that allows us to isolate the intertemporal hedging terms induced by the particular data
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Figure 2.3.9: The cost of ignoring extreme dependence as modeled by the
extreme value mixture di¤usion: along realized paths of state variables for a
rolling 6-month, 1,2, and 3-year horizon

The �gures display the certainty equivalent cost (CEQ) of ignoring extreme value dependence across
realized paths of the state variables for the whole estimation period and a rolling-window horizon
of 6 months 1, 2, and 3 years. This is performed under the assumption of a CRRA investor with
a coe¢ cient of relative risk aversion of 5. The alternative data generating processes considered are
the nested Gaussian-Gumbel-Survival Gumbel di¤usion vs. the Gaussian di¤usion, the Student�s t
nested Gumbel-Survival Gumbel di¤usion vs. the Student�s t di¤usion, and the Student�s t di¤usion
vs. the Gaussian di¤usion. A value of 1 indicates no certainty equivalent cost of disregarding the
benchmark model; any value above 1 points towards positive certainty equivalent cost in cents per
dollar equal to the di¤erence between the plotted value and 1; a value below 1 indicates loss, its
magnitude being equal to the di¤erence between the plotted value and 1.
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generating process.

The idea of devising a model that is able to incorporate this speci�c dependence structure

has been exploited in the discrete-time literature building upon copula models in a GARCH

framework. However, no extension is provided to modeling the spatial dependence structure

of a continuous-time stochastic process. To solve this problem, we develop a multivariate

di¤usion model with a prespeci�ed stationary distribution, based on copula functions, that

is able to reproduce the dependence structure of the data. It represents as well a multivariate

generalization of the �exible class of univariate Generalized hyperbolic di¤usion models of

Rydberg (1999) and Bibby and Sorensen (2003), and is thus able to account for stylized

features of asset returns as thick tails, skewness in the marginal distribution, and persistence

in the autocorrelation of squared returns. The mixture model we propose nests the cases of

asymptotic independence and tail dependence, thus covering a large spectrum of extremal

dependence structures.

There is con�icting evidence however on the e¤ect of asymmetric correlations on port-

folio choice. Portfolio allocation problems in the copula framework have been addressed in

literature only in the unconditional context (Patton, 2004), where the e¤ect of dependence

asymmetries is found to be substantial, while no extension is proposed for dynamic portfolio

selection. In a multiperiod setting on the other hand, under alternative speci�cations that

aim at capturing the same stylized behavior, dependence asymmetries are found to have

no considerable e¤ect on optimal portfolio shares (Ang and Bekaert, 2002), while dynamic

hedging terms are not explicitly obtained. The model we develop has the advantage that

it allows us to approach the dynamic portfolio selection problem within a complete market

setup, and obtain explicit expressions for the dynamic hedging demands induced by the

extreme value dependence data generating process. The solution methodology is �exible

enough to allow for quite general speci�cations of the state variables and the utility func-

tion. We �nd that taking into account the dependence between realizations of tail events

diminishes the intertemporal demand for the risky asset and induces substantial utility cost

when this particular dependence structure is ignored.

However, these results are obtained under the assumption of constant conditional cor-

relation. A recent study of Buraschi et al. (2007) has provided evidence of a substantial

portfolio hedging component due to correlation risk, which is highly time-varying. Thus,
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relaxing the constant correlation assumption in our setting would allow us to isolate the

e¤ect of the time-varying conditional correlation from that of the particular stationary dis-

tribution chosen for the di¤usion process. This is an extension that we pursue in the third

Chapter of this thesis.



Chapter 3

Dynamic Correlation Hedging in Copula Models

for Portfolio Selection

3.1 Introduction

An increasing body of literature is interested in modeling time variations in the conditional

dependence of asset returns in terms of conditional covariances and correlations (Bollerslev

et al. (1988) or Engle (2002) to cite a few). From a modeling perspective, popular choices for

the time-varying correlation phenomenon are the Dynamic Conditional Correlation model of

Engle (2002) in a discrete-time setting, or the continuous-time Wischart process, introduced

by Bru (1991) that gives rise to an a¢ ne model and tractable portfolio allocation rules.

The main theme behind those models is the fact that the correlation structure of world

equity markets is not constant over time, but is highly time varying. A number of studies

have addressed this issue, as well as the driving factors behind this time variation. Based

on data from the last 150 years, Goetzmann et al. (2005) �nd that correlations between

equity returns vary substantially over time and achieve their highest levels during periods

characterized by highly integrated �nancial markets. As well peaks in correlations and not

only volatility can be attributed to major market crashes, as for example the Crash of 1929.

Longin and Solnik (1995) study shifts in global equity markets correlation structure and

reject the hypothesis of constant correlations among international stock markets. Moreover,

they �nd evidence that correlations increase during highly volatile periods. Using Extreme

Value Theory, Longin and Solnik (2001) �nd that international stock markets tend to be

highly correlated during extreme market downturns than during extreme market upturns,

establishing a pattern of asymmetric dependence. Further, Ang and Chen (2002) con�rm

this �nding for the US market for correlations between stock returns and an aggregate mar-

ket index. Another strand of literature connects the variability of stock return correlations

to the phase of the business cycle. Ledoit et al. (2003) and Erb et al. (1994) show that
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correlations are time-varying and depend on the state of the economy, tending to be higher

during periods of recession. Similar evidence is brought forward by Moskowitz (2003) who

links time variation of volatilities and covariances to NBER recessions.

The above empirical �ndings �nd theoretical justi�cation in Ribiero and Veronesi (2002)

where in a Rational Expectations Equilibrium model time variations in correlations are

obtained endogenously as a result of changes in agents�uncertainty about the state of the

economy. Further, by relating recessionary periods to a higher level of uncertainty, excess

co-movements across international stock markets are obtained during bad times when the

global economy slows down.

The evidence of highly varying conditional correlations on equity markets has moti-

vated us to propose a continuous time process for asset prices that incorporates the above

mentioned stylized facts in two distinct ways. First, we allow for tail dependence between

extreme realizations of asset returns by explicitly modeling the stationary distribution of

the process using copula functions that incorporate dependence in the left or the right tail.

This construction of a multivariate di¤usion with a pre-speci�ed stationary distribution

relies on Chen et al. (2002) and it allows us to obtain higher dependence when markets

experience downturns than during upward moves. However, this approach does not exploit

the conditional correlation structure of the process. To this end, we further propose a spec-

i�cation for modeling correlation dynamics of the process using observed factors, including

macroeconomic and market volatility factors. With those we aim at capturing the above

mentioned features of asset returns, and namely the fact that correlations increase during

extreme market downside moves, hectic periods and recessionary states of the economy.

This chapter further concentrates on the portfolio implications of those distributional

assumptions. Staying within a complete market framework, we are able to undertake the

standard portfolio solution methodology of Cox and Huang (1989), further developed by

Ocone and Karatzas (1991) and Detemple et al. (2003), which allows us to obtain in closed

form up to numerical integration the optimal portfolio components in terms of mean-variance

demand and intertemporal hedging demands. For the case where we model conditional

correlation as a function of observed factors, we are able to isolate the hedging demands

for correlation risk, due to stochastic changes in the factors. We use the solution for the

optimal portfolio allocation in order to address the following issues:
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a) We test whether the implications of allowing for tail dependence through the stationary

distribution and for dynamic conditional correlation on the optimal portfolio hedging

demands are similar in magnitude and direction. As those distributional assumptions

aim at replicating the same stylized behavior, it is interesting to see whether the port-

folio e¤ects will share this similarity. For an in-sample market timing exercise along

realized paths of the state variables over a 20-year investment horizon and two risky

funds, we �nd that allowing for dynamic conditional correlation generally drives up the

intertemporal hedging demands, while allowing for tail dependence in the stationary

distribution diminishes them. There is also a distinction in the portfolio composition

between the risky funds: in the presence of dynamic conditional correlation the spread

between the hedging demands for the two funds increases, while in the presence of

tail dependence it decreases, bringing about smaller hedging components in absolute

value for the two funds. Those e¤ects become more important when increasing the

investment horizon.

b) We further investigate the evolution of the correlation hedging demands implied by the

observable factors. Using a factor to capture market-wide volatility and another one

to account for macroeconomic conditions, we �nd that the total correlation demands

due to those factors are generally negative throughout the period we consider. The

impact of the macroeconomic factor is more signi�cant and directs the behavior of the

hedging demands.

c) We test whether results are sensitive to the particular choice of investment period. We

consider two sub-periods that di¤er in the level of stock market volatility and macro-

economic conditions, and we consider an investor with investment horizon set at the

end of each of these sub-periods. We �nd that for a relatively calm period with almost

no extreme events towards its end the impact of tail dependence disappears once we

allow for a data generating process that incorporates dynamics in the conditional cor-

relation behavior. To the contrary, for a hectic period with declining macroeconomic

conditions and a number of extreme events, especially towards its end, the importance

of modeling tail dependence for the optimal hedging demand cannot be overwritten

by allowing for dynamically varying correlations.
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d) We further test the economic importance of considering dynamic conditional corre-

lation or tail dependence using the concept of the certainty equivalent cost and �nd

substantial utility loss due to disregarding either form of dependence, which increases

with the investment horizon and for low levels of the agent�s relative risk aversion.

As well, we �nd substantial utility loss for disregarding dependence between extreme

realizations, even when dynamic conditional correlation has already been accounted

for, and vice versa. We also compare di¤erent dynamic conditional correlation spec-

i�cations that take into account or not observable factors and we �nd that there

is utility loss related to disregarding observable factors, especially factors related to

macroeconomic conditions.

e) As well we study the sensitivity of the optimal hedging behavior for di¤erent levels

of average correlation and �nd higher hedging demands for high correlation levels,

when the impact of stochastic changes in conditional correlation on investor�s utility

is expected to be the highest. This �nding is con�rmed by the certainty equivalent

cost of disregarding dynamic conditional correlation: the utility loss increases for higher

levels of average correlation. Alternatively, we study the impact of disregarding tail

dependence for varying levels of tail dependence coe¢ cients in the data generating

process and �nd that there are far more signi�cant costs of disregarding dependence

between extreme realizations when its level increases, even when dynamic conditional

correlation is already taken into account.

The present study is closely related to the work of Buraschi et al. (2007) who solve for

the optimal portfolio hedging behavior in the presence of correlation risk in a setting where

both volatilities and correlations are stochastic, giving rise to separate demands for volatil-

ity and correlation risk. They model covariance dynamics using the analytically tractable

Wischart process and study the portfolio impact of stylized facts of asset returns such as

volatility and correlation persistence and leverage e¤ects. However they work in an incom-

plete market setting which allows them to obtain closed-form portfolio solutions for only

the CRRA investor. While in Buraschi et al. (2007) the correlation between the risky assets

is stochastic and is driven by its independent risk source, the model of Liu (2007) allows

for stochastic correlations that however are deterministic functions of return volatilities,
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which does not allow disentangling the portfolio e¤ect of correlation from that of volatility.

Under this model�s assumptions, including quadratic returns, for which the four elements,

describing the investment opportunity set (the short rate, the maximal squared Sharpe ra-

tio, the hedging coe¢ cient vector, and the unspanned covariance matrix), are all Markovian

di¤usions with quadratic drift and di¤usion coe¢ cients, it is again possible to obtain ex-

plicit dynamic portfolio solutions for an investor with CRRA utility. The portfolio problem

can be solved under either complete markets (when utility is de�ned over consumption and

terminal wealth) or incomplete markets (when utility is de�ned only over terminal wealth).

The portfolio solution methodology that we consider allows us to identify the intertem-

poral hedging demands that arise from the need to hedge against changes in the stochastic

investment opportunity set, and separate them from the mean-variance component. As well,

we can solve under general utility preferences, that are not constrained to the CRRA case.

We consider a case when conditional correlation is modeled as a deterministic function of

the state variables driving volatility, and alternatively as a function of observed state vari-

ables, linked to market-wide volatility and macroeconomic conditions. In the second case

we are able to isolate the correlation hedging demands that appear due to the need to hedge

against �uctuations in the observed factors.

The present study is also related to another strand of literature that studies the implica-

tions of asset co-movements on dynamic portfolio choice. Ang and Bekaert (2002) consider a

regime-switching model of asset returns that accounts for asymmetries in their dependence

structure by including a �bear�regime with low expected returns, coupled with high volatili-

ties and correlations, and a �normal�regime with high expected returns, low volatilities and

correlations. They �nd that the asymmetric correlation structure between the two regimes

becomes important for an international investor only when she is allowed to trade in the

risk-free asset. Only in this case there are any signi�cant economic costs of disregarding

regime switching. Liu et al. (2003) model event related jumps in prices and volatility in the

double-jump framework, introduced by Du¢ e et al. (2000). The presence of event jumps

renders the optimal portfolio holdings similar to those that could be obtained for an investor

faced with short-selling and borrowing constraints. As well, event risk has a larger impact

on the portfolio composition of investors with low levels of risk aversion. However, these

results are obtained for a single risky asset portfolio. Das and Uppal (2004) consider the
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impact of systemic risk on dynamic portfolio choice by introducing a jump component in

asset prices that is common for all assets. They work in a constant investment opportunity

set and �nd that investors who ignore systemic risk would have larger holdings of the risky

assets. As well, there is higher cost associated to ignoring systemic risk for investors with low

levels of risk aversion and levered portfolios. In this setting there are portfolio e¤ects due to

higher moments that arise from the inclusion of jumps. Alternatively, Cvitanic et al. (2008)

develop optimal allocation rules under higher moments when risky assets are driven by a

time-changed di¤usion of the Variance Gamma type, and �nd that ignoring skewness and

kurtosis leads to overinvestment in the risky assets and a substantial wealth loss, especially

for high volatility levels.

In this chapter we consider an alternative way to model asset co-movement asymmetries

through the stationary distribution of the process for the state variables, driving the prices

of the risky assets. We introduce an asymmetric dependence structure of the distribution

explicitly by using copula functions that allow us to isolate the e¤ect of the marginal dis-

tributions from that of the dependence structure itself. This allows us to model the above

mentioned stylized facts without reverting to an incomplete market through the inclusion

of jumps, which allows us to have a tractable portfolio solution for a general utility func-

tion speci�cation. We chose between copula functions that incorporate dependence between

extreme realizations of the state variables and copulas that imply no tail dependence and

study the di¤erences in the intertemporal hedging demands entailed by the alternative data

generating processes.

The remainder of the chapter is organized as follows. Section 3.2 discusses several stylized

facts of dynamic correlation and motivates the possibility to model it using observable

factors. Section 3.3 describes the model, the solution to the portfolio choice problem, and

the correlation hedging demands that appear due to observable factors driving correlation.

Section 3.4 discusses the particular portfolio holdings for a bivariate application. In Section

3.5 we present numerical results used to gauge the importance of hedging demands that arise

due to dynamic correlation or tail dependence. Section 3.6 concludes. Technical details are

provided in the Appendix.
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3.2 Dynamic correlation and exogenous factors

Established empirical �ndings point towards several stylized facts that characterize condi-

tional correlation dynamics of asset returns. It tends to increase in periods of high market

volatility, or in cases of extreme downside market moves. As well, it appears to be linked

to the business cycle and is higher in recessionary states of the economy.

We approach the above mentioned facts in two methodologically distinct ways. First, we

achieve increased correlation during market downturns through the stationary distribution

of the multivariate di¤usion of state variables that underlines the stock price process. With

this �static�approach we are able to achieve a certain degree of left tail dependence which

translates into increased dependence for low levels of the state variables. Second, we allow

for dynamic correlation of the state variables, driven by factors that are supposed to capture

market volatility and the state of the business cycle. To this end, we choose the Chicago

Board Options Exchange Volatility Index (VIX) which measures the implied volatility of

S&P index options and thus incorporates market�s expectations of near-term volatility. In

order to incorporate the e¤ect of the business cycle on the dynamics of correlation, we

take the Chicago Fed National Activity Index (CFNAI) that synthesizes information on

various macroeconomic factors in a single index. It is a monthly index that aggregates

information on overall macroeconomic activity and in�ation, as it is a weighted average of 85

indicators of national economic activity, ranging from production, employment, housing and

consumption, income, sales, orders and inventories. The methodology behind the CFNAI

is based on Stock and Watson (1999), who �nd a common factor behind various in�ation

indicators. The evolution of the VIX and of the CFNAI are given in Figure 3.2.1.

