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Résumé

Parmi les caractéristiques clés de tout modéle d’allocation de portefeuille se trouvent les
hypothéses concernant la structure de dépendance des facteurs de risque sous-jacents. Une
modélisation inappropriée peut entamer une interprétation inadéquate de ’exposition au
risque et ainsi mener a des choix de portefeuille sous-optimaux. La corrélation linéaire a été
I’outil traditionnel dans ’analyse de la dépendance dans un cadre statique ou dynamique,
mais des études récentes ont démontré son incapacité de refléter la dépendance entre des
événements extrémes, dont I'asymétrie prononcée est devenue un fait stylisé de la distribu-
tion des rendements : les titres ont la tendance d’évoluer dans la méme direction lorsque le
marché est en baisse que lorsque le marche est en hausse (Poon et al., 2004). Au contraire,
la théorie des copules fournit un environnement approprié pour la recherche de mesures de
dépendance qui conviennent mieux a I’asymétrie des co-mouvements extrémes. Le caractére
parcimonieux des fonctions de copules les rend appropriées pour la modélisation de risques
multiples et ainsi pour les problémes de choix de portefeuille.

Malgré la prolifération d’articles sur les copules, qui sont concentrés majoritairement sur
la spécification, I’estimation et les tests de validité de ’ajustement, il n’y a pas beaucoup de
recherche faite sur la modélisation de la dépendance spatiale des processus stochastiques.
Les applications sur les copules existantes sont majoritairement concentrées sur la modélisa-
tion conditionnelle de processus stochastiques en temps discret dans le contexte des modéles
GARCH, et les modeles de choix de portefeuille correspondants traitent plutét ’allocation
inconditionnelle sur la prochaine période (Patton, 2004; Jondeau and Rockinger, 2002, 2005).
Par conséquent, le but de la thése présente a deux dimensions: proposer un processus sto-
chastique en temps continu capable de refléter les asymétries dans les co-mouvements des
facteurs de risque sous-jacents, et examiner les implications d’un tel processus multidimen-
sionnel sur la couverture inter-temporelle d’un portefeuille.

Dans le premier chapitre de la thése je propose une extension multi-variée de la con-
struction d’un processus stochastique avec une distribution stationnaire donnée, & la base
des fonctions des copules. Dans le contexte uni-varié les processus de prix construits & partir
d’une distribution stationnaire pré-spécifiée ont été largement étudiés, et leur succés dans
la réplication des faits stylisés des rendements en termes de leurs propriétés dynamiques et

leur structure de dépendance statique a été établi. L’extension multi-varié, que je propose
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utilise la relation entre la mesure stationnaire du processus et sa spécification de diffusion
(Hansen and Scheinkman, 1995). La dépendance asymétrique dans les queues est prise en
considération a l’aide d’une mixture de fonctions de copules qui proviennent des familles
Elliptiques ou de Valeurs Extrémes. Elle est isolée du comportement marginal, modélisé
avec la classe flexible de distributions généralisées hyperboliques.

Le processus de diffusion proposé est un processus hautement non-linéaire ce qui pose
des sérieux problémes d’estimation. Malgré le fait que la distribution stationnaire du proces-
sus soit connue explicitement, ceci n’est pas vrai pour la densité de transition, ce qui rend
inapplicables les techniques d’estimation standards comme le maximum de vraisemblance,
sauf si on fait recours & la discrétisation. Je propose d’utiliser les techniques d’estimation
MCMC basées sur I'augmentation de ’espace d’états afin de diminuer le biais de discrétisa-
tion dans le sens de Durham and Gallant (2002), Roberts and Strammer (2001) et Golightly
and Wilkinson (2006a).

Dans le deuxiéme chapitre de la thése j'étudie 'effet de la dépendance asymptotique
sur le choix de portefeuille dans un contexte de marché complet, ol une solution explicite
des termes de couverture inter-temporelle du portefeuille est obtenue en utilisant la théorie
des martingales et I’application du calcul de Malliavin (Detemple et al., 2003). Je compare
I’évolution des termes de couverture inter temporels au fil du temps, induits par une struc-
ture de dépendance asymétrique dans les extrémes a celles d’'un modéle asymptotiquement
indépendant. Un exercice utilisant les vraies données et un autre basé sur les simulations
suggerent un déplacement de la composition du portefeuille vers I'actif sans risque lorsque
la dépendance entre les événements de queue pour les actifs risqués est prise en compte.
J’évalue également I'importance économique de ce changement des parts de portefeuille,
principalement motivée par la nécessité de se couvrir contre les variations stochastiques
des variables d’état lorsque le processus générant les données incorpore un comportement
asymeétrique dans les queues. A cet effet je calcule les cotits de I’équivalent certain engendrés
par le fait d’ignorer la dépendance entre les valeurs extrémes et je trouve que la prise en
considération de ce fait stylisé méne a des gains économiques importants.

Dans le troisieme chapitre de la thése j’aborde le probléme d’allocation optimale de
portefeuille dans un cadre dynamique lorsque la corrélation conditionnelle des rendements

des actifs risqués est modélisée avec des facteurs observables, ce qui me permet d’isoler la



demande de couverture contre le risque de corrélation. Ainsi, je suis en mesure d’analyser
séparément 'impact de la dépendance de queues & travers la distribution inconditionnelle
et ce de la corrélation conditionnelle sur les parts optimales de portefeuille. Avec ces deux
approches différentes de modéliser la dépendance je réplique le fait stylisé d’une dépen-
dance accrue pendant des périodes de chutes extrémes du marché, de volatilité croissante
et d’aggravation des conditions macro-économiques. Je trouve que les termes de couver-
ture contre le risque de corrélation ainsi que ceux engendrés par la dépendance dans les
queues ont un impact distinct sur le portefeuille optimal et ne peuvent pas agir comme
des substituts les uns des autres. De plus, le fait d’ignorer la dynamique de la corrélation

conditionnelle ou la dépendance extréme engendre des colits économiques non-négligeables.

Mots clés : Markov Chain Monte Carlo, allocation dynamique de portefeuille, simula-
tion Monte Carlo, dépendance extréme, fonctions de copules, diffusion stationnaire multi-

variée, corrélation dynamique conditionnelle.



Abstract

A key feature of any portfolio allocation model is the assumption concerning the de-
pendence structure of the underlying risk factors. Its inappropriate modeling could lead to
a misunderstanding of the risk exposure and thus to suboptimal portfolio choices. Linear
correlation has been the traditional tool for describing dependence in both static and dy-
namic settings, but recent studies have demonstrated its inability to capture dependence
between extreme events, whose pronounced asymmetry has turned into an established styl-
ized fact for asset returns: assets tend to move together in extreme market downturns to
a greater extent than in extreme market upturns (Poon et al., 2004). Instead, copula the-
ory provides a natural environment for the search of dependence measures that are better
suited for capturing extreme co-movement asymmetries. The highly parsimonious nature of
copula functions makes them suitable for high-dimensional models, as those encountered in
portfolio choice problems.

Despite of the abundant literature on copulas, focusing mainly on their specification,
estimation and goodness-of-fit tests, not much research has been done for the multivariate
dependence modeling of stochastic processes. Applications are mainly centered on con-
ditional modeling of discrete time processes within a GARCH framework, while portfolio
choice applications based on copulas mostly treat the unconditional one-period-ahead allo-
cation (Patton, 2004; Jondeau and Rockinger, 2002, 2005). The aim of the present thesis
is thus twofold: propose a continuous-time stochastic process that is able to accommodate
co-movement asymmetries in the underlying risk factors, and investigate its implications for
the hedging behaviour in a dynamic portfolio allocation setting.

In the first chapter of this thesis I propose a multivariate extension to the construction of
a stochastic process with a given stationary distribution, based on copula functions. In the
univariate setting, price processes with a prespecified marginal distribution have been largely
studied and proven successful in replicating stylized features of asset returns in terms of their
dynamic properties and static dependence structure. The multivariate extension I propose
exploits the relationship between the stationary measure and the diffusion specification of the
process (see Hansen and Scheinkman, 1995). The asymmetric tail dependence is captured
by a mixture copula of the Elliptic and the Extreme Value families, which is isolated from

the marginal behavior, modeled by the flexible Generalized Hyperbolic class of distributions.
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The proposed diffusion process that is highly non-linear poses a serious estimation prob-
lem. Even though the stationary measure of the process is explicitly known, the same is
not true for the transition density, thus rendering standard maximum likelihood estimation
impossible without resorting to discretisation. I propose a sequential MCMC estimation of
the process that relies on increasing the state space in order to subdue any discretisation
bias in the lines of Durham and Gallant (2002), Roberts and Strammer (2001) and Golightly
and Wilkinson (2006a).

In the second chapter of this thesis I study the effect of asymptotic extreme value de-
pendence on portfolio choice in a complete market setup where optimal allocation rules are
obtained analytically under the Martingale technique using Malliavin calculus in the lines
of (Detemple et al., 2003). I compare the evolution of the intertemporal hedging terms over
time induced by a data generating process that allows for asymmetric dependence in the
extremes to those of an asymptotically independent model. A real-data experiment and a
simulation exercise both suggest a shift in the portfolio composition towards the risk-free
asset when dependence between tail events for the risky assets is accounted for. I further
assess the economic importance of this change in portfolio shares, mainly driven by the
need to hedge against changes in the stochastic opportunity set when the data generating
process incorporates the above-mentioned asymmetric tail behavior, through the certainty
equivalent cost of ignoring extreme value dependence and find that taking it into account
leads to significant economic gains.

In the third chapter of the thesis I address the problem of solving for optimal portfolio
allocation in a dynamic setting, where conditional correlation is modeled using observable
factors, which allows me to isolate the demand for hedging correlation risk. I am able to
analyze separately the impact of tail dependence through the unconditional distribution and
that of conditional correlation on portfolio holdings. With those distinct ways of modeling
dependence I aim at replicating the stylized fact of increased dependence during extreme
market downturns, rising market-wide volatility, or worsening macroeconomic conditions.
I find that both correlation hedging demands and intertemporal hedges due to increased
tail dependence have distinct portfolio implications and cannot act as substitutes to each
other. As well, there are substantial economic costs for disregarding both the dynamics of

conditional correlation and the dependence in the extremes.
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Chapter 1

Stock Market Asymmetries: A Copula Diffusion
Model

1.1 Introduction

There is wide spread evidence that the distribution of financial asset returns deviates from
the assumption of normality both in terms of univariate properties of the data such as excess
kurtosis or thick tails, as well as the dependence structure: multivariate normality imposes
independence between extreme realizations of the variables, whereas returns are known to
be highly correlated during large market downfalls. In a study of several major international
market indices Longin and Solnik (2001) provide strong evidence of increased correlation of
tail events of asset returns, especially during bear markets.

For risk management applications, multivariate option pricing or portfolio choice deci-
sions it is important to introduce relatively parsimonious models that can capture the above
mentioned features of the data. There has been a proliferation of studies in recent literature
that propose models for incorporating the asymmetric response of conditional correlation to
returns, mainly building upon the Dynamic Conditional Correlation model of Engle (2002).
Alternatively, in a jump diffusion framework, Das and Uppal (2004) model high correlation
across large changes in asset returns and study their effect on portfolio allocation. Ang and
Chen (2002) compare several discrete time models in terms of their ability to reproduce the
asymmetric dependence pattern present in stock return data. None of the models, however,
succeeds in either picking up the extremal dependence pattern of the data or explaining the
degree of correlation asymmetry.

In this chapter we propose a model that is able to accommodate this extremal depen-
dence structure, based on the construction of a multivariate diffusion with a pre-specified
stationary distribution that relies on copula theory. Despite of the abundant literature on

copulas, not much research has been done for the multivariate dependence modeling of sto-



chastic processes. The study of the dynamic multivariate spatial dependence structure of

stochastic processes has found several model applications in a discrete time setting (Jondeau

and Rockinger, 2002; Patton, 2004; Fermanian and Wegkamp, 2004). However, the spatial

dependence structure of multivariate diffusions in the wider copula context has not been ex-

tensively studied. Kunz (2002) proposes a framework for modeling extremes in multivariate

diffusions of the gradient field type via the use of copula functions, but limits the attention

to a specification with a constant diffusion term that inevitably restricts the ability of the

model to account for certain dynamic properties of the data, while fitting the stationary

distribution. Instead, we propose a more general model for which the above mentioned

construction is a special case. We aim at answering the following issues:

(a)

The stochastic process for asset prices should be able to imply a dependence structure
that allows for increased dependence between extreme realizations, but should be
flexible enough to include the case of asymptotic independence (as implied by the
Gaussian distribution). The latter condition comes from the concern, raised by Poon
et al. (2004) that using a model which precludes independence in the tails may lead
to serious overestimation of the joint risks. To this end we use a mixture of copula
functions to tailor the multivariate distribution, as they allow for flexibility in terms
of choice of the marginals, and can also be modeled to allow or not for dependence
between tail realizations. Based on the copula decomposition between the dependence
structure and the marginal distributions, we build a multivariate diffusion with a
pre-specified stationary density. Its construction relies on restricting the drift for a
given specification of the diffusion term and the stationary density (see Hansen and
Scheinkman, 1995; Chen et al., 2002). Thus we obtain a flexible process for asset

prices that is able to accommodate a wide array of dependence structures.

While replicating different types of dependence patterns, we would like our model to
keep track of univariate properties of asset returns, such as a leptokurtic univariate
distribution as compared to the normal, semi-heavy tails (Barndorff-Nielsen, 1995), or
volatility clustering expressed as serial correlation of squared log returns. To achieve
this, the copula construction leaves us with the flexibility to chose the appropriate mar-

ginals. We turn to the Generalized Hyperbolic family of distributions, as their ability



to replicate the tail behavior of asset returns, as well as certain dynamic properties
as persistence in auto-correlation in squared returns, has been recorded in literature
in the context of univariate diffusion modeling (Eberlein and Keller, 1995; Rydberg,
1999; Bibby and Sorensen, 2003). We show that this property is retained in the mul-
tivariate model we propose. As well, Jaschke (1997) points out that one could obtain
a process for returns with a Generalized Hyperbolic stationary distribution with sto-

chastic volatility as a weak limit of a GARCH model in the sense of Nelson (1990).

The copula functions that we study are the tail-independent Gaussian copula, the sym-
metric tails Student’s ¢ copula and the extreme value Gumbel copula that allows for asym-
metric tail behavior in combination with its survival counterpart. The tail dependence
coefficients that we estimate point towards a structure with extremal dependence, and the
Gaussian diffusion is rejected in favour of an alternative that takes into account tail depen-
dence.

While the stationary distribution of the proposed process is known in closed form, the
same cannot be said in general for the transition density, which raises a serious estimation
challenge, as an exact likelihood approach cannot be applied. Instead of relying on ap-
proximations of the likelihood function in the spirit of Ait-Sahalia (1999) and Ait-Sahalia
(2003), as such an approach may prove to be too computationaly intensive when explicit
solutions for the density approximation coefficients cannot be obtained, we resolve to a
Markov Chain Monte Carlo (MCMC) method to estimate model parameters, following a
sequential inference procedure of Golightly and Wilkinson (2006a) in the spirit of Roberts
and Strammer (2001) and Durham and Gallant (2002). Further discussion on the available
estimation approaches is provided in the subsequent sections.

We also address the question of model selection, using the traditional Bayesian approach
based on the marginal likelihood functions of alternative models. Results suggests that
models that disregard asymmetric dependence between extreme realizations are rejected in
favour of those that take these particular features of the dependence structure into account.

The remainder of the chapter is organized as follows. Section 1.2 discusses the issue
of modeling dependence through the use of copula functions. Section 1.3 introduces the
process for asset prices, its construction and the particular assumptions on the univariate

marginals as well as the dependence structure. Section 1.4 reviews the estimation method-



ology of the proposed multivariate diffusion based on copula functions using an MCMC
estimation algorithm. Section 1.5 discusses the estimation results, focusing on the degree of
tail dependence that could be achieved under the proposed model specification, and Section

1.6 concludes.
1.2 Copula functions and dependence modeling

The pitfalls of using the linear correlation coefficient as a dependence measure have been
largely discussed in literature. Linear correlation fully describes the dependence patterns
only in the elliptical class of distributions that are inevitably characterized by symmetry.
It is also an inadequate tool for discerning dependence when it comes to extreme events.
Among the deficiencies of linear correlation comes the fact that second moments have to
be finite in order for it to be defined. As well, it is not invariant under non-linear strictly
increasing transformations of the variables (a transformation that is known to leave the
dependence structure unchanged). In contrast, all concordance measures of dependence
depend only on the copula property and are invariant to increasing changes in the marginals,
while the tail dependence coefficient characterizes the extreme dependence using only the
copula specification.

Thus, copula theory provides a natural environment for the search of dependence mea-
sures that are better suited for capturing extreme co-movement asymmetries. The main
concept behind copulas is the separation of the distribution structure from the univariate
marginals, as they are functions that link marginals to their multivariate distribution, follow-
ing Sklar’s theorem. Their parsimonious nature makes them suitable for high-dimensional
models, as the ones encountered in portfolio selection problems, while their functional specifi-
cation could be flexible enough to allow for asymptotic extreme (in)dependence: dependence
structures range from those generated by elliptical copulas that maintain the validity of the
mean-variance framework , to copulas that are able to express extreme value dependence
(like the Gumbel copula, consistent with multivariate extreme value theory). Various de-
pendence measures useful for financial applications (comonotonicity, concordance, quadrant
(orthant) and tail dependence) can be expressed in terms of copulas.

Copula functions are a useful tool to construct multivariate distributions. They are used

to disentangle the information contained in the marginal distributions from that pertaining



to the dependence structure. As they are defined as multivariate distribution functions,
they contain all the relevant information with respect to the dependence structure. As well,
as copulas are defined over transformed uniform marginals, they contain the information
on dependence regardless of the marginal distributions, as these transformed variables are
Uniform (0,1) regardless of the particular marginal distributions. This last feature makes
copulas particularly suitable for developing flexible models based on different univariate
distributions that best suit the marginal properties of the data, while leaving the freedom

to define separately the most appropriate dependence structure.

1.2.1 Copulas and the dependence structure

A standard treatment of copulas can be found in the monographs of Joe (1997), Nelsen
(1999), Embrechts et al. (2002), and Frees and Valdez (1998). Cherubini et al. (2004) offer
a comprehensive review of the application of copula functions in finance. The main concept
behind them is the separation of the distribution structure from the univariate marginals. A
copula can be viewed as a multivariate distribution function on the unit cube, with uniformly
distributed marginals. Alternatively, it can be defined as a function C': [0,1]" — [0, 1] with

the following properties:

(P1) for every w in [0,1]", C (u) = 0 if at least one coordinate of u is 0; C (u) = wuy, if all

coordinates of u except uy equal 1;

(P2) C is n-increasing if for each a,b € [0,1]" such that a < b, the volume of the hypercube
with corners a and b is positive, that is Ve ([a,b]) = > sgn(c)C (c) > 0 where ¢
are the vertices of [a,b], and sgn(c) = 1 if ¢y = ai for even k, sgn(c) = —1 if
cr = ay for odd k. For the bivariate case this translates into Vo ([ug, ug] X [v1,v2]) =
C (u1,v1)+C (ug,v2) — C (u1,v2) — C (ug,v1) > 0 for all uj, ug,v1,ve € [0, 1] such that

ur < ug and v < vg.

An important result concerning copulas is Sklar’s representation theorem (Sklar, 1959):
For a multivariate joint distribution function F' with marginals Fi, ..., F},, there exists

an n-copula C, such that for all z in R” we have that:

F(xi,....,zn) =C(F1(x1),.... Fy (zn)) (1.2.1)



The copula is uniquely determined if all marginal distributions F1, ..., F}, are continuous,
otherwise C is unique on RangeF] X ... X RangeF;,,. The converse statement also holds,
i.e. for a given copula C with marginals Fi, ..., F,,, the function F' defined above is an n-
dimensional multivariate distribution function. Sklar provides the following corollary: for a
multivariate joint distribution function £’ with continuous margins F, ..., Fj, and copula C,

satisfying the above theorem, and for any u € [0, 1]", the following holds:

C(ug,..,un) =F (Fl_1 (u1) e B (un)) (1.2.2)

In the subsequent sections we will use the copula density decomposition formula that

follows from (1.2.1):

n

f @1, an) = c(Fy (1), oony P (20)) [ [ fi (1)

i=1
where ¢ (+) is the copula density and f; (-) are the univariate PDFs.

A key property of copulas, that makes them particularly well suited for dependence
structure modeling, is their invariance under strictly increasing transformations of the mar-
ginals. However, this property is true for the linear correlation as a dependence measure
only for affine strictly increasing transformations. In particular, if we consider the functions
a(X) and S (Y) of two random variables X and Y, then the following transformations

change the copula functions in a deterministic way (see Nelsen, 1999):

(i) if a, 8 are strictly increasing, then Cy(x) g(v) (v, v) = Cxy (u,v);

(ii) if « is strictly increasing and f is strictly decreasing, then Cy(x) gy (u,v) = u —

Cxy (u,1—v);
(iii) if a,, B are both strictly decreasing, then Cy(x) g(v) (u,v) = u+v—1+Cxy (1 — u,1 — v).

If C is an n-dimensional copula, then it has a known upper and lower bound (the

Frechet-Hoeffding bounds):



L,(u) < C(u)<Up,(u) (1.2.3)
where L, (u) = max (i u; —n+1, O)
i=1
Up(u) = min(ug,...,up)

For n = 2 the upper and the lower bound are copulas, but for n > 3, L, is the lower
bound in the sense that for any u € [0, 1]" there exists such a copula C, that C' (u) = L, (u)
(see Nelsen, 1999).

Following Drouet-Mari and Kotz (2001), the continuity of a copula can be established

for each u,v € [0,1]", if it satisfies the stronger Lipschitz condition:

‘O(UQ,UQ)—C(ul,Ulﬂ < ‘UQ_U1|+"U2_’U1| (1.2.4)

Further on, as C(u) is increasing and continuous in w, it is differentiable almost every-

where, and the following holds:

0
< <1 =1, ...
O_anC(u)_ , 1 )

For each copula we can define a survival function: C (u,v) =1 —u— v+ C (u,v) for the

bivariate case, and more generally:

é(ul, ,un) =Pr (Ul > u,...,Up > Ul)

Below we discuss briefly several dependence concepts in a copula framework. Following
the Frechet-Hoeffding inequality, it can be shown that the upper and the lower bound are
both copulas in the bivariate case, and can be thought of as the joint distribution functions
of two couples of univariate vectors: (U,1 — U) for the lower bound and (U,U) for the
upper bound. Thus, the lower bound describes the state of perfect negative dependence
(two vectors having this copula are said to be countermonotonic), whereas the upper bound
corresponds to the state of perfect positive dependence (and the two vectors having this

copula are comonotonic).



Following Embrechts et al. (2002), a proper dependence measure ¢ should have the

following properties:

(i) 6 should be defined for every pair X,Y’;
(i) 5(X,Y) = 8(Y, X);
(iii) —1 <§(X,Y) < 1;

(iv) (X,Y) = 1 iff X and Y are comonotonic, and § (X,Y) = —1 iff X and Y are

counter-monotonic;

(v) 0(¢(X),Y) = §(X,Y) for a strictly increasing function ¢, and d (¢ (X),Y) =

-0 (X,Y) for a strictly decreasing function ¢.
(vi) 6 (X,Y)=0iff X,Y are independent.

As there is no dependence measure that satisfies properties (v) and (vi), then we should

modify the following properties if we require (vi):

(ifia) 0<6(X,Y) <1

(iv-a) 0 (X,Y)=1iff X and Y are co/counter-monotonic;

(v-a) d(p(X),Y)=46(X,Y) for a strictly monotone function ¢.

Concordance measures can also be defined in terms of the copula. Following Embrechts
et al. (2002), if (X,Y) and ()? , ?) are two couples of independent vectors with common
marginals, then the difference between the probability of concordance and discordance (Q)

can be expressed in terms of their corresponding copulas:

fQ = Pr[(x—)?><y—?)>0}—Pr[<x—)~(><y—?><o},
then Q = Q(C,é)_4/ / C (u,v) dC (u, v) — 1

[0,1)2

Kendall’s tau 7 (X,Y) and Spearman’s rho pg (X,Y’) are two measures of concordance

that also have copula representation:



F(X,Y)=Q(C,C) :4/ / C (u,v) dC (u,0) — 1 (1.2.5)
[0,1)?
ps (X,Y)=3Q (C, 1) = 12/ / wvdC (u,v) — 3 (1.2.6)
[0,1)?

where I1" (u) = ujuz...u, is the independence copula.

When both Kendall’s tau and Spearman’s rho are equal to 1(—1), then the copula of
the two vectors is the upper (lower) Frechet bound.

As we are interested in modeling dependence asymmetries in the tails of the distribution,
then the tail coefficient, as a measure of dependence in the lower and the upper tail is of
particular interest. The coefficient of upper tail dependence is defined as the probability of

an extreme event in Y, conditional on an extreme event in X:

v = lim Pr (Y > F 7 (w) | X > Fx' (w) (1.2.7)

. (Y > Fyt (u), X > F' (u)
s Pr (X>F);1 (u))

provided that the limit exists. If 7¥ € (0, 1] then the two vectors of random variables are
said to be asymptotically dependent in the right tail. Asymptotic independence is reached
for the case of 7V = 0. Joe (1997) shows that the concept of tail dependence can be related
to that of the copula by the following alternative definition of the coefficient for upper tail

dependence of a bivariate copula, for which the following limit exists:

(1.2.8)

The coefficient of lower tail dependence can be derived in a similar fashion:

L= lim Pr (Y <Fy'(uw) | X < Fyl(u) (1.2.9)
i PrV S Bt (), X < P (u)
= 11m
u—0 Pr (X < Fy' (u))

= lim Clw,w)
u—0 u
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and the notions of asymptotic dependence and independence are analogous to those in the
right tail. Having in mind the relationship between a copula and its survivor copula, it can
be shown that the coefficient of upper tail dependence of a copula is in fact the coefficient of
lower tail dependence of the survivor copula. We will rely on this property in the subsequent
modeling of the extreme-value diffusion process.

Despite these asymptotic measures of dependence, we are interested as well in the behav-
ior of random variables as they approach the extremes. This ‘near’ tail dependence measure

is called quantile dependence and it is defined in the following way for quantiles g:

PriU<q|V <gq]if¢g<05
7(q) = | | | (1.2.10)

PriU>q|V >q] ifqg>05
1.2.2 Degree of tail dependence asymmetry in the data

In order to get an impression of the degree of tail dependence asymmetry present in the
data, consider daily CRSP US stock capitalization decile indices for the period 1990-2005.
These indices represent yearly rebalanced portfolios based on market capitalization. The
stock universe includes stocks listed on NYSE, AMEX, and NASDAQ. All ten capitalization
decile indices were grouped in three sub-categories: small-cap (deciles 1-3), mid-cap (deciles
4-7), and large-cap (deciles 8-10).

The degree of ‘near’ tail dependence for all three couples of data is displayed using
quantile plots on Figure 1.2.1. The dependence does not decay to zero as we go further in
the left tail as it would be the case under bivariate normality. As well, for the Large-Mid
cap couple quantile dependence is high for both tails, while for the other couples of data it
tends towards zero for the right tail, pointing towards asymmetric (‘near’) tail dependence.

In order to test the significance in the differences in correlation patterns between the
left and the right tail, we use the model-free test of dependence symmetry, developed by
Hong et al. (2003). The test statistic under a null hypothesis of symmetry exploits the
estimates of the exceedence correlations (p;, pf;) at different quantile levels ¢ and their

variance covariance matrix €2:

J=n(pt=p )07 (p" = p7) S,
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Figure 1.2.1: Quantile dependence plots
Plots of quantile dependence for all three couples of de-trended log-prices of the three CRSP indices
formed on the basis of size deciles for the period 1986-2005 (small-cap (deciles 1-3), mid-cap (deciles
4-7), and large-cap (deciles 8-10)).
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Table 1.2.1: Test of symmetry in the exceedence correlations
The Hong et al. (2003) test of exceedence correlations symmetry in the lower and upper quartiles
for the de-trended log-prices of the three CRSP indices formed on the basis of size deciles for the
period 1986-2005 (small-cap (deciles 1-3), mid-cap (deciles 4-7), and large-cap (deciles 8-10)). The
test statistic is given by:

— —1 -\ d 2
J=n(p"=p ) (0" —p7) = xm
where p+ and p~ are the exceedence correlations calculated at the corresponding quantile levels, n

is the sample size and m is the number of quantile levels considered. Results for three quantile levels
(0.85, 0.90, 0.95) are given below:

‘ Large vs. Mid cap Large vs. Small cap Small vs. Mid cap
Test statistic (J) 1.9351 17.6046 13.3933
p-values (0.5860) (5.3065e-004) (0.0039)

where n is the sample size and m is the number of quantile levels considered. Table 1.2.1
summarizes the results of the test, rejecting symmetry for all but the Mid-Large cap couple,
for which the quantile dependence plots indicated as well high dependence in both tails.
In the sections that follow we will build a diffusion process that accounts for those
dependence features of the data with the help of copula functions. It also accommodates
desirable univariate properties of asset returns such as volatility clustering, heavy tails,
and slowly decaying autocorrelation function of squared returns, without reverting to a

stochastic volatility specification or the introduction of jumps.
1.3 The multivariate copula diffusion model

In the discrete time literature there exist numerous models that are able to replicate both
stylized facts of univariate asset returns series, such as thick-tailed asymmetric marginals,
volatility clustering, slowly decaying autocorrelation function of squared returns, and asym-
metric dependence structure in the extremes of the multivariate distribution. Copula func-
tions have become increasingly popular in multivariate discrete time models, as in Patton
(2004), Jondeau and Rockinger (2002) among others. Astonishingly, much less effort has
been spent in this respect in continuous time modeling, except for scalar diffusions. Exam-
ples include stochastic volatility models (Heston, 1993) or diffusions with jumps in returns

and volatility (Eraker et al., 2003), hyperbolic diffusions (Bibby and Sorensen, 1997), gen-
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eralized hyperbolic diffusions (Rydberg, 1999), time-changed Lévy processes (Carr and Wu,
2004). However, the multivariate spatial dependence structure modeling of diffusions has
attracted much less attention. Here we propose a construction of a multivariate diffusion
with pre-specified stationary density with arbitrary marginals, coupled by a sufficiently
parsimonious copula dependence function that avoids the curse of dimensionality problem,
normally encountered in modeling multivariate datasets. The aim is to provide a sufficiently
flexible treatment of the univariate return series that is able to accommodate the stylized
features of the data, as well as to allow for possible asymmetries in the tail dependence of

the multivariate distribution via the copula function.

1.3.1 Constructing a diffusion with a pre-specified stationary distribution

We assume that uncertainty is driven by a d-dimensional standard Brownian motion and

that the price of the risky asset can be expressed as ':

Si = exp (&; (t) + Xi) i = 1, ..., d (1.3.1)

for some deterministic function of time ¢, (t), which we assume to be linear in ¢, ¢, (t) = k;t

with a linear trend parameter k;, and where

dXy = p (Xy) dt + A (Xy) dW; (1.3.2)

Thus, applying It6’s lemma we obtain for the price process for ¢ =1, ..., d:

d
dSip = Supd (In S — kit)dt + Sie Y Ajj (In Sy — kit) AWy (1.3.3)
j=1

d
where uf (X;) = p; (Xy) + ki + %Z@j (X¢)?
j=1
where 7;; are entries of the matrix A in the diffusion term of the process for the de-trended
log-price X. As pointed out in Bibby and Sorensen (1997), there is empirical evidence that
the increments of the process for the log-price are nearly uncorrelated but not indepen-

dent, which motivates the specification in (1.3.1). It is chosen as the most straightforward

'Following the parametrization of Bibby and Sorensen (1997) and Rydberg (1999)
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generalization of the Black Scholes model. The exact parametrization of the drift and the
diffusion term will be discussed in the subsequent sections, where we present a method to
construct a diffusion with a pre-specified stationary distribution.

Before proceeding to the specific construction of the multivariate diffusion process for
the state variables X, we fix several conditions that the model specification should satisfy.
First, we would like to be able to allow for possibly different univariate processes for each of
the state variables. Second, the dependence structure should be constructed independently
from the margins, and it should allow for asymptotic dependence and independence. Third,
we would desire that the dependence structure be modeled parsimoniously, in order to allow
for the treatment of a highly multivariate dataset. The copula construction we pursue allows
answering all these conditions.

Following Chen et al. (2002), we construct a multivariate stationary diffusion by exploit-
ing the relationship that exists between the invariant density, the drift and the diffusion

term for the process in (1.3.2):

d
1 d (vijq)
. - 1.34
1 22~ " o, (1.3.4)
Y = AAT with entries vy

where A is a lower triangular matrix, ¢ is a strictly positive continuously differentiable
multivariate density function, and ¥ is a continuously differentiable positive definite matrix.
Using this construction, ¢ is the stationary density of the Markov process, and the drift
vector p is determined by the choice of ¢ and the volatility matrix ¥. Thus, in order
to model the stationary diffusion (1.3.2), we need to specify its invariant density and its
diffusion term. For the latter, we propose a constant conditional correlation specification,

given by:

vy = pijJ;XU;( (1.3.5)

IHZ_

of = i F )]’

which is a multivariate generalization of the diffusion term proposed by Bibby and Sorensen
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(2003) for the case of univariate diffusion, where (UiX)2 >0 and k; € [0,1],2=1,...,d. The
function f? (w;) o< f*(x;), i.e. it is proportional to the ith univariate marginal distribution
whose choice will be discussed in the subsequent section. If all parameters k are set equal
to zero, and the correlation matrix is assumed to be diagonal with unit entries, this will
reduce the diffusion to one with a constant volatility term, which is the case discussed in
Kunz (2002).

In what follows, we will discuss the particular choice for the marginal distributions and
the way they are joined using the copula function to obtain the stationary multivariate

distribution ¢ that determines the drift (1.3.4) of the diffusion in (1.3.2).

Choice of the marginal distributions

A much exploited distribution specification for the univariate return series in recent litera-
ture has been that of the family of the Generalized Hyperbolic distributions. Introduced by
Barndorff-Nielsen (1977) for studying the particle-size distribution of wind-blown sand, it
has consequently found application in numerous fields, including finance. Distributions in
that family have been successfully fitted to financial time series, while stochastic processes,
built on the basis of generalized hyperbolic laws, have been proposed to model the dynamics
of financial markets. Eberlein and Keller (1995) introduce the hyperbolic Levy motion in
modeling the dynamic behavior of asset returns. Their model is further extended in Prause
(1999) to the generalized hyperbolic case. Bibby and Sorensen (1997) fit a hyperbolic diffu-
sion model to individual stock price data, while Rydberg (1999) proposes a one-dimensional
Normal Inverse Gaussian diffusion that accommodates thick tails in log returns, and Bauer
(2000) investigates the usefulness of hyperbolic distributions for risk management in the
context of VaR modeling. As the family of Generalized Hyperbolic distributions covers a
vast spectrum of tail behavior (from Gaussian to power tails), it is particularly suited for
modeling the marginal distributions in the present context of investigating the extremal

behavior of return series.

Form, properties and subclasses of the univariate Generalized Hyperbolic (GH)
family of distributions. The family of GH distributions is constructed as normal mean-
variance mixtures with the Generalized Inverse Gaussian (GIG) as the mixing distribution.

Thus, the density function for the GH distribution is expressed as:
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for (a0, 0.5.0) = [ N @i+ 55,9 GIG (508,07 = %) ds (130)
0

where N (-) is the normal density with mean p + (s and variance s, and the GIG density

has the form:

A/2
GIG (z; M\, x,0) = Mac)‘*le_%(xfurw) (1.3.7)

2K (Vx)
x > 0, eR Y, xeRy

where K is the modified Bessel function of the third kind with index A, whose integral

representation, following Barndorff-Nielsen and Blaesid (1981) is given by:

Ky (z) = 5 / e i ay w0
The fact that the GH class of distributions is obtained via this convolution operation is
exploited when simulating random GH variables.

Solving this integral form gives the following probability density function of the univari-

ate GH distribution:

A—1/2

fon (w0,8,6,8) = c(\e,8,0) (8 +@—p?) * x (1.3.8)

K)ﬁ% (oz\/ 6%+ (z — ,u)2> eBla—n)
(02 - %)
225 NK (5\/oz2 - 52>

where ¢ (\, o, 3,0) =

r € R

¢ (A, «,3,0) is the normalizing constant, and the parameters have the following interpreta-
tions in terms of the distribution: « determines the shape, 8 the skewness, p is a location

parameter and J is a scaling parameter. The parameter domain is:
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§ > 0,a>|p] for A>0
d > 0,a>|p] for A=0
d > 0,a>|p] for A<O

uw € R

GH distributions have semi-heavy tails, given by?:

mgfiloo fam (@A a,B,8,p1) ~ |z Texp {(Fa + B) x} (1.3.9)

Thus the class can easily accommodate any tail behavior ranging from power to expo-
nential decline, and can account for tail asymmetries.

The GH family of distributions has the normal distribution as a limiting case for 6 — oo,
§/a — o2, and the Student’s ¢ distribution as a limit for A < 0, a = 8 = = 0 (Barndorff-
Nielsen, 1978; Prause, 1999). The tail behavior for those limiting cases is as follows. For

the normal distribution we have very thin exponential tails:

22
lim fgq (x) ~ cexp <—>

r—+00 2

while for the Student’s ¢ distribution with v degrees of freedom we have power tails:

lim f; (x) ~ cla| ™7
r—F00

Various special cases can be obtained for a different parameterization of the GH distri-

bution. For A = 1 the hyperbolic distribution is obtained:

Ji (w50,8,6,1) = c(a,B,0)e VO HEmm ) (1.3.10)
Va2 — 32
200K, (5\/042 _ 52)

z € R

where ¢ (a, 3,0) =

?See Prause (1999) and Barndorff-Nielsen and Blaesid (1981).
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where § > 0, @ > ||, u € R. This parametrization has been widely exploited in literature
because of the ease of implementation, as the Bessel function appears only in the normalizing
constant. However, it limits the possible tail behavior cases one could obtain, as the tails
are allowed exponential decay: lim,_,+o0 fir (230, 3,0, 1) ~ eFoTH? but nevertheless it
has proved to be successful in modeling the dynamic behavior of financial time series.
Another subclass of the GH family is that of the Normal Inverse Gaussian (NIG) distri-

bution, obtained for A = —1/2, whose density is given by:

1
fyic (@ 8,80 = cl6) (8 +@—p?) " x (13.11)
Ky <a\/ 62 + (z — u)2> IV o =B +B(a—p)
where ¢ (a,0) = a9
m
z € R

where 6 > 0, a > || > 0, p € R. This specification has been successfully used as the
stationary measure of a univariate diffusion in Rydberg (1999) for modeling US stock price
data. It has a somewhat richer specification for the tail decay as compared to the hyper-
bolic distribution: lim, 1o fnrg (z;0, 8,0, 1) ~ ]:1:\73/2 e(Foth)r  Also, it is one of the
two members of the GH class that are closed under convolution (the other one being the
Variance Gamma distribution), so that for the sum of two independent random variables
Xi ~ NIG (z;0, 8,04, ;) , = 1,2 we have that Xy + Xo ~ NIG (z;a, 3,01 + 02, ftq + f1g).
This property is exploited in Rydberg (1999) when modeling log prices as NIG diffusions in
that log returns are expected to be also approximately NIG distributed as the time horizon
goes to infinity, provided that there is almost no autocorrelation in the increments of log
prices.

The moment generating function for the Generalized Hyperbolic distribution is given by

Prause (1999):

(1.3.12)

w2_g \3 (6\/042 — (8 +u>2)
- (6+u)2> K, (&/ﬂ)

M) = e <a2
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The characteristic function takes the form:

s a2 2K (wa? - (B+ iu)2>
__ luu a” — B
pu)=e 5 5 > (1.3.13)
a _(ﬂ+u) K,\(éva?—ﬁ)
The mean and variance in this class of distributions are given by:
IBK 0
ElX] = pqt 28K (07) (1.3.14)

YK (07)

6mﬂm06W<mﬂwpﬁ%ﬁw>

Var (X) YK (57) 2\ Ky (6y) K3 (07)

where 72 = o? — (B + x)Q. These expressions have a particularly simple form for the NIG

distribution, following the property of the Bessel function that:

_ T e & (n+z)‘ —1 _
Kn_% (x) = 1/2xe (1—1—; (n— i)l (2x) ) ,n=0,1,2,..

So that for NIG we obtain®:

Bl = pu+
Y

2

Var(X) = 6%

Y
Skew (X) = 36028y~

Kurt(X) = 3da? (a2 + 462) 4T

In our empirical application we choose the general form of the GH distribution, or its
special case — the NIG distribution, because of the general tail behavior allowed under these

specifications.

Univariate diffusion specifications with Generalized Hyperbolic stationary dis-
tribution. Before turning to the more complex case of multivariate dependence modeling,
let us first concentrate on diffusion specifications for the state variables governing the market

price of risk process that are susceptible of reproducing features of univariate return data

3See Bibby and Sorensen (2003).
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like fat tailedness and distribution asymmetry.

We thus consider the construction of a univariate diffusion process with a prespecified
stationary distribution. The typical construction of a scalar diffusion exploits the relation-
ship between the stationary density and the densities of the speed and the scale measure.
If we assume a univariate state variable diffusion process defined on S = (I,u) € R, given

by the stochastic differential equation (SDE):

where W is a standard Wiener process, and the drift and the diffusion terms p (z]f) and
7 (x]0), for a parameter vector 6 € ©, are such that a unique weak solution exists. We also
assume that & (z|f) > 0 for all € S. Then under certain conditions on the density of the
speed and the scale measure of the solution to the above process (see Bibby and Sorensen
(2001)) and for a function f that is integrable on S, the process is ergoric and its invariant
density py is proportional to f . More specifically, the scale measure of the solution to the

above SDE has density with respect to the Lebesgue measure defined as:

x

s(z) = exp —/ QUM(S;) dul, x€S (1.3.15)

x*
for some z* € S, where v () = [7 (¢)]?, and where we have suppressed the conditioning on
the parameter vector 6 for the sake of brevity. The speed measure of the solution to the

above SDE has density with respect to the Lebesgue measure given by:

Then under the assumptions that m (z) is finite and that [ s (z)dz = flx* s(z)dx =
oo the process X is ergodic and its invariant measure has density proportional to m (z).
Further, the relationship between the function f (x), proportional to the invariant density,

and the drift and diffusion coefficients of the SDE can be shown to verify:

7' (@)
@)

This allows us to construct a stationary univariate diffusion with a prespecified invariant

24 (2) — o/ (2) = v (x)

(1.3.16)
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density. As this construction leaves either the drift or the diffusion coefficient free to be
specified, once the form of the stationary density has been chosen, Bibby and Sorensen (2003)
suggest the following specification of the drift, that holds for any diffusion coefficient:

1 d

5Y (x) e In (v (x) fv(a:)) (1.3.17)

p(x) =
It can be shown that this drift specification is a special case of the multivariate drift restric-
tion (1.3.4) for the univariate case.

Notice that the relationship determining the drift of the stationary diffusion depends
only on the ratio %, thus it is sufficient to specify the invariant density up to a constant
of proportionality. Thus we consider the function f(m) o« f(x) that is proportional to the
density of the univariate GH distribution (1.3.8). This function enters the volatility term
(1.3.5) of the multivariate specification.

If we remain in the univariate context, then the volatility term is given by 7 (x) =

1

Uf(x)fﬁn , and we obtain the general form of a stationary diffusion process for the state

variable X as the one proposed in Bibby and Sorensen (2003):

1
-5k

k-1 8f(Xt)
00X,

dX; = %UZ (1K) [f(Xt)] dt + o [f(Xt)] AW, (1.3.18)

This specification nests the special cases of a zero drift diffusion (in the case of k = 1)
or constant diffusion term (in the case of kK = 0).

The above mentioned models in the family of the Generalized Hyperbolic diffusions
are preferred to an alternative specification of Normal Inverse Gaussian Levy processes,
proposed in Barndorff-Nielsen (1995), that have grown considerably popular in modeling
log returns, because the latter suffer from the deficiency of being incapable of replicating
the persistence in correlation in absolute and squared log returns because of the independent
Levy increments. This is not shared by the Generalized Hyperbolic diffusions, as pointed
out in Rydberg (1999).

In our empirical application we use (1.3.18) to model the de-trended log-prices with
the aim of fitting the potentially heavy tails and distributional asymmetry of asset returns
in the scalar diffusion case. This univariate treatment will later be used as a guidance

as to which marginal distributions to choose when modeling the multivariate dependence
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structure. This is particularly important, because the use of a given copula function is
sensitive to the correct choice of the marginals, and failing to do so would entail model

misspecification.

Univariate model validation. In order to check the fit of the proposed model, we pro-
ceed to a formal validation procedure for the scalar diffusions, proposed in Pedersen (1995)

and applied in Rydberg (1999), which is based on the univariate residuals:

U, = F (thXti | ti*laXti—l;w) (1319)

where F'(-) is a transition function F'(x,t |y, s;1) for a given parameter vector 1 that
can be estimated via simulation using the dynamic probability transform for a discretized

sample of the process {Xa¢};, over the period ¢t = 1,...,n with a discretization step A:

Xia
U = /f(tA,x](t—l)A,X(tl)A)dx (1.3.20)

—o0
Under the hypothesis of correct model specification, the series {@;}; ; is 7.5.d.U (0,1).
Having chosen the appropriate univariate model, we can now proceed to the problem

of building the multivariate distribution with the use of copula functions. However, let us

note that there exists a multivariate version of the GH distribution that could be a po-
tential candidate for a straightforward generalization to higher dimensions. Still, there is
one important caveat: it is tail-independent. Thus we proceed to the multivariate diffusion
construction based on copula functions that allow us to address the problem of modeling
different dependence structures independently of the marginals that could differ across the
separate univariate data series (another feature that could not be addressed by the multi-

variate form of the GH distribution).

Choice of the copula and the multivariate stationary diffusion

We now turn to the construction of the n-variate diffusion that has its spatial dependence
structure in the stationary density modeled by a specific parametric copula. Following

Sklar’s theorem, we define the invariant density as:
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q(T1,...y ) EE(ml,...,mn)Hﬁ(mi) (1.3.21)
i=1

where ¢ (21, ..., 3,) = ¢ (F* (21) , ..., F" (z)), fi (-)is proportional to the univariate GH dis-
tribution (1.3.8), and F"(:) is its corresponding CDF.

In order to account for different degrees of upper and lower tail dependence, we consider
several parametric families of copulas that have either no tail dependence (Gaussian cop-
ula), or symmetric tail dependence (Student’s ¢ copula), or that allow for different degrees
of dependence in the left and in the right tail (several Archimedean copulas). Below we
discuss the form and properties of the copula functions that we consider for the stationary
distribution of the multivariate diffusion for the state variables driving asset prices, and the
alternatives we have to build truly multivariate copula functions (of a dimension higher than

two) that maintain some degree of parsimony.

Elliptic copulas. We consider two elliptical copulas, the Gaussian and the ¢ copula, that
are characterized by symmetry in the dependence structure. Our benchmark model relies
on the Gaussian copula. In this case, dependence is governed by the correlation matrix Reaq,.

Its CDF is defined as:

CY% (uy, ug, ..., uq | Raa) (1.3.22)
e M(u) @ (ug)

1 1 _
= / WeXp{—QmTRGi/sz‘}d.’ﬁl...d$d

where ®~! (u) denotes the inverse of the univariate standard normal CDF. The Gaussian
copula generates a multivariate normal distribution iff the marginal distributions are also
normal. It has no upper or lower tail dependence for imperfectly correlated random variables.
Thus, for any pair(u;, u;) the bivariate tail dependence coefficients are zero: Tga = Tléa =0.

The Student’s ¢ copula, however, allows for both upper and lower tail dependence, but

the tail dependence coefficients are equal. Its CDF is given by:
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Ct (ul,ug,...,ud | RT,V) (1.3.23)
tot(w) o (ua) vtd
T v+d R 1/2 1 ~T2
= ( i ) ‘ Td‘/2 (1 + ZETRT11’> dl‘l...d:ﬁd
r (5) (vm) v

—00 —0o0

where v is the degrees of freedom parameter, Ry is the correlation matrix, and ¢! (u)

is the inverse of the univariate CDF of the Student’s ¢ distribution with v degrees of

freedom. For any pair (u;,u;) the tail dependence coefficient is given by T% = T% =

2t,41 (—\/v +1/1—pi/\/1+ pij), where p;; is the (i,7)™ off-diagonal element of Ry.
Thus, the tail dependence coeflicient decreases for higher values of the degrees of freedom
parameter and in the limit it goes to zero as ¥ — oo (in this case the Student’s ¢ copula
converges to the Gaussian copula). One interesting property of the ¢ copula is the fact that

it can still show tail dependence even if the correlation is zero.

Archimedean copulas. Copulas in this family are constructed using a continuous, de-
creasing and convex generator function ¢ (u) : [0,1] — [0,00) that has a defined pseudo-

inverse =1 (o (1)) = u for all u in [0, 1]:

1] e~ (u) for 0 <u < (0)

o (u) =
0 for ¢ (0) <u < o

The pseudo-inverse is given by the usual inverse for the cases when we have a strict generator

function . Then the Archimedean copulas are defined in terms of the generator function

as follows:

C (1, U, oo tn; @) = @' (o (ur; @) + ¢ (ug; @) + ... + @ (un; @) (1.3.24)

for a given dependence parameter . The density of Archimedean copulas for the bivariate

case is given by (see Nelsen, 1999):

—¢' (C (u1,uz)) ¢’ (u1) ¢’ (u2)
(¢ (C (u1,u2)))

Archimedean copulas have the useful property that most dependence measures, including

c(uy,ug) =

the coefficients of upper and lower tail dependence, can be expressed in terms of the generator
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function. Joe (1997) provides the following result with respect to tail dependence: for a

strict generator ¢ (u), if ¢’ (0) is finite and different from zero, then the copula has no tail
dependence. The copula has upper tail dependence for 1/¢’ (0)

= —o00, given by:
V' =2 -2 lim
and lower tail dependence, given by:

¢ (2)

z—04 QO’ (22:)

/
L' =92 lim ¢ (2)

e 7 (22)
Kendall’s tau also has a representation in terms of the generator function, given by
Genest and MacKay (1986):

_ ¢ (2)
T=4 ) dz+1
[0,1]

AS)

A member of the Archimedean family of copulas that we consider is the Gumbel copula,

introduced by Gumbel (1960). It is a parsimonious one-parameter copula, whose generator

is given by ¢ (z) = (— log (x))é ,a € (0,1], so that its CDF can be expressed as:

) >, a € (0,1]

Its Kendall’s tau is given by p. = 1 — «, and the coefficient of upper tail dependence is

n
1=

Cy (u1,ug,...,u,) = exp (— (

Q=

(—logu;)
1

(1.3.25)
given by Tg = 2 — 2% | while the coeflicient of lower tail dependence is zero. Independence

is achieved for a = 1, in this case both tail dependence coefficients are zero.

As we are particularly interested in the lower tail dependence, we have to use the survival

Gumbel copula to allow for it. The survival copula for the bivariate case can be defined
bigger than 2):

in terms of the copula function (see Theorem 4.7 in Cherubini et al. (2004) for dimensions

1
@

Co (u,v) = u+v—1+eXp(—[(—10g(1—U)) :
a € (0,1]

+ -t - 0)t]) (1320

Its Kendall’s tau is given by p,. = 1 — @, and the coefficient of lower tail dependence is
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given by Té’G = 2 — 29 while the coefficient of upper tail dependence is zero.

The symmetrized Joe-Clayton (SJC) copula. A bivariate copula function that has
both upper and lower tail dependence is the ‘BB7’ copula of Joe (1997), also known as the

Joe-Clayton copula. It is given by:

CJC (ul,ug ’ TL,TU)

2|~

H/_/
==

- 1- {1 - T - - w) T -1
1
log, (2 — 1Y)
1
log, (2 — L)
Y e (0,1), tF€(0,1)

where Kk =

The two parameters of the Joe-Clayton copula are indeed the coefficients of upper (7Y)
and lower (77) tail dependence. As it is claimed in Patton (2004), this copula function
suffers from the drawback that even if both parameters are equal, there is still some residual
asymmetry in the copula due to its functional form. So we consider instead its ‘symmetrized’

version, proposed by Patton (2004), whose form is as follows:

CSJC (ul,uz ’ TL,TU)

= % [CJC (m,w | TL,TU) +’¢ (1—u1,1 — ug | TL,TU) + Uy + us — 1]

However, this copula function has only a bivariate representation, while the one-parameter
Archimedean copulas can easily be extended to higher dimensions. In what follows, we con-
sider a nested version of the Archimedean copula that provides an extension to higher

dimensions without imposing excessive restrictions on the dependence structure.

Nested Archimedean copulas. Popular approach in literature consists in choosing the
same dependence parameter for all univariate marginals, as in (1.3.24), but this seems an
implausible restriction on the dependence structure for more than two dimensions, as the

pairwise dependence between each couple of random variables would be exactly the same.
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A remedy to this problem has been proposed in recent literature in terms of the so-called
nested copula construction for the family of Archimedean copulas (Whelan, 2004; Embrechts
et al., 2002). The idea of the construction is as follows. Instead of using (1.3.24), we could
construct a multivariate Archimedean copula by repeatedly nesting bivariate copulas. For

the tri-variate case the copula will thus have the form:

C (u1,u,u3) = 3" (02 (1" (1 (u1) + @1 (u2))) + @ (u3)) (1.3.27)

where each generating function ¢; (u;) has its own dependence parameter «;. With this
construction we achieve (n — 1) different pairs of variables, which are still below the gen-
eral case, but this is a considerable improvement compared to the simple form in (1.3.24).
However, there are certain conditions that the parameters should satisfy in order for the
nested copula to be a valid copula function (see Embrechts et al. (2002) for a discussion).
For the parameterization of the Gumbel copula it can be shown that the parameters in each
generating function have to satisfy the condition a; < a9, i.e. dependence should be higher
in the more deeply nested copulas®.

The parsimonious structure of the Gumbel copula makes it a suitable candidate for a
nested copula, so we consider it in our application. However, it allows for only upper tail
dependence, so we combine it in a mixture copula with its survival counterpart in order to

allow for lower tail dependence as well, as we describe over the following lines.

The mixture copulas. Combining both Gumbel and survival Gumbel copulas in a mix-
ture copula, where each function is assigned a certain weight, is a way to construct a copula
that has both lower and upper tail dependence with different tail dependence coefficients.
However, if we mix only extreme value copulas, we will implicitly assume asymptotic tail
dependence for all cases where « # 1. Following the Poon et al. (2004) critique, and in order
to allow for asymptotic tail independence, we include the Gaussian copula in this mixture

model, to obtain:

*Usually the Gumbel copula parameter is defined as v = 1, v € (1,00), and higher dependence will
translate in higher levels of . But for estimation purposes, we chose the alternative parametrization, using
a € (0,1], so that higher dependence requires a lower level of a.
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C% (u; R, 0, @ w0, @) = wCC (u;a) +WOC (w;a@) + (1 — w — @) C% (u; Rga)  (1.3.28)

or the Student’s ¢ copula:

Ct (u; Ry, v, a,@,w,©) = wCY (u; ) +@wC” (w;@) + (1 —w —@) CT (u; Ry,v)  (1.3.29)

where we are mixing the two extreme value copulas: the nested Gumbel copula C¢ (u; ),
where « is the vector of dependence parameters o; that determine upper tail dependence, the
nested survival Gumbel copula UG (u; @), where @ is the vector of dependence parameters
@; that determine lower tail dependence, with two elliptic copulas: the Gaussian copula
C% (u; Rgq) with correlation matrix Rg, in (1.3.28), or the Student’s t copula with a
correlation matrix Ry and a degrees of freedom parameter v in (1.3.29). The key difference
between the two mixture copulas consists in the fact that the one based on the Gaussian
copula allows for tail independence by setting the extreme value copula weights to zero,
while for the Student’s t case there is still some degree of tail dependence, even if the
correlation parameter of the Student’s t copula is zero. Thus, we achieve varying degrees of
tail dependence or asymmetry. Further, u = (u1,us, ..., uy)" is the vector of marginal CDFs
of the random variables, and {w,w} € [0,1],w + @ < 1 are the corresponding weights for
the Gumbel and the survival Gumbel copulas.

So far we have collected all the building blocks of the multivariate diffusion for the
state variables driving the stock price process, so in what follows we turn to the task of its

estimation.
1.4 MCMC estimation of the multivariate copula diffusion

The above construction of a stationary diffusion with a prespecified stationary density
(1.3.1)-(1.3.5) poses a serious estimation problem. Even though the invariant density is ex-
plicitly known, this cannot be said for the conditional density of the state variables. Thus,
exact likelihood estimation cannot be applied in this case. There is a variety of methods
proposed in literature to deal with the estimation of a diffusion with an unknown conditional

distribution. Ait-Sahalia (2003) proposes closed-form expansions of the likelihood function
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both for univariate and multivariate discretely sampled diffusions, based on Hermite poly-
nomials and Taylor expansion of some fixed order. While this method seems well suited
for the problem at hand, it could become too computationaly intensive in the cases where
no explicit solutions for the coefficients of the density approximation can be found. Bibby
and Sorensen (1995) and Rydberg (1999) propose another estimation technique that relies
on approximating the conditional density by a normal density and applying a martingale
estimation technique. However, even though the martingale estimator is consistent and
asymptotically normally distributed, it rests inefficient.

To solve this problem, Tse et al. (2004) propose an alternative way of dealing with the
problem of unknown transition density - the MCMC estimation for a hyperbolic diffusion.
Relying on a discretization of the underlying diffusion, they apply a random-walk Metropolis
Hastings algorithm in order to estimate parameters. However they assume that the discrete
time intervals given by observation times are accurate enough to approximate the transition
density. If the available data is not fine enough, this approach would introduce discretization
bias.

A suitable alternative to deal with the problem of the discretization bias for a highly
non-linear (multivariate) diffusion that we apply in this setting, is data augmentation, i.e.
introducing latent data points between each pair of observations. This technique has been
used in Pedersen (1995) for simulated maximum likelihood estimation of diffusions, or in
Jones (2003), Elerian et al. (2001), Roberts and Strammer (2001), and Eraker (2001) for
MCMC analysis. The simulated maximum likelihood method relies on a discretization
scheme such as the Euler scheme to approximate the one-period-ahead transition density.
The MCMC approaches on the other hand propose simulated paths of latent data that
bridge two consecutive observations, constraining both ends of the simulated path to be
equal to the actual data. Thus, conditioning on both the beginning and the end of each
observation sub-period reduces the variance of the simulated latent data and augments the
efficiency of the algorithm.

However, augmentation schemes are susceptible to causing slow rates of convergence of
the resulting Markov chain due to the dependence between the latent data points and the
volatility of the diffusion as the degree of augmentation increases (known as the Roberts and

Strammer (2001) critique). There have been several remedies to this issue proposed in recent
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literature, as the particular transformation of the diffusion process to one with constant
volatility proposed by Roberts and Strammer (2001), the simulation filter for multivariate
diffusions of Golightly and Wilkinson (2006a) that builds upon the sequential parameter
estimation procedure of Johannes et al. (2004) for discrete-time stochastic volatility models,
or the Gibbs sampler of Golightly and Wilkinson (2006b) that iterates between updates of
parameter and states and relies upon conditioning on the Brownian increments instead of
the underlying latent data in order to overcome the dependence with volatility parameters.

The estimation scheme we propose to apply in the present setup relies on an MCMC
estimation algorithm with data augmentation for both the univariate and the multivari-
ate diffusion specifications. It follows the sequential inference procedure of Golightly and
Wilkinson (2006a) and is closely related to the work of Roberts and Strammer (2001) and
Durham and Gallant (2002). As the augmentation of the parameter and state space with
latent data points is the corner stone in each MCMC algorithm for diffusion estimation, we

will first discuss the particular scheme that was chosen and the motivation behind it.

1.4.1 Data augmentation

Consider a d-dimensional It6 diffusion given by:

dY, = p (Y)) dt + o (V) dW, (1.4.1)

Let data be observed at times tg < t1 < ... < tp—1 < t, with a time increment A7 =
tiv1 — t;. We divide each subinterval between observations in m equidistant points, so that

we obtain an augmented data matrix:

aug __ X5 X X5 X
Y _[Ytoi) Yto,l Yto,m Yt1,0 Ytn—ho Ytn—hm tho ]’

where Y}, ; is a d-dimensional vector of latent data points at time ¢; + jA7T/(m + 1) and
Y1, 0 is the vector of observations at time ¢;. The augmented data matrix could also consist
of unobservable state variables, whose treatment would be similar to that of the latent data.
Working with the Euler discretization of the process, the joint posterior of data and model

parameters 6 is given by:
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tn—1 m
7 (Vi) o (0) [T § []7 (Vejin | Yesi0) (1.4.2)
t=to | j=0

where 7 () is the prior density for the parameter vector, and 7 (Y j4+1 | Y3,5;6) comes from

the Gaussian transition density implied by the Euler discretization:

7 (Yier | Vi) = 6 (Vi + (Vi) At, o (V) o (V)T At)

where At = A7/ (m + 1) is the time increment between successive data points in the aug-
mented vector Y**9 and ¢ (i, o) denotes the Gaussian density with mean g and covariance
matrix o.

Inference procedures that rely on a Gibbs sampler use the conditional posterior for pa-
rameters given data and the conditional posterior of missing data given parameters and
observations, rather than the joint posterior (1.4.2), and iteratively propose parameters and
missing data from each one of them, so that the obtained simulated sequence of parameters
and missing data (after an initial burn-in stage) forms a Markov chain whose stationary
distribution is the posterior in question. The alternative approach that we apply is the joint
update of parameters and states, which overcomes the problem of increasing correlation
between the volatility parameters and latent data as the degree of augmentation becomes
large. But as it is virtually infeasible to update all latent data in one single block, this sam-
pling scheme can be applied in a sequential manner, updating parameters and unobserved
state variables as each observation becomes available.

A straightforward procedure for sampling the latent data points has been proposed by
Eraker (2001). It can easily deal with high-dimensional problems, including unobserved
state variables. It consists of designing an Accept-Reject Metropolis Hastings algorithm for
updating one column of data at a time, where the conditional posterior of one column of

missing data is defined as:

7 (Yi | Y\;:0) o p (Vi | Yie1,Yig1;0)

following the Markov property of the diffusion. At each iteration h the algorithm pro-
poses a latent data point Y;* from some proposal density (Eraker uses a normal proposal

q ( ‘ Ylfi s Y;‘Tll? 0h>), which is then accepted or not following the acceptance procedure of
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the Accept-Reject Metropolis Hastings algorithm of Tierny (1994). The sampling scheme,
proposed by Elerian et al. (2001), is essentially the same, but instead of updating one column
vector at a time, they propose updating blocks of missing data with random size. However,
increasing the number of imputed data points m, while reducing the discretization bias of
the Euler approximation, seems to adversely affect the mixing properties of the algorithm
because of the increasing correlation of the diffusion parameters and the simulated path as
m increases. In fact, when the number of latent data points tends to infinity, one could very
precisely estimate the diffusion term by the quadratic variation, so that when updating the
diffusion parameter, its posterior distribution given the simulated latent path tends towards
a point mass at its previous iteration value, rendering it impossible to update the parameter.

Roberts and Strammer (2001) propose a reparametrization of the missing data that
circumvents the problem of reducible data augmentation. The basic idea behind their scheme
is a construction of the latent path that does not depend on the diffusion term. They apply
the sampling algorithm on a univariate diffusion with constant diffusion term, as well as on
a reducible diffusion in the sense of Ait-Sahalia (2003) that has a deterministic time-varying
diffusion term, and that could be transformed to a constant volatility diffusion following the
Doss transformation.

Their methodology could easily be extended to the estimation of a reducible multivariate
diffusion, such as the constant volatility specification considered in Kunz (2002), that is a
special case of the model we propose, but for a general multivariate diffusion as in (1.3.5)
it is almost impossible to solve for the volatility transformation. Therefore, we use a more
promising approach that is applicable for the multivariate specification we are proposing,
which consists in the joint update of parameters and states following the sequential MCMC
method of Golightly and Wilkinson (2006a). It does not rely on a volatility transformation
for the diffusion and at the same time overcomes the Roberts and Strammer critique to
data augmentation. As a direct draw from the joint posterior of the model’s parameters
and the latent state variables is virtually impossible due to the dimension of the state space,
a solution to proceed is to revert to Bayesian sequential filtering, devising an MCMC scheme
that updates parameters as each new observation becomes available. This idea has been
exploited in Stroud et al. (2004), Johannes et al. (2004), Liu and West (2001) among others.