In order to appreciate the time variation in asset correlations, driven by the chosen

indices, we estimate a DCC model with exogenous factors on the asset return series that

will be used later in the portfolio application. Data used in this study consists in two

stock market indices representing old economy stocks (S&P 500) and new economy stocks

(NASDAQ) for the period 1986-2006. This relatively long period includes several market

crashes among which the October 1987 crash in the beginning of the sample period, the

Asian crisis that triggered the market crash in October 1997, as well as the Dot-com bubble

crash in 2000-2002.

The DCC speci�cation, as well as the estimated coe¢ cients are given in Table 3.2.1, and
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Figure 3.2.1: Evolution of the VIX index (upper panel) and of CFNAI
index (bottom panel) for the period 1986 - 2006.

The VIX is quoted in terms of percentage points and the data is available at the daily
frequency. The CFNAI is quoted monthly. A negative value of the CFNAI index indicates
a below-average growth of the national economy, whereas a positive value of the index
points towards an above-average growth. A zero value means that the economy grows at its
historical average rate.
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Table 3.2.1: Parameter estimates of a DCC model with exgenous factors
for SP 500 and NASDAQ returns.

The model that we estimate is an extended version of the DCC model of Engle (2002) to include
exogenous factors driving the conditional covariance and it has the following speci�cation. Denote
by yt the d� 1 vector of asset returns, and by Ft the n� 1 vector of exogenous variables. Then for
the conditional mean equation we have:

yt = �t + "t

"t = H
1=2
t �t where �t � N (0; 1) thus "t � N (0;Ht)

The conditional covariance matrix Ht can be expressed as Ht = DtRtDt =
�
�ij;t

p
hii;thjj;t

�
,

where �ij;t are entries of the conditional correlation matrix and hii;t are entries of the conditional

covariance matrix. Further, Rt = eQ�1t Qt eQ�1t , where eQ�1t = diag
�p
qii;t
�
. The dynamics of Qt

are given by:

Qt=Q (1� �� �)+�e"t�1e"t�1+�Qt�1+Ip|Ft�1
where e"t � N (0; Rt), and it is a d�1 vector of standardized residuals e"t = "tp

hii;t
, I is the identity

matrix and p is an n� 1 vector of parameters pertaining to the exogenous factors Ft.
In our case yt denotes the returns of S&P 500 and NASDAQ, and Ft are the VIX and the CFNAI
indices. Parameter estimates and their corresponding standard errors are given below.

Parameters Standard errors � 1000
� 0:0221 (0:1025)
� 0:9744 (0:0063)
p1 (V IX) 0:0008 (0:0000)
p2 (CFNAI) �0:0001 (0:0081)

the correlation dynamics are plotted in Figure 3.2.2.

All the DCC parameters are signi�cantly estimated which points towards a certain degree

of persistence of correlation. Estimated correlation levels range between 0.55 and 0.90 and

there can be seen a general tendency of increasing correlation over the years. There are

some distinct spikes in conditional correlation, some of which can be linked to speci�c

events (e.g. the late 1987 and 1997 market crashes). There is a distinct period of lower

conditional correlations between 1992 and 1997, which is also characterized by low market

volatility and a generally above average growth trend in the economy. The parameters for

the exogenous factors that drive the time-varying conditional covariance have the expected

signs: positive for the VIX and negative for the CFNAI, which translates into increasing

conditional correlation during hectic periods and recessionary states of the economy.
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Figure 3.2.2: Estimated dynamic conditional correlation for SP 500 and
NASDAQ returns from a DCC model with exogenous factors
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3.3 The investment problem

This section describes the problem faced by the investor in allocating her wealth between a

set of risky assets and the money market account. It introduces the distributional and utility

assumptions we impose and presents the general solution methodology using the Martingale

technique following the portfolio decomposition formula of Detemple et al. (2003) and its

implementation via Monte Carlo simulations. We consider the case where the investor

maximizes expected utility of terminal wealth, so that we do not allow for intermediate

consumption.

3.3.1 The economy

We de�ne a �ltered probability space
�
FXT ;

�
FXT
	T
t=0

; P Y
�
over the investment horizon [0; T ]

where FYT is the �ltration generated by state variables Yt under the empirical probability

measure P Y . We consider a complete market setup with d+1 state variables Yit; i = 1; :::d,

where uncertainty is driven by d+ 1 Brownian motions Wit; i = 1; :::d+ 1. There are d+ 2

securities available for investment: d stocks, a long term pure discount bond, and the risk-

free asset. The state variable vector Yt consists of d+1 state variables Xt, each one a¤ecting

its corresponding stock price process, and a state variable Y r
t that governs the dynamics of

the short rate rt, that is Yt = (Xt; Y r
t )
|.

The investor has at her disposal the following three asset categories. First, she can invest

in a risk-free money market account and its value at time t is given by:
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B0 (t) = exp

8<:
tZ
0

r (s; Y r
s ) ds

9=; (3.3.1)

As well, another tradeable asset in the portfolio is a default-free zero-coupon bond with

a maturity T . Its price B (t; T ) at time t can be expressed as a conditional expectation

under the equivalent martingale measure Q:

B (t; T ) = EQ

24exp
8<:�

TZ
t

r (s; Y r
s ) ds

9=; jFYt
35 (3.3.2)

The rest of the portfolio consists in a collection of stocks whose price process is modeled

using the d state variables Xt:

Si (t) = exp (Xit + ' (t)) ; i = 1; :::; d (3.3.3)

where ' (t) is a deterministic function of time. This speci�cation was chosen in order to be

as close as possible to the Geometric Brownian motion underlying the Black-Scholes formula

for option pricing: if the process for Xit is given by Xit = Xi0 + �i
R t
0 dWit, then we are

exactly in the Black-Scholes setting where all the assets are independent from each other; if

alternatively we apply a stochastic time transformation to the Brownian motion and de�ne

the process for Xit as Xit = Xi0 +
R t
0 � (t;Xit) dWit, then we obtain a simple generalization

of the Geometric Brownian motion that already departs from the normality assumption. As

it will be shown below, we will further introduce a drift to the process for the state variables

Xt which will be consistent with a chosen stationary distribution for the process, as well as

correlations between the Brownians that will be allowed to be stochastic. This will bring

the model closer to the discrete-time alternative of a dynamic conditional correlation model,

as the one introduced by Engle (2002).

3.3.2 The a¢ ne setup for the bond price

In what follows, we will restrict the framework for the bond price to the a¢ ne class, in that

the short interest rate rt will be an a¢ ne function of state variable Y r
t . This will allow us

to express the yield of the bond as an a¢ ne function of the state variable as well. Thus, we

assume that the short rate can be expressed as:
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r (t; Y r
t ) = �0 + �1Y

r
t (3.3.4)

The choice of a one-factor a¢ ne model for the short rate may be questionable as there

is substantial empirical evidence concerning the shortcomings of a¢ ne models1, and as well

using only one factor to capture the dynamics of the term structure may be too restrictive.

But as the speci�cation for the bond is marginal for our portfolio application, we proceed

with this simple speci�cation which ensures tractable portfolio solutions. As well, Y r
t has

the simple interpretation as a state variable that models the dynamics of the interest rate

risk factor which will further determine the hedging terms of the portfolio against changes

in the stochastic interest rate.

Following the evidence of time-varying interest rate risk premia on the bond market

(e.g. Chan et al., 1992), we allow the state variable Y r
t to evolve over time according to a

square-root process. Its dynamics under the objective measure P Y are given by:

dY r
t = �r (�

r � Y r
t ) dt+ �r

p
Y r
t dW

r
t (3.3.5)

Following Dai and Singleton (2000), we assume a market price of risk of the form �
p
Y r
t ,

which ensures that the process for the state variable will be a¢ ne under the risk neutral

measure as well. Then under the equivalent martingale measure the process will be:

dY r
t = �r

�
�r � Y r

t

�
dt+ �r

p
Y r
t dW

�r
t (3.3.6)

where �r = �r + �r� and �r = �r�
r= (�r + �r�).

Given the a¢ ne term structure parametrization is admissible, we can obtain in closed

form the price of the default-free bond:

B (t; T ) = exp fa (T � t) + b (T � t)Y r
t g (3.3.7)

where a (�) and b (�) solve the Ricatti equations:

1Backus et al. (1998) show that term premiums generated by a¢ ne models are too low compared to
the observed data; Du¤ee (2002) �nds that this class of models is not �exible enough to replicate temporal
patterns in interest rates.
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@a (�)

@�
= �r�rb (�)� �0

@b (�)

@�
= ��rb (�) +

1

2
(�rb (�))

2 � 1

Then the process for the bond price can be recovered from (3.3.6) and (3.3.7) and the

speci�cation of the market price of risk that we adopted. Thus, it can be shown that the

bond price follows:

dBt = Bt
�
�B (t; Y r

t ) dt+ �
B (t; Y r

t ) dW
r
t

�
(3.3.8)

where �B (t; Y r
t ) = r (t; Y r

t ) + b (�)�r�Y

and �B (t; Y r
t ) = b (�)�r

p
Y r
t

As a result of the CIR speci�cation of the state variable Y r
t , the market price of risk

de�ned by �B (t; Y r
t ) = �B (t; Y r

t )
�1 ��B (t; Y r

t )� r (t; Y r
t )
�
is stochastic and is given by

�
p
Y r
t . It should be noted that for the bond risk premium to be positive, the market price

of risk and thus � should be negative.

3.3.3 The copula di¤usion for the stock price process with dynamic conditional
correlation

In this section we will de�ne the process for the state variables Xt that drive the stock prices.

As we are interested in modeling the dependence between extreme realizations of returns,

we will adopt the copula di¤usion process, introduced in the �rst chapter and extend it

to a dynamic conditional correlation speci�cation. Thus, we introduce two channels for

modeling extremal dependence: one through the properties of the stationary distribution of

the process, and the second through the conditional correlation. We will explore two options

for modeling the correlation dynamics. A �rst straightforward way to do so is to allow the

conditional correlation to be time-varying by being speci�ed as some known function of the

state variables themselves. As there is evidence that correlation increases in volatile states

and when returns are low, we propose to model correlation as a function of the volatility

and the level of the state variables. Thus, the general form of the state variables Xt is given
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by:

Case A: dXt = � (Xt) dt+ �(Xt) dW
X
t (3.3.9)

where � is a lower triangular matrix, andWX is a d-dimensional standard Brownian motion,

independent of W r. If we de�ne a continuously di¤erentiable positive de�nite matrix � =

��|, then its entries are given by �ij (Xt) = �ij (Xt)�
X
i (Xt)�

X
j (Xt) ; i; j = 1; :::; d, where

the conditional correlation coe¢ cients �ij (Xt) and the conditional volatility terms �i (Xt)

are functions of Xt and thus time varying.

The second way to model dynamic correlation that we explore is by rendering it sto-

chastic in terms of a function of observable factors. Following the empirical evidence, that

correlations increase in volatile periods and in bad states of the economy, we introduce two

exogenous factors to account for that: the CBOE volatility index (VIX) and the Chicago

Fed National Activity Index (CFNAI). Denoting these observable factors as Ft, we propose

a second general speci�cation for the state variable process Xt of the form:

Case B: dXt = e� (Xt; Ft) dt+ e� (Xt; Ft) dW
X
t (3.3.10)

where e� is a lower triangular matrix, de�ned as a function of the state variables Xt, as

well as the observable factors Ft. The entries of the continuously di¤erentiable positive

de�nite matrix e� = e�e�0 are given by e�ij (Xt; Ft) = e�ij (Xt; Ft)�
X
i (Xt)�

X
j (Xt), where the

conditional correlation coe¢ cient e�ij (Xt; Ft) is stochastic in that it is modeled as a function

of the observable factors Ft, as well as the state variables Xt. Note that in this second case

we augment the state variable vector Yt to include also the factors Ft: Yt = (Xt; Ft; Y
r
t )
|.

Using any of the above speci�cations for Xt and the fact that the stock price is de�ned

following (3.3.3) , we can apply Itô�s lemma in order to recover the stock price process:
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dSit = Sit�
S
i (logSit � ' (t)) dt (3.3.11)

+Sit

dX
j=1

�Iij (logSit � ' (t)) dWX
jt

where �Si (t; Yt) = �Ii (Yt) + '
0 (t) +

1

2

dX
j=1

�2ij (Yt) ; I = 1; 2

�1i (Yt) = � (Xt) ; �2i (Yt) = e� (Xt; Ft)

and �Iij (t; Yt) ; I = 1; 2 are entries of the corresponding matrix:

�1ij (t; Yt) = � (Xt) ; �2ij (t; Yt) = e� (Xt; Ft)

It should be noted, that as we need to stay within the complete market setup, the

number of sources of risk, generated by the Brownian motions, should be the same as the

number of traded assets. Thus, when introducing the observable factors F in the stock price

speci�cation, we assume that their dynamics are governed by the same Brownian motions

that drive the stock prices themselves.

As the market is complete and we have an invertible matrix �(I), we can de�ne a market

price of risk as �S (t; Y r
t ) = �

(I) (t; Yt)
�1 ��S (t; Yt)� r (t; Y r

t ) �
�
, where � is a d-dimensional

vector of ones.

Let us stack the drift and di¤usion terms for the bond and the stocks so that to obtain:

M (t; Yt) =

0@ �Si (t; Yt)

�B (t; Yt)

1A

� (t; Yt) =

0BBBBBBB@
�(I) (t; Yt)

0

...

0

0 : : : 0 �B (t; Y r
t )

1CCCCCCCA
Then the market price of risk for all the tradeable assets

�(t; Yt) =
�
�(t; Yt)

S
1 ; :::;�(t; Yt)

S
d ;�

B (t; Yt)
�
is de�ned as:

�(t; Yt) = � (t; Yt)
�1 (M (t; Yt)� r (t; Y r

t ) �)
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It is assumed to be continuously di¤erentiable and satisfying the Novikov condition

E
h
exp

�R T
0 �(t; Yt)

|�(t; Yt) dt
�i

< 1. The market completeness implies the existence of

a unique state price density �t de�ned as

�t � B0 (t)
�1 �t exp

8<:�
tZ
0

r (s; Y r
s ) ds

9=;�
exp

8<:�
tZ
0

�(s; Ys)
| dWs �

1

2

tZ
0

�(s; Ys)
|�(s; Ys) ds

9=;
where �t is the Radon-Nykodym derivative, FYT -adapted. We can also de�ne the conditional

state price density that converts cash �ows at time v � t into cash �ows at time t:

�t;v � �v=�t (3.3.12)

= exp

8<: �
R v
t r (s; Y

r
s ) ds�

R v
t �(s; Ys)

| dWs

�1
2

R v
t �(s; Ys)

|�(s; Ys) ds

9=;
Establishing the di¤usion speci�cation for the state variables X that drive the
stock price dynamics

Having established two alternative ways to model the conditional correlation dynamics with

the aim of answering the stylized fact that asset correlation increases in volatile periods

when asset returns are low and the economy is in a downturn, we now turn to the other

possibility of accommodating this stylized fact: through the stationary distribution of the

state variables, as it has been already explored in the �rst chapter. Instead of focusing

on the dynamics of a correlation measure (the correlation between state variables changing

stochastically through time), in this chapter we have modeled the tail dependence (the

asymptotic dependence between tail realizations of the state variables) in a �static�sense.

By imposing a certain stationary distribution on the state variables�process, one can obtain

di¤erent degrees of tail dependence in the left or the right tail of the distribution. Thus, for

low levels of the state variable, the tail dependence index may be high, while for high levels

of the state variable it may be low, reproducing the stylized fact mentioned above.