In what follows, we will briefly discuss the algorithm that has been applied in Golightly
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and Wilkinson (2006a) for the estimation of a general multivariate diffusion. It has proved
to have better convergence properties than the standard Gibbs sampler that iteratively

updates parameters and states.

1.4.2 The sequential parameter and state estimation scheme

Let us consider that we are at time t;1,, = t)/ and that we observe ?t]. = ?tM, and
also suppose that we have a sample of size MC' from the marginal parameter posterior
distribution 7 (9 | ?tj),where ?tj denotes all the observed data up to time ¢;. As we are
interested in sampling the set of parameters from their marginal posterior (9 | Y, M), we
could do so by formulating the joint posterior for parameters and latent data = (9, Yiy | Y M)
and then integrating out the latter, where Y;,, denotes all the latent data points up to time

tar. Notice that the marginal parameter posterior at time tj; can be rearranged as follows:

M—1
7 (0]Yh,) = / w(0) [] (njjf | Yu, 9) (1.4.3)
v
M—-1
au au Z:']
oy}
So that our target density at time ¢;; would be
M-1
m(01V1,) =7 (017,) T = (v 1 vs0)
i=j

with the augmented data for the interval (¢;,¢5r) integrated out.
In order to sample from this target density, we need to devise a Metropolis-Hastings
algorithm that will propose parameter and latent data points and will accept or reject those

proposals given a certain probability.
The parameter proposal

The approach taken by Golightly and Wilkinson (2006a) that we apply here, and also used
in Liu and West (2001), consists in proposing the parameter set 6 using a kernel density
estimate of the marginal parameter posterior 7 (0 | Y j) with the kernel shrinkage correction

of Liu and West (2001) that takes care of the over-dispersion of the kernel density function
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compared to the posterior sample. Thus, we draw the proposal sample of parameters from

the following density:

0 ~ ¢(aby+(1—a)d,h*V) (1.4.4)
o = 1-—h?

A2 = 1—((36—1)/26)°

for a discount factor §, where ¢ denotes the Gaussian density, and w is an integer that
has been drawn uniformly from {1,2,..., MC}. This parameter proposal scheme simplifies
considerably the expression for the acceptance probability, as at each observation time t;
we sample from the previous posterior density (9 | ?tj), so that it will enter both the
target posterior density and the proposal, and thus be cancelled out in the calculation of

the acceptance probability.

The latent data points proposal

The idea behind the proposal density ¢ from which the proposal latent data points will be
sampled is that it should satisfy sup (¢) C sup (p) where p denotes the target density 7 in
its unnormalized form. A good proposal would be one that makes the ratio p/q as close to
a constant as possible. This is especially important for independence samplers, as the one
used in this setting, as pointed out in Tierny (1994), in order to avoid that the algorithm
spends too much time in a certain region of parameter space that it explores.

We apply a Modified Diffusion Bridge proposal for the latent data, based on an Euler
scheme for the transition density. The idea behind it is quite simple: a Brownian bridge is
in fact a Brownian motion that is conditioned upon terminating at a specific value within
the interval of interest, that is, it bridges the values at each end of the interval. Using such
a Brownian bridge is a way to reduce variance in Monte Carlo integration and Durham and
Gallant (2002) show that it compares nicely to other transition density approximations like

the Milstein scheme. Thus, the proposal for the latent data points takes the form:
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q (}/tH—l ’ nm?lfjw; 0) = ¢ (Y%i-ﬁ-l?)/ti + ﬁi? Ez) (145)
~ 1 =
where f1; = M_—i (YtM - }/tz)
~ 1 )
oi = Athi(M_Z_l)U(}/ti)

where ¢ denotes the Gaussian density and o (Yy,) is the volatility term of the process

for Y from (1.4.1). Thus for each iteration s = 1,..., MC we sample a latent data path

Yt*;, . Yy, |, s0 we have the joint proposal sample
M—2
(Ve ¥ty 30) ~ 7 (017) TT a (Vi 12050 Vi3 0) (1.4.6)
i=j

A Metropolis-Hastings algorithm moves as follows: provided that we have obtained
the proposed sample at iteration s and that we have a parameter and latent state sample
obtained from the previous iteration s — 1, we decide whether to keep the parameters and
latent data from the previous iteration or alternatively replace them with the ones from the

proposal. To this end we form the ratio

4 PV 6, 0)
b (Ys’*la 05*1) (7(}/5*7 9:)

where (Y, 0%) = (Y;’;, Y 0*)5 is the proposed sample at iteration s, (Ys_1,05-1) =

M-1’

(Y}j, N R 9)5—1 is the previously accepted sample at iteration s—1, p denotes the target
posterior density in its unnormalized form, and q is the proposal density (1.4.6). Replacing

all terms in the expression, we obtain for the ratio A:

M-1 M2 -
H Q (Y;:Jrl | th;Q*) H q (Ytz‘+1 | Y;NY;H’YtM;H)
i=j =7
= = - (1.4.7)
[T 7 (s 1i30) TL 0 (¥iroy 1YYt Foi07)
i—j =J

The standard Metropolis Hastings algorithm then accepts the new draw with probability

a =min (1, A), or else the draw is rejected and the last accepted draw is retained.
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The algorithm

The algorithm for carrying out the Metropolis-Hastings scheme for sampling from the con-

ditional posterior of parameters and latent data can be summarized as follows:
Initialization. Set j = 0. Initialize the augmented data points for each of the s =

1,..., MC iterations by linearly interpolating between observations for the first interval.

Initialize the parameter set for all s by sampling from a prior density 7 ().
1. Foreach s=1,...,MC :

e Propose the parameters " using (1.4.4)

e Propose the latent data Y* for the interval (¢;,¢;4sm,) using (1.4.5) for each i = j +
1, M—1

e Accept the parameter and latent data proposal with probability v = min (1, A) with
A given by (1.4.7), and set (Y5, 05) = (Y,0%), or else set (Ys,0s) = (Ys—1,05-1).

2. Set j =j+m and go to (1).

The resulting draws of latent data and parameters form a Markov chain, whose stationary
distribution after an initial burn-in period is given by (1.4.2). The number of imputed data
points that are needed could be determined by running the sampler for low values of m and
consequently increasing the discretization points until there is no significant change in the

posterior parameter samples.

Convergence

In order to assess the accuracy of the parameter estimates obtained as ergodic averages of

the form:

1 MC
Ovc=—=» (0
e = 376 2 )
we estimate their variance Jg using the batch-mean approach (see Roberts, 1996; Tse et al.,

2004). To this end, we run the MCMC scheme for M C = m x n iterations with m batches

of n draws each. We compute the mean of each batch k =1, ..., m with:
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-l S o
fon i=(k—1)n+1
Then we obtain an estimate of o2 using:
~2 n WL i 2
6= —= (ek - eMc) (1.4.8)

=1
and the Monte Carlo standard errors are obtained as E—gc
As well, as a diagnostic tool that allows us to see how well the Markov chain mixes, we
compute the simulation inefficiency factor (SIF) (see Kim et al., 1998), estimated as the
variance of the ergodic averages 03, divided by the variance of the sample mean from a hy-
pothetical sampler that draws independent random variables from the parameter posterior.

In order to compute the latter variance, we use the output of the MCMC runs, as in Tse

et al. (2004), and obtain:

MC

1 . 2
—2 7
= — 0" —0 )
= s 3 (0~ e
so that the SIF is estimated as:
82
SIF = -4 (1.4.9)

O9

Model comparison through Bayes factors

In order to compare the estimated multivariate diffusion models of asset returns, we follow
the traditional Bayesian approach that makes use of the marginal likelihood of each (poten-
tially nonnested) model. The marginal likelihood is obtained by integrating the likelihood

function of each model M; with respect to the prior density:

p<Y|Mi>=/p<Y|ei,Mi>p<ei|Mi>dei

where 6; are the parameters, corresponding to model M;. Then the Bayes factors for

comparing model M; against M; are simply the ratio of the marginal likelihoods:

(1.4.10)
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We use the Laplace-Metropolis estimator of the marginal likelihood, proposed by Lewis
and Raftery (1997) that relies on the posterior simulation output from the individual es-
timation of each model and approximates the integral using the Laplace method. Let us
denote by 67 the posterior parameter mean (or any other high density point of the parameter

posterior). Then the logarithm of the marginal likelihood is estimated as:

log (p (¥ | My)) = § log (2m) + 3 log (1)) + log (5 (67)) +log (p (¥ | 67, My))

where d is the dimension of the diffusion, p (6;) is the parameter prior under model M;, H*
is the inverse Hessian of log (p (0] ) p (Y | 07, M;)), | H*| is its determinant, and p (Y | 65, M,)
is the likelihood function, evaluated at 6*.

Lewis and Raftery (1997) propose to estimate H* by the sample covariance matrix of
parameters from the MCMC output, so the only quantity that is left to be estimated is
the likelihood function. The most straightforward estimator would be the one proposed
by Pedersen (1995) that consists in averaging over the transition density implied by the
Euler discretization. But as estimation was done by exploiting the information in both ends
of each observation interval, we revert to a more efficient approach that is similar to the
Metropolis-Hastings update used for latent data. Thus, the importance sampling estimator

of the likelihood function has the following form®:

p (?tM7}/%M ’ ?tjve)
q (}/tM | ?tjy?tM;e)

p(?t]w |?tj70) :/

for an interval between two successive observations Y o and Y: » Thus, the modified Brown-

q (YtM | ?tj)?t]u;e) d}/;fju

ian bridge proposal density that we used for the Metropolis-Hastings update could be used
in this setup as the importance density ¢, which leads us to the following estimator of the

likelihood function:

M (Y7 ka?.-e)
o — 1 p( taro Lt tjs
p(YtM‘Ytj;e):MZ k —J—
k=14 <}/t] |Ytj7YtM;9)

where Y;’; ,k=1,..., M is a set of latent vectors between each pair of observations.

®See Elerian et al. (2001)
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1.5 Estimation results

Although a joint estimation of each of the multivariate models is feasible, we propose to
use a two step procedure, as this allows us to choose the appropriate marginal distribution
for each data series. Such a two-step approach is commonly used in discrete-time copula
models (Patton, 2004), as it allows to avoid copula model misspecifications. A misspecified
univariate model would directly entail copula misspecifications, as the latter relies on the
probability integral transform of each univariate series to model the dependence structure. A
two step approach is possible in our continuous time setup as well, as a system of independent
univariate diffusions is obtained under the product copula, assuming an identity correlation
matrix for the diffusion term. Thus we first estimate each marginal diffusion separately, and
then the obtained parameters are plugged in the multivariate model in order to estimate the
dependence parameters pertaining to the chosen copula function, as well as the conditional

correlation parameters for the multivariate diffusion.

1.5.1 Univariate diffusion

As the copula construction leaves us the freedom to choose any marginal distribution that
should not be the same across all univariate series, we chose to estimate a NIG stationary
distribution for all series, except the Mid caps, for which the more general GH construction
appears to be appropriate (a NIG diffusion for the Mid caps is rejected on the basis of
the uniform residuals obtained by the probability integral transform discussed in section
1.3.1; as well Bayes factors comparison between a NIG and a GH diffusion point towards
the latter for Mid caps). The chosen marginal distribution is thus given by (1.3.11) for
Small and Large caps, with the Bessel function parameter A set to -0.5, while the marginal
distribution for Mid caps is given by (1.3.8) with a free A parameter. Table 1.5.1 summarizes
the estimation results for the parameters specific to each univariate series.

It is interesting to note that the parameter x for all three series of data is significantly
different from 0 or 1, which would correspond to either a constant volatility diffusion for
the state variables (k = 0) or a zero drift diffusion (x = 1). Thus we retain that more
general specification for the subsequent multivariate diffusion modeling. As well, correct
modeling of both the drift and the diffusion term for the state variables would be crucial

for filtering out the market price of risk, which in turn could have a significant impact on
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Table 1.5.1: Parameter estimates for the univariate series
The table summarizes the posterior parameter estimates from the MCMC output. Monte Carlo
standard errors are reported in parenthesis (multiplied by a factor of 1000) (obtained using the batch-
mean approach). SIF refers to the simulation inefficiency factor for each parameter (its integrated
autocorrelation time).

Smallcap Midcap Largecap

o 3.0502 18.7839  10.6904
(MCs.e)  (0.1616) (0.5220)  (0.2193)
(SIF) (0.0938) (0.6694)  (0.6912)
g 20.5911  0.4476 -1.5737
(MCs.e.)  (0.6329) (2.9453)  (1.5404)
(SIF) (0.1104)  (1.5392)  (1.7637)
52 0.0301  0.0721 0.0410
(MC s.e.)  (0.0024) (0.0011)  (0.0031)
(SIF) (0.1219) (1.0535)  (1.8122)

6.7059  6.3101 6.5360

se.)  (0.0249) (0.0129)  (0.0102)
(0.1038)  (0.5407)  (0.4991)

0.0406  0.0400 0.0082

=

33

MCs.e)  (0.0022) (0.0030)  (0.0006)
(SIF) (0.1142)  (1.4686)  (1.2930)
K 0.6490  0.4670 0.5102
(MCs.e.)  (0.0373) (0.0235)  (0.0850)
(SIF) (0.0955)  (1.4322)  (1.7551)
A 05 -1.4295 0.5
(MC s.e.) - (0.0519) -
(SIF) - (1.1704) -
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portfolio decisions based on this model for stock prices.
Further analysis of the MCMC output is offered on Figure 1.5.1, where we present the

6 as well as autocor-

sample paths of the estimated parameter for the Small cap data series
relation plots for a lag up to 100, and kernel density estimate of the posterior parameter
output. We do not have any significant autocorrelation for any of the parameters, which is
a consistent result with Golightly and Wilkinson (2006a), who show a significant reduction
in sample autocorrelations of the Simulation Filter as compared to the Gibbs sampler.

In order to examine whether the proposed multivariate diffusion replicates certain dy-
namic properties of the data, we simulate a very long series (of length 100 000) from the
univariate NIG diffusion model for log prices X;; (1.3.18) and parameters corresponding to
the Large cap series in Table 1.5.1, and examine the implied properties of their increments’.
A stylized fact of asset returns is the persistence in autocorrelation in squared returns in
contrast to the lack of autocorrelation in the original return series (except for possibly the
first lag). If we examine the autocorrelation patterns in the data and the long simulated
series, we find that this property is actually captured by the model, as displayed on Figure
1.5.2.

This finding is not surprising, if we consider the fact that the Euler discretization of
a univariate diffusion of the generalized hyperbolic family can be considered as a special
case of a nonlinear ARCH model (Tse et al., 2004), and thus it can be expected to exhibit
volatility clustering and long memory properties. The same behavior is preserved in the
multivariate specification as well.

Another important aspect of our analysis is the fit of each of the univariate diffusions
to the empirical distribution of the data, as they will provide the inputs for the probability
integral transform in the copula construction. Figure 1.5.3 illustrates the close replication
of the stationary distribution by the considered marginal processes.

Note that the construction of a stationary diffusion leaves us with the freedom to choose
either the volatility or the drift specification. Models that were proposed in literature treat
either one or the other as a constant, that significantly facilitates estimation but leaves

open the question as to whether such a simplified model would reproduce the dynamic

6Results for the Mid and Large caps series are qualitatively the same and we do not report them for
brevity.
"Similar results are obtained for any of the univariate data series considered.
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properties of the data as well. As we estimate a general diffusion with nonconstant drift
or volatility term through the parameters x; in (1.3.5), it would be of interest to examine
how closely this chosen specification can account for the variability in the data. Following
Bibby and Sorensen (1997), we contrast the parametric specification of the volatility term
0 [f (X; )]

on quadratic variation, as proposed in Florens-Zmirou (1993):

2 Hi . . . . . .
against a nonparametric estimator of the squared diffusion coefficient, based

2
2?21 1‘Xi,tj *x‘<h (Xi’tj B Xi’tj—l)

n
ijl 1‘Xi,tj *x‘<h (tj n tj_l)

Vi (z) =

with a bandwidth parameter h. Figure 1.5.4 displays the fit of the volatility specification
for each of the univariate models. The U-shaped parametric volatility form (1.3.5) matches
closely the non-parametric estimator. A constant volatility specification (achieved by setting
ki to zero) would thus underestimate volatility in the cases when returns are in either tail
of the distribution and fail to reproduce the empirical stylized fact that returns are highly
volatile in extreme market downturns.

A check of the fit of the univariate models is done via the dynamic probability integral
transform that uses the transitional probabilities of the discretized version of the diffusion
between two consecutive observations with the Euler discretization scheme, as discussed in
Section 1.3.1. For the model to be well specified, the series of uniform residuals should be
i.1.d.U(0,1). The residuals could then be analyzed using quantile plots, as illustrated on
Figure 1.5.5. A formal test could be conducted using the statistic stat = —23 ;" | log U; ~
X3, following Bibby and Sorensen (1997). For 3997 observations, the test statistic for the
Small caps is 7.8677e+003, for the Mid cap it is 7.8797e+003, and for the Large cap it is
8.1278e+003, none of which gives reasons to reject the correct model specification.

Finally, we proceed to a simulation study in order to validate the proposed MCMC
estimation scheme. We simulate a sample from the univariate NIG diffusion with parameters
corresponding to the estimates for the Large cap series (Table 1.5.1). The simulated series
corresponds to 5 years of data and is simulated using Euler discretization. We then run the
Simulation Filter for 100 000 iterations at each time step and with m = 5 or 15 latent data
points between observations. Figure 1.5.6 summarizes the results.

The upper panel of Figure 1.5.6 plots the evolution of the sequential parameter estimates
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Figure 1.5.5: A formal check of the univariate diffusion models
Quantile plots and autocorrelation plots of the uniform residuals for each of the univariate diffusion

models.
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Figure 1.5.6: MCMC estimation output: simulated series
The figure displays the output from the MCMC estimation of the NIG diffusion for a simulated
series with parameters taken from the estimates of the NIG diffusion for Large caps.
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The top

figure represents the sequential parameter plots from 100000 replications with m = 15 latent data
points between observations; the line in the middle is the smoothed posterior mean, and the two
dashed lines represent the 95th and the 5th quantiles from the posterior parameter distribution. The

bottom figure plots the kernel density estimate of the parameter posterior distributions for m = 5

and m = 15.
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across time: the smoothed posterior mean, as well as the 5th and the 95th quantile of the
parameter posterior. The lower panel shows the kernel density estimates of the parameter
posteriors after running the Simulation Filter through the whole period for the two dis-
cretization cases of m = 5 or 15. The estimated parameters «, 3, §, and u, corresponding to
the stationary NIG distribution, are fairly close to the true ones for both choices of number

of latent data points m.

1.5.2 The importance of modeling asymmetric tail dependence: a bivariate

diffusion example

Having obtained estimates of the univariate marginal distributions for each data series, we
now turn to estimating the model parameters that pertain to the dependence structure. The
bivariate quantile plots for all three couples of data on Figure 1.2.1 have shown a substantial
degree of quantile ‘near’ tail dependence that does not fade away as we approach the tails
of the distribution, especially the left one. That is, in periods of extreme market downturns
stocks continue being dependent - a feature that could possibly wipe out any diversification
benefits of an all-stock portfolio. As well, the non-parametric test of exceedence correlations
symmetry with exceedence levels chosen close to the tails, whose results are shown in Table
1.2.1, rejects symmetry for all couples of data, except the Large cap - Mid cap couple, for
which in both tails exceedence correlations are high. In what follows, we verify whether a
multivariate copula diffusion model could reproduce these properties of the data.

A good candidate for the purpose of modeling an asymmetric tail behavior is the bivariate
Symmetrized Joe-Clayton copula, discussed in previous sections. It has two parameters, each
one directly linked to the upper or lower tail dependence coefficient. So before we estimate
a bivariate diffusion model based on this copula function, let us first look at the levels of tail
dependence that could be achieved through it. In order to do so, we need to obtain the levels
of its parameters, implied by the data, so we first estimate the copula parameters from the
unconditional distribution of each couple of the state variables X, pertaining to each of the
CRSP size indices. We apply the Canonical Maximum Likelihood estimation method which
consists in first transforming the data into uniform variables using the empirical distribution,
that is without imposing any parametric restrictions on the univariate marginals, and then

estimating the copula parameters § with MLE:
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T
6 :argmgx;ln(:(Fi (xi), F} (a:j);Q), i,j=1,2

where F; (z;) is the empirical CDF of z;, and ¢ (-) is the chosen parametric copula function.
We estimate the copula parameters for two choices of copulas - the tail independent Gaussian
and the asymmetric tail dependent SJC copula. Then for each dependence function we trace
quantile plots (Figure 1.5.7), where the levels of quantile dependence are obtained using
(1.2.10), which are then contrasted against the quantile plots for the data itself.

The coefficients of upper and lower tail dependence for the Large cap - Mid cap couple
are both high, which corresponds to the symmetric tail behavior in terms of exceedence
correlations that we reported in Table 1.2.1. However, the upper tail coefficients for the
other two couples of data are low, especially for the Large cap - Small cap couple, where
7V = 0, while the lower tail dependence coefficients are significantly higher, confirming
the evidence of asymmetric tail behavior. Quantile dependence plots, implied by the so
estimated coefficients, confirm the finding of higher dependence as we go further in the
left tail. The quantile dependence plots for the SJC copula are closer to the data, while
those corresponding to a Gaussian copula deviate from it, especially in the left tail, where
Gaussian dependence fades away for decreasing quantile levels, while SJC copula-implied
dependence maintains higher level, closer to the data.

We now turn to the estimation of a bivariate diffusion whose stationary distribution has
a dependence structure governed by the asymmetric tail SJC copula. Using the Simulation
MCMC filter, we estimate the bivariate model for all three couples of data, while keeping
fixed the univariate marginal distribution parameters at their estimated values from the
previous section. Results are reported in Table 1.5.2.

Note that the estimates of the upper and lower tail dependence parameters for the
diffusion models are fairly close to the values obtained for the unconditional distribution,
estimated using the Canonical Maximum Likelihood with uniform variates from the em-
pirical distribution (Figure 1.5.7). Again upper tail dependence coefficients are lower than
their corresponding lower tail dependence counterparts for all couples of data. Upper tail
dependence is still relatively high for the Large cap - Mid cap couple.

The obtained parameter estimates are then used to simulate long series from each of the
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Table 1.5.2: Parameter estimates for a bivariate Symmetrised Joe-Clayton

copula diffusion

The table summarizes the posterior parameter estimates from the MCMC output. Parameters v

and 7L refer to the upper and lower tail dependence of the bivariate Symmetrised Joe-Clayton copula,
while parameter p is the conditional correlation parameter of the bivariate diffusion. The rest of the
parameters, pertaining to the marginals, are not estimated and are kept fixed at their corresponding
values from Table 1.5.1. Monte Carlo standard errors are reported in parenthesis (multiplied by a
factor of 1000) (obtained using the batch-mean approach). SIF refers to the simulation inefficiency
factor for each parameter (its integrated autocorrelation time).

Large cap - Mid cap Large cap - Small cap Small cap - Mid cap

v 0.4171 0.0484 0.1835
(MC s.e.) (0.1568) (0.1209) (0.1934)
(SIF) (0.2890) (1.0160) (0.5710)
T 0.6724 0.2700 0.6602
(MC s.e.) (0.1585) (0.2359) (0.0608)
(SIF) (1.0040) (1.0279) (1.1880)
P 0.5968 0.6514 0.6682
(MC s.e.) (0.0107) (0.0049) (0.0050)
(SIF) (1.4428) (0.9354) (2.0860)

three SJC copula diffusions. Further, we calculate the levels of quantile dependence for each
bivariate series using (1.2.10). From each bundle of simulated series and their corresponding
levels of quantile dependence, we then determine the obtainable degrees of dependence for
each quantile level in bands between the 5th and the 95th percentile. Thus, for each quantile
level we show the degrees of quantile dependence that can be reached in 90% of the cases
with a SJC copula diffusion. Results are presented on Figure 1.5.8.

For the case of the Large cap - Mid cap couple, quantile dependence implied by the data
generally falls within the bounds reachable under the estimated parameters for the SJC
copula, with the exception of the extreme left tail, which would require an even higher left
tail dependence parameter in order to accommodate the dependence found in the data. For
the other two couples, the parameters for the SJC diffusion can reasonably well replicate

the quantile dependence for the left tail.

1.5.3 A generalization to higher dimensions

Even though the SJC copula is intuitively appealing as its parameters are directly linked to

the coefficients of upper and lower tail dependence, it could not be easily generalized to a
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higher dimension. Copula functions that can be extended in a straightforward manner to
dimensions higher than 2 are the Elliptic copulas, whose form is given in (1.3.22) for the
n-variate Gaussian copula and in (1.3.23) for the n-variate Student’s ¢ copula. However,
they imply either no tail dependence or symmetric tail dependence (governed by the degrees
of freedom parameter), while we have seen that data generally asks for a copula function
that can accommodate asymmetric dependence between extreme realizations.

That is why we turn to copula functions in the Archimedean family that allow an exten-
sion to higher dimensions without imposing symmetry. One such candidate is the Gumbel
copula and its survival counterpart, that model either upper or lower tail dependence. The
most straightforward way that these copulas be generalized to n dimensions is to allow for
the same parameter o to govern the dependence structure for all n random variables, as in
(1.3.25) for the Gumbel copula and in (1.3.26) for the survival Gumbel.

However, we have seen that for the three couples of CRSP indices that we have consid-
ered the degrees of upper or lower tail dependence vary substantially between the couples
(e.g. the Large cap - Mid cap couple are both upper and lower tail dependent, while the
lower tail dependence for the Large cap - Small cap couple is close to zero). Thus, im-
posing the same dependence parameter across all variables could be seriously misleading.
A remedy to this problem is the nested copula construction for the Archimedean family
that we have discussed in the previous sections. It nests the Archimedean generator func-
tions with different parameters and can thus impose different degrees of dependence for
the random variables (the highest dependence being achievable for the most deeply nested
couple). The three-variate nested Archimedean copula, expressed in terms of the cop-
ula generator and its inverse is given by (1.3.27). Thus, we may pick up the size decile
couple that has the highest dependence and model it as the most deeply nested couple.
The generating function for this couple will then be ¢; with a dependence parameter «;.
Thus we obtain the first copula, C' (u1, u2; 1) = o7 (21 (u1) + ¢ (u2)). We then couple it
with the third remaining data series using a second generating function ¢y with a depen-
dence parameter oo that implies lower dependence than «q and obtain the nested copula
C (u1,u2,u3; o1, a2) = 9y (09 (C (u1,u2; 1)) + @5 (u3)). This subsequent nesting of gen-
erating functions requires that they are quite parsimonious in nature in order to keep the

resulting copula function tractable, and the Gumbel copula that we use is a good candidate
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for that. In our application we use either of the size decile couples as the most deeply nested
one, although the most fitted couple for that is the Large cap - Mid cap one, as it implies
high dependence in both tails.

When using the extreme value Gumbel copula, there is also some concern that we are
implicitly imposing asymptotic dependence between extreme realizations of the random vari-
ables (see Poon et al., 2004). In order to allow for asymptotic independence, we consider
instead the mixture copula function as defined in (1.3.28) which combines the two extreme
value Gumbel copulas with the tail independent Gaussian one. If the estimate of the weight
for the Gaussian copula goes close to 1, then our series is asymptotically independent. Oth-
erwise there is some degree of dependence in either of the tails, depending on the weighting
of the Gumbel copula or its survival counterpart. As well, in order to allow for richer para-
metrization of the dependence structure, we consider a mixture copula of the two extreme
value ones with the Student’s ¢ as in (1.3.29). In this case we always have asymptotic
dependence, unless the degrees of freedom parameter goes to infinity, and the importance
of dependence in each tail is again determined by the weight of the corresponding extreme
value copulas.

Estimation results for the multivariate diffusion with a Gaussian dependence structure
is given in the first column of Table 1.5.3. Then we add the three alternative cases of a
diffusion with tail dependence as implied by the nested mixture copula ((1.3.28) with nested
Gumbel and Survival Gumbel), and finally we consider the most parsimonious specification
where there is only one parameter that determines upper tail dependence, and one for lower
tail dependence ((1.3.28) with non-nested Gumbel and Survival Gumbel copulas).

First, note that for both the Gumbel and the Survival Gumbel copulas, the parameters
corresponding to the most deeply nested couple (a? and alG respectively) have lower values
than the corresponding parameters for the second generating function (o and @$'), as they
have to respect the condition that assures that the obtained nested Gumbel function is
indeed a copula.

The relatively high and symmetric lower and upper tail dependence coefficients for the
Mid-Large cap couple that we found earlier are indeed reflected in the estimation results
for the nested Gaussian-Gumbel-Survival Gumbel diffusion for the case where it is most

deeply nested in the copula specification (Table 1.5.3, second column). The two parameters
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Table 1.5.3: Parameter estimates for the dependences structure (tri-variate
diffusion, Gaussian underlying)

Estimation results for the trivariate diffusions using the Gaussian copula, the nested Gaussian-
Gumbel-Survival Gumbel (Ga-G-SG) mixture copula (the most deeply nested couple is given in
parenthesis), the nonnested Gaussian-Gumbel-Survival Gumbel (Ga-G-SG) mixture copula. Monte
Carlo standard errors (multiplied by a factor of 1000), and Simulation Inefficiency Factors (SIF)

are given in parenthesis. The first three parameters (Ri2, R13, Ra3) correspond to the off-diagonal

entries of the correlation matrix Rg, for the Gaussian copula. The parameters ozlG and a2G are

the dependence parameters for the nested Gumbel copula, and the parameters af and a§ are

the dependence parameters for the nested Survival Gumbel copula. For the nonnested case, the

G

relevant parameters are OzlG for the Gumbel copula and a? for the Survival Gumbel copula. w* and

@Y are the corresponding weights for the Gumbel and the survival Gumbel copula for the mixture
model. The parameters pi9, p13 , and po3 are the off-diagonal entries of the correlation matrix in
the diffusion specification. Results are obtained for 50000 Monte Carlo replications with a thinning

factor of 5 with 10 latent data points simulated between each pair of observations.

Gaussian  Ga-G-SG Ga-G-5G Ga-G-SG Ga-G-SG

(Large-Mid cap) (Large-Small cap) (Small-Mid cap) (nonnested)

Ris 0.5671 0.5347 0.4636 0.6634 0.5758
MC s.e. 0.3701 0.3326 0.7224 0.6114 0.3537
SIF 0.8621 1.0437 2.3408 0.6891 0.9540
Ri3 0.2723 0.5179 0.7443 0.3907 0.2571
MC s.e. 0.7875 0.4191 0.6868 0.4915 0.5131
SIF 0.7359 0.7188 2.7202 0.8441 0.7251
Ros 0.5207 0.4152 0.6110 0.3085 0.4698
MC s.e. 0.4399 0.3302 0.6260 0.5521 1.3536
SIF 0.9162 1.6992 0.8855 1.2236 1.5260
Ot? - 0.2972 0.3358 0.3318 0.4494
MC s.e. - 0.3546 0.8711 0.3463 0.3541
SIF - 0.5754 1.5005 1.5945 1.2328
a2G - 0.6335 0.6238 0.7235 -
MC s.e. - 0.1928 0.4072 0.7235 -

SIF - 0.9156 2.6644 1.0750 -
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Table 1.5.3: Parameter estimates for the dependences structure (tri-variate diffusion,
Gaussian underlying) (cont.)

Gaussian  Ga-G-SG Ga-G-SG Ga-G-SG Ga-G-SG
(Large-Mid cap) (Large-Small cap)  (Small-Mid cap) (nonnested)
&? - 0.3618 0.1993 0.2613 0.4354
MC s.e. - 0.1998 0.3006 0.5387 1.0229
SIF - 0.2375 1.8385 1.3787 1.6558
a§ - 0.6544 0.6415 0.6107 -
MC s.e. - 0.4667 0.3408 0.7371 -
SIF - 0.8040 1.0323 1.1141 -
W@ - 0.3321 0.2107 0.2431 0.3832
MC s.e. - 1.0111 0.5641 0.3543 0.7265
SIF - 2.0983 1.3229 0.8943 1.0348
o - 0.2853 0.2752 0.2531 0.2324
MC s.e. - 0.3789 0.2519 0.6596 0.3619
SIF - 1.4739 0.7950 1.2326 2.1457
P12 0.7894 0.7917 0.7795 0.6935 0.8287
MC s.e. 0.0195 0.0086 0.0080 0.0095 0.0104
SIF 1.2371 0.2271 0.7370 0.6121 1.2730
P13 0.5078 0.5089 0.5185 0.4685 0.5499
MC s.e. 0.0189 0.0229 0.0291 0.0236 0.0105
SIF 0.8625 0.9588 1.5205 0.5720 0.6771
P23 0.7162 0.7158 0.6760 0.5676 0.7366
MC s.e. 0.0209 0.0067 0.0102 0.0159 0.0137

SIF 0.8581 0.7418 1.1571 0.9287 1.1969
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that determine upper and lower tail dependence for this couple, ozlG and a? respectively, are
almost equal, pointing to tail symmetry. As well, given the fact that for the Gumbel copula
the tail dependence coefficient can be determined using TCU; = 2 — 2% while for the lower
tail dependence implied by the Survival Gumbel we have that Té = 2 — 2% then for this
particular couple we have Tg =0.7712 and Té = 0.7150. These values are higher than what
we obtained under the alternative bivariate diffusion with dependence modeled following a
SJC copula, but it is still not surprising as now in the mixture specification these extreme
value copulas are weighted with the tail independent Gaussian copula, so the resulting tail
dependence should be lower.

Further, for the two alternative cases for which Large-Small or Mid-Small are the most
deeply nested couples the lower tail dependence parameter &f is lower than the upper tail
dependence parameter oz?, indicating higher dependence in the left tail, again confirming
the previously found evidence.

When we consider the multivariate diffusion with extreme dependence modeled with the
non-nested version of the Gumbel and Survival Gumbel copulas, we find almost symmetric
tail dependence (the values for the parameters 04? and a{’ imply tail dependence coeflicients
of Tg = 0.6345 and Té = 0.6477). As in this case there is only one parameter governing
dependence in either the left or the right tail across all data series, extreme dependence for
some couples may be over/underestimated.

We then repeat the same estimation experiment, but with a Student’s ¢ copula used to
model the dependence structure of the multivariate diffusion. Results for it are reported
in the first column of Table 1.5.4. We proceed as before by adding the two extreme value
copulas in their nested specification as in (1.3.29). The second column of Table 1.5.4 contains
the results for this case when the Mid-Large cap couple is taken to be the most deeply
nested one. Finally we consider a non-nested version, but it has a different form from
that of the mixture diffusion with a Gaussian underlying. As the Student’s ¢ copula can
model symmetric upper and lower tail dependence, which is different for all alternative
couples considered, as it is determined by the degrees of freedom parameter v, as well as
the correlation matrix, then, in order to add tail asymmetry, we need only to consider one
of the tails and add an extreme value copula that accounts for dependence in it. We chose

to model separately the left tail and thus we add to the t-copula a Survival Gumbel that
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has lower tail dependence. Results for this specification are reported in the third column.
As with the case when we had a Gaussian underlying copula in the mixture model, here
again the parameters, driving upper and lower tail dependence for the most deeply nested
couple (the Large-Mid cap one) are very close, and imply tail coefficients of Tg = 0.7870
and Té = 0.7917. However, unlike the Gaussian case, the Gumbel copula claims almost
half of the weight in the mixture specification, so it has the major role in determining
upper tail dependence. For the nonnested version of the t-mixture copula, adding only the
lower tail dependent Survival Gumbel copula increases its weight, but leaves the dependence

parameter almost unchanged.

1.5.4 Model selection through Bayes factors

The multivariate diffusion models considered above imply different dependence structures
through their stationary distributions. Bayes factors provide us with a guideline of how to
select a model among the alternatives. So far we have seen that the mixture model with
either a Gaussian or a t-copula, combined with the nested version of the extreme value
Archimedean copulas provide the richest specification in terms of tail dependence modeling.
In what follows we will verify whether either one of these two models will be indeed selected
on the basis of the Bayes factor criterion.

We compute the log of Bayes factors, following (1.4.10) as log (p (Y | My))—log (p (Y | M;)).
As a benchmark model (M}) we take either the Gaussian or the Student’s ¢ - extreme value
nested mixture copula diffusion (with the Large-Mid cap couple being the most deeply
nested one).The alternatives considered (M) are the tail independent Gaussian diffusion,
the symmetric tail dependent ¢-copula diffusion, or any of the non-nested specifications
considered. Results are provided in Table 1.5.5.

The Bayes factor selection criterion suggests that each of the benchmark models will be
preferred to the alternatives. Results point even more strongly in favour of the extreme value
nested mixture copulas when the nonnested models are taken as alternatives. This suggests
that the highly parsimonious dependence structure, implied by the nonnested copulas, is
detrimental to the models, at least for the purposes of selection through Bayes factors.

Further, when we compare the two benchmark models, Bayes factors point in favour of

the Student’s ¢ mixture copula, with a value for the log of the Bayes factor of 9.06 when the



59

Table 1.5.4: Parameter estimates for the dependences structure (tri-variate
diffusion, Student’s t underlying)

Estimation results for the trivariate diffusions using the Student’s t copula, the Student’s t —
nonnested Survival Gumbel mixture copula, and the Student’s t — nested Gumbel - Survival Gumbel
mixture copula (the most deeply nested couple is given in parenthesis). Monte Carlo standard errors
(multiplied by a factor of 1000), and Simulation Inefficiency Factors (SIF') are given in parenthesis.
The first three parameters (1212, 213, R93) correspond to the off-diagonal entries of the correlation

matrix Ry for the Student’s t copula. The parameters alG and onG are the dependence parameters

for the nested Gumbel copula, and the parameters 6? and EQG are the dependence parameters for
the nested Survival Gumbel copula. For the nonnested case, the relevant parameters are a? for the
Gumbel copula and a§ for the Survival Gumbel copula. w® and @ are the corresponding weights
for the Gumbel and the survival Gumbel copula for the mixture model. v is the degrees of freedom
parameter for the Student’s t copula. The parameters pi5, p13 , and po3 are the off-diagonal entries
of the correlation matrix in the diffusion specification. Results are obtained for 50000 Monte Carlo

replications with a thinning factor of 5 with 10 latent data points simulated between each pair of

observations.
t t-G-SG t-SG
(Large - Mid cap) (nonnested)
Rio 0.4408 0.2574 0.5266
MC s.e. 0.5433 1.4015 0.6040
SIF 1.3619 0.7629 1.3392
Ris 0.5273 0.2362 0.4154
MC s.e. 0.6911 0.9873 0.6353
SIF 0.9564 1.0469 0.8209
Ros 0.3334 0.3161 0.4461
MC s.e. 0.5146 0.5147 0.9027
SIF 1.1373 1.1320 0.9049
af - 0.2786 -
MC s.e. - 0.2191 -
SIF - 0.5660 -
af - 0.6570 -
MC s.e. - 0.5395 -

SIF - 1.0512 -
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Table 1.5.4: Parameter estimates for the dependences structure (tri-variate diffusion, Stu-
dent’s t underlying) (cont.)

t t-G-SG t-SG
(Large - Mid cap) (nonnested)
af - 0.2730 0.3434
MC s.e. - 0.2961 0.5440
SIF - 0.6114 0.7326
ay - 0.6660 -
MC s.e. - 0.5939 -
SIF - 1.3265 -
w - 0.5118 -
MC s.e. - 0.4382 -
SIF - 0.7870 -
o“ - 0.1529 0.2829
MC s.e. - 0.2248 0.9130
SIF - 1.4495 1.9105
v 5.4774 3.9575 4.8266
MC s.e. 4.8170 2.4907 5.8874
SIF 0.8904 0.7732 0.9437
P1o 0.8184 0.7837 0.8166
MC s.e. 0.0074 0.0223 0.0171
SIF 0.3969 1.1166 1.2428
P13 0.5113 0.4922 0.5522
MC s.e. 0.0286 0.0296 0.0085
SIF 1.5033 0.9770 0.6370
o3 0.7165 0.7045 0.7372
MC s.e. 0.0085 0.0129 0.0092

SIF 0.3875 0.8620 0.6073
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Table 1.5.5: Bayes factors

Log Bayes factors for tri-variate diffusions with dependence modeled using alternative copula func-
tions. Benchmark models (Mp) are those involving the mixed copula diffusions with an Elliptic
copula and the nested version of the extreme value Gumbel - Survival Gumbel copulas (Large-
Mid cap being the most deeply nested couple). Two choices for the Elliptic copula are considered:
the Gaussian one (Gauss-G-SG), and the Student’s t one (t-G-SG). The four alternative diffusions
(M;,5 =1,...,4) are a Gaussian, a Student’s ¢ (t), and two nonnested versions of the mixture cop-
ula diffusion: the Gaussian-Gumbel-Survival Gumbel (Gauss-G-SG (nonnested)) and the Student’s
t - Survival Gumbel (t-SG (nonnested)).

Gaussian  Student’s ¢  Gauss-G-SG t-SG
(nonnested)  (nonnested)

Gauss-G-SG (Large - Mid cap)

Bayes factors 206.52 208.67 464.89 386.32
t-G-SG (Large - Mid cap)
Bayes factors 215.58 217.73 473.95 395.02

latter is taken as the benchmark Mp. But still this is far from the significantly higher values
of the factors when the other alternative models are considered. This is not surprising, as
the two nested mixture models are close in the way they treat the dependence structure,
while the model with the Student’s ¢ underlying copula provides a more versatile way to

account for dependence between extreme realizations.

1.6 Discussion and concluding remarks

In this chapter we introduce a multivariate diffusion model for stock prices based on copula
functions that is able to reproduce a number of stylized facts for both the univariate return
series and the dependence structure. It extends the univariate stationary diffusion modeling
based on the Generalized Hyperbolic family of distributions that has proved successful in
replicating dynamic return characteristics as a slowly decaying autocorrelation function of
squared returns (or volatility clustering effect, as alternatively modeled under stochastic
volatility or an ARCH process), or static properties like thick tails and excess kurtosis.
Seeking to reproduce increased dependence when there are extreme market downturns, we
extend the copula-GARCH approach to a continuous-time diffusion framework where the
stationary distribution of the process is modeled using a copula function that can account for

tail dependence. As well, it is achieved without including jumps in the stock price process,
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as in Das and Uppal (2004) or Liu et al. (2003). Such a process may prove useful for
dynamic portfolio allocation applications, as tractable portfolio solutions can be obtained
in this continuous time framework under market completeness.

There are a number of ways in which the model can be extended. There is overwhelming
empirical evidence that the correlation of asset returns changes dynamically through time.
Popular discrete time approaches include the GARCH-DCC model of Engle (2002), while
in continuous time a promising alternative is the Wischart process of Bru (1991). Our
model specification imposes constant conditional correlation for asset returns, that we have
assumed for simplicity, but that can be extended to a more general model where correlation is
modeled as either a function of the state variables of the model itself, or rendered stochastic
by being represented as a function of exogenous factors. There is empirical evidence that
the dynamics of asset return correlations are linked to the phase of the business cycle and
tend to increase in periods of recession (e.g. Ledoit et al., 2003; Erb et al., 1994). As
well, Longin and Solnik (1995) find that correlations for international stock market indices
increase during hectic periods of high volatility.

Another possible extension concerns the dependence structure of the assets, modeled
through a copula function. The present specification assumes that the parameters govern-
ing dependence are fixed. A number of studies have addressed time variation in dependence
through a dynamic copula approach. In the case of modeling asymmetric dependence be-
tween exchange rates, Patton (2004) finds significant implications of the time variation in
the copula dependence parameters, while Goorbergh et al. (2003) find substantial pricing
differences for multivariate options when a dynamic copula model is used contrary to one
with a fixed dependence structure, especially for market conditions marked with increased
volatility. In our setup, time variation in the dependence parameter could be achieved by
modeling it as a function of exogenous factors that are stochastically time varying themselves

and that have a potential of explaining increased dependence in extreme down markets.



Chapter 2

Dependence Modeling of Joint Extremes via
Copulas: A Dynamic Portfolio Allocation

Perspective

2.1 Introduction

Modeling the dependence between asset returns is the corner stone for portfolio allocation
decisions or risk management in general. Failing to account for specific features of the
dependence structure of the data may lead to an improper assessment of the risk exposure
and thus to suboptimal portfolio decisions. An already established stylized fact of asset
returns is the co-movement asymmetry present in their dependence structure in that assets
tend to be more correlated during bear markets than during bull markets. Using Extreme
Value Theory, Longin and Solnik (2001) provide evidence of the dependence asymmetries
present in several major stock market indices. Poon et al. (2004) confirm the evidence
of stronger left tail dependence, but stress on the importance of considering parametric
models that allow for asymptotic independence and thus avoid the risk of overestimating
the probability of joint occurrence of tail events. There are also studies that provide a
theoretical justification to this empirical fact: in a rational expectations equilibrium model
Ribiero and Veronesi (2002) obtain endogenously excess stock return comovements during
market downturns as a result of increased uncertainty about the state of the economy.

In this chapter we adopt a multivariate diffusion process for stock prices that is able to
accommodate the above mentioned stylized facts. It has a predetermined stationary density
that we model using copula functions that incorporate possibly asymmetric dependence in
the upper or the lower tail of the distribution. The copula diffusion construction with a
pre-specified stationary density relies on a result in Chen et al. (2002) and allows us to
obtain increased tail dependence when markets suffer from extreme downturns. As the

copula function underlying the stationary distribution of the process captures the needed
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dependence structure, we do not have to revert to the inclusion of jumps in prices and
volatility as in Liu et al. (2003), or to systemic jumps common for all assets, as in Das and
Uppal (2004), in order to replicate this stylized dependence feature.

From a portfolio allocation perspective, analyzing the extremal behavior that could be
achieved through a multivariate diffusion by a copula construction is worthwhile, as tractable
portfolio allocation rules and hedging behavior could be obtained by applying the martin-
gale solution technique in a complete market setting. While copulas are widely studied in
the context of multivariate option pricing and in credit risk modeling (mainly pricing of
multiname credit derivatives), there are few applications for portfolio choice, all existing
studies being focused on the unconditional portfolio behavior. As copulas can be designed
to allow for a fairly general (possibly time varying) dependence structure, independently of
the marginals, it is of interest to examine the influence of such a modeling approach on the
dynamic hedging component of a portfolio, which constitutes the main motivation for the
present chapter. Numerous studies have pointed out the adverse effect of high dependence
among assets during market downturns on diversification benefits, but to our knowledge
none has yet addressed the issue of isolating dynamic hedging demands that arise when
the data generating process of asset returns incorporates this extremal dependence from
the mean-variance component or hedging demands that arise from stochastically varying
interest rates.

Unconditional portfolio selection under the influence of higher moments and dependence
asymmetries has been studied by Chunhachinda et al. (1997) and Prakash et al. (2003) via
polynomial goal programming. However, no extension for moments higher than the third
one can be obtained using that approach. Jondeau and Rockinger (2005) overcome this
problem by studying asset allocation by using a Taylor series approximation of expected
utility as a function of higher moments. A study relying on copula specification for the
dependence structure of asset returns is that of Patton (2004); however no extension to
conditional allocation is offered. Das and Uppal (2004) examine dynamic portfolio choice in
the presence of dependence asymmetries in the form of asymmetric conditional correlation
by building a jump diffusion model with perfectly correlated (systemic) jumps across assets.
An alternative specification aimed at capturing the same stylized behavior is that of Ang

and Bekaert (2002) who review asset allocation under asymmetric response of correlation to
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returns in a regime-switching model. Surprisingly, in this context hedging demands (defined
as the difference between a one-period ahead and a multi-horizon portfolio allocation) are
found to be negligible, so that an investor loses little by acting myopically. However, these
results are obtained under the CRRA assumption. An alternative preference specification
could potentially increase the effect of extreme dependence asymmetries on dynamic port-
folio choice (as for example a general utility specification like the HARA utility that models
intolerance towards wealth levels under a certain boundary).

Having in mind the mixed evidence on the intertemporal hedging component of port-
folio choice, conditional on either utility or distributional assumptions, we investigate its
importance by generalizing the dependence framework beyond correlation modeling, which
is a relevant dependence measure only in an elliptic distributions context. We also extend
the utility specification beyond the CRRA case, and also consider the more general HARA
utility. We rely on a simulation-based technique for portfolio selection, following Detemple
et al. (2003) , where the need to accommodate a fairly general data-generating process is
coupled by the need to overcome the curse of dimensionality of a large-scale problem. The
solution methodology uses an extension of the Ocone and Karatzas (1991) formula under
the complete markets assumption to obtain explicit expressions for the optimal portfolio
and its hedging components for a general multivariate diffusion specification. The optimal
investment strategy is represented as the sum of a myopic (mean-variance) component and
two dynamic terms that represent hedges against changes in the short-term interest rate
and the market price of risk. The explicit solutions for those terms involve expectations of
random variables and their Malliavin derivatives that can be simulated using a standard dis-
cretization scheme. The approach remains tractable in large-scale problems, which matches
one of the merits of dependence modeling via copula functions.

We use the above solution methodology to address the following questions. First, we
isolate the intertemporal hedging demands that arise from a data generating process based
on a Gumbel-Gaussian copula mix, that allows for asymptotic independence or dependence
(possibly asymmetric) through varying weights in the mixture copula. We find substantial
hedging demands, that increase with the investment horizon and decrease with the agent’s
degree of relative risk aversion. Those dynamic hedges are then compared to the ones

obtained under the nested case of a Gaussian copula that serves as a tail independence
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benchmark model. An agent that uses the latter data generating process would then allocate
more wealth to the risky assets as compared to an investor who is conscious of the existence
of tail dependence. The extreme value Gumbel copula generates less risky asset demand
than its symmetric tail counterpart — the Student’s ¢ copula.

Second, we study the economic significance of taking into account extreme tail depen-
dence by quantifying it through the certainty equivalent cost (or the utility cost of behaving
suboptimally).

Third, we check the robustness of our results to the choice of the utility function. We
consider the benchmark CRRA case, as well as the more general HARA utility specification,
that can be modeled to allow intolerance towards wealth shortfalls.

The reminder of the chapter is organized as follows. In section 2.2 we present the model,
based on the asymmetric tail copula diffusion process. We further address the portfolio
allocation problem, and the solution methodology in a complete market setting. In section
2.3 we study the importance of modeling extreme value dependence for dynamic portfolio

selection. Section 2.4 concludes.
2.2 The model and the complete market portfolio solution

The evidence of increased dependence during market downturns than during market upturns
has been shown to have a considerable impact on unconditional portfolio allocation when
short sales are allowed and dependence is modeled within the copula framework (Patton,
2004). Ang and Bekaert (2002) also find significant costs of ignoring this dependence struc-
ture for the alternative way to replicate it through a regime-switching model that links high
correlation with high volatility in the presence of a conditionally risk-free asset. Despite of
that, they find insignificant intertemporal hedging demands, so that an investor would not
lose much if he behaves myopically and solves just a one-period problem. However, in a
recent paper Buraschi et al. (2007) show considerable hedging demands induced by time-
varying correlation, their effect on total portfolio weights being the strongest in periods of
market downturns. This would suggest that a model accounting for extremal dependence
would be able to incite significant intertemporal demands. In order to isolate the effect
of the spatial dependence structure of a process from that of time-changing correlation, we

consider a process with a constant conditional correlation, but whose stationary distribution
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allows for possibly asymmetric dependence in the extremes. In what follows, we solve for
the intertemporal hedging demands induced by such a model and study the implications of
this particular tail behavior on optimal portfolio allocation.

We consider an investor with CRRA or the more general HARA utility over terminal
wealth, allocating it between 1 riskless and 3 risky assets for a finite horizon 7. The model
could be extended to include any number of assets without rendering it intractable because

of the flexibility offered by copula functions.

2.2.1 The general complete market setup

In a general complete market setup we assume that uncertainty is driven by a d-dimensional

standard Brownian motion and that the price of the risky asset can be expressed as !:

Sit = exp (¢; (t) + Xit),i=1,...,d (2.2.1)

for some deterministic function of time ¢, (t), which we assume to be linear in ¢, ¢, (t) = k;t

with a linear trend parameter k;, and where

Thus, applying [t0’s lemma we obtain for the price process for i = 1, ..., d:

d
dSiy = Sipf (InSip — kit) dt+ Sy Y Aij (In Sy — kit) AW,
j=1

d
where pf (X)) = p; (X¢) + ki + %Zaij (Xy)?

j=1
where 7;; are entries of the matrix A in the diffusion term of the process for the de-trended
log-price X. As pointed out in Bibby and Sorensen (1997), there is empirical evidence that
the increments of the process for the log-price are nearly uncorrelated but not indepen-
dent, which motivates the specification in (2.2.1). It is chosen as the most straightforward
generalization of the Black Scholes model. The exact parametrization of the drift and the

diffusion term will be discussed in the subsequent section, where we present a method to

!Following the parametrization of Bibby and Sorensen (1997) and Rydberg (1999)
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construct a diffusion with a pre-specified stationary distribution.
The short rate r; is the (d + 1)’th state variable in the model and its dynamics are given

by:

dry = py (r¢) dt + o} (r¢) dW; (2.2.3)

i.e. it depends on the same Brownian motion that drives the uncertainty for the log-price

process. The money market account B; follows:

dBt = Btrtdt (224)

The vector of state variables is then given by Y = (XTr)and satisfies the SDE:

dY; = p (Y, t) dt + o) (Y, t) AW, (2:2.5)

T
where u) (Y, t) = ( w(Xe)T il (re) ) , and o) (Y;,t) is obtained by stacking the corre-
sponding volatility terms from the SDEs for X; and r.

As the market is assumed to be complete (given an invertible A matrix), we can define

the market price of risk as:

0 (Xz,me) =0 (Y:) = 0p = A(Xe) "' [1® (Xp) — 7el] (2.2.6)

assumed to be continuously differentiable and satisfying the Novikov condition:

T
1
E |exp 2/9;05618 < 00.
0

The associated state price density can be expressed as:

T

t t
1
& =exp —/rsds— /GldWS - 2/«9195ds (2.2.7)
0 0

0

and it satisfies the stochastic differential equation:

dgt = _gtrtdt - gtHIth (228)
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2.2.2 The multivariate copula diffusion model

The process that we use for the state variables X, governing stock prices, is able to replicate
certain univariate properties of asset returns as a leptokurtic distribution with respect to
the normal density, volatility clustering and semi-heavy tails. The correct modeling of
the tail behavior is particularly important as it is the impact of dependence between tail
realizations on optimal portfolio decisions that we aim to study. Also, the model allows for
a parsimonious treatment of the dependence structure and nests an array of dependence
features, ranging from asymptotic dependence to tail independence. It is achieved through
a flexible construction using copula functions that allow us to separate the impact of the
properties of the marginal distributions from that of the dependence structure.

The construction of the multivariate diffusion for X that we discuss below follows the
lines of Chapter 1 and relies on a result in Chen et al. (2002) and exploits the relationship
that exists between the invariant density, the drift and the diffusion term for the process in

(2.2.2):

d
1 6(%’3' (xi,xj)q(xl,...,xn))
; ey XTp) = 2.2.9
My (wla » L ) 2q (1'17 71,”) ; or; ( )
Y. = AAT with entries vy (24, ;)

where A is a lower triangular matrix, ¢ is a strictly positive continuously differentiable
multivariate density function, which is indeed the stationary density of the process, and X
is a continuously differentiable positive definite matrix. Thus, in order to specify the process
for X, we need to determine its invariant density and propose a certain form for its diffusion
term A (X).

The invariant density g of the n-variate diffusion is obtained using the copula decompo-
sition formula following Sklar’s theorem that builds a multivariate distribution with density
q using a dependence (copula) function ¢ and marginal densities f,i = 1,...,n, or rather

functions fz o f* that are proportional to them, as we do not need the normalizing constant:

q(T1y .y Tn) = C(T1, .y Ty 0°) va’ (:ci;ﬁi’M) (2.2.10)
i=1

where ¢ (z1, ..., x,;60°) = ¢ (F1 (1) 4.y F™ (24) ;0‘3). The copula function c is defined on the
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probability integral transforms F* corresponding to each univariate series, so that it contains
information on the dependence structure of the multivariate distribution regardless of the
individual marginal specifications, as the latter are distributed as Uni form (0,1). Thus, the
parameters 6°, pertaining to the copula, can be considered as driving dependence between
the random variables x1, ..., x,,. On the other hand, the univariate properties of each series
are determined by the distributional assumptions on f? and its corresponding parameters
g-M .

For the marginal series we chose the Generalized Hyperbolic (GH) family of distribu-
tions, introduced by Barndorff-Nielsen (1977) and further used in a number a studies for
modeling stochastic processes for stock prices (e.g. Eberlein and Keller, 1995; Bibby and
Sorensen, 1997; Prause, 1999; Rydberg, 1999). It allows us to address univariate static prop-
erties of stock returns as departures from normality through high kurtosis or tails thicker
than those implied by a Gaussian distribution, as well as dynamic features as persistence
in autocorrelation for the squared increments of log prices, similar to stochastic volatility
or GARCH models. From the perspective of the portfolio allocation application that we
consider, correct accounting for univariate properties of the data is important, as it allows
us to determine any demands that arise beyond those that could be attributed to the sen-
sitivity of the investment in the risky assets to higher moments (as studied in Jondeau and
Rockinger (2005) or Cvitanic et al. (2008)). Thus, we are interested in the portfolio impli-
cations of increased tail dependence that is ignited by the dependence structure, regardless
of the marginals.

The form and properties of the GH family of distributions, as well as its different sub-
classes are discussed in the Appendix. One important property they have is the semi-heavy

tails, expressed as:

ngfoo fam (@ X, o, 3,6, 1) ~ |z exp {(Fa + B) z} (2.2.11)

(Prause, 1999; Barndorff-Nielsen and Blaesid, 1981).

Thus, the class can easily accommodate any tail behavior ranging from power to expo-
nential decline, and can account for tail asymmetries.

The dependence structure is entirely modeled by the copula ¢(-) and its corresponding

parameters 8°. As we aim at determining the impact of tail dependence on optimal portfolio
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demands, we consider several parametric families of copulas that allow for different degrees
of dependence between extreme realizations. Before reviewing the alternative choices for the
copula, recall that lower (A7) or upper (Ay) tail dependence coefficients have the following

representations in terms of the copula C:

u—1 1—u

First, we model dependence for the diffusion process for the state variables X using
Elliptic copulas. A member of this family, the Gaussian copula, defines our benchmark de-
pendence structure. Its tail coefficients are both zero, indicating no asymptotic dependence
between the state variables. The second member of the Elliptic class of copulas that we
consider is the Student’s ¢ copula, which allows for tail dependence, however symmetric,

through its additional degrees of freedom parameter v. The tail dependence coefficient for

the t-copula is given by 7% = 74 = 2t (= +1y/T—=p//IT+ p), where p is an off-
diagonal element of the correlation matrix and ¢, ! (u) is the inverse of the univariate CDF
of the Student’s ¢ distribution. Tail dependence decreases for increasing levels of the de-
grees of freedom parameter and eventually goes to zero when v — o0, i.e. when the t-copula
converges to the Gaussian one.

Next we consider the Archimedean family of copulas, and more specifically the extreme

value Gumbel copula that can model upper tail dependence through its dependence para-

G

@ | while Téumbel = 0, and its survival counterpart for

meter o, rendering Tgumbel =2-2
which the roles of upper and lower tail dependence switch places. Combining those copulas
by assigning weights to each one of them renders a dependence function that has asymmet-
ric upper and lower tail dependence, determined by the corresponding Gumbel (a%) and
Survival Gumbel (@) parameters. In order to take into account the possibility that the
state variables do not exhibit asymptotic dependence, we add to the above mixture copula

the Gaussian one, so that we obtain:
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CS* (u; Rgq, 0¥, a% w, @) (2.2.12)

= wC¢ (u; aG) +wc” (u;&G) + (1 —w—©)CY% (u; Rga)

where C¢ refers to the Gumbel copula, C° - to the Survival Gumbel, and C%® - to the
Gaussian, and the parameters {w,w} are their corresponding weights. Thus, our benchmark
tail independent model is obtained by setting the weights w and w to zero, while any
weight parameter different from zero would entail possibly asymmetric upper (lower) tail
dependence. In order to obtain our symmetric tail benchmark, we alternatively build a

mixture dependence function using the Student’s t copula instead:

ct (u; Ry, U,aG,@G,w,w) (2.2.13)

= wC (u; aG) + e’ (u;@G) + (1 —w-w)CT (u; Ry, v)

where C”' refers to the t-copula.

For the above mixture copulas we consider the nested version of the Gumbel copula,
as described in the Appendix. It allows for different dependence parameters between con-
secutively nested couples of variables, and thus permits a more general treatment of the
dependence structure than the usual n-variate Gumbel copula which imposes the same pa-
rameter across all variables. The latter (non-nested) specification has a more parsimonious
nature, but potentially restraints the achievable degrees of tail dependence. As the con-
struction of a nested Archimedean copula is not so straightforward in higher dimensions
and in order to investigate the portfolio implications of assuming a homogenous dependence
structure across assets, we also consider the above mixture copulas for non-nested versions

of the Gumbel and the Survival Gumbel copulas:

C’r?ta* (u’ RGCL?a*7a*7waw) (2214)

= WO (u; ) + w@f (w; @) + (1 —w — @) C% (u; Raa)

when using the Gaussian copula, or:
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O (u; Ry, 0,0, @) = @0 (w; ) + (1 — @) CT (u; Ry, v) (2.2.15)

for the Student’s t copula, where a, is the dependence parameter for the nonnested Gumbel
copula that determines upper tail dependence, and @, is the parameter of the nonnested
Survival Gumbel copula that determines lower tail dependence. Note that in the last case
we have used only the Survival Gumbel dependence function. It is the most parsimonious
mixture that allows for asymmetric behavior in the tails, as the ¢t-copula already models both
upper and lower tail dependence, while the Survival Gumbel parameter adds asymmetry to
the structure by adding additional weight for the dependence in the left tail. This is indeed
the stylized fact of stock returns that we seek to reproduce: increased dependence when
markets jointly decline.

The form of the copula functions used above is given in more detail in the appendix.

Finally, the only term that is left to be determined in (2.2.9) is the specification of the
diffusion term of the process. For it we chose a constant conditional correlation specification,

given by:

vij (T, 25) = pyoy (x) o) (x;) (2.2.16)
1,
of @) = o |F (@)

which extends the univariate specification of Bibby and Sorensen (2003) to the case of a
multivariate diffusion, where (UZ-X)Z > 0 and k; € [0,1],7 = 1,...,d. The function fz ()
f?(z;), i.e. it is proportional to the ith univariate marginal distribution, chosen to belong to
the GH family. Note that for the sake of simplicity we have assumed a constant conditional
correlation specification through the time invariant parameter p;;. This setup could be
further extended by modeling the correlation parameter as a function of stochastic state
variables, but as we are interested in the dependence achievable through the unconditional

distribution of the process, we restrain from considering this more general case.
In what follows, we will briefly present the martingale solution technique for the portfolio
allocation problem at hand that gives rise to the solution for the optimal terminal wealth

(Cox and Huang, 1989) and the financing portfolio (Ocone and Karatzas, 1991), as well as
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the Monte Carlo solution method for finding optimal portfolio shares proposed by Detemple
et al. (2003).

2.2.3 The investor’s problem and the optimal portfolio policy

Considering the case of no intermediate consumption, the evolution of wealth equation is

given by:

dw; = ruwdt + wtoth [(,uf — rtl) dt + Atth] , wo=w (2.2.17)

where w; denotes the wealth at time ¢ and «; - the amount of wealth invested in the risky
assets. Working under the assumption of time-separable von Neumann-Morgenstern prefer-
ences, the investor’s problem of optimally allocating terminal wealth wp for an investment

horizon T between 1 riskless and d risky assets is as follows:

H{})E;XU (wr) = E[u(wr)] (2.2.18)

conditional on the dynamic budget constraint given by (2.2.17), and the nonnegativity of
wealth constraint w; > 0, where u (-) is a strictly increasing and concave utility function
that satisfies the Inada conditions lim, . v/ () = 0 and lim, o' (2) < .