For the sake of completeness, we will review the construction of a multivariate di¤usion
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with a given invariant distribution, de�ned in terms of copula functions. It follows Chen

et al. (2002) in exploiting the relationship that exists between the density of the stationary

distribution, the drift and the di¤usion term of the process de�ned in (3.3.9) or (3.3.10):

�j =
1

2
q�1

dX
i=1

@ (�ijq)

@xi
(3.3.13)

where � and �ij denote either � (Xt) and �ij (Xt) for Case A or e� (Xt; Ft) and e�ij (Xt; Ft) for

Case B, and q is a strictly positive continuously di¤erentiable multivariate density function

that is the stationary density of the Markov process for X. Thus the speci�cation of the

drift term � depends on both the form of the invariant density (which will be modeled to

determine the degree of asymmetric tail dependence of the state variables X, that is the

�static�representation of the stylized fact of co-movement asymmetries), and the form of the

di¤usion term � (which will be speci�ed in a way to allow or not for dynamic conditional

correlation, dependent or not on observable factors, that is the �dynamic�representation of

the same stylized fact).

In what follows we will establish the alternative assumptions on the form of both the

invariant density and the volatility term.

The form of the invariant density. With the choice of the stationary distribution

we seek to answer several questions concerning the behavior of asset returns. Our major

concern is the ability to allow assets to be dependent when they move towards the tails

of the distribution, especially for the left tail. This would ensure our model the ability to

replicate the empirical fact that asset returns are increasingly dependent as they jointly

move towards the lower quantiles of their distribution, that is during market downturns. As

copula functions allow us the �exibility to impose di¤erent types of joint behavior on the

variables while keeping the marginal distributions unchanged, we build the invariant density

q based on the copula density representation following Sklar�s theorem:

q (x1; :::; xd) � ec (x1; :::; xd) dY
i=1

ef i (xi) (3.3.14)

where ec (x1; :::; xd) = c
�
F 1 (x1) ; :::; F

d (xd)
�
is a copula density de�ned over the univariate

CDFs F i (xi), and ef i (xi) are the corresponding non-normalized univariate densities. We
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choose the Normal Inverse Gaussian (NIG) distribution2 to model the univariate behavior

because of its proven ability to account for stylized facts of univariate asset return dynamics:

autocorrelation of squared returns, semi-heavy tails, possibly asymmetric. Its tail behavior

is richly parametrized, nesting tails that vary from an exponential to a power law. As well,

NIG is one of the few members of the class of Generalized Hyperbolic (GH) distributions

that is closed under convolution, that is if the distribution of log prices is modeled under a

NIG law, then the distribution of the increments (asset returns) is also NIG. The univariate

NIG di¤usion is also an alternative to the widely used NIG Levy process (e.g. Eberlein and

Keller, 1995; Prause, 1999) that allows for an in�nite number of jumps in the price process,

but that also imposes independence of the increments, which is not the case for its di¤usion

counterpart.

The most important feature of the copula density representation (3.3.14) is that it allows

us to separate the e¤ect of the marginal behavior from the implications of the dependence

structure, modeled using a copula function. This is important for the portfolio application

that we treat in this study, as it allows us to gauge the di¤erence between the di¤erent ways

to model asset dependence (and thus to reproduce or not the stylized fact of asymmetric

asset co-movements) without the impact of the particular assumptions for the univariate

stock price processes. Thus we could measure the impact of the �static� representation

of dependence, ranging from Gaussian (no extreme co-movements) to non-negative tail

dependence (extreme co-movements, possibly asymmetric) on the optimal portfolio terms.

Let us �rst remind the de�nition of the coe¢ cients of upper and lower tail dependence

for couples of random variables X and Y : upper tail dependence is de�ned as the limit

probability of the variable Y exceeding the upper quantile as we approach it, conditional

upon the fact that the random variable X has exceeded that same quantile:

�U = lim
u!1

Pr
�
Y > F�1Y (u) jX > F�1X (u)

�
Alternatively, we de�ne the coe¢ cient of lower tail dependence as:

�L = lim
u!0

Pr
�
Y � F�1Y (u) jX � F�1X (u)

�
2See the appendix for details.
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Both coe¢ cients can be represented in terms of copula functions: �U = limu!1
(1�2u+C(u;u))

1�u

and �L = limu!0
C(u;u)
u . So di¤erent copulas will have di¤erent degrees of upper and lower

tail dependence depending on their parametric speci�cation. Thus, in order to allow for

di¤erent degrees of tail dependence, we assume several copula speci�cations for c3.

Case 1 Gaussian copula CGa: �U = �L = 0

In this case we allow for no dependence between tail realizations of the state variables.

The parameter that governs dependence is the correlation coe¢ cient �.

Case 2 Student�s t copula Ct: �U = �L = 2t�+1

�
�
p
�+1

p
1��p

1+�

�
where t� is the Student�s t density for � degrees of freedom. In this case the copula

function allows for symmetric tail dependence, determined by the correlation parameter �

and the degrees of freedom parameter �.

Case 3 A Gaussian - Symmetrized Joe-Clayton (SJC) mixture copula CGa�SJC : �U 6= �L

The form of the mixture copula is given by:

CGa�SJC = !CSJC + (1� !)CGa

where CGa stands for the Gaussian copula function and CSJC - the Symmetrized Joe-

Clayton copula, with a mixing parameter ! that determines the weights of each of the

copulas. The symmetrized Joe-Clayton copula models separately upper and lower tail de-

pendence and its form is particularly appealing, as the tail dependence coe¢ cients are

themselves the parameters of the copula function. It has been proposed by Patton (2004)

as a symmetrized version of the Joe-Clayton copula, in order to overcome the drawback of

the latter in that even when the coe¢ cients of upper and lower tail dependence are equal

to each other, there still exists some asymmetry in the copula, due to its functional form.

We consider a mixture speci�cation with this copula and the tail independent Gaussian

one in order to answer the concerns raised in Poon et al. (2004) that a copula speci�cation

whose coe¢ cients explicitly allow for tail dependence may overestimate the dependence

in the tail regions. Thus, by the mixture copula we let the data determine whether the

3See the appendix for details on the alternative speci�cations of the copula functions used in the paper.
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dependence structure is closer to one imposing no tail dependence or to one that allows for

it.

The cases considered above follow closely the ideas behind the copula di¤usion introduced

in the �rst chapter. In all of them dependence is modeled explicitly through the invariant

density of the multivariate state variable process. In the following section we will extend this

setup and will introduce dynamics in the modeling of dependence through the conditional

correlation coe¢ cient.

The conditional correlation dynamics. Before proceeding to the speci�cation of the

conditional correlation, we need to de�ne the conditional volatility dynamics. Recall that the

di¤usion term ofX was de�ned as a lower triangular matrix � and the entries of the variance-

covariance matrix � = ��| are given by �ij (Xt) = �ij (Xt)�
X
i (Xt)�

X
j (Xt). Borrowing

the idea of Bibby and Sorensen (2003) for modeling the di¤usion term of a univariate GH

stationary process, we allow each �Xi (Xt) to be a function of the state variables Xt:

�Xi (Xt) = �i

h ef i (xi)i� 1
2
�i

(3.3.15)

where ef i (xi) is the non-normalized NIG density for Xi, and we have the following parameter

restrictions: �i > 0 and �i 2 [0; 1]. By expressing the volatility term as the inverse of a

power function of the density ef we obtain the familiar U-shape for the volatility, typical
for a stationary process. This speci�cation is especially interesting, as it nests the constant

conditional volatility as a special case, setting �i = 0. Thus, for the portfolio allocation

application, we could easily isolate a volatility hedging component due to stochastic con-

ditional volatility by opposing a model with �i 6= 0 to one that restricts the conditional

volatility to be constant (�i = 0).

Earlier in this section we have discussed two possibilities of rendering the conditional

correlation coe¢ cient dynamic: through modeling it as a function of the state variables X

or by allowing it to be in�uenced by stochastic factors F . Here we will further elaborate

the particular assumptions concerning those two cases.

In both cases the conditional correlation coe¢ cient �ij is modeled as a function hij (Yt)

of the stochastic state variables Y , whether or not augmented with the observable factors. In

order to keep the correlation coe¢ cient in [�1; 1], we apply the following logistic transform
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A on the function h (Yt):

�ij (Y ) = A (hij (Y )) =
1� exp (�hij (Y ))
1 + exp (�hij (Y ))

Case A. Dynamic conditional correlation with state variables: �(Xt)

As our aim is to replicate the stylized fact that correlation between asset returns increases

in volatile periods and in extreme market downturns, we model the dynamic conditional

correlation coe¢ cient as a function involving the volatility speci�cation considered earlier

(3.3.15), as well as the level of the state variables in terms of their probability integral

transforms F (Xi). More speci�cally, we model the function hij (�) as:

hij (Xt) = 
ij;0 + 
ij;1max
�
�X1 (Xt) ; :::; �

X
d (Xt)

�
+ 
ij;2

dY
i=1

F (Xit) (3.3.16)

where F (Xit) stands for the corresponding univariate NIG CDF. The second term in this

speci�cation involves the conditional volatilities of each univariate series. We expect to

obtain a positive coe¢ cient 
ij;1 to re�ect the fact that correlation increases in hectic periods.

We de�ne this term as the maximum over all individual volatilities in order to allow high

volatility in any of the stocks to trigger increased conditional correlation. This speci�cation

was also used in Goorbergh et al. (2003) in order to model the dynamics of a conditional

copula through Kendall�s tau in an option pricing application. The third term is motivated

by the fact that conditional correlation shoots up when stock prices jointly and abruptly

decline, thus we expect a negative sign for the coe¢ cient 
ij;2.

Case B. Dynamic conditional correlation with observed factors and latent

variables: �(Xt; Ft)

Instead of letting the dynamics of the conditional correlation parameter be determined

exclusively by the state variables that drive the stock price process, we model it instead

with observable factors that are believed to drive conditional correlation: the VIX and the

CFNAI macroeconomic index. Thus we aim at replicating the stylized fact that correlation

increases in volatile markets when the economy is in a bad state. As the economic cycle

does not necessarily coincide with bear/bull �nancial markets, we leave from the previous

speci�cation the term that determines the level of the state variable. More speci�cally, in

this case we model the function h (�) as:
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hij (Xt; Ft) = 
ij;0 + 
ij;1F
V
t + 
ij;2

dY
i=1

F (Xit) + 
ij;3F
M
t (3.3.17)

where F Vt = log (V IXt) and FMt = CFNAI. The second term in this expression involves

the VIX and thus tries to account for the fact that conditional correlation will rise in

periods of increased volatility, so that we expect a positive sign for 
ij;1. The third term

involves the probability integral transforms of the state variables X and is thus meant to

capture the fact that correlation increases in market downturns (which entails an expected

negative coe¢ cient 
ij;2). The last term involves the macroeconomic factor and thus aims at

capturing the e¤ect of the economic cycle on conditional correlation. As the CFNAI index

is designed to take positive values when the economy is in an upturn and negative values

otherwise, we expect to obtain a negative sign for 
ij;3.

Case C. Dynamic conditional correlation with observed factors: �(Ft)

If we alternatively believe that correlation is driven by factors that do not a¤ect directly

the stock price process, then we may restrict the speci�cation in (3.3.17) in order to include

only observable factors:

hij (Ft) = 
ij;0 + 
ij;1F
V
t + 
ij;3F

M
t (3.3.18)

This speci�cation will prove quite useful in determining the portfolio correlation hedging

demands, as we will see in the following sections, as it will allow us to explicitly identify

them from the rest of the hedging terms of the portfolio. This is due to the fact that the

factors determining conditional correlation do not a¤ect in a direct way the stock price

process itself.

We assume the following processes for the two factors: a CIR process for F V and a

Vasicek process for FM :

dF Vt = �V
�
�V � F Vt

�
dt+ �V

q
F Vt dW

X
t (3.3.19)

dFMt = �M
�
�M � FMt

�
dt+ �MdWX

t

These processes will greatly facilitate the implementation of the portfolio allocation

formula, as the Vasicek speci�cation will allow for a closed-form solution for the Malliavin
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derivative of the macroeconomic factor FM , while the CIR di¤usion term will make possible

a variance-reduction technique for the Monte Carlo simulation of the Malliavin derivative

of F V .

3.3.4 The investor�s objective function

We consider an investor who maximizes utility over terminal wealth, that we denote by

U (!T ) by choosing an optimal investment policy f�tgt2(0;T ) that belongs to an admissible

set A for an investment horizon T :

max
�2A

E [U (!T )] (3.3.20)

where the utility function U is strictly increasing, concave and di¤erentiable, and satis�es

the conditions limx!1 U 0 (x) = 0 and limx!0 U 0 (x) <1. This standard utility speci�cation

includes the case of the Hyperbolic Relative Risk Aversion (HARA) utility function U (!) =

1
1�
 (! + b)

1�
 that we assume for this application. The coe¢ cient of Relative Risk Aversion,

de�ned as R (!) � �U 00(!)
U 0(!) !, is equal to 


!
!+b for the HARA case, which boils down to a

constant 
 for the special case of CRRA utility.

The portfolio policy � is a (d+ 1)-dimensional progressively measurable process that is

de�ned as the proportion of wealth allocated to the risky assets (d stocks and a long term

pure discount bond). Thus, the amount invested in the risk-free asset (the money-market

account) is (! � �|1). The portfolio policy generates a wealth process ! whose dynamics

are given by:

d!t = !t frtdt+ �|t [(M (t; Yt)� rt�) dt+ S (t; Yt) dWt]g (3.3.21)

3.3.5 The complete market solution

The complete market setup that we have adopted allows us to solve for the optimal portfolio

using the Martingale solution technique that restates the dynamic budget constraint (3.3.21)

as a static one and �rst solves for the optimal terminal wealth, and then �nds the optimal

portfolio policy that �nances it. Thus, following Cox and Huang (1989), optimal terminal

wealth is given by !�T = I (y�T )
+ = max (I (y�T ) ; 0), where I = [U

0]�1 denotes the inverse of

the marginal utility function, and y satis�es the static budget constraint E
�
�T I (y�T )

+� =
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!0, where !0 is the initial wealth.

Following Ocone and Karatzas (1991), and using the portfolio decomposition formula of

Detemple et al. (2003), we have the following expression for the optimal portfolio policy,

that decomposes the portfolio holdings into a Mean Variance part (�MV ), an Interest Rate

Hedge (�IRH) and a Market Price of Risk hedge (�MPRH):

��t = �MV
t + �IRHt + �MPRH

t (3.3.22)

where

�MV
t = (�|(t; Yt))

�1 1

R (!T )
�(t; Yt)Et

�
�t;T

!T
!t

R (!t)

R (!T )
1!T>0

�
�
�IRHt

�|
= � (�|(t; Yt))�1Et

�
�t;T

!T
!t

�
1�R (!T )�1

�
I!T>0H

r
t;T

�
�
�MPRH

�|
= � (�|(t; Yt))�1Et

�
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0H

�
t;T

�
The terms Hr

t;T and H
�
t;T involve the sensitivities of the short rate and the market price

of risk towards shocks in the Brownian motions that drive uncertainty in the model and are

de�ned as follows:

Hr
t;T =

TZ
t

Dtrsds =
TZ
t

@2r (s; Ys)DtYs (3.3.23)

H�
t;T =

TZ
t

(dWs +�(s; Ys)ds)
|Dt�(s; Ys)ds (3.3.24)

=

TZ
t

(dWs +�(s; Ys)ds)
| @2�(s; Ys)DtYsds

where the operator D is the Malliavin derivative, @2f(t; x) refers to the derivative with

respect of the second argument of f(t; x), and where the second equality was obtained using

the chain rule for Malliavin derivatives. For the state variables needed in our application,

the Malliavin derivatives are given by:
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DtYs =

0BBBBBBBBBBBBBB@

D1;tX1;s � � � Dd;tX1;s 0

...
. . .

...
...

D1;tXd;s � � � Dd;tXd;s 0

D1;tF Vs � � � Dd;tF Vs 0

D1;tFMs � � � Dd;tFMs 0

0 � � � 0 Dd+1;tY r
s

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBB@

DtX1;s
...

DtF Vs
DtFMs
DtY r

s

1CCCCCCCCCCCA
The implementation of the above formula follows Detemple et al. (2003) and relies on

the fact that the Malliavin derivatives, as well as the state variables, follow stochastic

di¤erential equations that can be simulated using standard discretization techniques. Given

the particular speci�cation of some of the state variables, we can further apply the Doss

transformation4, reducing the stochastic di¤erential equation of the given state variable to

one with a constant di¤usion term, which ensures that the Malliavin derivative does not

involve a stochastic term. Speci�c solutions for the Malliavin derivative are given in the

appendix.