The equivalent static optimization problem, as shown in Cox and Huang (1989), is
reduced to maximizing expected utility of terminal wealth, subject to a static budget con-

straint:

Elépwr] <@ (2.2.19)

and the non-negativity of wealth constraint. After forming the Lagrangian for this static

constrained optimization problem, the first order conditions for optimality are expressed as:

v (wr) = Yér

Erwr] <

€l

where y is the Lagrange multiplier or the shadow price for the budget constraint. Letting

I () denote the inverse of the marginal utility function, it follows from Cox and Huang (1989)
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that the optimal terminal wealth is given explicitly by w} = max (I (y€7),0) and y satisfies
the static budget constraint E [{pmax (I (y&7),0)] = w. Thus the optimal expression for

terminal wealth leads us to the optimal wealth at time ¢ < T

§uwi = B¢ [§pmax (I (yér),0)] (2.2.20)

In order to find the optimal portfolio policy that generates this optimal wealth process,
Ocone and Karatzas (1991) use the Clark-Ocone formula which allows expressing optimal
portfolio shares as expectations of the state variables and their Malliavin derivatives. Ac-
cording to the Clark-Ocone formula, any random variable X can be decomposed into an
expectation part and a volatility part that involves Malliavin derivatives: X = E[X] +
fOT E; D X]dW;. In fact, this formula identifies the integrand in the Martingale Repre-
sentation theorem. Using this result, Ocone and Karatzas (1991) proceed to explicitly
determining the optimal portfolio policy af by considering the discounted wealth process
&wi. On one hand, using It6’s lemma on (2.2.17) and (2.2.8), the volatility of the process is
given by —&w;0] +&wfa] Ay On the other hand, an application of the Clark-Ocone formula
states that the volatility of {,w} is given by its Malliavin derivative Dy ({,w}). Equating both

terms leaves us with the following explicit expression for the optimal portfolio:

af = (A) 710+ (i) HAD) T (De (Ewi))T (2.2.21)

where &,w} is given by (2.2.20). Thus, to solve for the optimal portfolio, we need to evaluate
the expression involving the Malliavin derivative of the discounted wealth process. In order

to do so, we need to revert to the chain rule of Malliavin calculus?:

Di (§wp) = Dy (B [§rmax (I (yér),0)]) (2.2.22)

= B [Di (61 (y&r)")]

ol
= E; HI (yér) ™ + yfTa((yy;TT))lI(y&Tbo] Dtés:|

*For a random variable X and a differentiable function ¢ (X), the Malliavin derivative of X is given by
Dep (X,) = 269D, X,
The Malliavin derivative of a stochastic process satisfying a SDE given by Y = Yy + fo )ds +

fg (Ys) dW; satisfies D;Y, = [ 8“(Y5 (DiYy)dv + [ =5 60(YS (D:Yy) dWs.
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where we have used the fact that the conditional expectation operator and the Malliavin
derivative operator commute. Applying further the chain rule on D;¢, and using the SDE

satisfied by the state price density process (2.2.8), we obtain:

S S

Di, = ¢, / (Dire + 07 (D)) dv + / AWT - (Diy) + 07 (2.2.93)
t t

As the short rate r; and the market price of risk 6; processes depend in turn on the state
variables Y;, we can develop further the above expression for the Malliavin derivative of the

state price density process, by realizing that:

or (Y
DtTU = 8(Y )DtY; (2224)
_ 90(Yy)
D0, = Y DY,

and that the Malliavin derivatives of the state variables satisfy:

9 Y Y, d+1 ao_Y Y,
ao) = 20 vy as+ 3 20 M gy v (2.2.25)
j=1

where 0?; (Yy) is the " column of the volatility term for Y;. Thus, the solution for the opti-

mal portfolio weights is reduced to the computation of conditional expectations of state vari-

ables and their Malliavin derivatives. Realizing that I (y&r)+vyér %I((y?fTT)) = wp (1 — ﬁ),
where R (wr) is the coefficient of relative risk aversion, leads us to the explicit expressions
for the optimal portfolio weights given by Theorem 1 in Detemple et al. (2003) as repre-
sented below, whose contribution to the Ocone and Karatzas formula lies in the realization
that Malliavin derivatives satisfy stochastic differential equations and can thus be simulated
using Monte Carlo methods and standard discretization schemes like the Euler scheme. The
optimal portfolio rules are decomposed into a mean-variance term and two hedging expres-

sions, that are given in terms of conditional expectations involving the Malliavin derivatives

of the interest rate process and the market price of risk process:
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o = oMV 4 olBE L (MPRE (2.2.26)

wr R (wi) }
Wi R(LUT) wp>0

aV = (X)) e E [@,T

1
R (wt)
ot = — (A (X))

T
w _
E; ft,Tch (1 - R(wr) 1) IwT>0/Dt7"sd8
t

= —(A(X))a(Xeymy)

ot PRI = — (A (X)T)
T
w _
Br |62 (1= R@n)™) Lurso [ (dW, +0.d5)T D,
t

= — (A (X)) b (X, )

Thus, the mean-variance component oV gives the portfolio allocation for a single-
period investor or one with a log-utility function, while the other two terms reflect the
behavior of an investor who hedges against future changes in the short rate (the af#H

term) and the market price of risk (the /PR term)

, as the Malliavin derivatives mea-
sure the sensitivity of the state variables to innovations in the Brownian motions that drive
uncertainty. If we have a constant opportunity set or a log-utility investor with unit rel-
ative risk aversion, the hedging terms disappear and the portfolio is entirely determined
by mean-variance optimization. Alternatively, if relative risk aversion tends to infinity, the
mean-variance component will tend to zero and the portfolio will be entirely given by the
intertemporal hedging terms in the limit.

As we are interested in the effect of extreme value dependence in the state variable
process on optimal allocation rules, this ability to split the portfolio terms into a mean-
variance term and an intertemporal hedging term is particularly appealing, as we could
then test whether future changes in the opportunity set driven by this particular form of
dependence have an effect on the hedging demand in the following two perspectives: whether
it can induce a substantial hedging demand as a part of the total allocation, and whether
hedging demands actually diminish the total portfolio allocation in the risky assets and shift

it to the riskless money market account when extremal dependence is present, as compared

to a case with no extremal dependence in the stationary distribution of the state variables.
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Further, as the proposed state variable process is fairly general and includes substantial
non-linearities due to the copula functions and the form of the marginal distributions, the

ability to obtain portfolio shares through a simulation-based technique is crucial.

2.2.4 Implementation through Monte Carlo simulations

The Monte Carlo simulation technique implemented in Detemple et al. (2003) proceeds as
follows. The state variables and their Malliavin derivatives form a joint system (Y, D;Y5),
to which we add the relative state prices §; ; = g—i, as well as the two integrals in the hedging

terms:

S

8 Y,
HIE = /Dtrsds:/ar( ) D, Ydv
t

oY
t

L 90(Y,)
oY

HYPR = / (dWy + 0,ds)T D6, = / (AW, + 0,ds) DyY,dv

t t
As all these terms solve stochastic differential equations, they can be simulated using a

standard discretization scheme, so that we obtain a set of MC estimates

. N\ MC
i i e IR, 7 MPR,i
(Vi DYigh o 1T AP

t,s? i=1

where M C' is the number of Monte Carlo paths that are being simulated.

The hedging terms depend further on the particular choice of a utility function. We
take into consideration two utility function specifications: the Constant Relative Risk Aver-
sion (CRRA) one and the Hyperbolic Absolute Risk Aversion (HARA) utility function, of
which CRRA is a special case. We choose CRRA because of the considerable simplicity
it introduces in the hedging term expressions, while the HARA utility not only introduces
more generality in the portfolio problem, but also allows for a more pronounced effect of
the extremal dependence structure on portfolio hedging demands through the intolerance
towards wealth being below a certain threshold that it implies. The HARA utility function

is given by:

u(m) = - ! = (o B)I " (2.2.27)
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where R and B are exogenous constants. The special CRRA case is obtained by setting

B = 0. The coefficient of relative risk aversion is given by R (z) = HiBm, which is simply

equal to R in the case of CRRA. When B < 0 the utility function displays intolerance
towards wealth falling below the threshold —B.

For the benchmark CRRA case, the portfolio weights simplify considerably. The inverse

of the marginal utility function is given by I (z) = z %, so that optimal terminal wealth

1-1/R
T

R
E
is wp = (y§T)_1/ R, and the constant y is given by y = (“) .The mean-variance

term is also simplified to oMV = (A, (X)T)~! +6 (Y;), while the two hedging terms have

the following expressions, independent of wealth:

1 X (-1/m)
ofFH = (A (X)T)™ (1_R> E, M/Dtrsds (2.2.28)
t ST t
_ 1
™~ —axn (1-7)
(1-1/r) T
T
B | — / (AW, + 0,ds)T Dy (2.2.29)
e

The conditional expectations could then be estimated by averaging over the M C' terminal
values of the simulated paths. The rate of convergence of these estimated values to the true
ones depends on the number of Monte Carlo paths and is of order 1/ VMC.

The solution in the case of HARA utility follows the same lines with the exception that
now optimal wealth enters the portfolio terms. What is more, in this case the non-negativity
of wealth constraint may become binding for the case of B > 0.

A key to improving efficiency of the simulation method of Detemple et al. (2003) is
the transformation of the state variable process to one with unit volatility, which allows
eliminating the stochastic integral from the Malliavin derivatives. Even though this method
is quite appealing for univariate diffusions, its generalization to a multivariate one is not
so straightforward. The diffusions of the GH family are indeed impossible to transform in
closed form, unless the k coefficient in their diffusion term is set to 0. The same is true
for the multivariate construction as well, unless we consider the simple construction of a
diffusion of the gradient field type with a constant volatility coefficient.

Thus we need to resort to other methods that achieve variance reduction in the Monte



80

Carlo simulations. The use of low discrepancy points is one such possibility. The low
discrepancy sequences are formed of selected deterministic points and have the property
of spanning the whole region of interest. Their advantage over random points in financial
applications have been established in numerous studies, among which Joy et al. (1996),
Boyle and Imai (2002). We have chosen the Sobol low discrepancy sequence for the Monte

Carlo simulations for finding optimal portfolio shares.

2.2.5 The short rate process

The short rate does not enter the specification for the adjusted log price X, and for simplicity

we assume that it follows a Vasicek process:

dry = k" (0" — 1) dt + o"dW; (2.2.30)

This allows for an analytic expression for the Malliavin derivative of the short rate, as

(2.2.25) can be explicitly solved, as all stochastic terms disappear:

Dyrs = 0" exp (—k" (s — 1)) (2.2.31)

The estimated parameters for the short rate are " = 0.2001, " = 0.0293, o" =

—0.00693.

2.2.6 Induced hedging demands

We could further split the hedge terms into induced demands that arise from hedging fluctu-
ations in the sources of risk to which all the other state variables are exposed, and demands
that are related to the source of risk, specific only to the particular asset. Due to the fact
that A, whose terms are defined in (2.2.16), is a lower d-dimensional triangular matrix, the
asset d is the only one that is exposed to Wy risk. Thus, its demand is governed only by the
need to hedge against fluctuations in Wy, the other sources of risk being hedged away by
the rest of the assets. However, the asset d — 1 is no longer the only one exposed to Wy_4
risk, as the asset d shares this exposure as well. Thus, the position in asset d will induce

hedging demands in d — 1, and so forth. To see that more clearly, let A(; ;) represent the

3Data for the 3-month Treasury bill rates is from the H.15 Federal Reserve Statistical Release.
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terms of the inverse of the A matrix. Then the interest rate and the market price of risk

hedging terms for asset d — 1 can be decomposed into:

Oéfffil) = “Aa-1,d-1)%d-1) (Xt;7t) = Maga—1)aay (Xi,7) (2.2.32)
04%5_1%[ = —Ad-1,d-1)b@-1) (Xe;7t) = Mga—1)bay (Xt,71)

The last term in those expressions thus refers to the induced hedging demands for asset

d—1.
2.3 The importance of modeling extreme value dependence

Having established the solution technique and its implementation through Monte Carlo
simulations, we proceed to the core of our study that is establishing the effect of extreme
value dependence in the state variable process on the optimal portfolio policy. To this end,
we consider a benchmark model for which the dependence tends to zero as we go further in
the tails of the stationary distribution (the Gaussian diffusion model), and five models that
allow for tail dependence: one symmetric (the Student’s ¢ diffusion) and four asymmetric
(the extreme value mixture diffusion of Gaussian, Gumbel and survival Gumbel copulas in
the stationary distribution as well as the mixture of Student’s ¢ with Gumbel and survival
Gumbel copulas, in their nested and non-nested forms).

The empirical application of the portfolio solution described above relies on data from
the daily CRSP database. More specifically, we consider US stock capitalization decile
indices for the period 1990-2005. These indices represent yearly rebalanced portfolios based
on market capitalization. The stock universe includes stocks listed on NYSE, AMEX, and
NASDAQ. All ten capitalization decile indices were grouped in three sub-categories: small-
cap (deciles 1-3), mid-cap (deciles 4-7), and large-cap (deciles 8-10). This dataset has been
used in Ang and Chen (2002) to study the exceedence correlation patterns of the market
and stock portfolios, as well as in Patton (2004) for the portfolio implications of this form
of dependence in an unconditional context.

The above construction of a stationary diffusion with a prespecified stationary density
(2.2.9)-(2.2.16) poses a serious estimation problem, as its conditional density is not explic-

itly known. Thus, as with the implementation of the solution for the optimal portfolio, we
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rely on the standard Euler discretization scheme with data augmentation, i.e. introducing
latent data points between each pair of observations. This technique has been used in Ped-
ersen (1995) for simulated maximum likelihood estimation of diffusions, or in Elerian et al.
(2001), Roberts and Strammer (2001), or Eraker (2001) for MCMC analysis. The estima-
tion scheme we apply in the present setup relies on an MCMC estimation algorithm with
data augmentation following the sequential inference procedure of Golightly and Wilkinson
(2006a). Details of the algorithm are presented in the appendix. We use a two-step esti-
mation procedure which allows us to choose the appropriate marginal distribution for each
data series. We estimate a NIG stationary distribution for all series, except the Mid caps,
for which the more general GH construction appears to be appropriate (a NIG diffusion for
the Mid caps is rejected on the basis of the uniform residuals obtained by the probability in-
tegral transform). Table 2.3.1 summarizes the estimation results for the parameters specific
to each univariate series, while Table 2.3.2 gives the estimated parameters that describe the
dependence structure for the diffusion specifications we consider.

As we are interested rather in the portfolio implications of tail dependence, we propose
two experiments. The first one consists in calculating portfolio shares along realized paths
of asset prices. Considering the state variable processes (the short rate and the de-trended
log-returns) as given by their realized paths, we simulate the Malliavin derivatives and the
hedging terms along these paths for the whole estimation horizon, and then compute optimal
allocations while keeping the investment horizon fixed at its terminal value. Thus we can
analyze the differences in the hedging demands obtained under the alternative models over
a very long investment horizon, where the effect of the stationary distribution would indeed
be the most visible. We repeat this exercise with a rolling-window horizon instead of a fixed
one in order to evaluate the impact of a long horizon on the hedging demands.

The second experiment is a simulation study for varying investment horizons and degrees
of risk aversion, while keeping the starting point fixed this time, in which all state variables
and hedging terms are simulated ahead. By looking at the profile of the optimal portfolio
policy for each horizon over different levels of risk aversion, we are able to determine to which
extent hedging demands are sensitive to the level of risk aversion in the utility function or

to the choice of utility function (CRRA or the more general HARA utility).
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Table 2.3.1: Parameter estimates for the univariate series
The table summarizes the posterior parameter estimates from the MCMC output. Monte Carlo
standard errors are reported in parenthesis (multiplied by a factor of 1000) (obtained using the batch-
mean approach). SIF refers to the simulation inefficiency factor for each parameter (its integrated
autocorrelation time).

Small cap  Mid cap Large cap

a 3.0502 18.7839  10.6904
(MC s.e.) (0.1616) (0.5220)  (0.2193)
(SIF) (0.0938) (0.6694)  (0.6912)
B ~0.5911 0.4476  -1.5737
(MC s.e.) (0.6329) (2.9453)  (1.5404)
(SIF) (0.1104) (1.5392)  (1.7637)
52 0.0301 0.0721 0.0410
(MC s.e.) (0.0024) (0.0011)  (0.0031)
(SIF) (0.1219) (1.0535)  (1.8122)
L 6.7059 6.3101 6.5360
(MC s.e.) (0.0249) (0.0129)  (0.0102)
(SIF) (0.1038) (0.5407)  (0.4991)
o2 0.0406 0.0400 0.0082
(MC s.e.) (0.0022) (0.0030)  (0.0006)
(SIF) (0.1142) (1.4686)  (1.2930)
K 0.6490 0.4670 0.5102
(MC s.e.) (0.0373) (0.0235)  (0.0850)
(SIF) (0.0955) (1.4322)  (1.7551)
A 0.5 14295 0.5
(MC s.e.) - (0.0519) -

(SIF) - (1.1704) -
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Table 2.3.2: Parameter estimates for the dependences structure

Estimation results for the trivariate diffusions using the Gaussian copula, the nested Gaussian-
Gumbel-Survival Gumbel mixture copula (the most deeply nested couple is given in parenthesis), the
nonnested Gaussian-Gumbel-Survival Gumbel mixture copula, the Student’s ¢ copula, the Student’s ¢
—nonnested Survival Gumbel mixture copula, and the Student’s ¢ — nested Gumbel - Survival Gumbel
mixture copula. Monte Carlo standard errors (multiplied by a factor of 1000), and Simulation
Inefficiency Factors (SIF) are given in parenthesis. The first three parameters (Ri2, R13, Ra3 )
correspond to the off-diagonal entries of the correlation matrix Rg, for the Gaussian copula or the
correlation matrix Rp for the Student’s ¢ copula. The parameters 04? and 042G are the dependence
parameters for the nested Gumbel copula, and the parameters &? and ag" are the dependence
parameters for the nested Survival Gumbel copula. For the nonnested cases, the relevant parameters
are Oz? for the Gumbel copula and a? for the Survival Gumbel copula. wC and @© are the
corresponding weights for the Gumbel and the survival Gumbel copula for the mixture model. v
is the degrees of freedom parameter for the Student’s ¢ copula. The parameters p;5, p13, and pog
are the off-diagonal entries of the correlation matrix in the diffusion specification (3.11). Results are
obtained for 50000 Monte Carlo replications with a thinning factor of 5 with 10 latent data points
simulated between each pair of observations.

Gaussian  Gauss-G-SG = Gauss-G-SG t t-G-SG t-SG
(Large Mid cap) (nonnested) (Large-Mid cap)  (nonnested)

Rio 0.5671 0.5347 0.5758 0.4408 0.2574 0.5266
MC s.e. 0.3701 0.3326 0.3537 0.5433 1.4015 0.6040
SIF 0.8621 1.0437 0.9540 1.3619 0.7629 1.3392
Ry3 0.2723 0.5179 0.2571 0.5273 0.2362 0.4154
MC s.e. 0.7875 0.4191 0.5131 0.6911 0.9873 0.6353
SIF 0.7359 0.7188 0.7251 0.9564 1.0469 0.8209
Ros 0.5207 0.4152 0.4698 0.3334 0.3161 0.4461
MC s.e. 0.4399 0.3302 1.3536 0.5146 0.5147 0.9027
SIF 0.9162 1.6992 1.5260 1.1373 1.1320 0.9049
af - 0.2972 0.4494 - 0.2786 -
MC s.e. - 0.3546 0.3541 - 0.2191 -
SIF - 0.5754 1.2328 - 0.5660 -
af - 0.6335 - - 0.6570 -
MC s.e. - 0.1928 - - 0.5395 -

SIF - 0.9156 - - 1.0512 -
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Table 2.3.2: Parameter estimates for the dependences structure (cont.)

Gaussian  Gauss-G-SG = Gauss-G-SG t t-G-SG t-SG
(Large Mid cap) (nonnested) (Large-Mid cap)  (nonnested)

a? - 0.3618 0.4354 - 0.2730 0.3434
MC s.e. - 0.1998 1.0229 - 0.2961 0.5440
SIF - 0.2375 1.6558 - 0.6114 0.7326
a§ - 0.6544 - - 0.6660 -
MC s.e. - 0.4667 - - 0.5939 -
SIF - 0.8040 - - 1.3265 -
wY - 0.3321 0.3832 - 0.5118 -
MC s.e. - 1.0111 0.7265 - 0.4382 -
SIF - 2.0983 1.0348 - 0.7870 -
vt - 0.2853 0.2324 - 0.1529 0.2829
MC s.e. - 0.3789 0.3619 - 0.2248 0.9130
SIF - 1.4739 2.1457 - 1.4495 1.9105
v - - - 5.4774 3.9575 4.8266
MC s.e. - - - 4.8170 2.4907 5.8874
SIF - - - 0.8904 0.7732 0.9437
P12 0.7894 0.7917 0.8287 0.8184 0.7837 0.8166
MC s.e. 0.0195 0.0086 0.0104 0.0074 0.0223 0.0171
SIF 1.2371 0.2271 1.2730 0.3969 1.1166 1.2428
P13 0.5078 0.5089 0.5499 0.5113 0.4922 0.5522
MC s.e. 0.0189 0.0229 0.0105 0.0286 0.0296 0.0085
SIF 0.8625 0.9588 0.6771 1.5033 0.9770 0.6370
Po3 0.7162 0.7158 0.7366 0.7165 0.7045 0.7372
MC s.e. 0.0209 0.0067 0.0137 0.0085 0.0129 0.0092

SIF 0.8581 0.7418 1.1969 0.3875 0.8620 0.6073
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2.3.1 Portfolio allocation along realized paths (fixed horizon)

This first experiment aims at determining the effect of extremal tail dependence on portfolio
choice along the realized trajectories of the state variables. Keeping the horizon fixed,
we obtain optimal portfolio weights by simulating the remaining elements of the system
(Y;, DY, fi’ o HtI f’i, H%PR’i> j\if As the vector of market prices of risk is unobservable, we
filter it from the data by simulating additional data points between each pair of observations,
while keeping the parameters fixed at their posterior means, and then integrating out the
latent data points over the simulated Monte Carlo trajectories. The optimal portfolio shares
are obtained for a CRRA investor with levels of relative risk aversion of 5 and 10, and are
recorded weekly. Table 2.3.3 reports the three components of the optimal portfolio of the
investor: the intertemporal hedging terms (against stochastic changes in the market price of
risk and the interest rate) and the mean-variance term for varying investment horizons and
for all of the alternative diffusions considered. Summary statistics for the optimal portfolio
shares for each individual asset are given in Table 2.3.4.

For all of the selected horizons, the extreme value mixture diffusions lead to lower market
price of risk hedging demands for the risky assets, thus shifting the portfolio allocation to
the riskless asset when the possibility of increased correlation during extreme down markets
is accounted for. Those demands increase in absolute terms with the coefficient of relative
risk aversion. The mean-variance and the interest rate hedging terms do not show so much
disparity between the alternative specifications, so the differences in the total risky demand
are driven primarily by the need to hedge changes in the market prices of risk for the different
data generating processes. This is clearly seen from Figure 2.3.1, which traces the different
decompositions of portfolio terms for the whole investment horizon under the assumption
of Gaussian — extreme value copula diffusion (they display a similar pattern for all of the
alternative processes considered).

The market price of risk hedges show considerable variations along the sample path,
while the interest rate hedges are stable and decline steadily as the horizon decreases, due
to the fixed maturity effect (Figure 2.3.1). The market price of risk hedge terms switch
signs throughout the period, and determine to a great extent the variations of the total
portfolio holdings in the risky assets, as displayed on the upper right panel of Figure 2.3.1,

which contrasts the mean-variance component to the total risky asset demand. The two
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Figure 2.3.1: Portfolio hedging terms along realized paths of the state

variables
The figures represent the evolution of the hedging and mean-variance terms along realized trajectories
of the state variables for the whole 15 year estimation horizon for the nested Gaussian-Gumbel-
Survival Gumbel diffusion (Large and Mid caps being the most deeply nested couple). On the
horizontal axes time increments are weekly. The top left figure plots the intertemporal hedging
terms (MPRH stands for market price of risk hedge, IRH stands for interest rate hedge). The top
right figure presents the mean-variance (MV) component as a part of the total asset demand. The
two bottom figures plot the induced hedging demands: the left one plots the sum of the induced
MPRH terms vs. the total MPRH, while the one on the right plots the sum of the total induced
hedging demand vs. the total demand for the risky assets.
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lower panels display the evolution of the hedging demands throughout the period that are
induced by the positions in the rest of the assets. Induced hedges are considerable in
magnitude and are opposite in sign with respect to the total hedging demand.

An investor who uses the extreme value mixture diffusion as a data generating process
consistently underinvests in the risky assets as compared to an investor who believes that
log-prices are driven by a tail independent Gaussian process. Thus disregarding the effect of
extreme dependence in the tails leads to increased portfolio holdings in the risky assets for
the most part of the 15-year period we consider, as seen on Figure 2.3.2, which compares the
two elliptical models with their extreme-value mixture counterparts. However, the Student’s
t model performs almost identically as the Gaussian, the intertemporal market price of risk
hedging terms being virtually indistinguishable for most of the investment horizon. Figure
2.3.3 illustrates the impact of considering the more richly parametrized nested version of
the Archimedean copulas. The Gaussian mixtures do not display a significant change in the
hedging demands, while for the Student’s ¢ mixtures the nested version leads to substantially
lower demand for the risky assets.

So far we have analyzed the behavior of the portfolio hedging terms for the entire esti-
mation period. As it would be of greater interest to contrast periods of increased frequency
of tail events to considerably calm periods, we look at three subsamples: the period of
1992-1995, characterized with low volatility and no tail events, and the periods of 1997-2000
and 2001-2005, during which there were several market crashes, and asset return volatility
was substantially higher, as it can be seen from Figure 2.3.4, on which we have plotted the
GARCH volatility estimates for each of the return series. The last two subperiods thus
include the October 1997 crash caused by the economic crisis in Asia, and the bear market
in 2002, related to the ‘Internet bubble’.

For the intertemporal hedging terms we consider three competing diffusion specifications:
the tail independent Gaussian benchmark, the symmetric tails Student’s ¢ diffusion and the
specification based on the extreme-value copula mixture of Gaussian and Gumbel copulas
in its nested version. The investment horizon is kept fixed at the end of each period, so
that the hedging terms decline towards zero with the approach of the terminal date for
each subperiod. Figure 2.3.5 displays the market price of risk hedges, as well as the mean-

variance terms for the competing data generating processes, under the assumption of a
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Figure 2.3.2: Portfolio hedging terms along realized paths of the state

variables
Market price of risk hedge terms along realized trajectories of the state variables for the whole 15
year estimation horizon (left column) and for a rolling window horizon of 5 years (right column).
On the horizontal axes time increments are weekly. Plotted are the market price of risk hedges of
the Gaussian — extreme value mixture diffusion (Large and Mid caps being the most deeply nested
couple, Ga-GSG) vs. the Gaussian diffusion (Ga), and of the Student’s ¢ — extreme value diffusion
(T-G-SG) vs. the Student’s ¢ diffusion (T). In all cases we have a CRRA investor with relative risk

aversion of 5.
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Figure 2.3.3: Market price of risk hedging terms along realized paths for the

state variables: nested vs. nonnested Gaussian - Gumbel - Survival Gumbel

copulas; nested Student’s t Gumbel - Survival Gumbel vs. Student’s t -

nonnested Survival Gumbel
The sums of the market price of risk hedging terms for the three risky assets are reported for the
whole 15 years estimation period for a rolling window horizon of five years. Hedging terms are
reported every 10 days. Plotted are the hedging components for the nonnested Gaussian-Gumbel-
Survival Gumbel specification against two nested alternatives (the most deeply nested couple for each
case is given in parenthesis), as well as the hedging terms for the Student’s ¢ diffusion (t) against
the extreme value mixture alternative represented by the Student’s ¢ — nonnested Survival Gumbel
copula (#-SG). CRRA investor with a relative risk aversion parameter (RRA) of 5.
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Figure 2.3.4: GARCH(1,1) volatility estimates for the three asset return

series
Plotted are the GARCH(1,1) estimates of the conditional standard deviations of the three return
series (Large, Mid and Small caps) for the whole estimation period 1990-2005.
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CRRA investor with a coefficient of relative risk aversion equal to 5. We have conducted
the same allocation experiment for a HARA investor as well, but the results are qualitatively
similar to the CRRA case.

The two elliptical diffusions render similar hedging terms for the three subperiods, while
the extreme-value copula reduces considerably the demand for the risky asset. That is true
even for the first subperiod with no tail events and low volatility, even though in the second
part of the period all hedging demands are very close to each other, which is not the case
for the 2001-2005 period, marked with more extreme events. The mean-variance terms are
almost identical across the alternative specifications, so the difference in risky asset demands
comes almost exclusively from the market price of risk hedges.

In order to gather more insight into the impact of considering lower tail dependence
during a ‘bear’ market as compared to a period with no extreme events, we look at the
evolution of wealth generated by the portfolio allocation decisions for the alternative data
generating processes for each of the three subperiods. Optimal wealth at time ¢ is given by

wi = By [&41 (y*&p)], which for a CRRA investor reduces to wj = By |, 7 (y*&T)fl/R .
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Figure 2.3.6 illustrates the optimal wealth for an investor with CRRA preferences for a
coefficient of risk aversion of 5. For the 1992-1995 period all three diffusion specifications
render similar wealth growth. Thus, even though the intertemporal hedging terms for the
risky assets are lower when the investor takes into account the dependence between extreme
low returns, it does not translate into a change in her wealth evolution for this calm period
with no extreme events. To the contrary, the loss in terms of wealth for the subsequent
period of 1997-2000 is substantial for both elliptic specifications. The costs of ignoring tail
dependence will be further considered in more detail through the concept of the certainty

equivalent cost in the next sections.

2.3.2 Portfolio allocation along realized paths (rolling window horizon)

In order to examine the effect of a varying horizon, we perform a second experiment along
the realized trajectories of the state variables, in which the only difference with respect to the
above mentioned exercise is the fact that we keep the horizon fixed at 5 years. Table 2.3.5
reports results for the hedging terms and the mean-variance terms of optimal portfolios,
recorded each week, for periods of 14 to 6 years before the end of the sample horizon (not

to be confused with the investment horizon of 5 years for each allocation decision).

We again confirm the previous finding that the extreme value diffusion model of the
nested Archimedean mixture leads to considerably lower hedging demands for the risky
assets as compared to the asymptotically independent Gaussian model. Overall, as seen
from the right column of Figure 2.3.1, the pattern of the market price of risk hedges for a
rolling window horizon remains similar to that of the fixed horizon case, and its volatility

again determines to a great extent the total portfolio allocations in the risky assets.

2.3.3 Portfolio allocation along simulated paths

Having established the impact of modeling extreme value dependence on portfolio terms
using actual data, we now turn to the case of simulating ahead the whole system of state

N MC
HMPRJ) for

s i=1

variables, Malliavin derivatives and hedging terms ()@i,DtKi,fis,Ht{ f’i
any of the alternative diffusion specifications for a CRRA and a HARA investor with levels
of relative risk aversion ranging between 2 and 10, for a horizon of up to 3 years. For the

HARA utility assumption, we consider the case of B = —0.2, and unit initial wealth, for
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which case the investor displays aversion towards wealth shortfalls below a certain threshold.
Results are illustrated on Figure 2.3.7 and 2.3.8 for the intertemporal hedging terms and
the considered diffusion specifications.

The interest rate hedge, very close across all specifications, is positive and increases
with the horizon, as well as with the level of relative risk aversion. We find the opposite
behavior for the market price of risk hedging term that decreases with the coefficient of
relative risk aversion. For all horizons considered and for all levels of risk aversion the
nested extreme value mixture diffusion both in the Gaussian and the Student’s t cases
induces lower intertemporal demand for the risky assets, compared with its two elliptical
counterparts. This effect is accentuated in the case of a HARA investor, who has lower
MPR hedging demands and higher IR hedging demands for all cases.

Asin all of the above experiments, for either observed or simulated paths of the state vari-
ables, the differences in the total asset demand across alternative data generating processes
are driven mainly by the Market price of risk hedging demands, we conduct a simple sim-
ulation study in order to reveal the sensitivity of the market price of risk hedging terms to
changes in the parameters that describe the dependence structure. To this end, we solve for
the optimal portfolio when the data generating process is the most parsimonious extreme-
value diffusion — the nonnested Gaussian-Gumbel-Survival Gumbel, by simulating ahead the
state variables and their Malliavin derivatives for a horizon of 6 and 12 months for changing
values of the parameters that determine the weights of the extreme value copulas (wG and
w3). Thus for w® 4w % = 0 we obtain the Gaussian copula with no tail dependence, while
for w® 4+ w9¢ = 1 dependence is driven entirely by the extreme value Archimedean copulas,
and asymptotic tail dependence is at its highest values. Table 2.3.6 summarizes the results
of this comparative statics experiment.