The long term bond and the interest rate hedging demands

Let us �rst consider the term Hr
t;T that involves the sensitivity of the short rate towards

shocks in the underlying Brownian motions. Recall that r (s; Ys) = �0 + �1Y
r
t , and that the

(d+ 3)-dimensional state variable vector, augmented with the observable factors, is de�ned

as Y �
�
X1; :::; Xd; F

V ; FM ; Y r
�|
. Thus @2r (s; Ys) = (0; :::; 0; �1), and using the fact that

Dd+1;tYs = (0; :::; 0;Dd+1;tY r
s ), then:

Hr
t;T =

0@0; :::; 0; TZ
t

�1Dd+1;tY r
s

1A
So the long term bond is the sole security in the portfolio that is used to hedge against

changes in the short rate.

3.3.6 Correlation hedging

The above portfolio decomposition formula isolates interntemporal hedging demands due

to stochastic changes in the short rate or the market price of risk from the mean-variance

4See Detemple et al. (2003) for further details.
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demand. As in Cases B and C we have modeled conditional correlation as a function

of certain observable factors, the sensitivities of those factors to shocks in the underlying

Brownian motions would give rise to hedging demands that can be related (partially for

Case B) to correlation hedging. As in Case A conditional correlation is modeled as a

deterministic function of the state variables, determining as well the drift, volatility, and

subsequently the market price of risk dynamics, we cannot isolate correlation hedging from

the total intertemporal demands in this case. The only way to judge the importance of

dynamic correlation modeling for portfolio allocation in this case is to contrast the hedging

demands, obtained under a DCC speci�cation with those obtained from a CCC process.

We will consider this possibility in the following sections when we consider a real data

application.

Isolating the correlation hedging demands involving observable factors

As the primary objective of this chapter is to explicitly isolate the correlation hedging

demands in the portfolio that arise from stochastic changes in the conditional correlation,

let us now consider the second termH�
t;T in the portfolio decomposition formula that handles

the sensitivity of the market price of risk towards shocks in the underlying state variables.

Let us de�ne the vector 	 in terms of the market price of risk and the state variables:

	t = (dWt +�(t; Yt)ds)
| @2�(t; Yt)

Note that in Case B for the conditional correlation speci�cation, where we have aug-

mented the state variables Y to include observable factors F =
�
F V ; FM

�|
, the vector 	

will be of dimension (d+ 3). Then we could represent the H�
t;T in terms of 	t and the

Malliavin derivatives of the state variables as:

H�
t;T =

TZ
t

	tDtYs

where 	tDtYs could be further decomposed as follows:
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(	tDtYs)|=

0BBBBBBB@

	1;tD1;tX1;s+:::+	d;tD1;tXd;s+	d+1;tD1;tF
V
s +	d+2;tD1;tF

M
s

...

	1;tDd;tX1;s+:::+	d;tDd;tXd;s +	d+1;tDd;tF
V
s +	d+2;tDd;tF

M
s

	d+3;tDd+1;tY
r
s

1CCCCCCCA
Apparently, the term H�

t;T;d+1 corresponding to the bond, does not involve any other

Malliavin derivatives except that of the state variable Y r driving the short rate. As for

the interest rate hedge, Y r will be the only state variable whose sensitivity with respect to

uncertainty shocks will determine the market price of risk hedging terms for the long term

bond.

For each one of the d stocks the term H�
t;T;i can be expressed as:

H�
t;T;i =

TZ
t

	1;tDi;tX1;s + :::+
TZ
t

	d;tDi;tXd;s

+

TZ
t

	d+1;tDi;tF Vs +
TZ
t

	d+2;tDi;tFMs

The last two terms in this expression involve the Malliavin derivatives of the observable

factors with respect to the Brownian shocks. As those factors are solely responsible for

describing the dynamics of the conditional correlation in the process for asset returns, then

the term

C�t;T;i =

TZ
t

	d+1;tDi;tF Vs +
TZ
t

	d+2;tDi;tFMs (3.3.25)

= V �t;T;i +M
�
t;T;i

can be considered as de�ning the correlation hedging demands for the stocks arising from the

necessity to hedge against changes in the observable factors F . Thus we can isolate the e¤ect

of the market-wide volatility factor on correlation through V �t;T;i =
R T
t 	d+1;tDi;tF

V
s , and the

e¤ect of the macroeconomic state variables through M�
t;T;i =

R T
t 	d+2;tDi;tF

M
s . However, as

we have de�ned the conditional correlation dynamics in (3.3.17) as been driven as well by the
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state variables X through the level of the returns, there will be additional hedging demands,

associated with the Malliavin derivatives of X, that cannot be disentangled from the rest of

the market price of risk hedging demands. We would have this problem in all cases when

conditional correlation is modeled as a function of state variables that are not exclusively

�reserved�for driving its dynamics. If to the contrary we believe that correlation is driven

solely by observable factors (eg. by setting 
ij;2 = 0 in (3.3.17)), or by other latent factors

that do not enter the speci�cation for the stock prices (3.3.3) except through correlation

itself, then C�t;T;i alone will be responsible for the correlation hedging in the portfolio.

Note as well that in Case A, where conditional correlation was de�ned in terms of only

the state variables X that drive the stock price dynamics, the term C�t;T;i is set to zero, but

that does not entail zero correlation hedging. It rather means that the correlation hedging

demands cannot be explicitly isolated in this case. Nevertheless, their importance can be

judged by comparing the hedging terms that arise from a constant conditional correlation

stock price process to those that arise from the dynamic conditional correlation speci�cation.

Let us now get back to the portfolio decomposition formula (3.3.22). Using (3.3.25) we

can now isolate the Market Price of Risk (MPR) hedging terms that arise from hedging

changes in the observable factors that drive correlation, that is, the correlation hedging

demands:

�
�CORR

�|
= � (�|(t; Yt))�1Et

�
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0C

�
t;T

�
(3.3.26)

where C�t;T =
�
C�t;T;1; :::; C

�
t;T;d

�
. This de�nes the explicitly identi�able correlation hedging

demand in our setting. It will amount to the full correlation hedging demand for Case C

when the factors driving correlation do not a¤ect in a direct way the stock price process.

We can restate the above result in terms of the sensitivity of the cost of optimal wealth to

changes in the factors driving the conditional correlation dynamics, as the optimal portfolio

policy is indeed obtained as one that �nances optimal terminal wealth. Recall that optimal

wealth at time t is given by !�t = Et
�
�t;T!

�
T

�
, where �t;T!

�
T = �t;T I

�
y�t�t;T

�+ represents
its cost. Then for a nonnegative I (y�T ) its sensitivity with respect to �uctuations in the

observable factors F is given by:
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�
I
�
y�t�t;T

�
+ y�t�t;T I

0 �y�t�t;T �� ���t;T ��
TZ
t

(dWs +�(s; Ys)ds)
| @2�(s; Y s)DtFs

where we have used (3.3.12) and the fact that I 0 (y) = (u00 (I (y)))�1 which follows from the

de�nition of I (y) as the inverse of the marginal utility. Thus, the portfolio terms that are

responsible for the sensitivity of the cost of optimal terminal wealth to �uctuations in the

factors are indeed the correlation hedging demands de�ned in (3.3.26).

3.4 A bivariate application: S&P500 vs. NASDAQ

In order to appreciate the impact of the correlation hedging demands on the optimal portfolio

composition in a realistic setting and compare them to the intertemporal hedges that arise

due to incorporating tail dependence in the stationary distribution of the process for the

state variables, driving asset prices, we o¤er an application based on real data. We consider

a portfolio, formed by a 10-year pure discount bond, as well as two risky funds, represented

by old and new economy stocks: S&P 500 and NASDAQ. An application with this choice

of a dataset can be found in Detemple et al. (2003). Data is observed at the daily frequency

(except for the CFNAI factor, which is observed monthly) and refers to the period 1986-2006.

Without loss of generality, we assume that the coe¢ cients in the short rate speci�cation

(3.3.4) are given by �0 = 0 and �1 = 1, so that for the short rate we have that r (t; Y r
t ) = Y r

t .

Given the fact that both the interest rate and the market price of risk of the long term bond

are assumed to be stochastic, the optimal portfolio composition for it will involve both

the interest rate and the market price of risk hedging terms. For the CIR speci�cation

we have chosen there are no closed-form solutions for the hedging terms, as it would have

been the case, have we chosen a Vasicek process instead, but nevertheless we can apply a

variance stabilization technique following the Doss transformation that renders a constant

the di¤usion term of the process for Y r, as explained in the Appendix.

The long term bond is the only risky asset that is responsible for hedging away the

source of risk related to the short rate (W r), as it is the only one exposed to it. The optimal

demand for the bond involves a mean-variance component and an intertemporal component
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used to hedge against �uctuations in the investment opportunity set, induced by W r:

��b;t =
1

�B (t; Y r
t )

8>>>><>>>>:
1

R(!T )
�B (t; Y r

t )Et

h
�t;T

!T
!t

R(!t)
R(!T )

1!T>0

i
�Et

h
�t;T

!T
!t

�
1�R (!T )�1

�
I!T>0H

r
t;T

i
�Et

h
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0H

�
b;t;T

i
9>>>>=>>>>;

where �B (t; Y r
t ) = b (�)�r

p
Y r
t

and �B (t; Y r
t ) = �

p
Y r
t

In this bivariate application the optimal portfolio parts for the two risky funds have a

very intuitive representation. As we have assumed that they are not driven by the Brownian

that is responsible for interest rate risk, then the di¤usion term of the stock price process

is a bivariate diagonal matrix:

�(I) =

24 �X1 (Xt) 0

� (Yt)�
X
2 (Xt)

q
1��(Yt)2�X2 (Xt)

35
where �Xi (Xt) ; i = 1; 2 is given by (3.3.15) and the conditional correlation �(Yt) is either

a function of the state variables Xt in Case A, a function of both the state variables Xt and

the observable factors Ft in Case B, or a function of only the observable factors Ft in Case

C. Given this diagonal structure for �(I), for the two stock prices we obtain:

dS1t = S1t
�
�S1 (Xt) dt+ �

X
1 (Xt) dW

X
1t

	
dS2t = S2t

�
�S2 (Xt) dt+�(Yt)�

X
2 (Xt) dW

X
1t +

q
1��(Yt)2�X2 (Xt) dW

X
2t

�
Without loss of generality we have assumed a linear function for ' (t) in the general

speci�cation in (3.3.11) given by kit; i = 1; 2, where ki is a deterministic trend. Note that

the second fund (NASDAQ in our example) is the only one a¤ected by WX
2 -risk, i.e. it can

be thought of as the incremental risk factor that in�uences �new-economy�stocks. On the

contrary, the WX
1 risk factor a¤ects both funds in our portfolio. This has some implications

on the optimal portfolio choice. As we will see below, the demand for the second fund

is entirely driven by �uctuations induced by exposure to WX
2 -risk. Following the optimal

allocation rule outlined in (3.3.22), the demand for NASDAQ is given by:
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��2;t =
1

�X2 (Xt)
q
1��(Yt)2
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where �i(t; Yt) is the market price of risk for the ith fund, and H�
i;t;T is the term involving

the response to �uctuations in the opportunity set driven by the ith Brownian motion. The

absence of the interest rate hedge is due to the fact that the state variable underlying the

short rate is not dependent on any of the Brownians driving the risky stocks. The demand

for S&P 500 is given by:

��1;t =
1

�X1 (Xt)

8><>:
1

R(!T )
�1(t; Y t)Et
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!t

R(!t)
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�X1 (Xt)
��2;t

Thus, we can see that for the �rst fund the optimal portfolio demand has an additional

term that involves ��2;t, the optimal holdings of the second fund. It happens because the

second fund depends also on WX
1 -risk, so its holding induces also an exposure to it. Con-

sequently, the �rst fund is used to hedge away this induced exposure, hence the additional

term in the optimal portfolio holdings ��1;t. A similar setup with a triangular di¤usion term

was used in Detemple et al. (2003) in their multiasset application.

Note that the market price of risk hedging demands �MPRH can be decomposed in a

similar fashion for the �rst fund, which will have induced intertemporal hedging demands

equal to ��(Yt)�X2 (Xt)

�X1 (Xt)
�MPRH
2;t .

3.5 Numerical Results

Before discussing the estimation results for the various di¤usion speci�cations that we have

chosen for the state variables X, let us �rst look at data itself in order to verify whether the

stylized facts that we aim at reproducing are indeed present in the data. In the previous
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Figure 3.5.1: Quantile dependence plots
Plots of quantile dependence for the de-trended log-prices of S&P 500 vs. NASDAQ for the
1988-1996 and 1996-2004 subperiods.
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sections we have seen that dynamic conditional correlation, modeled using a DCC model

with exogenous factors, is indeed time-varying and we can distinguish periods of relatively

high or low correlation, that we were able to attribute to the in�uence of the macroeconomic

or the volatility factor. In a similar fashion, we split the estimation period in two subsamples,

one characterized by decreasing and low volatility and improving macroeconomic conditions

(1988-1996), and the other characterized by high volatility and declining and relatively

low CFNAI index, pointing towards a declining economy (1996-2004). We then construct

quantile dependence plots for the de-trended log-prices of both indices for the corresponding

subsamples.

As we can see on Figure 3.5.1, during the �rst relatively calm period dependence in the

extreme quantiles of the joint distribution decreases substantially, even though it does not

disappear completely, as one would expect under a Gaussian distributional assumption. As

well, a test of tail dependence symmetry, following Hong et al. (2003), does not fail to reject

symmetric tails for this particular period, as it can be seen from Table 3.5.1.

On the other hand, the period of (1996-2004) brings about extremely high dependence in

the tail quantiles, especially in the left tail, and the dependence symmetry test indeed rejects

symmetric tails for the period. Thus, the unconditional distribution of the two risky funds

that we have chosen does possess the features that we try to asses, and namely increased

dependence when markets experience extreme downturns. Also splitting the sample in

two periods with quite distinct characteristics will help us later on to explain the portfolio

implications of both conditional correlation and unconditional dependence.
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Table 3.5.1: Test of symmetry in the exceedence correlations
The Hong et al. (2003) test of exceedence correlations symmetry in the lower and upper
quartiles for the de-trended log-prices of S&P 500 vs. NASDAQ for the 1988-1996 and
1996-2004 subperiods. The test statistic is given by:

J = n
�
�+ � ��

�

�1

�
�+ � ��

� d! �2m

where �+ and �� are the exceedence correlations calculated at the corresponding quantile
levels, n is the sample size and m is the number of quantile levels considered.

1988-1996 1996-2004
Test statistic (J) 6.9048 21.5517
p-values (0:4389) (0:0030)

Table 3.5.2: Parameter estimates for the observable factors
Estimated parameters for the observable factors VIX and CFNAI that have the following
speci�cations:

dF Vt = �V
�
�V � F Vt

�
dt+ �V

q
F Vt dW

X
t

dFMt = �M
�
�M � FMt

�
dt+ �MdWX

t

where i = fV;Mg.

parameter CFNAI MC s.e. SIF V IX MC s.e. SIF
�i 2.2521 0.0027 0.8153 1.2094 0.0021 0.8002

�i -0.0457 0.0018 1.7702 2.7800 0.0007 0.8863�
�i
�2

2.9383 0.0005 0.8631 0.1230 0.0000 1.9260

The processes for the observable factors and for the state variables for the risky funds

are estimated using Markov Chain Monte Carlo and the Simulation Filter of Golightly and

Wilkinson (2006a). This estimation methodology is particularly convenient for highly non-

linear multivariate di¤usions, as in our case. As well, it allows us to �lter out unobservable

data points, as is the case of the CFNAI factor, which is observed monthly, whereas the two

indices, as well as the VIX factor are observed at the daily frequency. Parameter estimates

for the observable factors are given in Table 3.5.2.

Let us not turn to the estimation results for the whole sample period, as well as the two

subsamples for the four conditional correlation speci�cations (DCC, Cases A through C,

and CCC) and the three alternative stationary distribution assumptions (no tail dependent

Gaussian, symmetric tail dependent Student�s t, and asymmetric tail dependent Gaussian-

SJC di¤usions). As in this application we aim at determining the impact of the stationary
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Table 3.5.3: Univariate parameter estimates
Parameter estimates from the univariate Normal Inverse Gaussian (NIG) di¤usions with
density fNIG (x; �), where � = (�; �; �; �) is the vector of NIG parameters that satisfy the
restrictions, given in the Appendix. The di¤usion for each of the state variables Xit has the
following speci�cation:

dXit = b (Xit; �i) dt+ v (Xit; �i) dWit

where b (x; �) =
1

2
v (x; �)

d

dx
ln [v (x; �) fNIG (x; �)]

v (x; �) = �2fNIG (x; �)
�� , �2 > 0; � 2 [0; 1]

Monte Carlo standard errors, obtained using the batch-mean approach (multiplied by a
factor of 1000) and the simulation ine¢ ciency factor (SIF) are reported for each parameter
estimate.

parameter X1 (S&P500) MC s.e. SIF X2 (NASDAQ) MC s.e. SIF
� 5.6431 0.0601 1.0262 4.2938 0.2138 0.8070
� -0.6272 0.3091 1.1979 -0.7072 0.4151 0.6343
�2 0.0471 0.0016 0.7755 0.0549 0.0026 0.8782
� 4.6342 0.0083 1.0129 5.1191 0.0146 0.6724
�2 0.0268 0.0006 0.8375 0.0222 0.0003 0.2821
� 0.5776 0.0128 1.0339 0.5349 0.0356 1.2291

distribution and hence tail dependence on the optimal portfolio holdings, regardless of the

univariate marginals, we do not proceed to a full-scale optimization of all model parameters,

as would be otherwise preferred, but rather undertake a two-step estimation procedure.

In a �rst step, we assume that the two price processes are independent from each other,

imposing the independence (or product) copula on their stationary distribution, as well as

zero conditional correlation. Thus we are able to estimate them separately, and further use

the same marginal distribution parameters for all alternative processes that we consider. In

this manner, di¤erences in portfolio demands between the alternative speci�cations will not

depend on the particular parameter choice of the univariate marginals. Parameter estimates

are reported in Table 3.5.3. The trend parameters ki for each of the state variables Xi are

estimated separately as a linear trend. Their values are 0.1014 for S&P 500 and 0.1100 for

NASDAQ.

In a second step, we assume the marginal parameters as known and we proceed to the

estimation of the multivariate processes by assuming all the alternative speci�cations for the

stationary distribution of the conditional correlation. Results are reported in Table 3.5.4.
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Table 3.5.4: Parameter estimates from the multivariate di¤usion speci�ca-
tions (1986-2006)

Estimates for the parameters of the stationary density, de�ned in terms of copula functions, and the
parameters governing the correlation dynamics for a bivariate di¤usion, de�ned as:

dXt = � (Xt) dt+ �(Xt) dW
X
t

where � =

264 �1

h ef1 (x1)i� 1
2
�1

0

�12 (Xt)�2

h ef2 (x2)i� 1
2
�2 p

1��212 (Xt)�2

h ef2 (x2)i� 1
2
�2

375
�j =

1

2
q�1

2X
i=1

@ (�ijq)

@xi
, j = 1; 2

and q (x1; :::; xd) � ec (x1; :::; xd) dY
i=1

ef i (xi)
where �ij are entries of the matrix � = ��|, and q (x1; :::; xd) is the stationary density of the

di¤usion, de�ned in terms of a copula function ec and the NIG marginal densities ef i. Parameter
estimates are given for three cases of copulas: Ga refers to the Gaussian copula, Ga�SJC - to the
mixture Gaussian-Symmetrized Joe-Clayton copula, and T - to the Student�s t copula. The copula
parameters are as follows: � is the correlation parameter for the Gaussian or the Student�s t copula,
� stands for the degrees of freedom of the Student�s t copula, �U and �L are the upper and lower tail
dependence parameters of the Symmetrized Joe-Clayton copula, and ! is the weighting parameter
in the Symmetrized Joe-Clayton copula. The parameters that describe the correlation dynamics are

i; i = 0; :::; 3, consistent with the speci�cation in (3.3.16) for Case A, with (3.3.17) for Case B and
with (3.3.18) for Case C. The Constant Conditional Correlation model in Panel 4 assumes that all
correlation parameters are zero but 
0.

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4612 0.3126 0.9440 0.4686 0.2022 0.1966 0.4433 0.6026 1.8164

� - - - - - - 6.4394 2.0178 0.7087

�U - - - 0.5179 0.6057 1.2630 - - -

�L - - - 0.5003 0.5589 1.2407 - - -

! - - - 0.5599 0.7806 1.6945 - - -


0 2.0695 0.0126 0.1636 2.0475 0.0292 0.8041 1.9795 0.0454 1.0962


1 0.4430 1.6643 2.4494 0.6850 0.7402 0.4886 1.3272 0.9481 1.3758


2 -1.4731 0.0422 0.5547 -1.2649 0.0721 0.9250 -0.8214 0.0987 1.3498
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Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4036 0.3654 0.9608 0.4596 0.7086 1.6656 0.3652 0.2750 1.6598

� - - - - - - 6.6976 9.2680 1.2306

�U - - - 0.4669 0.3453 0.6012 - - -

�L - - - 0.5178 0.3165 1.1565 - - -

! - - - 0.5513 0.7156 0.7900 - - -


0 1.7273 0.0166 0.6051 1.7401 0.0252 0.6578 1.7589 0.0381 1.2715


1 0.0060 0.0126 0.9784 0.0034 0.0062 0.3958 -0.0020 0.0145 0.7090


2 -0.2873 0.0642 0.9762 -0.2745 0.0484 0.6097 -0.4227 0.0806 1.1133


3 -0.3086 0.0263 1.0807 -0.3487 0.0240 0.9340 -0.2944 0.0252 1.3209

Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.3734 0.3210 0.3841 0.4984 0.5621 0.9206 0.4146 0.9349 1.8356

� - - - - - - 6.0105 2.2653 0.4660

�U - - - 0.5619 0.3398 0.6210 - - -

�L - - - 0.4805 0.2818 0.8046 - - -

! - - - 0.4690 0.2544 0.2023 - - -


0 1.6288 0.0237 1.0122 1.5920 0.0303 1.7129 1.6122 0.0190 1.1783


1 0.0085 0.0102 0.9935 0.0089 0.0108 0.7495 0.0090 0.0112 2.7264


2 - - - - - - - - -


3 -0.2628 0.0394 1.5915 -0.3540 0.0269 0.7109 -0.2510 0.0183 0.6519

Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4565 0.2337 1.2678 0.4918 0.3299 1.1136 0.4052 0.2187 0.5737

� - - - - - - 4.3149 2.5652 1.6841

�U - - - 0.5012 0.6331 2.3965 - - -

�L - - - 0.5801 0.4020 1.6656 - - -

! - - - 0.3816 0.6329 1.4994 - - -


0 1.9955 0.0139 1.8733 2.0374 0.0128 0.9472 2.0470 0.0090 0.7893
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Table 3.5.4 (A). Parameter estimates from the multivariate di¤usion speci�cations (1988-
1996)

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4130 0.5533 0.8635 0.3971 0.6171 0.8538 0.3951 0.5808 0.6071

� - - - - - - 5.8728 8.5498 1.0732

�U - - - 0.4479 0.4510 0.5219 - - -

�L - - - 0.4685 0.6630 1.2260 - - -

! - - - 0.5147 0.8890 1.6429 - - -


0 1.8897 0.0680 0.9762 1.8835 0.0812 0.9175 1.9037 0.1103 1.1216


1 1.7028 3.9466 2.3019 2.4512 5.0493 2.0684 3.4598 5.1660 1.5876


2 -1.7556 0.6689 1.6051 -1.7040 0.3697 0.5851 -1.3860 0.4324 0.9937

Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4011 0.3787 0.4744 0.3705 0.8203 1.3778 0.4590 0.9433 1.4121

� - - - - - - 6.0486 6.6124 0.3657

�U - - - 0.5159 0.9509 0.9491 - - -

�L - - - 0.5466 0.7998 0.7297 - - -

! - - - 0.5258 1.4451 1.5272 - - -


0 2.1724 0.0426 0.4523 2.1661 0.0716 1.0785 2.1827 0.0425 0.5952


1 0.0102 0.0207 1.1832 0.0079 0.0185 0.5042 0.0112 0.0209 0.8377


2 -0.7282 0.3580 1.2605 -0.9716 0.2619 0.5328 -0.7620 0.2754 1.0575


3 -0.2691 0.1471 1.2750 -0.2887 0.1229 0.7116 -0.2734 0.1109 0.9831

Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4111 0.5567 0.5478 0.3633 1.4273 1.2948 0.3155 0.5125 0.5295

� - - - - - - 5.3833 6.6008 1.1860

�U - - - 0.6179 0.4655 0.3730 - - -

�L - - - 0.4446 1.2408 1.4057 - - -

! - - - 0.5042 0.8104 0.6855 - - -


0 2.1615 0.0277 0.4684 2.1441 0.0629 1.7323 2.1550 0.0431 1.2044


1 0.0046 0.0294 2.3139 0.0127 0.0192 1.2285 0.0154 0.0159 1.1747


2 - - - - - - - - -


3 -0.3223 0.1225 1.9323 -0.2987 0.0682 0.5600 -0.3104 0.1126 2.1642

Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.3348 0.5310 0.7963 0.4497 0.5185 0.7457 0.3677 0.8407 1.5087

� - - - - - - 5.5060 8.8090 1.9514

�U - - - 0.5447 1.0077 1.2661 - - -

�L - - - 0.5016 1.1308 1.7278 - - -

! - - - 0.5765 0.8678 0.9065 - - -


0 1.7174 0.0585 1.8229 1.6532 0.0460 0.9813 1.6437 0.0397 1.0072



145

Table 3.5.4 (B). Parameter estimates from the multivariate di¤usion speci�cations (1996-
2004)

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.5637 0.7203 1.2560 0.5274 0.7029 0.5754 0.3722 0.7644 0.5408

� - - - - - - 4.5172 4.7443 0.6594

�U - - - 0.5158 1.1290 1.1144 - - -

�L - - - 0.4926 0.6007 0.3596 - - -

! - - - 0.4565 0.7126 1.2339 - - -


0 1.4097 0.0483 0.6112 1.3723 0.0702 1.0511 1.3127 0.0621 0.6209


1 2.3400 1.0788 1.0603 2.6907 1.2589 0.8808 2.6206 0.6113 0.4612


2 -0.2872 0.1821 0.8152 -0.3649 0.1190 0.3422 -0.1736 0.1280 1.7100

Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.5380 0.6157 0.5776 0.5383 1.0569 0.6704 0.3368 0.7195 0.8666

� - - - - - - 4.4252 8.1150 1.5499

�U - - - 0.5093 0.4792 0.2987 - - -

�L - - - 0.5322 0.9009 1.5219 - - -

! - - - 0.5023 0.7294 1.1890 - - -


0 1.9191 0.1318 2.0517 1.9198 0.0576 0.4783 1.7604 0.0689 0.6817


1 -0.0134 0.0221 0.5537 -0.0034 0.0157 0.4258 -0.0083 0.0232 0.5074


2 -0.7266 0.1758 0.8608 -0.7292 0.2284 1.6010 -0.6427 0.1392 0.5934


3 -0.0825 0.0983 0.5140 -0.1403 0.0834 0.6450 -0.0741 0.0710 0.4916

Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.5892 0.8027 1.4944 0.4499 0.7358 0.7108 0.3368 0.7195 0.8666

� - - - - - - 4.4252 8.1150 1.5499

�U - - - 0.5475 0.5474 0.7226 - - -

�L - - - 0.4939 0.6894 0.7287 - - -

! - - - 0.6078 0.7941 0.6022 - - -


0 1.7373 0.1156 0.9672 1.7783 0.0269 0.4362 1.7604 0.0689 0.6817


1 -0.0341 0.0211 0.5716 -0.0215 0.0074 0.2996 -0.0083 0.0232 0.5074


2 - - - - - - -0.6427 0.1392 0.5934


3 -0.2906 0.1588 1.5428 -0.3344 0.0732 0.9997 -0.0741 0.0710 0.4916

Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.3533 0.5154 0.7736 0.3853 1.4276 0.6995 0.3981 0.5216 0.3485

� - - - - - - 6.0479 3.9435 0.2350

�U - - - 0.5242 0.7559 0.9003 - - -

�L - - - 0.5091 0.7778 0.7893 - - -

! - - - 0.5142 0.9299 0.7847 - - -


0 1.1262 0.0668 1.1726 1.1751 0.0473 0.6244 1.1200 0.0567 0.9024
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Note that the conditional correlation parameters that pertain to volatility (
1) (either

observed through the VIX factor or modeled through the state variables X) are generally

positive through all the speci�cations, pointing towards an increase in conditional correlation

when there is rise in market-wide volatility. An exception to this is the 1996-2004 period,

during which the VIX coe¢ cient is negatively estimated for all stationary distributional

assumptions. However, 
1 has the expected positive sign for the conditional correlation

speci�cation with no observable factors. On the other hand, the parameter pertaining to

the macroeconomic factor (
3) is always negatively estimated, pointing towards a decrease

in conditional correlation when there is an improvement in macroeconomic conditions, and

vice versa.

3.5.1 Correlation hedging demands along realized paths of the state variables

In order to examine the evolution of the portfolio hedging demands for the estimation period,

we proceed to a market timing exercise that consists in simulating ahead the Malliavin

derivatives of the state variables, the state price density, as well as the portfolio terms

involving hedging against changes in the interest rate (3.3.23) and the market price of risk

(3.3.24), while keeping the state variables (the latent variables and the observable factors)

at their observed values throughout the period5. First, we obtain the optimal portfolio

terms for the whole period between 1986-2006 for an investor with a constant, moving-

window horizon of 4 years. With this we aim at studying di¤erences between the optimal

portfolio parts for the alternative speci�cations considered above for modeling unconditional

or conditional dependence, without any in�uence of the time horizon. Next, we consider an

investor who keeps her investment horizon �xed at the end of the period, thus investigating

the horizon e¤ect on the optimal portfolio shares.

As during this relatively long 20 year horizon one can distinguish hectic periods, asso-

ciated with high volatility, negative CFNAI, pointing towards a slow-down in the economy,

and subsequently rising conditional correlation, as well as relatively calm periods with low

volatility, mostly positive levels of the CFNAI index and thus low conditional correlation,

we proceed to a second market timing experiment, considering instead two subperiods of 8

years. The �rst one spans between 1988 and 1996 and is characterized by increased volatility

5As the CFNAI index is observed at a monthly frequency, we �lter the unobservable data points at the
daily frequency using the MCMC sequential �lter.
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and a recession in the US economy in the beginning of the period (between July 1990 and

March 1991, as determined by NBER), followed by improving macroeconomic conditions

(positive and rising CFNAI), as well as relatively low and declining volatility. As it can be

seen on Figure 3.2.2, this period is characterized by falling dynamic conditional correlation.

On the other hand, the second period, spanning between 1996 and 2004 is characterized by

increased volatility for the whole period, a recession towards the end of the period (March

2001 marks the end of a 10-year expansion period, according to NBER, and there is a trough

in business activity in November 2001). Figure 3.2.2 shows a rising trend in the dynamic

conditional correlations for the period. For both subperiods we consider an investor who

has a �xed investment horizon at the end of each period.

Correlation hedging for the whole estimation horizon

For the �rst market timing experiment that involves a 20-year investment horizon �xed at

the end of the sample, we consider the three cases of modeling the unconditional distri-

bution of the state variables underlying the price processes (non-tail dependent Gaussian,

symmetric tail dependent Student�s t and asymmetric tail dependent Gaussian-SJC mixture

distribution), as well as the three ways to account for dynamically changing conditional cor-

relation with or without observable factors driving it. The same experiment is repeated, but

with a moving-window horizon of 4 years. Thus we are able to distinguish the horizon e¤ect

in the evolution of the optimal portfolio hedging demands from the e¤ect of the dynamically

changing investment opportunity set.