When the part of the extreme-value copulas increases versus that of the Gaussian copula,
the market price of risk hedging terms decrease, reflecting the higher risk of joint occurrence

of tail events.

2.3.4 The cost of ignoring extremal dependence

Having thus obtained the optimal portfolio shares, we proceed to the assessment of the

importance of the intertemporal hedging demands, induced by the asymmetric dependence
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Table 2.3.6: Sensitivity of the Market price of risk hedging term to changes

in the parameters describing the dependence structure
The table reports the sum of the Market price of risk hedging terms for varying parameters that
describe the dependence structure for a fixed horizon of 6 and 12 months and a CRRA investor
with coefficients of relative risk aversion of 2, 5, 10 and 20. The model considered is the nonnested
Gaussian-Gumbel-Survival Gumbel model for changing values of the parameters that determine the

weights of the mixture copula (W&, T ).
T = 6 months T = 12 months

RRA : 2 5 10 20 2 5 10 20

W@ + o (assuming equal weights for the Gumbel and the Survival Gumbel copulas)
0 0.4604 0.3792 0.2979 0.2478 0.7668 0.6318 0.5039 0.4266
0.2 0.3865 0.3257 0.2642 0.2264 0.6609 0.5724 0.4829 0.4290
0.4 0.3098 0.2499 0.1974 0.1659 0.5556 0.4700 0.3923 0.3464
0.6 0.2411 0.1666 0.1144 0.0840 0.4443 0.3353 0.2580 0.2137
0.8 0.2296 0.1830 0.1488 0.1292 0.4379 0.3701 0.3162 0.2855
1 0.1915 0.1447 0.1126 0.0944 0.3851 0.3457 0.3124 0.2939

structure, in terms of the cost of ignoring these asymmetries. To this end, we propose
to follow the approach, largely exploited in literature on portfolio allocation that uses as
criterion the utility cost of ignoring the particular data structure in terms of the certainty
equivalent (i.e. in the present case, the utility cost of using non-optimal weights that come
from a data generating process that assumes tail independence, whereas data is characterized
by asymmetries in the extremal dependence structure).

In order to find the additional wealth that is initially required by an investor to use a
suboptimal allocation strategy for a given horizon, we have to solve the following equation

for the value functions that have to be equal at the investment horizon:

Ep [u(wy |wo =1)] = Ep [u(wr | wp = )] (2.3.1)

where w7 is the optimal terminal wealth obtained under the optimal data generating process,
wr is the terminal wealth obtained by using an alternative (suboptimal) data generating
process for the state variables, and @ is the initial wealth required by the investor in order
to form suboptimal portfolio shares. In the case of a CRRA utility, that is homogenous in

initial wealth, the above equation simplifies to:

Eo [(wh) 8 | wo = 1} = Ep [(wT)lfR |wo =@ (2.3.2)
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Table 2.3.7: The cost of ignoring extreme dependence as modeled by the
extreme value mixture diffusion (Gaussian — Gumbel — Survival Gumbel)

The certainty equivalent costs (dollars) for using a suboptimal allocation strategy of assuming that
state variables are driven by a Gaussian diffusion, a Student’s t diffusion, or a nonnested Gaussian —
Gumbel — Survival Gumbel diffusion while the true data generating process is the nested Gaussian
— Gumbel — Survival Gumbel diffusion. Results for a CRRA and a HARA investor with levels of
relative risk aversion of 5 and 10, for a horizon of 6 months to 3 years. For the HARA utility
B = —0.1 or B = 0.1, and initial wealth is set to 1.

HARA (B = —0.1) CRRA HARA (B =0.1)
Horizon RRA=5 RRA=10 RRA=5 RRA=10 RRA=5 RRA=10

vs. Gaussian

6 months 0.0319 0.0198 0.0344 0.0210 0.0370 0.0223
1 year 0.0609 0.0393 0.0650 0.0414 0.0692 0.0434
2 years 0.1030 0.0672 0.1085 0.0698 0.1139 0.0725
3 years 0.1584 0.1129 0.1635 0.1153 0.1685 0.1178
vs. Student’s ¢
6 months 0.0209 0.0136 0.0224 0.0144 0.0240 0.0152
1 year 0.0414 0.0294 0.0438 0.0306 0.0462 0.0318
2 years 0.0803 0.0631 0.0830 0.0645 0.0857 0.0659
3 years 0.1365 0.1197 0.1384 0.1207 0.1404 0.1217
vs. nonnested Gaussian — Gumbel — Survival Gumbel
6 months 0.0263 0.0154 0.0286 0.0166 0.0309 0.0177
1 year 0.0432 0.0241 0.0470 0.0259 0.0507 0.0278
2 years 0.0819 0.0525 0.0865 0.0547 0.0910 0.0569
3 years 0.1438 0.1100 0.1476 0.1118 0.1514 0.1137

The inverse of the marginal utility function for a CRRA investor has the form I (z) = 2™ &,

==

so that for @ we obtain w = {Eo [(E*T)k%] /Eo [(gT)I*ﬂ }1RR.

We examine the certainty equivalent costs for two scenarios. First, the true data gener-
ating process for the de-trended log-prices is assumed to be the Gaussian — extreme value
nested mixture diffusion (2.2.12) and we solve for the utility cost of using either one of the
Elliptical diffusions instead or the alternative nonnested mixture model for a horizon of 6
months to 3 years. Results for a CRRA and a HARA investor are reported in Table 2.3.7.

We find significant certainty equivalent costs for choosing a suboptimal data generating
process in this case, as high as 16 cents per dollar for the Gaussian copula and the longest
horizon. The costs increase with the investment horizon, and there are no significant quali-
tative differences between a HARA and a CRRA investor. The two HARA cases considered
with a positive or negative parameter B provide an upper and a lower limit for the certainty

equivalent cost of the benchmark CRRA investor. One loses the most if using a Gaussian
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Table 2.3.8: The cost of ignoring extreme dependence as modeled by the
extreme value mixture diffusion (Student’s t — Gumbel — Survival Gumbel)

The certainty equivalent costs (in dollars) for using a suboptimal allocation strategy of assuming
that state variables are driven by a Gaussian diffusion, a Student’s ¢ diffusion, or a Student’s ¢ —
nonnested Survival Gumbel diffusion while the true data generating process is the nested Student’s
t — Gumbel — Survival Gumbel diffusion. Results for a CRRA and a HARA investor with levels
of relative risk aversion of 5 and 10, for a horizon of 6 months to 3 years. For the HARA utility
B = —0.1 or B = 0.1, and initial wealth is set to 1.

HARA (B = —0.1) CRRA HARA (B =0.1)
Horizon RRA=5 RRA=10 RRA=5 RRA=10 RRA=5 RRA=10

vs. Gaussian

6 months 0.0545 0.0344 0.0587 0.0364 0.0629 0.0385
1 year 0.0969 0.0609 0.1039 0.0642 0.1108 0.0676
2 years 0.1987 0.1445 0.2067 0.1483 0.2146 0.1521
3 years 0.3314 0.2621 0.3388 0.2655 0.3461 0.2689
vs. Student’s ¢
6 months 0.0397 0.0245 0.0429 0.0261 0.0460 0.0276
1 year 0.0690 0.0428 0.0741 0.0453 0.0792 0.0477
2 years 0.1576 0.1230 0.1627 0.1255 0.1679 0.1280
3 years 0.2691 0.2312 0.2732 0.2331 0.2773 0.2351
vs. Student’s ¢t — nonnested Survival Gumbel
6 months 0.0182 0.0100 0.0199 0.0109 0.0549 0.0321
1 year 0.0200 0.0061 0.0227 0.0074 0.0254 0.0088
2 years 0.0293 0.0132 0.0317 0.0144 0.0341 0.0156
3 years 0.0557 0.0422 0.0572 0.0430 0.0587 0.0437

model instead of the true process when allocating a portfolio, and the costs are lower for
the two alternative specifications, as they take into account the increased dependence for
tail events.

For our second experiment, we generate data from the Student’s ¢ — extreme value
nested mixture diffusion (2.2.13) and consider suboptimal allocations for its elliptical or
nonnested counterparts. Certainty equivalent costs are twice as large, as compared to the
previous experiment, and are the most important for the Gaussian data generating process.
However, the certainty equivalent costs are not as substantial for nonnested version in this
case, probably due to the richer parameter specification of the Student’s ¢ diffusion.

The above simulation experiments have the underlying assumption of the true data
generating process being an Elliptic — Extreme value mixture, and we simulate the state
variables following the assumed process. We could alternatively look at the data itself and

compute the certainty equivalent costs along realized paths of the state variables, similarly
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to the portfolio allocation experiments. We thus treat the paths of the state variables as
observed and we assume alternative data generating processes when simulating the state
price density. As its evolution depends only on the market prices of risk and the short rate
evolution, we do not need to simulate Malliavin derivatives of the state variables in this case.
We look at a rolling window horizon of 6 months to 3 years, in order to match the horizons
in the simulation experiment, and consider the two Elliptical and the two Elliptic — Extreme
value mixture nested diffusions as data generating processes. Figure 2.3.9 displays the paths
of the certainty equivalent costs for the 3 rolling window horizons for the following three
cases: (i) Gaussian diffusion while the copula underlying the true data generating process is
the nested Gaussian — Gumbel — Survival Gumbel; (ii) Student’s ¢ diffusion while the copula
of the true data generating process is the nested Student’s ¢ — Gumbel — Survival Gumbel;
and (iii) Gaussian diffusion while data is assumed to come from a Student’s ¢ copula.

A value of 1 on the vertical axis would mean no certainty equivalent cost, while any
value above it translates into a cost of the corresponding value minus 1, in cents per dollar.
Alternatively, any value below 1 points to a gain, instead of loss, of using the alternative data
generating process. For the first half of the sample and for all horizons the investor loses
nothing by choosing a tail independent data generating process, while her costs are quite
substantial for the second more volatile period, characterized by several market crashes.
The costs increase with the investment horizon and are more pronounced for the case (i),
for which they remain at a high level for the second half of the period. The costs for the
Student’s ¢ case (ii) are higher than those in (i) on several occasions, but often drop to zero,
as both diffusions have a certain degree of tail dependence, and only the tail asymmetry
in the Extreme value diffusion would drive the differences between the two processes. The

investor looses the less in case (iii), where both competing diffusions are in the Elliptic class.

2.4 Conclusion

In this chapter we analyze the importance of considering dependence between extreme re-
alizations of stock market returns on intertemporal portfolio choice. In order to achieve
this, we address two problems: develop a parametric model that replicates the extremal
dependence found in the data, and apply a solution methodology for portfolio allocation

that allows us to isolate the intertemporal hedging terms induced by the particular data



Figure 2.3.9: The cost of ignoring extreme dependence as modeled by the
extreme value mixture diffusion: along realized paths of state variables for a
rolling 6-month, 1,2, and 3-year horizon
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The figures display the certainty equivalent cost (CEQ) of ignoring extreme value dependence across
realized paths of the state variables for the whole estimation period and a rolling-window horizon

of 6 months 1, 2, and 3 years.

This is performed under the assumption of a CRRA investor with

a coefficient of relative risk aversion of 5. The alternative data generating processes considered are
the nested Gaussian-Gumbel-Survival Gumbel diffusion vs. the Gaussian diffusion, the Student’s t
nested Gumbel-Survival Gumbel diffusion vs. the Student’s t diffusion, and the Student’s t diffusion
vs. the Gaussian diffusion. A value of 1 indicates no certainty equivalent cost of disregarding the

benchmark model; any value above 1 points towards positive certainty equivalent cost in cents per

dollar equal to the difference between the plotted value and 1; a value below 1 indicates loss, its
magnitude being equal to the difference between the plotted value and 1.
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generating process.

The idea of devising a model that is able to incorporate this specific dependence structure
has been exploited in the discrete-time literature building upon copula models in a GARCH
framework. However, no extension is provided to modeling the spatial dependence structure
of a continuous-time stochastic process. To solve this problem, we develop a multivariate
diffusion model with a prespecified stationary distribution, based on copula functions, that
is able to reproduce the dependence structure of the data. It represents as well a multivariate
generalization of the flexible class of univariate Generalized hyperbolic diffusion models of
Rydberg (1999) and Bibby and Sorensen (2003), and is thus able to account for stylized
features of asset returns as thick tails, skewness in the marginal distribution, and persistence
in the autocorrelation of squared returns. The mixture model we propose nests the cases of
asymptotic independence and tail dependence, thus covering a large spectrum of extremal
dependence structures.

There is conflicting evidence however on the effect of asymmetric correlations on port-
folio choice. Portfolio allocation problems in the copula framework have been addressed in
literature only in the unconditional context (Patton, 2004), where the effect of dependence
asymmetries is found to be substantial, while no extension is proposed for dynamic portfolio
selection. In a multiperiod setting on the other hand, under alternative specifications that
alm at capturing the same stylized behavior, dependence asymmetries are found to have
no considerable effect on optimal portfolio shares (Ang and Bekaert, 2002), while dynamic
hedging terms are not explicitly obtained. The model we develop has the advantage that
it allows us to approach the dynamic portfolio selection problem within a complete market
setup, and obtain explicit expressions for the dynamic hedging demands induced by the
extreme value dependence data generating process. The solution methodology is flexible
enough to allow for quite general specifications of the state variables and the utility func-
tion. We find that taking into account the dependence between realizations of tail events
diminishes the intertemporal demand for the risky asset and induces substantial utility cost
when this particular dependence structure is ignored.

However, these results are obtained under the assumption of constant conditional cor-
relation. A recent study of Buraschi et al. (2007) has provided evidence of a substantial

portfolio hedging component due to correlation risk, which is highly time-varying. Thus,
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relaxing the constant correlation assumption in our setting would allow us to isolate the
effect of the time-varying conditional correlation from that of the particular stationary dis-
tribution chosen for the diffusion process. This is an extension that we pursue in the third

Chapter of this thesis.



Chapter 3

Dynamic Correlation Hedging in Copula Models

for Portfolio Selection

3.1 Introduction

An increasing body of literature is interested in modeling time variations in the conditional
dependence of asset returns in terms of conditional covariances and correlations (Bollerslev
et al. (1988) or Engle (2002) to cite a few). From a modeling perspective, popular choices for
the time-varying correlation phenomenon are the Dynamic Conditional Correlation model of
Engle (2002) in a discrete-time setting, or the continuous-time Wischart process, introduced
by Bru (1991) that gives rise to an affine model and tractable portfolio allocation rules.
The main theme behind those models is the fact that the correlation structure of world
equity markets is not constant over time, but is highly time varying. A number of studies
have addressed this issue, as well as the driving factors behind this time variation. Based
on data from the last 150 years, Goetzmann et al. (2005) find that correlations between
equity returns vary substantially over time and achieve their highest levels during periods
characterized by highly integrated financial markets. As well peaks in correlations and not
only volatility can be attributed to major market crashes, as for example the Crash of 1929.
Longin and Solnik (1995) study shifts in global equity markets correlation structure and
reject the hypothesis of constant correlations among international stock markets. Moreover,
they find evidence that correlations increase during highly volatile periods. Using Extreme
Value Theory, Longin and Solnik (2001) find that international stock markets tend to be
highly correlated during extreme market downturns than during extreme market upturns,
establishing a pattern of asymmetric dependence. Further, Ang and Chen (2002) confirm
this finding for the US market for correlations between stock returns and an aggregate mar-
ket index. Another strand of literature connects the variability of stock return correlations

to the phase of the business cycle. Ledoit et al. (2003) and Erb et al. (1994) show that



109

correlations are time-varying and depend on the state of the economy, tending to be higher
during periods of recession. Similar evidence is brought forward by Moskowitz (2003) who
links time variation of volatilities and covariances to NBER recessions.

The above empirical findings find theoretical justification in Ribiero and Veronesi (2002)
where in a Rational Expectations Equilibrium model time variations in correlations are
obtained endogenously as a result of changes in agents’ uncertainty about the state of the
economy. Further, by relating recessionary periods to a higher level of uncertainty, excess
co-movements across international stock markets are obtained during bad times when the
global economy slows down.

The evidence of highly varying conditional correlations on equity markets has moti-
vated us to propose a continuous time process for asset prices that incorporates the above
mentioned stylized facts in two distinct ways. First, we allow for tail dependence between
extreme realizations of asset returns by explicitly modeling the stationary distribution of
the process using copula functions that incorporate dependence in the left or the right tail.
This construction of a multivariate diffusion with a pre-specified stationary distribution
relies on Chen et al. (2002) and it allows us to obtain higher dependence when markets
experience downturns than during upward moves. However, this approach does not exploit
the conditional correlation structure of the process. To this end, we further propose a spec-
ification for modeling correlation dynamics of the process using observed factors, including
macroeconomic and market volatility factors. With those we aim at capturing the above
mentioned features of asset returns, and namely the fact that correlations increase during
extreme market downside moves, hectic periods and recessionary states of the economy.

This chapter further concentrates on the portfolio implications of those distributional
assumptions. Staying within a complete market framework, we are able to undertake the
standard portfolio solution methodology of Cox and Huang (1989), further developed by
Ocone and Karatzas (1991) and Detemple et al. (2003), which allows us to obtain in closed
form up to numerical integration the optimal portfolio components in terms of mean-variance
demand and intertemporal hedging demands. For the case where we model conditional
correlation as a function of observed factors, we are able to isolate the hedging demands
for correlation risk, due to stochastic changes in the factors. We use the solution for the

optimal portfolio allocation in order to address the following issues:
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We test whether the implications of allowing for tail dependence through the stationary
distribution and for dynamic conditional correlation on the optimal portfolio hedging
demands are similar in magnitude and direction. As those distributional assumptions
aim at replicating the same stylized behavior, it is interesting to see whether the port-
folio effects will share this similarity. For an in-sample market timing exercise along
realized paths of the state variables over a 20-year investment horizon and two risky
funds, we find that allowing for dynamic conditional correlation generally drives up the
intertemporal hedging demands, while allowing for tail dependence in the stationary
distribution diminishes them. There is also a distinction in the portfolio composition
between the risky funds: in the presence of dynamic conditional correlation the spread
between the hedging demands for the two funds increases, while in the presence of
tail dependence it decreases, bringing about smaller hedging components in absolute
value for the two funds. Those effects become more important when increasing the

investment horizon.

We further investigate the evolution of the correlation hedging demands implied by the
observable factors. Using a factor to capture market-wide volatility and another one
to account for macroeconomic conditions, we find that the total correlation demands
due to those factors are generally negative throughout the period we consider. The
impact of the macroeconomic factor is more significant and directs the behavior of the

hedging demands.

We test whether results are sensitive to the particular choice of investment period. We
consider two sub-periods that differ in the level of stock market volatility and macro-
economic conditions, and we consider an investor with investment horizon set at the
end of each of these sub-periods. We find that for a relatively calm period with almost
no extreme events towards its end the impact of tail dependence disappears once we
allow for a data generating process that incorporates dynamics in the conditional cor-
relation behavior. To the contrary, for a hectic period with declining macroeconomic
conditions and a number of extreme events, especially towards its end, the importance
of modeling tail dependence for the optimal hedging demand cannot be overwritten

by allowing for dynamically varying correlations.
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d) We further test the economic importance of considering dynamic conditional corre-
lation or tail dependence using the concept of the certainty equivalent cost and find
substantial utility loss due to disregarding either form of dependence, which increases
with the investment horizon and for low levels of the agent’s relative risk aversion.
As well, we find substantial utility loss for disregarding dependence between extreme
realizations, even when dynamic conditional correlation has already been accounted
for, and vice versa. We also compare different dynamic conditional correlation spec-
ifications that take into account or not observable factors and we find that there
is utility loss related to disregarding observable factors, especially factors related to

macroeconomic conditions.

e) As well we study the sensitivity of the optimal hedging behavior for different levels
of average correlation and find higher hedging demands for high correlation levels,
when the impact of stochastic changes in conditional correlation on investor’s utility
is expected to be the highest. This finding is confirmed by the certainty equivalent
cost of disregarding dynamic conditional correlation: the utility loss increases for higher
levels of average correlation. Alternatively, we study the impact of disregarding tail
dependence for varying levels of tail dependence coefficients in the data generating
process and find that there are far more significant costs of disregarding dependence
between extreme realizations when its level increases, even when dynamic conditional

correlation is already taken into account.

The present study is closely related to the work of Buraschi et al. (2007) who solve for
the optimal portfolio hedging behavior in the presence of correlation risk in a setting where
both volatilities and correlations are stochastic, giving rise to separate demands for volatil-
ity and correlation risk. They model covariance dynamics using the analytically tractable
Wischart process and study the portfolio impact of stylized facts of asset returns such as
volatility and correlation persistence and leverage effects. However they work in an incom-
plete market setting which allows them to obtain closed-form portfolio solutions for only
the CRRA investor. While in Buraschi et al. (2007) the correlation between the risky assets
is stochastic and is driven by its independent risk source, the model of Liu (2007) allows

for stochastic correlations that however are deterministic functions of return volatilities,
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which does not allow disentangling the portfolio effect of correlation from that of volatility.
Under this model’s assumptions, including quadratic returns, for which the four elements,
describing the investment opportunity set (the short rate, the maximal squared Sharpe ra-
tio, the hedging coefficient vector, and the unspanned covariance matrix), are all Markovian
diffusions with quadratic drift and diffusion coefficients, it is again possible to obtain ex-
plicit dynamic portfolio solutions for an investor with CRRA utility. The portfolio problem
can be solved under either complete markets (when utility is defined over consumption and
terminal wealth) or incomplete markets (when utility is defined only over terminal wealth).

The portfolio solution methodology that we consider allows us to identify the intertem-
poral hedging demands that arise from the need to hedge against changes in the stochastic
investment opportunity set, and separate them from the mean-variance component. As well,
we can solve under general utility preferences, that are not constrained to the CRRA case.
We consider a case when conditional correlation is modeled as a deterministic function of
the state variables driving volatility, and alternatively as a function of observed state vari-
ables, linked to market-wide volatility and macroeconomic conditions. In the second case
we are able to isolate the correlation hedging demands that appear due to the need to hedge
against fluctuations in the observed factors.

The present study is also related to another strand of literature that studies the implica-
tions of asset co-movements on dynamic portfolio choice. Ang and Bekaert (2002) consider a
regime-switching model of asset returns that accounts for asymmetries in their dependence
structure by including a ‘bear’ regime with low expected returns, coupled with high volatili-
ties and correlations, and a ‘normal’ regime with high expected returns, low volatilities and
correlations. They find that the asymmetric correlation structure between the two regimes
becomes important for an international investor only when she is allowed to trade in the
risk-free asset. Only in this case there are any significant economic costs of disregarding
regime switching. Liu et al. (2003) model event related jumps in prices and volatility in the
double-jump framework, introduced by Duffie et al. (2000). The presence of event jumps
renders the optimal portfolio holdings similar to those that could be obtained for an investor
faced with short-selling and borrowing constraints. As well, event risk has a larger impact
on the portfolio composition of investors with low levels of risk aversion. However, these

results are obtained for a single risky asset portfolio. Das and Uppal (2004) consider the
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impact of systemic risk on dynamic portfolio choice by introducing a jump component in
asset prices that is common for all assets. They work in a constant investment opportunity
set and find that investors who ignore systemic risk would have larger holdings of the risky
assets. As well, there is higher cost associated to ignoring systemic risk for investors with low
levels of risk aversion and levered portfolios. In this setting there are portfolio effects due to
higher moments that arise from the inclusion of jumps. Alternatively, Cvitanic et al. (2008)
develop optimal allocation rules under higher moments when risky assets are driven by a
time-changed diffusion of the Variance Gamma type, and find that ignoring skewness and
kurtosis leads to overinvestment in the risky assets and a substantial wealth loss, especially
for high volatility levels.

In this chapter we consider an alternative way to model asset co-movement asymmetries
through the stationary distribution of the process for the state variables, driving the prices
of the risky assets. We introduce an asymmetric dependence structure of the distribution
explicitly by using copula functions that allow us to isolate the effect of the marginal dis-
tributions from that of the dependence structure itself. This allows us to model the above
mentioned stylized facts without reverting to an incomplete market through the inclusion
of jumps, which allows us to have a tractable portfolio solution for a general utility func-
tion specification. We chose between copula functions that incorporate dependence between
extreme realizations of the state variables and copulas that imply no tail dependence and
study the differences in the intertemporal hedging demands entailed by the alternative data
generating processes.

The remainder of the chapter is organized as follows. Section 3.2 discusses several stylized
facts of dynamic correlation and motivates the possibility to model it using observable
factors. Section 3.3 describes the model, the solution to the portfolio choice problem, and
the correlation hedging demands that appear due to observable factors driving correlation.
Section 3.4 discusses the particular portfolio holdings for a bivariate application. In Section
3.5 we present numerical results used to gauge the importance of hedging demands that arise
due to dynamic correlation or tail dependence. Section 3.6 concludes. Technical details are

provided in the Appendix.
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3.2 Dynamic correlation and exogenous factors

Established empirical findings point towards several stylized facts that characterize condi-
tional correlation dynamics of asset returns. It tends to increase in periods of high market
volatility, or in cases of extreme downside market moves. As well, it appears to be linked
to the business cycle and is higher in recessionary states of the economy.

We approach the above mentioned facts in two methodologically distinct ways. First, we
achieve increased correlation during market downturns through the stationary distribution
of the multivariate diffusion of state variables that underlines the stock price process. With
this ‘static’ approach we are able to achieve a certain degree of left tail dependence which
translates into increased dependence for low levels of the state variables. Second, we allow
for dynamic correlation of the state variables, driven by factors that are supposed to capture
market volatility and the state of the business cycle. To this end, we choose the Chicago
Board Options Exchange Volatility Index (VIX) which measures the implied volatility of
S&P index options and thus incorporates market’s expectations of near-term volatility. In
order to incorporate the effect of the business cycle on the dynamics of correlation, we
take the Chicago Fed National Activity Index (CFNAI) that synthesizes information on
various macroeconomic factors in a single index. It is a monthly index that aggregates
information on overall macroeconomic activity and inflation, as it is a weighted average of 85
indicators of national economic activity, ranging from production, employment, housing and
consumption, income, sales, orders and inventories. The methodology behind the CFNAI
is based on Stock and Watson (1999), who find a common factor behind various inflation
indicators. The evolution of the VIX and of the CFNAI are given in Figure 3.2.1.

In order to appreciate the time variation in asset correlations, driven by the chosen
indices, we estimate a DCC model with exogenous factors on the asset return series that
will be used later in the portfolio application. Data used in this study consists in two
stock market indices representing old economy stocks (S&P 500) and new economy stocks
(NASDAQ) for the period 1986-2006. This relatively long period includes several market
crashes among which the October 1987 crash in the beginning of the sample period, the
Asian crisis that triggered the market crash in October 1997, as well as the Dot-com bubble
crash in 2000-2002.

The DCC specification, as well as the estimated coefficients are given in Table 3.2.1, and
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Figure 3.2.1: Evolution of the VIX index (upper panel) and of CFNAI

index (bottom panel) for the period 1986 - 2006.
The VIX is quoted in terms of percentage points and the data is available at the daily
frequency. The CFNALI is quoted monthly. A negative value of the CFNAI index indicates
a below-average growth of the national economy, whereas a positive value of the index
points towards an above-average growth. A zero value means that the economy grows at its
historical average rate.

VIX

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007

CFENAI

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
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Table 3.2.1: Parameter estimates of a DCC model with exgenous factors

for SP 500 and NASDAQ returns.
The model that we estimate is an extended version of the DCC model of Engle (2002) to include
exogenous factors driving the conditional covariance and it has the following specification. Denote
by w; the d X 1 vector of asset returns, and by F} the n X 1 vector of exogenous variables. Then for
the conditional mean equation we have:

Y = Mt
e = Ht1/277t where 7, ~ N (0,1) thus e ~ N (0, Hy)

The conditional covariance matrix Hy can be expressed as Hy = D, RyDy = (Pij,tw/hz‘i,thjj,t),
where Pij¢ are entries of the conditional correlation matrix and hj; ¢ are entries of the conditional
covariance matrix. Further, R; = @;thQvgl, where @;1 = diag (\/%) The dynamics of (¢
are given by:

Qi=Q (1 — o — fB) +0o&r_161+PQ;_1+Ip " Fr 1

where £, ~ N (0, R;), and it is a d X 1 vector of standardized residuals £, = \/‘%, 1 is the identity
it

matrix and p is an n X 1 vector of parameters pertaining to the exogenous factors Fj.

In our case 1 denotes the returns of S&P 500 and NASDAQ, and F} are the VIX and the CFNAI

indices. Parameter estimates and their corresponding standard errors are given below.

Parameters Standard errors x 1000

a 0.0221 (0.1025)
38 0.9744 (0.0063)
p1 (VIX) 0.0008 (0.0000)
p2 (CENAI) —0.0001 (0.0081)

the correlation dynamics are plotted in Figure 3.2.2.

All the DCC parameters are significantly estimated which points towards a certain degree
of persistence of correlation. Estimated correlation levels range between 0.55 and 0.90 and
there can be seen a general tendency of increasing correlation over the years. There are
some distinct spikes in conditional correlation, some of which can be linked to specific
events (e.g. the late 1987 and 1997 market crashes). There is a distinct period of lower
conditional correlations between 1992 and 1997, which is also characterized by low market
volatility and a generally above average growth trend in the economy. The parameters for
the exogenous factors that drive the time-varying conditional covariance have the expected
signs: positive for the VIX and negative for the CFNAI, which translates into increasing

conditional correlation during hectic periods and recessionary states of the economy.
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Figure 3.2.2: Estimated dynamic conditional correlation for SP 500 and
NASDAQ returns from a DCC model with exogenous factors
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3.3 The investment problem

This section describes the problem faced by the investor in allocating her wealth between a
set of risky assets and the money market account. It introduces the distributional and utility
assumptions we impose and presents the general solution methodology using the Martingale
technique following the portfolio decomposition formula of Detemple et al. (2003) and its
implementation via Monte Carlo simulations. We consider the case where the investor
maximizes expected utility of terminal wealth, so that we do not allow for intermediate

consumption.

3.3.1 The economy

We define a filtered probability space (.7-"%( , {fi,)f }tT:o , PY>over the investment horizon [0, T']
where .7-"%/ is the filtration generated by state variables Y; under the empirical probability
measure PY. We consider a complete market setup with d+ 1 state variables Yj;, i = 1,...d,
where uncertainty is driven by d + 1 Brownian motions Wy, i = 1,...d + 1. There are d + 2
securities available for investment: d stocks, a long term pure discount bond, and the risk-
free asset. The state variable vector Y; consists of d+1 state variables X;, each one affecting
its corresponding stock price process, and a state variable Y,” that governs the dynamics of
the short rate 7, that is ¥; = (X¢,Y/)T.

The investor has at her disposal the following three asset categories. First, she can invest

in a risk-free money market account and its value at time ¢ is given by:
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t
By (t) = exp /r (s,Y))ds (3.3.1)
0

As well, another tradeable asset in the portfolio is a default-free zero-coupon bond with
a maturity 7. Its price B (t,T) at time ¢ can be expressed as a conditional expectation

under the equivalent martingale measure Q:

T
B(t,T) = E? |exp —/T(S,Y;) ds p |F)Y (3.3.2)
t

The rest of the portfolio consists in a collection of stocks whose price process is modeled

using the d state variables X;:

Si(t)=exp(Xu+¢(t) ,i=1,..,d (3.3.3)

where ¢ (t) is a deterministic function of time. This specification was chosen in order to be
as close as possible to the Geometric Brownian motion underlying the Black-Scholes formula
for option pricing: if the process for X;; is given by X;; = X0 + 05 fg dW;, then we are
exactly in the Black-Scholes setting where all the assets are independent from each other; if
alternatively we apply a stochastic time transformation to the Brownian motion and define
the process for X;; as X;; = X0 + f(f o (t, Xit) dWj, then we obtain a simple generalization
of the Geometric Brownian motion that already departs from the normality assumption. As
it will be shown below, we will further introduce a drift to the process for the state variables
X which will be consistent with a chosen stationary distribution for the process, as well as
correlations between the Brownians that will be allowed to be stochastic. This will bring
the model closer to the discrete-time alternative of a dynamic conditional correlation model,

as the one introduced by Engle (2002).