In order to get an impression of the magnitude and the variability of the hedging demands

for the risky assets in the portfolio, let us �rst consider the results displayed on Figure 3.5.2

for a HARA investor with varying degrees of relative risk aversion. The intertemporal

hedging demands are a sizeable component of the total portfolio, and they are responsible

for a larger portion of the portfolio demands if we increase the level of relative risk aversion

of the investor. As well, the hedging demands are larger for longer horizons: an investor

with a horizon �xed at the end of the 20-year sample period would have higher hedging

demands at each period of time than an investor who has a short rolling-window horizon (4

years in our case). Also the �xed horizon would cause the hedging demands to shrink as we

approach it (it is visible during the last 4 years on the left column of Figure 3.5.2), so that
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Figure 3.5.2: Total portfolio holdings and intertemporal hedging demands
for the two risky stocks over the entire sample

The �gure displays the holdings of the two risky stocks in the portfolio for the entire sample period
1886-2006. The total holdings are contrasted with the intertemporal hedging demands, which for
the stocks are entirely given by the market price of risk hedges. The �gure on the left represents
the portfolio holdings for a �xed investment horizon at the end of the 20-year sample. The �gure on
the right represents the holdings for a moving-window 4-year horizon. The two top �gures concern
a HARA investor with relative risk aversion of 5, while the bottom two - a HARA investor with
relative risk aversion of 10. The data generating process is a Gaussian-SJC di¤usion with dynamic
correlation (Case B).
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the Mean-Variance component would be increasingly more important in the total portfolio

holdings. The results there are based on a Gaussian-SJC di¤usion with dynamic correlation

driven by observed factors (Case B), but the relative importance of the hedging demands

for the other cases is qualitatively the same.

Before we continue with the hedging demands that arise from the di¤erent stationary

distribution or conditional correlation speci�cations, let us examine the evolution of the

optimal portfolio parts for the long term pure discount bond. As we have already observed

in the previous sections, it is the only security in the investor�s portfolio in our case that is

responsible for hedging interest rate risk.
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Figure 3.5.3: Hedging demands for the long term pure discount bond
The top �gure displays the hedging demands obtained for the long term pure discount bond for an
investment horizon �xed at the end of the 20-year sample: the market price of risk hedge (MPRH)
and the interest rate hedge (IRH). The bottom �gure plots the total portfolio holdings of the bond
against the intertemporal hedging demands which are the sum of IRH and MPRH. HARA investor
(B = �0:1).
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As it can be seen from Figure 3.5.3, the variability of the total portfolio demands is

almost entirely driven by the hedging terms. Due to the chosen speci�cation of the market

price of risk, we have a negative market price of risk hedging term and a positive interest

rate hedge. Due to the fact that the Brownian motion driving the short rate is independent

of the Brownian motions driving the rest of the state variables, and that the short rate does

not enter the stock price dynamics, the portfolio parts for the bond will remain unchanged

for the various speci�cations for the state variables underlying the stocks that we consider.

Let us now turn to the results for the di¤erences in the hedging demands of the two

risky stocks in the portfolio due to the unconditional dependence structure (through the

stationary distribution of the process for the state variables underlying stock prices) and

due to the dynamics of conditional correlation. On Figure 3.5.4, Panel A we have plotted

the correlation hedging demands due to observable factors (CFNAI and VIX) that we have

isolated following (3.3.26) for an investor with a �xed horizon at the end of the sample

period (left column) and an investor with a rolling-window horizon (right column). On

Figure 3.5.4, Panel B we can see the relative importance of the correlation hedging terms

due to each one of the factors for the same 20-year investment horizon. The hedge due to

the macroeconomic factor is generally negative, reducing the total portfolio demand, while

the hedging term due to volatility is positive but very small in absolute value, compared to

the CFNAI hedge.
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Figure 3.5.4: Correlation hedging demands due to observed factors
Panel A. The �gure displays the sum of the hedging demands due to observed factors (CFNAI
and VIX) driving conditional correlation for the two risky stocks in the portfolio for the entire
sample period 1886-2006. The �gure on the left represents the correlation hedging demands for a
�xed investment horizon at the end of the 20-year sample. The �gure on the right represents the
correlation hedging demands for a moving-window 4-year horizon. HARA investor with relative risk
aversion of 5. The data generating process is a Gaussian-SJC di¤usion with dynamic correlation
(Case C).
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Figure 3.5.4. Panel B. The �gure displays the hedging demands due to observed factors driving
conditional correlation for the two risky stocks in the portfolio for the entire sample period 1886-2006.
The top �gure represents the demands due to hedging changes factor that proxies the macroeconomic
conditions (CFNAI), while the bottom �gure represents the correlation hedging demands due to the
factor that proxies market volatility (VIX). HARA investor with relative risk aversion of 5. The data
generating process is a Gaussian-SJC di¤usion with dynamic correlation (Case B).
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The magnitude of these correlation hedging components is quite small compared to the

total hedging demands on Figure 3.5.2. They are negative in sign, pointing towards a

reduction in the total portfolio holdings. One can as well distinguish periods with peaks

in the absolute value of the correlation hedging demands, that can be attributable to some

market events (e.g. the market crashes in 1987, 1990-1992, 2001). Those demands are

also higher for longer investment horizon, which can be seen by comparing the holdings of

the investor with a �xed vs. rolling-window shorter horizon, and they decline to zero as

we approach the investment horizon. The results are obtained for the dynamic correlation

speci�cation following Case C, that is the case when only the VIX and the CFNAI indices

drive conditional correlation. Results for the Case B, as well as Gaussian or the Student�s

t di¤usion are qualitatively the same and are not reported for brevity.

Those hedging demands arise in order to hedge against stochastic changes in the observ-

able factors that proxy volatility or the macroeconomic conditions, and they constitute the

total correlation demands in Case C, where the dynamics of conditional correlation are not

driven by other state variables. However, as we consider the case of conditional correlation

being dependent as well on the level of the state variables X (Case B), then there would

be another component in the correlation hedging demands apart from the in�uence of the

factors that is not directly identi�able. In order to gauge its importance, we compare the

intertemporal market price of risk hedging parts for a process with dynamic vs. constant

conditional correlation. Figure 3.5.5 reports the results for an underlying Gaussian and a

Gaussian-SJC di¤usion for a �xed investment horizon at the end of the sample period.

The presence of dynamically varying conditional correlation asks for an increase in the

intertemporal hedging demands for the Gaussian di¤usion, which is mainly driven by NAS-

DAQ, while the hedging demands for S&P 500 are virtually unchanged. At �rst sight these

results are surprising given the evidence that correlation hedging demands due to observable

factors for both �xed and rolling window horizon are negative throughout the period, so

that we would expect a reduction in the total intertemporal hedging terms for the dynamic

conditional correlation case compared to the terms under constant conditional correlation.

However, the in�uence of dynamic correlation does not show up in the correlation hedging

term (3.3.25) only through the Malliavin derivatives of the factors. It in�uences as well

the market price of risk �(t; Yt), which determines the total market price of risk hedging
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Figure 3.5.5: Hedging demands along realized paths for the risky stocks
for the 20-year �xed investment horizon (Case B)

Plotted are the intertemporal demands (separately for each risky fund and their sum) along realized
paths of the state variables for the whole sample period for the risky stocks for a �xed investment
horizon at the end of the period The left column plots the intertemporal hedging demands obtained
under a DCC speci�cation vs. those under CCC; the right column contrasts hedging terms under
constant and time-varying volatility.
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Figure 3.5.5. Panel B. Induced hedging demands (Case B)
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Figure 3.5.5. Panel C. Hedging demands due to di¤erences in the unconditional distri-
bution (tail dependence vs. no tail dependence) for the risky stocks for the 20-year �xed
investment horizon for a CCC di¤usion (left column) and a DCC di¤usion (right column)
(Case B)
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demands. So while the portfolio term that is due to the need to hedge against stochastic

changes in the observable factors driving correlation is indeed correlation hedging demand,

the di¤erence in the level of the market price of risk hedge terms between dynamic and con-

stant conditional correlation is not entirely explained by this demand. Hence the possible

disparity, even in sign, between the correlation hedging demands and the di¤erence in the

level of market price of risk hedges between constant and dynamic conditional correlation

di¤usions.

It is also of interest to contrast the di¤erences in hedging demands due to dynamic

correlation to those due to dynamic volatility, so we have reported on the right column of

Figure 3.5.5, Panel A the results for a process for which we have assumed constant volatility

and correlation (note that constant volatility is nested in the speci�cation given in (3.3.15)

and is achieved by setting the parameter � to zero). Throughout the sample period the

hedging demands for the constant volatility model are signi�cantly higher than those with

time-varying volatility, rendering the volatility e¤ect much more pronounced than the e¤ect

of conditional correlation. The e¤ect is qualitatively the same for a �xed and a rolling-

window investment horizon. Unlike the correlation hedging demands, the hedging parts for

the S&P 500 are increased when we allow for variations in volatility, while those of NASDAQ

are signi�cantly reduced for the whole period.

An alternative way to illustrate the importance of dynamically changing correlation

on intertemporal hedging demands is to look at the induced portfolio holdings of S&P

500 from the position in NASDAQ, as explained in the previous section. On Panel B of

Figure 3.5.5 we have plotted the induced MPR hedging demands for S&P 500 for a HARA

investor with a 20-year investment horizon. We contrast the induced hedges for a DCC

vs. a CCC model under two alternative unconditional distribution assumptions (Gaussian

and Gaussian-SJC)6. Regardless of the form of the stationary density that we suppose,

the induced hedging demands are lower for the DCC case then for the CCC one, pointing

towards a reduction in the total portfolio holdings when dynamics of conditional correlation

are explicitly accounted for.

Until now we have discussed the magnitude and sign of the hedging demands that arise

6Here we have reported results for DCC following Case B. All alternative cases of DCC were considered
against the CCC model, and they all yield qualitatively similar results.
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due to stochastic changes of the state variables driving conditional correlation which in-

creases in down markets, volatile periods or bad states of the economy. An important

question is whether there would be a similar shift in portfolio composition when the uncon-

ditional dependence structure is changed, that is the same stylized fact is reproduced through

the stationary distribution of the process for the state variables X through a Gaussian cop-

ula (no tail dependence) or Gaussian-SJC copula (asymmetric tail dependence). On Figure

3.5.5, panel C we have reported the hedging demands of a Gaussian vs. a Gaussian-SJC

di¤usion under a CCC assumption, and the hedging demands of a Gaussian vs. a Gaussian-

SJC di¤usion under a DCC assumption for an investment horizon �xed at the end of the

20-year period. The presence of tail dependence changes the composition of the portfolio

by reducing the absolute value of the intertemporal hedging terms. The latter are gener-

ally positive for S&P 500 and generally negative for NASDAQ, so tail dependence reduces

in absolute value the holdings of both assets, driving them closer to zero. This result is

maintained throughout the investment horizon, regardless of the way conditional correla-

tion is modeled. Thus, for portfolio allocation, the impact of tail dependence through the

unconditional distribution cannot be swept away by allowing conditional correlation to vary

through time, rising in down markets.

The e¤ect of tail dependence is somewhat subdued for the sum of the intertemporal

hedges for both assets for the �rst half of the sample period, while towards the end of

the period, mainly after 2000, the e¤ect is more pronounced in the sense that the total

intertemporal hedging demands are reduced for the case where we allow for tail dependence.

It appears that for di¤erent subperiods of this relatively long sample hedging demands may

have qualitatively di¤erent behavior. In order to gather more insight into the reasons behind

di¤erences in those demands, we concentrate our attention on two 8-year subperiods: one

relatively calm in the sense of diminishing volatility, economy on the rise, low conditional

correlation (1988-1996), and another period characterized by more hectic behavior in terms

of high volatility, declining economic indicators and increased conditional correlation (1996-

2004).



157

Correlation hedging for the two subperiods

Comparing the intertemporal hedging demands on Figure 3.5.6 and 3.5.7 for each one of

the two subperiods, regardless of the assumptions we have made on the conditional corre-

lation or the unconditional distribution, we see that those demands are generally positive

throughout the �rst relatively calm period of economy on the rise and generally negative for

the second hectic period of slowing down economy. There is just one exception to this rule

that deserves attention - the hedging demands turn positive towards the second half of the

1996-2004 period for the Gaussian di¤usion for both constant and dynamic speci�cations

for the conditional correlation. Thus, failing to account for tail dependence increases the

demand for the two risky funds and the fact that we allow for dynamically varying condi-

tional correlation does not change this. It appears, following this preliminary observation,

that unconditional dependence has a portfolio impact beyond the one induced by correlation

hedging.

We now turn to a more detailed analysis of the portfolio implications of modeling con-

ditional or unconditional dependence. The �rst comparison that we consider for the two

chosen subperiods is one that is aimed at bringing forward the importance of correlation

hedging through contrasting the intertemporal demands for the risky funds under a constant

vs. a dynamic conditional correlation speci�cation (for any of the three cases considered).

To this end, we have plotted on Figure 3.5.6 the evolution of the hedges for a Gaussian,

Gaussian-SJC and a t-di¤usion for a HARA investor with a coe¢ cient of relative risk aver-

sion of 5.

For any of the unconditional distribution assumptions during the 1988-1996 period the

presence of dynamically varying conditional correlation brings about increased hedging de-

mands. When looking at the individual demands for any of the risky funds, we �nd that

under the DCC assumption those demands are larger in absolute value, generally positive

for S&P 500 and generally negative for NASDAQ. During the 1996-2004 period dynamic

conditional correlation also leads to higher demands in absolute value for both funds, but the

e¤ect on the total hedging demands is more pronounced in the case when conditional corre-

lation depends both on observable factors F and the level of the state variables X (Case B).

In this case dynamic correlation leads to an increase in the total hedging demands. Results

for conditional correlation speci�cations under Case A and C are qualitatively the same and
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are not reported for brevity.

Second, we consider the e¤ect of the unconditional distribution on the hedging demands

by comparing the results under the assumption of Gaussianity with those under the two

alternatives of allowing for tail dependence - a Gaussian-SJC or a Student�s t distribution.

With this we aim to determine whether there is any portfolio e¤ect induced by di¤erent

assumptions on modeling tail dependence beyond the one incurred by dynamic conditional

correlation.

On Panel A of Figure 3.5.7 we have plotted the hedging demands of a HARA investor

with a relative risk aversion coe¢ cient of 5 who models the stock price process using a

Gaussian vs. a Gaussian-SJC di¤usion (the e¤ect of disregarding tail dependence) or alter-

natively a Student�s t vs. a Gaussian-SJC di¤usion (the e¤ect of disregarding asymmetric

tail dependence). In all cases we have constant conditional correlation. Contrary to the

results on Figure 3.5.6 which tried to gauge the importance of modeling conditional cor-

relation, here we have the opposite impact of the presence of tail dependence: it leads to

smaller hedging demands in absolute value for both risky funds which reduces the total

intertemporal demands for the risky assets. Those di¤erences are more pronounced during

the 1996-2004 period, and they are quite signi�cant when the investor disregards tail depen-

dence by assuming a Gaussian di¤usion (in this case hedging demands grow to be positive

in the second half of the period, whereas accounting for tail dependence both through the

Gaussian-SJC and the t-di¤usions leads to negative hedges).

However, when we allow for dynamically varying correlation some interesting results

follow. Looking at Panel B on Figure 3.5.7, the large di¤erence between the alternative

unconditional distribution assumptions seems to vanish for the �rst subperiod. Allowing

or not for tail dependence leads to virtually the same hedging demands. So, for this rel-

atively calm period of improving economic conditions towards its end the presence of tail

dependence does not lead to any signi�cant change in the portfolio composition beyond

the impact of correlation hedging. Still, the picture for the second highly volatile period is

quite di¤erent. Accounting for tail dependence still leads to a decrease in absolute terms

of the hedging components for both risky funds which generally leads to a decrease in the

total hedging demand, especially for the Gaussian case. Thus, for a volatile period of de-

teriorating economic conditions tail dependence has a signi�cant impact on the portfolio
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composition, even when dynamic conditional correlation has been accounted for.

3.5.2 Simulations

Having examined the distinct ways that dynamic conditional correlation or tail dependence

in�uence the optimal portfolio decisions for a particular period and for realized paths of the

state variables, we now turn to a simulations experiment that determines optimal portfolio

shares for varying investment horizons while simulating ahead all the state variables involved.

With this we aim to determine whether for the estimated parameters of the corresponding

processes the relative importance of conditional and unconditional dependence on portfolio

hedging demands will remain qualitatively the same as with the historical data considered.