3.3.2 The affine setup for the bond price

In what follows, we will restrict the framework for the bond price to the affine class, in that
the short interest rate r; will be an affine function of state variable Y,". This will allow us
to express the yield of the bond as an affine function of the state variable as well. Thus, we

assume that the short rate can be expressed as:
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r(t,Y]) =00+ 1Y/ (3.3.4)

The choice of a one-factor affine model for the short rate may be questionable as there
is substantial empirical evidence concerning the shortcomings of affine models', and as well
using only one factor to capture the dynamics of the term structure may be too restrictive.
But as the specification for the bond is marginal for our portfolio application, we proceed
with this simple specification which ensures tractable portfolio solutions. As well, Y;" has
the simple interpretation as a state variable that models the dynamics of the interest rate
risk factor which will further determine the hedging terms of the portfolio against changes
in the stochastic interest rate.

Following the evidence of time-varying interest rate risk premia on the bond market
(e.g. Chan et al., 1992), we allow the state variable Y;" to evolve over time according to a

square-root process. Its dynamics under the objective measure P are given by:

AY7 = ky (67 — Y)Y dt + 00 /Y7 AW (3.3.5)

Following Dai and Singleton (2000), we assume a market price of risk of the form \y/Y}",
which ensures that the process for the state variable will be affine under the risk neutral

measure as well. Then under the equivalent martingale measure the process will be:

dYy =7y (W - Yt> dt + oo /Y7 AW} (3.3.6)

where &, = K, + o, A and 0" = k.07 / (k, + 0, 0).
Given the affine term structure parametrization is admissible, we can obtain in closed

form the price of the default-free bond:

B(tT)=exp{a(T —t)+b(T —1)Y]} (3.3.7)

where a (1) and b (7) solve the Ricatti equations:

'Backus et al. (1998) show that term premiums generated by affine models are too low compared to
the observed data; Duffee (2002) finds that this class of models is not flexible enough to replicate temporal
patterns in interest rates.
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8‘;(:) = TR (T) — b
ob(r) 1
o = ERb () + 5 (o (7)) 1

Then the process for the bond price can be recovered from (3.3.6) and (3.3.7) and the
specification of the market price of risk that we adopted. Thus, it can be shown that the

bond price follows:

dB, = By [p® (t,Y])dt +o” (¢,Y])dW]] (3.3.8)
where u? (t,Y7) = r(t,Y7) +b(r) o, \Y

and o (£, Y]) = b(7) o \/Y]

As a result of the CIR specification of the state variable Y;", the market price of risk
defined by ©8 (t,Y;") = o8 (t,Y7) ! (1P (t,Y7) — 7 (t,Y)")) is stochastic and is given by
A/ Y. It should be noted that for the bond risk premium to be positive, the market price

of risk and thus A should be negative.

3.3.3 The copula diffusion for the stock price process with dynamic conditional

correlation

In this section we will define the process for the state variables X; that drive the stock prices.
As we are interested in modeling the dependence between extreme realizations of returns,
we will adopt the copula diffusion process, introduced in the first chapter and extend it
to a dynamic conditional correlation specification. Thus, we introduce two channels for
modeling extremal dependence: one through the properties of the stationary distribution of
the process, and the second through the conditional correlation. We will explore two options
for modeling the correlation dynamics. A first straightforward way to do so is to allow the
conditional correlation to be time-varying by being specified as some known function of the
state variables themselves. As there is evidence that correlation increases in volatile states
and when returns are low, we propose to model correlation as a function of the volatility

and the level of the state variables. Thus, the general form of the state variables X; is given
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by:
Case A:  dX; = p(Xy)dt + A(Xy) dWS (3.3.9)

where A is a lower triangular matrix, and W is a d-dimensional standard Brownian motion,
independent of W". If we define a continuously differentiable positive definite matrix ¥ =
AAT, then its entries are given by v (Xt) = Yi; (Xy) 0 (Xy) O']X (Xy), 4,7 =1,...,d, where
the conditional correlation coefficients Y;; (X;) and the conditional volatility terms o; (X)
are functions of X; and thus time varying.

The second way to model dynamic correlation that we explore is by rendering it sto-
chastic in terms of a function of observable factors. Following the empirical evidence, that
correlations increase in volatile periods and in bad states of the economy, we introduce two
exogenous factors to account for that: the CBOE volatility index (VIX) and the Chicago
Fed National Activity Index (CFNAI). Denoting these observable factors as F}, we propose

a second general specification for the state variable process X; of the form:

Case B:  dX; =i (Xy, Fy)dt + A (Xy, F) dWX (3.3.10)

where A is a lower triangular matrix, defined as a function of the state variables Xy, as
well as the observable factors F;. The entries of the continuously differentiable positive
definite matrix ¥ = AA’ are given by Ui (Xy, Fy) = Tij (Xt, Fy) o (X) of (Xt), where the
conditional correlation coefficient Tij (X4, Fy) is stochastic in that it is modeled as a function
of the observable factors F}, as well as the state variables X;. Note that in this second case
we augment the state variable vector Y; to include also the factors Fy: Y; = (Xy, Fy, Y))T.
Using any of the above specifications for X; and the fact that the stock price is defined

following (3.3.3) , we can apply It6’s lemma in order to recover the stock price process:
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where uf (t,Y;) =
pi (Yy) =
and Ai[j t,Y,) ,I =

Ay (Y =
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Sipis (log Siy — ¢ (1)) dt (3.3.11)

d
+Sit Z Ain (log Sit — ¢ (1)) de)t(
j=1

I
/%I(Y;f)‘i_gol(t)_‘_?zagj(yt) I =1,2

1,2 are entries of the corresponding matrix:

A (Xt) ) A12] (t7Y;f) = K (Xt7Ft)

It should be noted, that as we need to stay within the complete market setup, the

number of sources of risk, generated by the Brownian motions, should be the same as the

number of traded assets. Thus, when introducing the observable factors F' in the stock price

specification, we assume that their dynamics are governed by the same Brownian motions

that drive the stock prices themselves.

As the market is complete and we have an invertible matrix AZ), we can define a market

price of risk as ©° (¢,Y7") = AD (¢, v,) ™ (15 (t,Yy) —r (t,Y{) 1), where ¢ is a d-dimensional

vector of ones.

Let us stack the drift and diffusion terms for the bond and the stocks so that to obtain:

M (t,Yy)

wi (8, Y7)
pP (t,Y7)
0
AD (¢, ;)
0
0 ... 0 o2ty

Then the market price of risk for all the tradeable assets

O(t,Y,) = (@ (t, Yt)f , e O (8, Yt)glg , 08 (t, Yt)) is defined as:

S (t7 Y;f) =2 (ta Yt)il (M (t7 Y;f) -Tr (t7 Y;‘,T) L)
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It is assumed to be continuously differentiable and satisfying the Novikov condition
E [exp ( fOT O (t,Y)"O(t,Y:) dt)} < 0. The market completeness implies the existence of

a unique state price density &, defined as

t
& = Bo(t) ' mexp —/r(s,Y!)dS x
0
t t

exp —/@(S,YS)T dWs—;/Q(s,)@)TG(s,n)dS
0 0

where 7, is the Radon-Nykodym derivative, ]—"%/ -adapted. We can also define the conditional

state price density that converts cash flows at time v > t into cash flows at time :

gtv

)

Sulti (3.3.12)
— [ (s, YT ) ds — [ O (s,Y)T AW,
1 70(s,Y,)T O (s,Ys) ds

= exp

Establishing the diffusion specification for the state variables X that drive the
stock price dynamics

Having established two alternative ways to model the conditional correlation dynamics with
the aim of answering the stylized fact that asset correlation increases in volatile periods
when asset returns are low and the economy is in a downturn, we now turn to the other
possibility of accommodating this stylized fact: through the stationary distribution of the
state variables, as it has been already explored in the first chapter. Instead of focusing
on the dynamics of a correlation measure (the correlation between state variables changing
stochastically through time), in this chapter we have modeled the tail dependence (the
asymptotic dependence between tail realizations of the state variables) in a ‘static’ sense.
By imposing a certain stationary distribution on the state variables’ process, one can obtain
different degrees of tail dependence in the left or the right tail of the distribution. Thus, for
low levels of the state variable, the tail dependence index may be high, while for high levels
of the state variable it may be low, reproducing the stylized fact mentioned above.

For the sake of completeness, we will review the construction of a multivariate diffusion



124

with a given invariant distribution, defined in terms of copula functions. It follows Chen
et al. (2002) in exploiting the relationship that exists between the density of the stationary

distribution, the drift and the diffusion term of the process defined in (3.3.9) or (3.3.10):

O |

d
1 _ 8 Vii
pj==q" E %qu) (3.3.13)
i=1 v

where £ and v;; denote either p (X;) and v;; (X;) for Case A or i (X4, Fy) and v;5 (X4, Fy) for
Case B, and ¢ is a strictly positive continuously differentiable multivariate density function
that is the stationary density of the Markov process for X. Thus the specification of the
drift term g depends on both the form of the invariant density (which will be modeled to
determine the degree of asymmetric tail dependence of the state variables X, that is the
‘static’ representation of the stylized fact of co-movement asymmetries), and the form of the
diffusion term A (which will be specified in a way to allow or not for dynamic conditional
correlation, dependent or not on observable factors, that is the ‘dynamic’ representation of
the same stylized fact).

In what follows we will establish the alternative assumptions on the form of both the

invariant density and the volatility term.

The form of the invariant density. With the choice of the stationary distribution
we seek to answer several questions concerning the behavior of asset returns. Our major
concern is the ability to allow assets to be dependent when they move towards the tails
of the distribution, especially for the left tail. This would ensure our model the ability to
replicate the empirical fact that asset returns are increasingly dependent as they jointly
move towards the lower quantiles of their distribution, that is during market downturns. As
copula functions allow us the flexibility to impose different types of joint behavior on the
variables while keeping the marginal distributions unchanged, we build the invariant density

q based on the copula density representation following Sklar’s theorem:

d
q (21, 3a) = (21, za) [ [ £ (20) (3.3.14)
i=1
where ¢ (21, ...,zq) = ¢ (F (z1), ..., F%(z4)) is a copula density defined over the univariate

CDFs F'(z;), and fl (x;) are the corresponding non-normalized univariate densities. We
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choose the Normal Inverse Gaussian (NIG) distribution? to model the univariate behavior
because of its proven ability to account for stylized facts of univariate asset return dynamics:
autocorrelation of squared returns, semi-heavy tails, possibly asymmetric. Its tail behavior
is richly parametrized, nesting tails that vary from an exponential to a power law. As well,
NIG is one of the few members of the class of Generalized Hyperbolic (GH) distributions
that is closed under convolution, that is if the distribution of log prices is modeled under a
NIG law, then the distribution of the increments (asset returns) is also NIG. The univariate
NIG diffusion is also an alternative to the widely used NIG Levy process (e.g. Eberlein and
Keller, 1995; Prause, 1999) that allows for an infinite number of jumps in the price process,
but that also imposes independence of the increments, which is not the case for its diffusion
counterpart.

The most important feature of the copula density representation (3.3.14) is that it allows
us to separate the effect of the marginal behavior from the implications of the dependence
structure, modeled using a copula function. This is important for the portfolio application
that we treat in this study, as it allows us to gauge the difference between the different ways
to model asset dependence (and thus to reproduce or not the stylized fact of asymmetric
asset co-movements) without the impact of the particular assumptions for the univariate
stock price processes. Thus we could measure the impact of the ‘static’ representation
of dependence, ranging from Gaussian (no extreme co-movements) to non-negative tail
dependence (extreme co-movements, possibly asymmetric) on the optimal portfolio terms.

Let us first remind the definition of the coefficients of upper and lower tail dependence
for couples of random variables X and Y: upper tail dependence is defined as the limit
probability of the variable Y exceeding the upper quantile as we approach it, conditional

upon the fact that the random variable X has exceeded that same quantile:

Ay = lim Pr[y > Fyt(u)|X > Fyt(u)]

Alternatively, we define the coefficient of lower tail dependence as:

Ap=lm Pr[Y < By (u) |X < Fy' (u)]

2See the appendix for details.
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(1—-2u+C(u,u))

Both coefficients can be represented in terms of copula functions: Ay = lim,_,1 T

and A\;, = lim,,_.g w

. So different copulas will have different degrees of upper and lower
tail dependence depending on their parametric specification. Thus, in order to allow for

different degrees of tail dependence, we assume several copula specifications for ¢.

Case 1 Gaussian copula C%%: \y =X =0

In this case we allow for no dependence between tail realizations of the state variables.

The parameter that governs dependence is the correlation coefficient p.

Case 2 Student’s t copula Ct: \y = A\, = 2t,41 <—%)

where t, is the Student’s t density for v degrees of freedom. In this case the copula
function allows for symmetric tail dependence, determined by the correlation parameter p

and the degrees of freedom parameter v.

Case 3 A Gaussian - Symmetrized Joe-Clayton (SJC) mizture copula CE*=57C: Ay # A,

The form of the mixture copula is given by:

CGafsJC — O.)CSJC + (1 o w) CGa

where C¢ stands for the Gaussian copula function and CS7¢

- the Symmetrized Joe-
Clayton copula, with a mixing parameter w that determines the weights of each of the
copulas. The symmetrized Joe-Clayton copula models separately upper and lower tail de-
pendence and its form is particularly appealing, as the tail dependence coefficients are
themselves the parameters of the copula function. It has been proposed by Patton (2004)
as a symmetrized version of the Joe-Clayton copula, in order to overcome the drawback of
the latter in that even when the coefficients of upper and lower tail dependence are equal
to each other, there still exists some asymmetry in the copula, due to its functional form.
We consider a mixture specification with this copula and the tail independent Gaussian
one in order to answer the concerns raised in Poon et al. (2004) that a copula specification

whose coefficients explicitly allow for tail dependence may overestimate the dependence

in the tail regions. Thus, by the mixture copula we let the data determine whether the

3See the appendix for details on the alternative specifications of the copula functions used in the paper.
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dependence structure is closer to one imposing no tail dependence or to one that allows for
it.

The cases considered above follow closely the ideas behind the copula diffusion introduced
in the first chapter. In all of them dependence is modeled explicitly through the invariant
density of the multivariate state variable process. In the following section we will extend this
setup and will introduce dynamics in the modeling of dependence through the conditional

correlation coefficient.

The conditional correlation dynamics. Before proceeding to the specification of the
conditional correlation, we need to define the conditional volatility dynamics. Recall that the
diffusion term of X was defined as a lower triangular matrix A and the entries of the variance-
covariance matrix X = AAT are given by v;; (X;) = Yij (X¢) 0¥ (X3) O'jX (Xt). Borrowing
the idea of Bibby and Sorensen (2003) for modeling the diffusion term of a univariate GH

stationary process, we allow each oX (X;) to be a function of the state variables X;:

1
2

o (Xy) = 0 [J?Z (Scz')] (3.3.15)

where f’ (z;) is the non-normalized NIG density for X;, and we have the following parameter
restrictions: o; > 0 and k; € [0,1]. By expressing the volatility term as the inverse of a
power function of the density f we obtain the familiar U-shape for the volatility, typical
for a stationary process. This specification is especially interesting, as it nests the constant
conditional volatility as a special case, setting x; = 0. Thus, for the portfolio allocation
application, we could easily isolate a volatility hedging component due to stochastic con-
ditional volatility by opposing a model with x; # 0 to one that restricts the conditional
volatility to be constant (x; = 0).

Earlier in this section we have discussed two possibilities of rendering the conditional
correlation coefficient dynamic: through modeling it as a function of the state variables X
or by allowing it to be influenced by stochastic factors F. Here we will further elaborate
the particular assumptions concerning those two cases.

In both cases the conditional correlation coefficient Y;; is modeled as a function h;; (Y;)
of the stochastic state variables Y, whether or not augmented with the observable factors. In

order to keep the correlation coefficient in [—1, 1], we apply the following logistic transform
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A on the function h (Y3):

ij Y))

1 —exp(—hy
" Tt exp (—hy (V)

Tij (Y) = A(hi; (Y))

Case A. Dynamic conditional correlation with state variables: YT (X;)

As our aim is to replicate the stylized fact that correlation between asset returns increases
in volatile periods and in extreme market downturns, we model the dynamic conditional
correlation coefficient as a function involving the volatility specification considered earlier
(3.3.15), as well as the level of the state variables in terms of their probability integral

transforms F' (X;). More specifically, we model the function h;; (-) as:

d
hij (Xt) = 7450 + Vij1 max (U{( (X1) .0y (X)) + Vij,2 H F(Xit) (3.3.16)
i=1

where F' (X;;) stands for the corresponding univariate NIG CDF. The second term in this
specification involves the conditional volatilities of each univariate series. We expect to
obtain a positive coefficient 7,; ; to reflect the fact that correlation increases in hectic periods.
We define this term as the maximum over all individual volatilities in order to allow high
volatility in any of the stocks to trigger increased conditional correlation. This specification
was also used in Goorbergh et al. (2003) in order to model the dynamics of a conditional
copula through Kendall’s tau in an option pricing application. The third term is motivated
by the fact that conditional correlation shoots up when stock prices jointly and abruptly
decline, thus we expect a negative sign for the coefficient 7;; 5.

Case B. Dynamic conditional correlation with observed factors and latent
variables: T (X, F})

Instead of letting the dynamics of the conditional correlation parameter be determined
exclusively by the state variables that drive the stock price process, we model it instead
with observable factors that are believed to drive conditional correlation: the VIX and the
CFNAI macroeconomic index. Thus we aim at replicating the stylized fact that correlation
increases in volatile markets when the economy is in a bad state. As the economic cycle
does not necessarily coincide with bear/bull financial markets, we leave from the previous
specification the term that determines the level of the state variable. More specifically, in

this case we model the function A (-) as:
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d
hz‘j (Xt, Ft) = 7ij,0 + %jJFtV + 77Lj,2 H F (th) + 7ij,3FtM (3317)
=1

where FY = log (VIX;) and FM = CFNAI. The second term in this expression involves
the VIX and thus tries to account for the fact that conditional correlation will rise in
periods of increased volatility, so that we expect a positive sign for 7;; . The third term
involves the probability integral transforms of the state variables X and is thus meant to
capture the fact that correlation increases in market downturns (which entails an expected
negative coefficient v;; 5). The last term involves the macroeconomic factor and thus aims at
capturing the effect of the economic cycle on conditional correlation. As the CFNAI index
is designed to take positive values when the economy is in an upturn and negative values
otherwise, we expect to obtain a negative sign for ;; 5.

Case C. Dynamic conditional correlation with observed factors: T (F})

If we alternatively believe that correlation is driven by factors that do not affect directly
the stock price process, then we may restrict the specification in (3.3.17) in order to include

only observable factors:

hij (Ft) = 75,0 + ’yijJFtV + ’Yij’gptM (3318)

This specification will prove quite useful in determining the portfolio correlation hedging
demands, as we will see in the following sections, as it will allow us to explicitly identify
them from the rest of the hedging terms of the portfolio. This is due to the fact that the
factors determining conditional correlation do not affect in a direct way the stock price
process itself.

We assume the following processes for the two factors: a CIR process for FV and a

Vasicek process for F'M:

dF) = kY (0V - E)dt + 0"/ FYdw;* (3.3.19)

dFM = &M (M — FM)dt + oM aw*

These processes will greatly facilitate the implementation of the portfolio allocation

formula, as the Vasicek specification will allow for a closed-form solution for the Malliavin
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derivative of the macroeconomic factor F™, while the CIR diffusion term will make possible
a variance-reduction technique for the Monte Carlo simulation of the Malliavin derivative

of FV.

3.3.4 The investor’s objective function

We consider an investor who maximizes utility over terminal wealth, that we denote by
U (wr) by choosing an optimal investment policy {a}e ) that belongs to an admissible

set A for an investment horizon T

I;?XE U (wr)] (3.3.20)

where the utility function U is strictly increasing, concave and differentiable, and satisfies
the conditions lim,_,o, U’ () = 0 and lim,_,q U’ (z) < co. This standard utility specification
includes the case of the Hyperbolic Relative Risk Aversion (HARA) utility function U (w) =
ﬁ (w+ b)lfv that we assume for this application. The coefficient of Relative Risk Aversion,
defined as R (w) = —%w, is equal to v for the HARA case, which boils down to a
constant « for the special case of CRRA utility.

The portfolio policy « is a (d + 1)-dimensional progressively measurable process that is
defined as the proportion of wealth allocated to the risky assets (d stocks and a long term
pure discount bond). Thus, the amount invested in the risk-free asset (the money-market

account) is (w — aT1l). The portfolio policy generates a wealth process w whose dynamics

are given by:

dwi = wi {redt + o] [(M (¢,Y) — o) dt + S (¢, Yz) dWy]} (3.3.21)
3.3.5 The complete market solution

The complete market setup that we have adopted allows us to solve for the optimal portfolio
using the Martingale solution technique that restates the dynamic budget constraint (3.3.21)
as a static one and first solves for the optimal terminal wealth, and then finds the optimal
portfolio policy that finances it. Thus, following Cox and Huang (1989), optimal terminal
wealth is given by wh = T (yé7)* = max (I (y&7),0), where I = [U"] " denotes the inverse of

the marginal utility function, and y satisfies the static budget constraint F [{TI (ygT)+] =
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wo, where wq is the initial wealth.

Following Ocone and Karatzas (1991), and using the portfolio decomposition formula of
Detemple et al. (2003), we have the following expression for the optimal portfolio policy,
(™)

that decomposes the portfolio holdings into a Mean Variance part , an Interest Rate

Hedge (o!#f) and a Market Price of Risk hedge (o™ PRH).

af = MV 4 oIRH 4 o MPRH (3.3.22)
where
ol = (W) O YR [ftT e L
(ofRE)T = —(AT( YD) B [mf( 1)) Lorsoff T]
(aMPRH)T - _ (AT(t,Yt))il E; [§t7T$ (1 — R(wTrl) 1UJT>0H1?T:|

The terms Hi and H T involve the sensitivities of the short rate and the market price
of risk towards shocks in the Brownian motions that drive uncertainty in the model and are

defined as follows:

T
tr = /DthdS /527" s,Ys) DiY (3.3.23)
t
HEp = | (dW,+6(s,Y,)ds)T D,O(s, Ys)ds (3.3.24)

(dWs + O(s,Y5)ds)T 020 (s, Ys)D,Ysds

Tty Tt

where the operator D is the Malliavin derivative, daf (¢, ) refers to the derivative with
respect of the second argument of f(¢,x), and where the second equality was obtained using
the chain rule for Malliavin derivatives. For the state variables needed in our application,

the Malliavin derivatives are given by:
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D1 X1s -+ DgiXis 0
DtXl,s
D1 Xqs -+ DgiXqs 0
DthS == = DtFSV
Dy FY - D FY 0
Dy FM
Dy FM . Dy FM 0
DiY]
0 e 0 Dit14Yy

The implementation of the above formula follows Detemple et al. (2003) and relies on
the fact that the Malliavin derivatives, as well as the state variables, follow stochastic
differential equations that can be simulated using standard discretization techniques. Given
the particular specification of some of the state variables, we can further apply the Doss
transformation?, reducing the stochastic differential equation of the given state variable to
one with a constant diffusion term, which ensures that the Malliavin derivative does not
involve a stochastic term. Specific solutions for the Malliavin derivative are given in the

appendix.

The long term bond and the interest rate hedging demands

Let us first consider the term Hy, that involves the sensitivity of the short rate towards
shocks in the underlying Brownian motions. Recall that r (s, Ys) = dg + 01Y;, and that the
(d + 3)-dimensional state variable vector, augmented with the observable factors, is defined
as Y = (X1,..., X, FV, FM Y")T. Thus 0ar (s,Y;) = (0,...,0,01), and using the fact that
Dai1,:Ys = (0,...,0, Dgq14Y]), then:

T
Hlp = o,...,o,/(slpdﬂ,tyg
t

So the long term bond is the sole security in the portfolio that is used to hedge against

changes in the short rate.

3.3.6 Correlation hedging

The above portfolio decomposition formula isolates interntemporal hedging demands due

to stochastic changes in the short rate or the market price of risk from the mean-variance

*See Detemple et al. (2003) for further details.
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demand. As in Cases B and C we have modeled conditional correlation as a function
of certain observable factors, the sensitivities of those factors to shocks in the underlying
Brownian motions would give rise to hedging demands that can be related (partially for
Case B) to correlation hedging. As in Case A conditional correlation is modeled as a
deterministic function of the state variables, determining as well the drift, volatility, and
subsequently the market price of risk dynamics, we cannot isolate correlation hedging from
the total intertemporal demands in this case. The only way to judge the importance of
dynamic correlation modeling for portfolio allocation in this case is to contrast the hedging
demands, obtained under a DCC specification with those obtained from a CCC process.
We will consider this possibility in the following sections when we consider a real data

application.

Isolating the correlation hedging demands involving observable factors

As the primary objective of this chapter is to explicitly isolate the correlation hedging
demands in the portfolio that arise from stochastic changes in the conditional correlation,
let us now consider the second term HST in the portfolio decomposition formula that handles
the sensitivity of the market price of risk towards shocks in the underlying state variables.

Let us define the vector ¥ in terms of the market price of risk and the state variables:

U, = (dW; + O(t, Y;)ds)T 8,0(¢, Yy)

Note that in Case B for the conditional correlation specification, where we have aug-
mented the state variables Y to include observable factors F = (FV, FM )T, the vector ¥
will be of dimension (d + 3). Then we could represent the HZ. in terms of ¥; and the

Malliavin derivatives of the state variables as:

T
HYp = / U, DY,
t

where ¥;D,Y, could be further decomposed as follows:
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Wy D1 X1 s+ + VD1 i Xas+ Va1 D1t FY +Vai0,D1  FM

(VDY) =

V4D X1 st + Ve Dg i Xgs+ W Dd,thV +Vv Dd,tFSM

d+1,t d+2,t

.
UarsiDar1.4Y]

Apparently, the term HST,d 41 corresponding to the bond, does not involve any other
Malliavin derivatives except that of the state variable Y" driving the short rate. As for
the interest rate hedge, Y will be the only state variable whose sensitivity with respect to
uncertainty shocks will determine the market price of risk hedging terms for the long term
bond.

For each one of the d stocks the term HE)TJ- can be expressed as:

T T
HYpy = /‘Pl,tpi,tXl,er---+/‘1’d,t73i,th,s
t t
T T
+ / Vgi1,DisFy + / U0 Di FM
t t

The last two terms in this expression involve the Malliavin derivatives of the observable
factors with respect to the Brownian shocks. As those factors are solely responsible for
describing the dynamics of the conditional correlation in the process for asset returns, then

the term

T T

CST,z' = / Var1DidFy + / U404 D FY (3.3.25)
t t
S) S
= Viri+ M,

can be considered as defining the correlation hedging demands for the stocks arising from the
necessity to hedge against changes in the observable factors F'. Thus we can isolate the effect
of the market-wide volatility factor on correlation through V;%Z = ftT Vgi1,Di F, SV , and the
effect of the macroeconomic state variables through METJ = ftT \Ild+2,tDi7tFy . However, as

we have defined the conditional correlation dynamics in (3.3.17) as been driven as well by the
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state variables X through the level of the returns, there will be additional hedging demands,
associated with the Malliavin derivatives of X, that cannot be disentangled from the rest of
the market price of risk hedging demands. We would have this problem in all cases when
conditional correlation is modeled as a function of state variables that are not exclusively
‘reserved’ for driving its dynamics. If to the contrary we believe that correlation is driven
solely by observable factors (eg. by setting v;;, = 0 in (3.3.17)), or by other latent factors
that do not enter the specification for the stock prices (3.3.3) except through correlation
itself, then CE)TJ alone will be responsible for the correlation hedging in the portfolio.
Note as well that in Case A, where conditional correlation was defined in terms of only
the state variables X that drive the stock price dynamics, the term CSTJ is set to zero, but
that does not entail zero correlation hedging. It rather means that the correlation hedging
demands cannot be explicitly isolated in this case. Nevertheless, their importance can be
judged by comparing the hedging terms that arise from a constant conditional correlation
stock price process to those that arise from the dynamic conditional correlation specification.
Let us now get back to the portfolio decomposition formula (3.3.22). Using (3.3.25) we
can now isolate the Market Price of Risk (MPR) hedging terms that arise from hedging
changes in the observable factors that drive correlation, that is, the correlation hedging

demands:

(€O = — (AT V) By {m‘c‘f (1-R@n)™) 1w>0034 (3:3:26)

where CST = <C§)T,1, ey CST, d)' This defines the explicitly identifiable correlation hedging
demand in our setting. It will amount to the full correlation hedging demand for Case C
when the factors driving correlation do not affect in a direct way the stock price process.
We can restate the above result in terms of the sensitivity of the cost of optimal wealth to
changes in the factors driving the conditional correlation dynamics, as the optimal portfolio
policy is indeed obtained as one that finances optimal terminal wealth. Recall that optimal
wealth at time ¢ is given by w} = E; [§t7Tw*T], where &§; rwp = &l (y§t§t7T)+ represents
its cost. Then for a nonnegative I (y§) its sensitivity with respect to fluctuations in the

observable factors F' is given by:



136

[I (yftftT) + Y&y, I (?J&tft T)] (—ft,T) x

(dWs + O(s,Y5)ds)T 020(s,Y ) D, F

”\H

where we have used (3.3.12) and the fact that I’ (y) = (u” (I (y))) " which follows from the
definition of I (y) as the inverse of the marginal utility. Thus, the portfolio terms that are
responsible for the sensitivity of the cost of optimal terminal wealth to fluctuations in the

factors are indeed the correlation hedging demands defined in (3.3.26).
3.4 A bivariate application: S&P500 vs. NASDAQ

In order to appreciate the impact of the correlation hedging demands on the optimal portfolio
composition in a realistic setting and compare them to the intertemporal hedges that arise
due to incorporating tail dependence in the stationary distribution of the process for the
state variables, driving asset prices, we offer an application based on real data. We consider
a portfolio, formed by a 10-year pure discount bond, as well as two risky funds, represented
by old and new economy stocks: S&P 500 and NASDAQ. An application with this choice
of a dataset can be found in Detemple et al. (2003). Data is observed at the daily frequency
(except for the CFNAT factor, which is observed monthly) and refers to the period 1986-2006.

Without loss of generality, we assume that the coefficients in the short rate specification
(3.3.4) are given by dp = 0 and 6; = 1, so that for the short rate we have that r (¢,Y;) =Y.
Given the fact that both the interest rate and the market price of risk of the long term bond
are assumed to be stochastic, the optimal portfolio composition for it will involve both
the interest rate and the market price of risk hedging terms. For the CIR specification
we have chosen there are no closed-form solutions for the hedging terms, as it would have
been the case, have we chosen a Vasicek process instead, but nevertheless we can apply a
variance stabilization technique following the Doss transformation that renders a constant
the diffusion term of the process for Y, as explained in the Appendix.