Thus, we set up a �rst simulations exercise that aims at determining the importance

of correlation hedging demands for a HARA investor who already believes that the process

underlying stock prices has asymmetric tail dependence, incorporated through the Gaussian-

SJC di¤usion. Then we alternate the way to model conditional correlation by letting it be

either constant or dynamic. In this way we can analyze the correlation hedging demands

that arise beyond those that could be attributed to tail dependence through the uncondi-

tional distribution. We use the parameters estimated from a Gaussian-SJC process with

DCC following Case B for the whole estimation period as a benchmark. Then, in order

to obtain a CCC model, we set all parameters, driving conditional correlation, to zero, ex-

cept for 
0. We calibrate this parameter in order to re�ect the same average correlation

throughout the estimation period as the one implied by the benchmark process. In order

to gauge the relative importance of adding each one of the observable factors to the dy-

namic correlation speci�cation, we alternatively set either 
1 (the VIX coe¢ cient) or 
3

(the CFNAI coe¢ cient) to its corresponding value from the benchmark process, while set-

ting all the other parameters to zero except 
0 that is again calibrated in order to re�ect the

same average correlation. We then simulate ahead all the state variables involved in each of

the four alternative processes, as well as their Malliavin derivatives, in order to obtain the

Monte Carlo estimates of their conditional expectations in (3.3.22) and thus the intertem-

poral hedging demands. Results for investment horizons of 1 and 5 years are reported in

Table 3.5.5, Panels A through C and Panel F.

The major conclusion that we may draw from those results is that for all investment
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horizons considered, as well as for all degrees of relative risk aversion, the market price of

risk hedge for the DCC model is the lowest. If we add only the macroeconomic factor to

render conditional correlation dynamic, we get results that are quite close to the benchmark

model. So for this application the macroeconomic factor seems to be the major driving

force to determine the optimal portfolio composition. However, adding only the VIX factor

does not change in any substantial way the portfolio holdings and they remain virtually

unchanged with respect to the CCC model. As in the portfolio allocation example along

realized paths of the state variables, here we also observe a larger spread between the

holdings of S&P 500 and NASDAQ for the DCC case with respect to CCC. These results

are con�rmed for a CRRA as well as HARA investor and are valid for all investment horizons

considered, as well as levels of risk aversion. Increasing the level of risk aversion invariably

leads to a decrease in the intertemporal hedging demands in absolute terms. It also happens

for a HARA investor with a certain subsistence level b below which she is unwilling to fall

as compared to a CRRA investor.

A second simulations experiment that we consider aims at determining the importance

of the stationary distribution and hence tail dependence for an investor who has already

accounted for dynamically varying conditional correlation. We pick again the Gaussian-SJC

di¤usion with DCC according to Case B as the benchmark case and compare its implied

hedging demands with those from a Gaussian or a Student�s t alternative. Results are

presented on Panels D through F of Table 3.5.5. As in the portfolio example over realized

paths of the state variables, the stationary distribution still plays a role in determining the

hedging demands, rendering them smaller in the presence of tail dependence. For smaller

horizons its e¤ect is smaller than the e¤ect of disregarding conditional correlation, but at

the 5-year horizon the Gaussian di¤usion renders the highest hedging demands, even higher

than the CCC case, which con�rms our �ndings of the market timing exercise.

The above results may be sensitive to the level of conditional correlation that we im-

pose. Thus, we repeat the simulations experiment with a Gaussian-SJC di¤usion and DCC

following Case B for varying values of the 
0 parameter for the conditional correlation. For

levels of 
0 of 1, 2 and 3 obtain conditional correlation levels (averaged over the estimation

period) of 0.45, 0.75 and 0.90. For each one of those DCC cases we �nd the appropriate CCC

calibration for the conditional correlation parameters, keeping the same average correlation
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levels. Results are plotted on Figure 3.5.8.

Regardless of the investment horizon, for relatively low correlation levels (0.45) the

DCC model implies signi�cantly lower intertemporal hedging demands, compared to a CCC

speci�cation, even after tail dependence has been accounted for through the Gaussian-SJC

stationary distribution. For extremely high correlation levels (the case of 
0 = 3) the roles

of DCC and CCC change and now it is the latter that implies lower hedging demands.

Depending on the investment horizon, we may have higher or lower hedge levels for a

mean conditional correlation of 0.75. This behavior can thus explain the higher hedging

demands implied by the DCC speci�cation over a realized path of the state variables that

we encountered earlier.

3.5.3 Certainty equivalent cost of ignoring correlation hedging

We follow the common approach in literature on portfolio choice and study the e¤ect of

ignoring correlation hedging on the wealth of the investor using the utility loss, or the

certainty equivalent cost (see Liu et al., 2003). The approach consists in computing the

additional amount of wealth that would be needed for an investor to consider a suboptimal

allocation strategy (that results from ignoring correlation hedging) instead of the optimal

one (that takes into account the dynamics of conditional correlation), in order to achieve

the same expected utility of terminal wealth. In other words, we are looking to determine

the amount ceq such that:

E [U (!�T j !0 = 1)] = E [U (!T j !0 = 1 + ceq)]

where !�T is the terminal wealth achieved under the optimal investment strategy and !T is

the terminal wealth under the suboptimal one.

The �rst question that we address, in accordance with the simulation exercise above,

is whether the investor would lose anything if she disregards the dynamics of conditional

correlation, modeled using observable factors, given the fact that tail dependence in the

unconditional distribution has already been accounted for. Thus, we choose as a benchmark

process the Gaussian-SJC di¤usion with DCC according to Case B. Then we alternate be-

tween setting all conditional correlation parameters to zero except for 
0 (CCC alternative),
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Figure 3.5.8: Dynamic correlation-induced portfolio hedging terms through
simulation: the in�uence of correlation level

Intertemporal hedging demands for a benchmark Gaussian-SJC di¤usion with DCC (Case B)
vs. a CCC speci�cation with parameter calibrated to match the mean conditional correlation
of the corresponding DCC model. Varying average values of conditional correlation through
the parameter 
o. HARA investor with b = �0:2 and varying degrees of relative risk
aversion, and investment horizon of 1, 3 and 5 years.
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letting only 
3 be zero (conditional correlation being driven by the VIX factor), or letting


1 be nonzero (conditional correlation being driven by the macroeconomic factor). In those

alternative models the 
0 parameter is calibrated in order to re�ect the same average cor-

relation as the DCC benchmark over the estimation horizon. We consider again a HARA

investor with varying degrees of relative risk aversion and a parameter b in the utility func-

tion equal to �0:2, 0 or 0:2. The case of b = 0 corresponds to a CRRA investor, while if

b < 0 relative risk aversion is decreasing and convex in wealth, in which case the investor

is intolerant towards wealth falling below a certain subsistence level �b, and alternatively,

if b > 0, then relative risk aversion is increasing and concave. Table 3.5.6 summarizes the

results on the certainty equivalent cost in each case, calculated in cents per dollar.

The cost of disregarding the dynamics of conditional correlation is comparable to the

cost of disregarding the presence of the macroeconomic factor driving its dynamics, so we

may conclude that the CFNAI factor is the major player in the present setting in terms

of utility loss. The cost decreases with rising levels of the risk aversion coe¢ cient, and is

highest for a HARA investor with relative risk aversion that is increasing and concave in

wealth. However, the impact of disregarding the VIX factor is almost insigni�cant.

We next address the alternative problem of �nding the utility cost for an investor who

disregards the fact that extreme realizations of the assets in her portfolio may be dependent,

as modeled through the stationary distribution of X. Results are summarized in Table 3.5.7,

where we take as a benchmark process either the DCC Gaussian-SJC di¤usion (left column),

or the CCC one (right column) against the two Elliptic counterparts. In order to isolate

only the impact of the tail dependence through the stationary distribution, conditional

correlation parameters for all processes are taken from the Gaussian-SJC type with DCC

(Case B).

The main conclusion that we can draw from comparing the wealth loss across the al-

ternative speci�cations is that the investor loses more from disregarding tail dependence if

she has not taken into account the dynamics in conditional correlation. It is an anticipated

result, as both ways of modeling dependence through the dynamics of the conditional cor-

relation or through the stationary distribution aim at reproducing the same stylized fact of

increased dependence in down markets. Thus if at least one of them is taken into account

when making portfolio decisions, the impact of disregarding the other in terms of wealth
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Table 3.5.6: Certainty equivalent cost of ignoring dynamic conditional cor-
relation, modeled with observable factors

The benchmark process is a Gaussian-SJC di¤usion with DCC according to Case B. All of the
alternative processes have a Gaussian-SJC stationary distribution, but their conditional correlation
speci�cations vary from CCC to DCC with no VIX (
1 = 0), and DCC with no CFNAI factor
(
2 = 0).All parameters of the stationary distribution are from the Gaussian-SJC type with DCC
(Case B), the conditional correlation parameters of the alternative processes were calibrated in order
to re�ect the same mean conditional correlation as the benchmark process. The Certainty Equivalent
Cost is given in cents per dollar. Investment horizon is 5 years.

Panel A. The cost of disregarding DCC
(CCC alternative)

HARA, b = �0:2 CRRA HARA, b = 0:2


 = 2 2.3054 2.4039 2.5024


 = 4 1.8987 1.9369 1.9751


 = 6 1.7983 1.8216 1.8449


 = 8 1.7538 1.7706 1.7873


 = 10 1.7289 1.7419 1.7549

Panel B. The cost of disregarding the CFNAI factor
(DCC with 
2 = 0 alternative)

HARA, b = �0:2 CRRA HARA, b = 0:2


 = 2 2.4273 2.5533 2.6792


 = 4 1.9309 1.9832 2.0355


 = 6 1.7988 1.8315 1.8643


 = 8 1.7384 1.7622 1.7860


 = 10 1.7039 1.7226 1.7413

Panel C. The cost of disregarding the VIX factor
(DCC with 
1 = 0 alternative)

HARA, b = �0:2 CRRA HARA, b = 0:2


 = 2 0.0000 0.0000 0.0000


 = 4 0.0000 0.0000 0.0000


 = 6 0.0000 0.0000 0.0000


 = 8 0.0000 0.0000 0.0000


 = 10 0.0000 0.0000 0.0000
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Table 3.5.7: Certainty equivalent cost of ignoring tail dependence
The benchmark process is a Gaussian-SJC di¤usion with DCC according to Case B. The alternative
processes have either a DCC speci�cation (left �gures) or a CCC speci�cation (right column), and
their unconditional distribution varies from Gaussian to Student�s t. All parameters of the conditional
correlation speci�cation are from the Gaussian-SJC type with DCC (Case B) (left column) and from
Gaussian-SJC type with CCC (right column). The Certainty Equivalent Cost is given in cents per
dollar. Investment horizon is 5 years.

Panel A. The cost of disregarding tail dependence

(Gaussian alternative, DCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2


 = 2 1.3153 1.5158 1.7162


 = 4 0.6384 0.7438 0.8492


 = 6 0.3912 0.4619 0.5326


 = 8 0.2658 0.3189 0.3719


 = 10 0.1902 0.2327 0.2751

(Gaussian alternative, CCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2

3.2467 3.8692 4.4916

1.1366 1.4361 1.7357

0.4602 0.6562 0.8523

0.1301 0.2757 0.4212

0.0000 0.0507 0.1664

Panel B. The cost of disregarding asymmetric tail dependence

(Student�s t alternative, DCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2


 = 2 0.1886 0.1696 0.1506


 = 4 0.4271 0.4416 0.4561


 = 6 0.4259 0.4403 0.4546


 = 8 0.4121 0.4245 0.4369


 = 10 0.3999 0.4106 0.4213

(Student�s t alternative, CCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2

0.5891 0.6486 0.7081

0.4755 0.5176 0.5597

0.3960 0.4260 0.4559

0.3509 0.3740 0.3970

0.3224 0.3411 0.3598
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loss will be subdued.

As we saw in the above simulations exercise, the portfolio composition changes consider-

ably for varying levels of the mean conditional correlation, modeled through the parameter


0. In order to determine the economic signi�cance of this �nding, we determine the cer-

tainty equivalent cost for disregarding correlation dynamics for any of the three cases that

we considered at the end of the previous section. Results are summarized on Panel A of

Figure 3.5.9.

The certainty equivalent cost is lower for the lowest levels of correlation considered

(
0 = 1 or average correlation of 0.45 over the estimation horizon) and increases signi�cantly

for higher correlation levels. It also increases with the investment horizon. Results are

consistent over the utility speci�cations considered (CRRA and 2 types of HARA utility).

For the above cases we have considered the Case B DCC speci�cation as a benchmark,

that is the case when dynamic conditional correlation is driven by both the observable factors

F and the state variables X. In order to gauge the economic importance of any of the other

DCC speci�cations, we calculate the wealth loss of an investor who believes that conditional

correlation is either driven exclusively by observed factors (Case C) or they do not enter

correlation dynamics (Case A), instead of the benchmark Case B. Results for an investment

horizon of 5 years are summarized on Panel B on Figure 3.5.9. We �nd that the di¤erence

in terms of wealth loss between cases B and C is negligible, that is the investor does not lose

much by just considering the observed factors for the dynamics of conditional correlation.

The loss for an investor who totally disregards observed factors is higher, especially for low

levels of risk aversion. But for extremely risk averse investors there is virtually no cost for

considering any of the alternative DCC models instead of the benchmark one.

Being consistent with the simulations experiment, we consider also the economic loss

for disregarding tail dependence, given that the dynamics of conditional correlation have

been accounted for. We compute it by comparing the benchmark Gaussian-SJC di¤usion

with DCC according to Case B with a corresponding Gaussian di¤usion with the same

correlation dynamics. We do so for varying weights ! of the mixture copula CGa�SJC =

!CSJC + (1� !)CGa. Parameters are taken from the benchmark model over the whole

estimation horizon, and the Gaussian correlation parameter is set so that the Kendall�s tau

implied by the Gaussian copula is equal to the one implied by the SJC copula, so varying
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Figure 3.5.9: Certainty Equivalent Cost
Panel. A. Certainty Equivalent Cost of ignoring dynamic conditional correlation, modeled
with observable factors for varying mean levels of conditional correlation
The certainty equivalent cost of disregarding dynamic conditional correlation for a benchmark
Gaussian-SJC di¤usion with DCC (Case B) vs. a Gaussian di¤usion with CCC with parameter
calibrated to match the mean conditional correlation of the corresponding DCC model. Varying
average values of conditional correlation through the parameter 
o. HARA investor with b = �0:2
and varying degrees of relative risk aversion, and investment horizon of 1, 3 and 5 years.
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Table 3.5.9. Panel. B. Certainty Equivalent Cost of using alternative DCC speci�cations
The certainty equivalent cost of modeling DCC following Case A or C vs. the benchmark case B for
a Gaussian-SJC di¤usion. 5-year investment horizon. Parameters for cases A and C are calibrated
so as to re�ect the same average conditional correlation over the estimation period as that implied
by the benchmark case.
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the composition of the Gaussian-SJC copula will not change the Kendall�s tau, but only

the relative importance of tail dependence. Results are presented on Panel C on Figure

3.5.9. Even if dynamic conditional correlation has already been accounted for, there are

substantial economic costs for disregarding tail dependence, reaching over ten cents per

dollar for a 5-year investment horizon. They increase with increasing the weight of the SJC

copula in the benchmark model (and hence the importance of tail dependence in the data

generating process), and are higher for investors with lower levels of risk aversion.

3.6 Conclusion

In this chapter we address the issue of determining the impact of dynamic correlation mod-

eled through observable factors on the portfolio hedging demands. The solution method-

ology that we apply allows us to disentangle the intertemporal demands due to the need

to hedge against stochastic changes in those factors from the rest of the market price of

risk hedging terms. We also account for tail dependence that manifests itself through in-

creased co-movements between risky stocks during sharp market downfalls. We �nd that

demands for correlation hedging and intertemporal demands due to high tail dependence

have a distinct impact on the optimal portfolio behavior both in terms of optimal portfolio

composition and of loss of wealth criterion.

There are a number of ways in which the present study could be extended. First, we

could test the sensitivity of the results to an increased number of assets in the portfolio,

as we would expect that hedging demands should increase as a result of the higher level of
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Table 3.5.9. Panel. C. Certainty Equivalent Cost of disregarding tail dependence
The certainty equivalent cost of disregarding tail dependence by considering a Gaussian DCC di¤u-
sion instead of the benchmark data generating process of a Gaussian-SJC DCC di¤usion for varying
levels of the !SJC parameter determining the weight of the SJC copula in the mixture distribution.
DCC speci�cation follows Case B. Parameters are taken from estimating the benchmark case over
the whole estimation horizon, while the correlation parameter of the Gaussian copula is calibrated
so that to re�ect the same Kendall�s tau as the one implied by the SJC copula with the estimated
parameters.
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uncertainty linked to both the conditional correlation structure and the dependence through

the stationary distribution. Second, it would be of interest to extend the dynamic treatment

to the dependence structure modeled by the copula, assumed to be �xed in the present

setup, in the spirit of dynamic copula models as in Patton (2004) . By letting observable

factors a¤ect the evolution of tail dependence we may �nd similar hedging demands as those

implied by dynamic correlation. As well, we have seen that the dependence structure changes

dramatically from relatively calm periods of low volatility and rising economic conditions,

when it is not far from Gaussian to highly volatile periods marked with recessionary states,

when dependence exhibits asymmetries and high tail coe¢ cients. This could motivate us

to consider a speci�cation where the copula composition changes from normal to extreme

value dependent one through varying weights of the copula.

Finally, for the sake of simplicity, we have assumed so far that the bond and stock

dynamics are independent from each other. As there is compelling evidence of co-movement

between bond and stock returns that could be linked to common exposure to macroeconomic

factors (e.g. Li, 2002), it would be of interest to incorporate this �nding in the present

portfolio solution setup.
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Appendix A

For Chapter 2

A.1 Copula functions

In this chapter we have used he following d-dimensional copula functions.

� Gaussian copula

CGa (u1; u2; :::; ud j RGa)

=

��1(u1)Z
�1

:::

��1(ud)Z
�1

1

2� jRGaj1=2
exp

�
�1
2
x|R�1=2Ga x

�
dx1:::dxd

where RGa denotes the correlation matrix, and ��1 (ui) is the inverse of the univariate
standard normal CDF.

� Student�s t copula

Ct (u1; u2; :::; ud j Rt; �)

=

t�1� (u1)Z
�1

:::

t�1� (ud)Z
�1

�
�
�+d
2

�
jRtj1=2

�
�
�
2

�
(��)d=2

�
1 +

1

�
x|R�1t x

�� �+d
2

dx1:::dxd

where Rt denotes the correlation matrix, � is the degrees of freedom parameter, and t�1 (ui)
is the inverse CDF of the univariate Student�s t distribution with � degrees of freedom.

� Archimedean copulas

Copulas in this family are constructed using a continuous and strictly decreasing gener-
ator function ' (u) : [0; 1]! [0;1):

C (u1; u2; :::; un) = '�1 (' (u1) + ' (u2) + :::+ ' (un))

The generator for the Gumbel copula is given by ' (x) = (� log (x))
1
� ; � 2 (0; 1], and

consequently its form is as follows:

CG� (u1; u2; :::; un) = exp

 
�
 

nX
i=1

(� log ui)
1
�

!�!
; � 2 (0; 1]

for a dependence parameter �, common across all random variables. The survival counter-
part of the Gumbel copula for the bivariate case is given by:
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C
G
� (u; v) = u+ v � 1 + exp

�
�
h
(� log (1� u))

1
� + (� log (1� v))

1
�

i��
;

� 2 (0; 1]

for a dependence parameter �. See Theorem 4.7 in Cherubini et al. (2004) for dimensions
bigger than 2.

The nested copula construction that we consider consists in consequently nesting bivari-
ate copulas within each other. Thus, for the tri-variate case the copula has the form:

C (u1; u2; u3) = '�12
�
'2
�
'�11 ('1 (u1) + '1 (u2))

�
+ '2 (u3)

�
where each generating function 'i (ui) has its own dependence parameter �i. With this
construction we achieve (n� 1) di¤erent pairs of variables that have distinct dependence,
which are still below the general case, but is a considerable improvement compared to the
case of homogenous dependence above. The parameters �i should satisfy certain conditions
in order for the above function to be indeed a copula (see Embrechts et al. (2002) for
a discussion). For the Gumbel copula this condition amounts to verifying the following:
�1 � �2, i.e. dependence should be higher in the more deeply nested copulas (note that
for the above parameterization of the Gumbel copula dependence increases for decreasing
values of the parameter �).

A.2 Form, properties and subclasses of the univariate Generalized Hy-
perbolic family of distributions

The family of GH distributions is constructed as normal mean-variance mixtures with the
Generalized Inverse Gaussian (GIG) as the mixing distribution. Its probability density
function is given by:

fGH (x;�; �; �; �) = c (�; �; �; �)
�
�2 + (x� �)2

���1=2
2 �

K�� 1
2

�
�

q
�2 + (x� �)2

�
e�(x��)

where c (�; �; �; �) =

�
�2 � �2

��
2

p
2����

1
2 ��K�

�
�
p
�2 � �2

�
x 2 R

where c (�; �; �; �) is the normalizing constant and K� is the modi�ed Bessel function of the
third kind with index �, de�ned as :

K� (x) =
1

2

1Z
0

y��1e�
x
2 (y+y

�1)dy; x > 0

The parameters have the following interpretations in terms of the shape of the distribu-
tion: � determines the shape, � - the skewness, � is a location parameter and � is a scaling
parameter. The parameter domain is:
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� � 0; � > j�j for � > 0
� > 0; � > j�j for � = 0
� > 0; � � j�j for � < 0
� 2 R

The GH family of distributions has the normal distribution as a limiting case for � !1,
�=�! �2, and the Student�s t distribution as a limit for � < 0, � = � = � = 0 (Barndor¤-
Nielsen, 1978; Prause, 1999).

Various special cases can be obtained for di¤erent parameterization of the GH distri-
bution. For � = �1=2 we obtain the Normal Inverse Gaussian (NIG) distribution, whose
density is given by:

fNIG (x;�; �; �; �) = c (�; �)
�
�2 + (x� �)2

� 1
2 �

K1

�
�

q
�2 + (x� �)2

�
e�
p
�2��2+�(x��)

where c (�; �) =
��

�
x 2 R

where � > 0, � � j�j � 0, � 2 R. Its tail behavior is given by

lim
x!�1

fNIG (x;�; �; �; �) � jxj�3=2 e(��+�)x

and it has the interesting property of being closed under convolution, so that the sum of two
independent random variables that have a NIG distribution Xi � NIG (x;�; �; �i; �i) ; i =
1; 2 is also NIG-distributed: X1 +X2 � NIG (x;�; �; �1 + �2; �1 + �2).

In the portfolio application we use several properties of the modi�ed Bessel function that
we summarize bellow (following Bibby and Sorensen, 2003):

K�� (x) = K� (x)

K 0
� (x) = ��

x
K� (x)�K��1 (x)

Kn+ 1
2
(x) =

r
�

2x
exp (�x)

"
1 +

nX
i=1

(n+ i)!

(n� i)!i! (2x)
�i
#
; n = 1; 2; 3; :::

A.3 The Sequential Markov Chain Monte Carlo estimation algorithm

The algorithm for carrying out the Metropolis-Hastings scheme for sampling from the con-
ditional posterior of parameters and latent data following Golightly and Wilkinson (2006a)
can be summarized as follows:

Consider a d-dimensional Itô di¤usion given by:

dYt = � (Yt) dt+ � (Yt) dWt

Let data be observed at times t0 < t1 < ::: < tn�1 < tn with �� = ti+1 � ti. We divide
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each subinterval between observations in equidistant points, so that the augmented data
matrix looks like:

Y aug = [ Y t0;0 Yt0;1 ::: Yt0;m Y t1;0 ::: Y tn�1;0 ::: Ytn�1;m Y tn;1 ];

Yti;j is a d-dimensional vector of latent data points at time ti + j�� and Y ti;0 is the vector
of observations at time ti.

Initialization. Set j = 0. Initialize the augmented data points for each of the s =
1; :::;MC iterations by linearly interpolating between observations for the �rst interval.
Initialize the parameter set for all s by sampling from a prior density � (�).

1. For each s = 1; :::;MC:

� Propose the parameters �� using a kernel density estimate of the marginal parameter
posterior �

�
� j Y tj

�
with the kernel shrinkage correction of Liu and West (2001):

�� � �
�
��u + (1� �) �; h2V

�
�2 = 1� h2

h2 = 1� ((3� � 1) =2)2

for a discount factor �, where � denotes the Gaussian density, and u is an integer that has
been drawn uniformly from f1; :::;MCg.

� Propose the latent data Y � for the interval (tj ; tj+m) for each i = j+1; :::;M�1 using
a Brownian bridge proposal:

q
�
Yti+1 j Yti ; Y tM ; �

�
= �

�
Yti+1 ; Yti + e�i; e�i�

where e�i =
1

M � i
�
Y tM � Yti

�
e�i = �t

1

M � i (M � i� 1)� (Yti)

where � denotes the Gaussian density and � (Yti) is the volatility term of the process for Y .

� Accept the parameter and latent data proposal with probability � = min (1; A) and
set (Ys; �s) = (Y �; ��), or else set (Ys; �s) = (Ys�1; �s�1). A is given by:

A =

M�1Y
i=j

�
�
Y �ti+1 j Y

�
ti ; �

�
�M�2Y

i=j

q
�
Yti+1 j Yti ; Yti ; Y tM ; �

�
M�1Y
i=j

�
�
Yti+1 j Yti ; �

�M�2Y
i=j

q
�
Y �ti+1 j Y

�
ti
; Y �ti ; Y tM ; �

�
�

where �
�
Yti+1 j Yti ; �

�
is the Euler transition density.

2. Set j = j +m and go to (1).
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The resulting draws of latent data and parameters form a Markov chain, whose stationary
distribution after an initial burn-in period is the joint posterior of the data and the model
parameters:

� (Y; �) / � (�)

tn�1Y
t=t0

8<:
mY
j=1

� (Yt;j+1 j Yt;j ; �)

9=;
The number of imputed data points that are needed could be determined by running

the sampler for m = 1 and consequently increasing the discretization points until there is
no signi�cant change in the posterior parameter samples.
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Appendix B

For Chapter 3

B.1 Copula Functions

The following d-dimensional copula functions are used in the chapter.

� Gaussian copula

CGa (u1; u2; :::; ud j RGa)

=

��1(u1)Z
�1

:::

��1(ud)Z
�1

1

2� jRGaj1=2
exp

�
�1
2
x|R�1=2Ga x

�
dx1:::dxd

where RGa denotes the correlation matrix, and ��1 (ui) is the inverse of the univariate
standard normal CDF.

� Student�s t copula

Ct (u1; u2; :::; ud j Rt; �) (B.1.1)

=

t�1� (u1)Z
�1

:::

t�1� (ud)Z
�1

�
�
�+d
2

�
jRtj1=2

�
�
�
2

�
(��)d=2

�
1 +

1

�
x|R�1t x

�� �+d
2

dx1:::dxd

where Rt denotes the correlation matrix, � is the degrees of freedom parameter, and
t�1 (ui) is the inverse CDF of the univariate Student�s t distribution with � degrees of
freedom.

� Symmetrized Joe-Clayton copula

This copula function was introduced by Patton (2004) and is based on the bivariate
Joe-Clayton copula, that is a two-parameter copula function with parameters �L 2 (0; 1)
and �U 2 (0; 1) that are a measure of the lower and upper tail dependence. The Joe-Clayton
copula has the following form:
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CJC (u1; u2 j �L; �U )

= 1�
�
1�

h
(1� (1� u1)�)�
 + (1� (1� u2)�)�
 � 1

i� 1



� 1
�

where � =
1

log2 (2� �U )


 = � 1

log2 (2� �L)

The symmetrized version of the copula, designed to render it completely symmetric for
equal values of the lower and upper tail dependence parameters has the following form:

CSJC (u1; u2 j �L; �U )

=
1

2

�
CJC (u1; u2 j �L; �U ) + CJC (1� u1; 1� u2 j �U ; �L) + u1 + u2 � 1

�
B.2 Malliavin Derivatives of the State Variables

Recall that the Malliavin derivatives of the state variables Y �
�
X1; X2; F

V ; FM ; Y r
�
can

be represented as the solutions to a linear stochastic di¤erential equation1:

DtYs = �Y (t; Yt) exp

8<:
sZ
t

dLv

9=;
where �Y (t; Yt) is the 5 � 5 matrix of di¤usion terms of the state variables, and dLt is

de�ned by:

dLt �

0@@2�Y (t; Yt)� 1
2

5X
j=1

@2�
Y
�j (t; Yt) @�

Y
�j (t; Yt)

|

1A dt+
5X
j=1

@2�
Y
�j (t; Yt) dWjt

where @2�Y (t; Yt) and @2�Yj (t; Yt) denote the derivatives of �
Y (t; Yt) and �Y�j (t; Yt) with

respect to Yt, and �Y�j (t; Yt) denotes the j
th column of the matrix �Y (t; Yt). The particular

forms of the drift �Y (t; Yt) and the di¤usion term �Y (t; Yt) of the state variables are given
by:

�Y (t; Y ) =

0BBBBB@
�X1
�
t;Xt; F

V ; FM
�

�X2
�
t;Xt; F

V ; FM
�

�F
V �
t; F V

�
�F

M �
t; FM

�
�Y

r
(t; Y r)

1CCCCCA
where �Xi

�
t;Xt; F

V ; FM
�
; i = 1; 2 are given by (3.3.13), �F

V �
t; F V

�
= �V

�
�V � F V

�
,

�F
M �

t; FM
�
= �M

�
�M � FM

�
, �Y

r
(t; Y r) = �r (�

r � Y r
t ).

1See Theorem 1 in Detemple et al. (2003)



183

�Y (t; Y ) =

0BBBBB@
�X11 (t;X) �X12 (t;X) 0
�X21 (t;X) �X22 (t;X) 0

�F
V �
t; F V

�
�F

V �
t; F V

�
0

�F
M �

t; FM
�

�F
M �

t; FM
�

0
0 0 �Y

r
(t; Y r)

1CCCCCA
where �X (t;X) is given by (??), �F

V �
t; F V

�
= �V

p
F V , �F

M �
t; FM

�
= �M , and

�Y
r
(t; Y r) = �r

p
Y r
t .

Given the chosen speci�cations for the state variables, we can solve separately for the
Malliavin derivatives of state variable driving the short rate, as well as for the Malliavin
derivatives of the two factors. The processes that we have assumed for the observable factors
(F V for the VIX and FM for CFNAI), as well as for the state variable Y r, allow for either
closed form solutions for the Malliavin derivatives (in the case of a Vasicek process) or for
signi�cant variance reduction in their simulation following the Doss transformation2 that
eliminates the stochastic term in the Malliavin derivative (for a CIR process).

In the Vasicek case, the Malliavin derivative of FM simpli�es signi�cantly to:

Di;tF
M
s = �M exp

�
��M (s� t)

	
; i = 1; 2

For the other two state variables, Y r and F V , we have assumed a CIR process, that can
be reduced to have constant di¤usion term through a suitable change of variable technique,
which then eliminates the stochastic terms for the simulation of the corresponding Malliavin
derivatives. For a univariate di¤usion, this variance stabilizing transformation is described in
detail in Proposition 2 of Detemple et al. (2003) and we reproduce it here for completeness.

Consider a state variable Y satisfying a stochastic di¤erential equation

dYt = � (t; Yt) dt+ � (t; Yt) dWt

We can replace it with a new state variable Zt = F (t; Yt) where the function F : [0; T ]�R!
R is such that @2F = 1

�Y
. Then for a continuously di¤erentiable drift �, twice continuously

di¤erentiable di¤usion term �, that also satisfy the growth conditions that � (t; 0) and � (t; 0)
are bounded for all t 2 [0; T ], then we have for t � s:

DtYs = � (t; Yt)DtZs

where DtZs = exp

8<:
sZ
t

@2m (v; Zv) dv

9=;
m (t; Z) �

�
�

�
� 1
2
@2� + @1F

�
(t; Y )

2See Detemple et al. (2003)
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