The long term bond is the only risky asset that is responsible for hedging away the
source of risk related to the short rate (W), as it is the only one exposed to it. The optimal

demand for the bond involves a mean-variance component and an intertemporal component
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used to hedge against fluctuations in the investment opportunity set, induced by W":

) e ©” &Y By [&:TLLZ g((j;)) 10.)T>0i|
Ppy = Ay P [ftT <1 — R(wr)” 1) IWT>0Ht,T}
—Et |:£tT 0t (1 — R((,UT)_1> 1wT>0HbG,)t,T:|
where o (t,Y]) = b(7)o\/Y]

and ©F (t,Y7) = AN/Y/

In this bivariate application the optimal portfolio parts for the two risky funds have a
very intuitive representation. As we have assumed that they are not driven by the Brownian
that is responsible for interest rate risk, then the diffusion term of the stock price process

is a bivariate diagonal matrix:

O'{( (Xt) 0
T (V) o3 (Xe) \/1-T (V) 03 (X)

A —

where 0¥ (X;),i = 1,2 is given by (3.3.15) and the conditional correlation Y (Y;) is either
a function of the state variables X; in Case A, a function of both the state variables X; and
the observable factors F} in Case B, or a function of only the observable factors F; in Case

C. Given this diagonal structure for A, for the two stock prices we obtain:

dS1e = Su{pf (Xp)dt+ o7 (Xy)dWi) }

dSs; = So; {Mg (Xp) dt + T (V) 05 (Xy) dWiE +1/1 =T (V)05 (Xt)dwgg}

Without loss of generality we have assumed a linear function for ¢ (t) in the general
specification in (3.3.11) given by k;t,i = 1,2, where k; is a deterministic trend. Note that
the second fund (NASDAQ in our example) is the only one affected by W2X -rigk, i.e. it can
be thought of as the incremental risk factor that influences ‘new-economy’ stocks. On the
contrary, the W1X risk factor affects both funds in our portfolio. This has some implications
on the optimal portfolio choice. As we will see below, the demand for the second fund
is entirely driven by fluctuations induced by exposure to W;*-risk. Following the optimal

allocation rule outlined in (3.3.22), the demand for NASDAQ is given by:
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1 %@2(7@ Y ) [gt TL:Jf g(:j;)) 1w:r>0}

05( (Xe)y/1 -7 (Y})2 —Ey [gt,T(:Tf (1 - R (WT)A) 1wT>0H2®,t,T}

*
Qg ¢

where ©;(t,Y;) is the market price of risk for the " fund, and H?, i1 is the term involving
the response to fluctuations in the opportunity set driven by the i** Brownian motion. The
absence of the interest rate hedge is due to the fact that the state variable underlying the
short rate is not dependent on any of the Brownians driving the risky stocks. The demand

for S&P 500 is given by:

R R(i} 7O1(8, Y E [&T o1 R((:j;)) 1wT>0]
X —
01 (Xt) _Et |:€t ok (1 — R (WT) 1) ]-wT>OHle’t7Ti|

wr R(w
I A0 ROt YD E, (60 1S Lurso]
X X)L -T ) | —F et (1= Rwr) ™) TorsoHE, 1]
_ R(w Ao 016 Y ) E [&th R((:;)) 1wT>0] T (Y)oy (Xt)aét
X _ X )
70X | =B (64 (1= R@r) ™) LupsoH, o (X)

Thus, we can see that for the first fund the optimal portfolio demand has an additional
term that involves a3, the optimal holdings of the second fund. It happens because the
second fund depends also on W{¥-risk, so its holding induces also an exposure to it. Con-
sequently, the first fund is used to hedge away this induced exposure, hence the additional
term in the optimal portfolio holdings a7 ;. A similar setup with a triangular diffusion term
was used in Detemple et al. (2003) in their multiasset application.

MPRH

Note that the market price of risk hedging demands « can be decomposed in a

similar fashion for the first fund, which will have induced intertemporal hedging demands

T(Ye)oy (Xt) MPRH

equal to — X (X))

3.5 Numerical Results

Before discussing the estimation results for the various diffusion specifications that we have
chosen for the state variables X, let us first look at data itself in order to verify whether the

stylized facts that we aim at reproducing are indeed present in the data. In the previous
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Figure 3.5.1: Quantile dependence plots
Plots of quantile dependence for the de-trended log-prices of S&P 500 vs. NASDAQ for the
1988-1996 and 1996-2004 subperiods.
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sections we have seen that dynamic conditional correlation, modeled using a DCC model
with exogenous factors, is indeed time-varying and we can distinguish periods of relatively
high or low correlation, that we were able to attribute to the influence of the macroeconomic
or the volatility factor. In a similar fashion, we split the estimation period in two subsamples,
one characterized by decreasing and low volatility and improving macroeconomic conditions
(1988-1996), and the other characterized by high volatility and declining and relatively
low CFNATI index, pointing towards a declining economy (1996-2004). We then construct
quantile dependence plots for the de-trended log-prices of both indices for the corresponding
subsamples.

As we can see on Figure 3.5.1, during the first relatively calm period dependence in the
extreme quantiles of the joint distribution decreases substantially, even though it does not
disappear completely, as one would expect under a Gaussian distributional assumption. As
well, a test of tail dependence symmetry, following Hong et al. (2003), does not fail to reject
symmetric tails for this particular period, as it can be seen from Table 3.5.1.

On the other hand, the period of (1996-2004) brings about extremely high dependence in
the tail quantiles, especially in the left tail, and the dependence symmetry test indeed rejects
symmetric tails for the period. Thus, the unconditional distribution of the two risky funds
that we have chosen does possess the features that we try to asses, and namely increased
dependence when markets experience extreme downturns. Also splitting the sample in
two periods with quite distinct characteristics will help us later on to explain the portfolio

implications of both conditional correlation and unconditional dependence.
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Table 3.5.1: Test of symmetry in the exceedence correlations
The Hong et al. (2003) test of exceedence correlations symmetry in the lower and upper
quartiles for the de-trended log-prices of S&P 500 vs. NASDAQ for the 1988-1996 and
1996-2004 subperiods. The test statistic is given by:

N N
J=n(p"=p ) (0" —p7) S
where p™ and p~ are the exceedence correlations calculated at the corresponding quantile
levels, n is the sample size and m is the number of quantile levels considered.

1988-1996  1996-2004
Test statistic (J) 6.9048 21.5517
p-values (0.4389)  (0.0030)

Table 3.5.2: Parameter estimates for the observable factors
Estimated parameters for the observable factors VIX and CFNAI that have the following
specifications:

dF) = kY (0V - E)dt+ oV \/FYdw;*
dFM = &M (M — FEM)dt + oM aw*

where i = {V, M }.

parameter CFNAI MCs.e. SIF VIX MCs.e. SIF

K 2.2521 0.0027 0.8153 1.2094 0.0021  0.8002
6" -0.0457 0.0018 1.7702  2.7800 0.0007  0.8863
(Ui)Q 2.9383 0.0005 0.8631 0.1230 0.0000  1.9260

The processes for the observable factors and for the state variables for the risky funds
are estimated using Markov Chain Monte Carlo and the Simulation Filter of Golightly and
Wilkinson (2006a). This estimation methodology is particularly convenient for highly non-
linear multivariate diffusions, as in our case. As well, it allows us to filter out unobservable
data points, as is the case of the CFNALI factor, which is observed monthly, whereas the two
indices, as well as the VIX factor are observed at the daily frequency. Parameter estimates
for the observable factors are given in Table 3.5.2.

Let us not turn to the estimation results for the whole sample period, as well as the two
subsamples for the four conditional correlation specifications (DCC, Cases A through C,
and CCC) and the three alternative stationary distribution assumptions (no tail dependent
Gaussian, symmetric tail dependent Student’s ¢, and asymmetric tail dependent Gaussian-

SJC diffusions). As in this application we aim at determining the impact of the stationary
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Table 3.5.3: Univariate parameter estimates
Parameter estimates from the univariate Normal Inverse Gaussian (NIG) diffusions with
density fyrg (x;60), where 6 = («, 8,9, 1) is the vector of NIG parameters that satisfy the
restrictions, given in the Appendix. The diffusion for each of the state variables X;; has the
following specification:

dXiy = b(Xi;0;)dt +v (X 0;) AWy

50 (:6) - o (2:6) farc ()]
v(z:0) = o*fnig(2:0)7",  0® >0,k €[0,1]

where b(z;6) =

Monte Carlo standard errors, obtained using the batch-mean approach (multiplied by a
factor of 1000) and the simulation inefficiency factor (SIF) are reported for each parameter
estimate.

parameter X; (S&P500) MC s.e. SIF Xy (NASDAQ) MCs.e. SIF

« 5.6431 0.0601 1.0262 4.2938 0.2138  0.8070
B -0.6272 0.3091 1.1979 -0.7072 0.4151  0.6343
52 0.0471 0.0016  0.7755 0.0549 0.0026  0.8782
n 4.6342 0.0083 1.0129 5.1191 0.0146  0.6724
o? 0.0268 0.0006  0.8375 0.0222 0.0003  0.2821
K 0.5776 0.0128 1.0339  0.5349 0.0356  1.2291

distribution and hence tail dependence on the optimal portfolio holdings, regardless of the
univariate marginals, we do not proceed to a full-scale optimization of all model parameters,
as would be otherwise preferred, but rather undertake a two-step estimation procedure.
In a first step, we assume that the two price processes are independent from each other,
imposing the independence (or product) copula on their stationary distribution, as well as
zero conditional correlation. Thus we are able to estimate them separately, and further use
the same marginal distribution parameters for all alternative processes that we consider. In
this manner, differences in portfolio demands between the alternative specifications will not
depend on the particular parameter choice of the univariate marginals. Parameter estimates
are reported in Table 3.5.3. The trend parameters k; for each of the state variables X; are
estimated separately as a linear trend. Their values are 0.1014 for S&P 500 and 0.1100 for
NASDAQ.

In a second step, we assume the marginal parameters as known and we proceed to the
estimation of the multivariate processes by assuming all the alternative specifications for the

stationary distribution of the conditional correlation. Results are reported in Table 3.5.4.
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Table 3.5.4: Parameter estimates from the multivariate diffusion specifica-
tions (1986-2006)

Estimates for the parameters of the stationary density, defined in terms of copula functions, and the
parameters governing the correlation dynamics for a bivariate diffusion, defined as:

dX; = p(X,) dt + A (X;) dW
o1 [fl (3:1)} I 0
i [P] T[]

2

1 1 9(viyg) .
/"L] 2q Zz; aml Y .] )

where A =

d
and ¢q (xlv ...,fl?d) = E(xlv ...,CCd) H fl ('757,)
i=1

where v;; are entries of the matrix ¥ = AAT, and ¢ (z1,...,24) is the stationary density of the

diffusion, defined in terms of a copula function ¢ and the NIG marginal densities f?. Parameter
estimates are given for three cases of copulas: Ga refers to the Gaussian copula, Ga — SJC - to the
mixture Gaussian-Symmetrized Joe-Clayton copula, and 71" - to the Student’s t copula. The copula
parameters are as follows: p is the correlation parameter for the Gaussian or the Student’s t copula,
v stands for the degrees of freedom of the Student’s t copula, 77 and 77, are the upper and lower tail
dependence parameters of the Symmetrized Joe-Clayton copula, and w is the weighting parameter
in the Symmetrized Joe-Clayton copula. The parameters that describe the correlation dynamics are
vi,% =0, ..., 3, consistent with the specification in (3.3.16) for Case A, with (3.3.17) for Case B and
with (3.3.18) for Case C. The Constant Conditional Correlation model in Panel 4 assumes that all
correlation parameters are zero but 7.

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MCse. SIF T MC s.e. SIF

p 0.4612  0.3126  0.9440 0.4686  0.2022 0.1966  0.4433  0.6026 1.8164
v - - - - - - 6.4394 200178 0.7087
TU - - - 0.5179  0.6057 1.2630 - -

TL - - - 0.5003 0.5589  1.2407 - -

w - - - 0.5599  0.7806 1.6945 - - -
Yo 2.0695  0.0126 0.1636  2.0475  0.0292 0.8041  1.9795  0.0454 1.0962
Y1 0.4430  1.6643 2.4494  0.6850  0.7402 0.4886  1.3272  0.9481 1.3758

Yo -1.4731  0.0422 05547  -1.2649  0.0721 0.9250 -0.8214 = 0.0987 1.3498
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Panel 2. Dynamic conditional correlation (Case B)
param Ga MCs.e. SIF Ga-SJC MCs.e SIF T MC s.e. SIF
p 0.4036  0.3654 0.9608  0.4596  0.7086 1.6656  0.3652  0.2750  1.6598
v - - - - - - 6.6976  9.2680 1.2306
TU - - - 0.4669  0.3453  0.6012 - -
TL - - - 0.5178 0.3165  1.1565 - -
w - - - 0.5513  0.7156  0.7900 - -
Yo 1.7273  0.0166 0.6051 1.7401  o0.0252 0.6578  1.7589  0.0381 1.2715
Y1 0.0060  0.0126  0.9784 0.0034  0.0062 0.3958 -0.0020  0.0145 0.7090
Yo -0.2873  0.0642 09762 -0.2745  0.0484 0.6097 -0.4227  0.0806 1.1133
Y3 -0.3086  0.0263 1.0807 -0.3487  0.0240 0.9340 -0.2944  0.0252 1.3209
Panel 3. Dynamic conditional correlation (Case C)
param Ga MC s.e. SIF Ga-SJC MCse. SIF T MC s.e. SIF
p 0.3734  0.3210 0.3841 0.4984  o0.55621 09206 0.4146 09349 1.8356
v - - - - - - 6.0105 22653 0.4660
TU - - - 0.5619  0.3398  0.6210 - -
TL - - - 0.4805  0.2818  0.8046 - -
w - - - 0.4690  0.2544  0.2023 - -
Yo 1.6288  0.0237 1.0122 1.5920  0.0303 1.7129  1.6122  0.0190 1.1783
Y1 0.0085  0.0102  0.9935 0.0089  o0.0108 0.7495  0.0090  0.0112 2.7264
V2 - - - - - - - -
Y3 -0.2628  0.0394 15915 -0.3540  0.0269 0.7109 -0.2510  0.0183  0.6519
Panel 4. Constant conditional correlation
param Ga MC s.e. SIF Ga-SJC  MCse. SIF T MC s.e. SIF
P 0.4565  0.2337 1.2678  0.4918  0.3299 1.1136 0.4052  0.2187 0.5737
v - - - - - - 43149 25652 1.6841
TU - - - 05012 0.6331 2.3965 - - -
TL - - - 0.5801 0.4020  1.6656 - - -
w - - - 0.3816  0.6329  1.4994 - - -
Yo 1.9955  0.0139 1.8733  2.0374  0.0128 0.9472 2.0470  0.0090 0.7893
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Table 3.5.4 (A). Parameter estimates from the multivariate diffusion specifications (1988-

1996)
Panel 1. Dynamic conditional correlation (Case A)
param Ga MCs.e. SIF Ga-SJC MCs.e. SIF T MC s.e. SIF
p 0.4130  0.5533 0.8635  0.3971  0.6171 08538 0.3951  0.5808 0.6071
v - - - - - - 5.8728 85498  1.0732
TU - - - 0.4479  0.4510 0.5219 - -
TL - - - 04685  0.6630 1.2260 - -
w - - - 0.5147  0.8890 1.6429 - -
Yo 1.8897  0.0680 0.9762 1.8835  0.0812 09175  1.9037  0.1103 1.1216
Y1 1.7028  3.9466 23019  2.4512  5.0493 2.0684  3.4598  5.1660 1.5876
Yo -1.7556  0.6689 1.6051 -1.7040  0.3697 0.5851 -1.3860  0.4324 0.9937
Panel 2. Dynamic conditional correlation (Case B)
param Ga MC s.e. SIF Ga-SJC MCs.e SIF T MC s.e. SIF
p 0.4011  0.3787 0.4744 0.3705  0.8203 1.3778 0.4590  0.9433 1.4121
v - - - - - - 6.0486  6.6124 0.3657
TU - - - 0.5159 09509  0.9491 - -
TL - - - 0.5466 0.7998  0.7297 - -
w - - - 0.5258  1.4451 1.5272 - -
Yo 21724 0.0426 0.4523  2.1661  0.0716 1.0785  2.1827  0.0425  0.5952
Y1 0.0102  o0.0207 1.1832  0.0079  0.0185 0.5042 0.0112  0.0209 0.8377
Yo -0.7282  0.3580 12605 -0.9716  0.2619 0.5328 -0.7620  0.2754 1.0575
Y3 -0.2691  0.1471 12750 -0.2887  0.1229 0.7116 -0.2734  0.1109 0.9831
Panel 3. Dynamic conditional correlation (Case C)
param Ga MC s.e. SIF Ga-SJC MCs.e. SIF T MC s.e. SIF
p 0.4111  0.5567 0.5478 0.3633  1.4273 12948 0.3155  0.5125 0.5295
v - - - - - - 5.3833  6.6008 1.1860
TU - - - 0.6179 0.4655  0.3730 - -
TL - - - 0.4446 1.2408  1.4057 - -
w - - - 0.5042  0.8104 0.6855 - -
Yo 2.1615  0.0277 04684  2.1441  0.0629 1.7323  2.1550  0.0431 1.2044
Y1 0.0046  0.0294 2.3139 0.0127  0.0192 12285  0.0154  0.0159 1.1747
Y2 - - - - - - - -
Y3 -0.3223  o0.1225 19323 -0.2987  0.0682 0.5600 -0.3104  0.1126  2.1642
Panel 4. Constant conditional correlation
param Ga MC s.e. SIF Ga-SJC MCse. SIF T MC s.e. SIF
p 0.3348  0.5310 0.7963 0.4497  o0.5185 0.7457  0.3677  0.8407  1.5087
v - - - - - - 5.5060  8.8090 1.9514
TU - - - 0.5447 1.0077  1.2661 - - -
TIL - - - 0.5016 1.1308  1.7278 - - -
w - - - 0.5765  0.8678  0.9065 - - -
Yo 1.7174  0.0585 1.8229  1.6532  0.0460 0.9813 1.6437  0.0397 1.0072
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Table 3.5.4 (B). Parameter estimates from the multivariate diffusion specifications (1996-

2004)

Panel 1. Dynamic conditional correlation (Case A)

param Ga MCs.e. SIF Ga-SJC MCs.e. SIF T MC s.e. SIF

p 0.5637  0.7203  1.2560 0.5274  0.7029 05754  0.3722  0.7644  0.5408

v - - - - - - 45172 4.7443  0.6594

TU - - - 0.5158  1.1290 1.1144 - -

TL - - - 04926  0.6007 0.3596 - -

w - - - 0.4565  0.7126  1.2339 - -

Yo 1.4097  0.0483  0.6112 1.3723  o0.0702 1.0511  1.3127  0.0621 0.6209

Y1 2.3400  1.0788 1.0603  2.6907  1.2589 0.8808  2.6206  0.6113  0.4612

Yo -0.2872  0.1821 08152  -0.3649  0.1190 0.3422 -0.1736  0.1280 1.7100
Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MCs.e SIF T MC s.e. SIF

p 0.5380  o0.6157 o0.5776  0.5383  1.0569 0.6704  0.3368  0.7195 0.8666

v - - - - - - 44252 81150  1.5499

TU - - - 05093  0.4792 0.2987 - -

TL - - - 0.5322  0.9009 1.5219 - -

w - - - 05023  0.7294  1.1890 - -

Yo 1.9191  0.1318 2.0517 1.9198  0.0576 0.4783  1.7604  0.0689 0.6817

Y1 -0.0134  0.0221 0.5537  -0.0034  0.0157 0.4258 -0.0083  0.0232 0.5074

Yo -0.7266  0.1758 0.8608  -0.7292  0.2284 1.6010 -0.6427  0.1392 0.5934

Y3 -0.0825  0.0983 05140 -0.1403  0.0834 0.6450 -0.0741  0.0710 0.4916
Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MCs.e. SIF T MC s.e. SIF

p 0.5892  0.8027 1.4944 0.4499  0.7358 0.7108  0.3368  0.7195 0.8666

v - - - - - - 44252 8.1150 1.5499

TU - - - 0.5475 05474  0.7226 - -

TL - - - 0.4939 0.6894  0.7287 - -

w - - - 0.6078  0.7941  0.6022 - -

Yo 1.7373  0.1156  0.9672 1.7783  0.0269 0.4362 1.7604  0.0689 0.6817

Y1 -0.0341  0.0211 05716 -0.0215  0.0074 0.2996 -0.0083  0.0232 0.5074

Yo - - - - - - -0.6427  0.1392  0.5934

Y3 -0.2906  0.1588 1.5428 -0.3344  0.0732 09997 -0.0741  0.0710 0.4916
Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MCse. SIF T MC s.e. SIF

p 0.3533  0.5154 0.7736 0.3853 1.4276  0.6995 0.3981 0.5216  0.3485

v - - - - - - 6.0479 39435 0.2350

TU - - - 0.5242 0.7559  0.9003 - - -

TIL - - - 0.5091 0.7778  0.7893 - - -

w - - - 0.5142  0.9299 0.7847 - - -

Yo 1.1262  o0.0668 1.1726 ~ 1.1751  0.0473 0.6244 1.1200  0.0567 0.9024
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Note that the conditional correlation parameters that pertain to volatility (v;) (either
observed through the VIX factor or modeled through the state variables X) are generally
positive through all the specifications, pointing towards an increase in conditional correlation
when there is rise in market-wide volatility. An exception to this is the 1996-2004 period,
during which the VIX coefficient is negatively estimated for all stationary distributional
assumptions. However, v; has the expected positive sign for the conditional correlation
specification with no observable factors. On the other hand, the parameter pertaining to
the macroeconomic factor (y4) is always negatively estimated, pointing towards a decrease
in conditional correlation when there is an improvement in macroeconomic conditions, and

vice versa.

3.5.1 Correlation hedging demands along realized paths of the state variables

In order to examine the evolution of the portfolio hedging demands for the estimation period,
we proceed to a market timing exercise that consists in simulating ahead the Malliavin
derivatives of the state variables, the state price density, as well as the portfolio terms
involving hedging against changes in the interest rate (3.3.23) and the market price of risk
(3.3.24), while keeping the state variables (the latent variables and the observable factors)
at their observed values throughout the period®. First, we obtain the optimal portfolio
terms for the whole period between 1986-2006 for an investor with a constant, moving-
window horizon of 4 years. With this we aim at studying differences between the optimal
portfolio parts for the alternative specifications considered above for modeling unconditional
or conditional dependence, without any influence of the time horizon. Next, we consider an
investor who keeps her investment horizon fixed at the end of the period, thus investigating
the horizon effect on the optimal portfolio shares.

As during this relatively long 20 year horizon one can distinguish hectic periods, asso-
ciated with high volatility, negative CFNAI, pointing towards a slow-down in the economy,
and subsequently rising conditional correlation, as well as relatively calm periods with low
volatility, mostly positive levels of the CFNAI index and thus low conditional correlation,
we proceed to a second market timing experiment, considering instead two subperiods of 8

years. The first one spans between 1988 and 1996 and is characterized by increased volatility

®As the CFNAI index is observed at a monthly frequency, we filter the unobservable data points at the
daily frequency using the MCMC sequential filter.
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and a recession in the US economy in the beginning of the period (between July 1990 and
March 1991, as determined by NBER), followed by improving macroeconomic conditions
(positive and rising CFNAI), as well as relatively low and declining volatility. As it can be
seen on Figure 3.2.2, this period is characterized by falling dynamic conditional correlation.
On the other hand, the second period, spanning between 1996 and 2004 is characterized by
increased volatility for the whole period, a recession towards the end of the period (March
2001 marks the end of a 10-year expansion period, according to NBER, and there is a trough
in business activity in November 2001). Figure 3.2.2 shows a rising trend in the dynamic
conditional correlations for the period. For both subperiods we consider an investor who

has a fixed investment horizon at the end of each period.

Correlation hedging for the whole estimation horizon

For the first market timing experiment that involves a 20-year investment horizon fixed at
the end of the sample, we consider the three cases of modeling the unconditional distri-
bution of the state variables underlying the price processes (non-tail dependent Gaussian,
symmetric tail dependent Student’s ¢ and asymmetric tail dependent Gaussian-SJC mixture
distribution), as well as the three ways to account for dynamically changing conditional cor-
relation with or without observable factors driving it. The same experiment is repeated, but
with a moving-window horizon of 4 years. Thus we are able to distinguish the horizon effect
in the evolution of the optimal portfolio hedging demands from the effect of the dynamically
changing investment opportunity set.

In order to get an impression of the magnitude and the variability of the hedging demands
for the risky assets in the portfolio, let us first consider the results displayed on Figure 3.5.2
for a HARA investor with varying degrees of relative risk aversion. The intertemporal
hedging demands are a sizeable component of the total portfolio, and they are responsible
for a larger portion of the portfolio demands if we increase the level of relative risk aversion
of the investor. As well, the hedging demands are larger for longer horizons: an investor
with a horizon fixed at the end of the 20-year sample period would have higher hedging
demands at each period of time than an investor who has a short rolling-window horizon (4
years in our case). Also the fixed horizon would cause the hedging demands to shrink as we

approach it (it is visible during the last 4 years on the left column of Figure 3.5.2), so that
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Figure 3.5.2: Total portfolio holdings and intertemporal hedging demands

for the two risky stocks over the entire sample
The figure displays the holdings of the two risky stocks in the portfolio for the entire sample period
1886-2006. The total holdings are contrasted with the intertemporal hedging demands, which for
the stocks are entirely given by the market price of risk hedges. The figure on the left represents
the portfolio holdings for a fixed investment horizon at the end of the 20-year sample. The figure on
the right represents the holdings for a moving-window 4-year horizon. The two top figures concern
a HARA investor with relative risk aversion of 5, while the bottom two - a HARA investor with
relative risk aversion of 10. The data generating process is a Gaussian-SJC diffusion with dynamic
correlation (Case B).
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the Mean-Variance component would be increasingly more important in the total portfolio
holdings. The results there are based on a Gaussian-SJC diffusion with dynamic correlation
driven by observed factors (Case B), but the relative importance of the hedging demands
for the other cases is qualitatively the same.

Before we continue with the hedging demands that arise from the different stationary
distribution or conditional correlation specifications, let us examine the evolution of the
optimal portfolio parts for the long term pure discount bond. As we have already observed
in the previous sections, it is the only security in the investor’s portfolio in our case that is

responsible for hedging interest rate risk.
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Figure 3.5.3: Hedging demands for the long term pure discount bond
The top figure displays the hedging demands obtained for the long term pure discount bond for an
investment horizon fixed at the end of the 20-year sample: the market price of risk hedge (MPRH)
and the interest rate hedge (IRH). The bottom figure plots the total portfolio holdings of the bond
against the intertemporal hedging demands which are the sum of IRH and MPRH. HARA investor
(B=-0.1).
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As it can be seen from Figure 3.5.3, the variability of the total portfolio demands is
almost entirely driven by the hedging terms. Due to the chosen specification of the market
price of risk, we have a negative market price of risk hedging term and a positive interest
rate hedge. Due to the fact that the Brownian motion driving the short rate is independent
of the Brownian motions driving the rest of the state variables, and that the short rate does
not enter the stock price dynamics, the portfolio parts for the bond will remain unchanged
for the various specifications for the state variables underlying the stocks that we consider.

Let us now turn to the results for the differences in the hedging demands of the two
risky stocks in the portfolio due to the unconditional dependence structure (through the
stationary distribution of the process for the state variables underlying stock prices) and
due to the dynamics of conditional correlation. On Figure 3.5.4, Panel A we have plotted
the correlation hedging demands due to observable factors (CFNAI and VIX) that we have
isolated following (3.3.26) for an investor with a fixed horizon at the end of the sample
period (left column) and an investor with a rolling-window horizon (right column). On
Figure 3.5.4, Panel B we can see the relative importance of the correlation hedging terms
due to each one of the factors for the same 20-year investment horizon. The hedge due to
the macroeconomic factor is generally negative, reducing the total portfolio demand, while
the hedging term due to volatility is positive but very small in absolute value, compared to

the CFNAT hedge.
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Figure 3.5.4: Correlation hedging demands due to observed factors

Panel A. The figure displays the sum of the hedging demands due to observed factors (CFNAI
and VIX) driving conditional correlation for the two risky stocks in the portfolio for the entire
sample period 1886-2006. The figure on the left represents the correlation hedging demands for a
fixed investment horizon at the end of the 20-year sample. The figure on the right represents the
correlation hedging demands for a moving-window 4-year horizon. HARA investor with relative risk
aversion of 5. The data generating process is a Gaussian-SJC diffusion with dynamic correlation
(Case C).
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Figure 3.5.4. Panel B. The figure displays the hedging demands due to observed factors driving
conditional correlation for the two risky stocks in the portfolio for the entire sample period 1886-2006.
The top figure represents the demands due to hedging changes factor that proxies the macroeconomic
conditions (CFNAI), while the bottom figure represents the correlation hedging demands due to the
factor that proxies market volatility (VIX). HARA investor with relative risk aversion of 5. The data
generating process is a Gaussian-SJC diffusion with dynamic correlation (Case B).
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The magnitude of these correlation hedging components is quite small compared to the
total hedging demands on Figure 3.5.2. They are negative in sign, pointing towards a
reduction in the total portfolio holdings. One can as well distinguish periods with peaks
in the absolute value of the correlation hedging demands, that can be attributable to some
market events (e.g. the market crashes in 1987, 1990-1992, 2001). Those demands are
also higher for longer investment horizon, which can be seen by comparing the holdings of
the investor with a fixed vs. rolling-window shorter horizon, and they decline to zero as
we approach the investment horizon. The results are obtained for the dynamic correlation
specification following Case C, that is the case when only the VIX and the CFNAI indices
drive conditional correlation. Results for the Case B, as well as Gaussian or the Student’s
t diffusion are qualitatively the same and are not reported for brevity.

Those hedging demands arise in order to hedge against stochastic changes in the observ-
able factors that proxy volatility or the macroeconomic conditions, and they constitute the
total correlation demands in Case C, where the dynamics of conditional correlation are not
driven by other state variables. However, as we consider the case of conditional correlation
being dependent as well on the level of the state variables X (Case B), then there would
be another component in the correlation hedging demands apart from the influence of the
factors that is not directly identifiable. In order to gauge its importance, we compare the
intertemporal market price of risk hedging parts for a process with dynamic vs. constant
conditional correlation. Figure 3.5.5 reports the results for an underlying Gaussian and a
Gaussian-SJC diffusion for a fixed investment horizon at the end of the sample period.

The presence of dynamically varying conditional correlation asks for an increase in the
intertemporal hedging demands for the Gaussian diffusion, which is mainly driven by NAS-
DAQ), while the hedging demands for S&P 500 are virtually unchanged. At first sight these
results are surprising given the evidence that correlation hedging demands due to observable
factors for both fixed and rolling window horizon are negative throughout the period, so
that we would expect a reduction in the total intertemporal hedging terms for the dynamic
conditional correlation case compared to the terms under constant conditional correlation.
However, the influence of dynamic correlation does not show up in the correlation hedging
term (3.3.25) only through the Malliavin derivatives of the factors. It influences as well

the market price of risk © (¢,Y;), which determines the total market price of risk hedging
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Figure 3.5.5: Hedging demands along realized paths for the risky stocks
for the 20-year fixed investment horizon (Case B)

Plotted are the intertemporal demands (separately for each risky fund and their sum) along realized
paths of the state variables for the whole sample period for the risky stocks for a fixed investment
horizon at the end of the period The left column plots the intertemporal hedging demands obtained
under a DCC specification vs. those under CCC; the right column contrasts hedging terms under

constant and time-varying volatility.
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Figure 3.5.5. Panel B. Induced hedging demands (Case B)
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Figure 3.5.5. Panel C. Hedging demands due to differences in the unconditional distri-
bution (tail dependence vs. no tail dependence) for the risky stocks for the 20-year fixed
investment horizon for a CCC diffusion (left column) and a DCC diffusion (right column)

(Case B)
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demands. So while the portfolio term that is due to the need to hedge against stochastic
changes in the observable factors driving correlation is indeed correlation hedging demand,
the difference in the level of the market price of risk hedge terms between dynamic and con-
stant conditional correlation is not entirely explained by this demand. Hence the possible
disparity, even in sign, between the correlation hedging demands and the difference in the
level of market price of risk hedges between constant and dynamic conditional correlation
diffusions.

It is also of interest to contrast the differences in hedging demands due to dynamic
correlation to those due to dynamic volatility, so we have reported on the right column of
Figure 3.5.5, Panel A the results for a process for which we have assumed constant volatility
and correlation (note that constant volatility is nested in the specification given in (3.3.15)
and is achieved by setting the parameter s to zero). Throughout the sample period the
hedging demands for the constant volatility model are significantly higher than those with
time-varying volatility, rendering the volatility effect much more pronounced than the effect
of conditional correlation. The effect is qualitatively the same for a fixed and a rolling-
window investment horizon. Unlike the correlation hedging demands, the hedging parts for
the S&P 500 are increased when we allow for variations in volatility, while those of NASDAQ
are significantly reduced for the whole period.

An alternative way to illustrate the importance of dynamically changing correlation
on intertemporal hedging demands is to look at the induced portfolio holdings of S&P
500 from the position in NASDAQ), as explained in the previous section. On Panel B of
Figure 3.5.5 we have plotted the induced MPR hedging demands for S&P 500 for a HARA
investor with a 20-year investment horizon. We contrast the induced hedges for a DCC
vs. a CCC model under two alternative unconditional distribution assumptions (Gaussian
and Gaussian-SJC)5. Regardless of the form of the stationary density that we suppose,
the induced hedging demands are lower for the DCC case then for the CCC one, pointing
towards a reduction in the total portfolio holdings when dynamics of conditional correlation
are explicitly accounted for.

Until now we have discussed the magnitude and sign of the hedging demands that arise

%Here we have reported results for DCC following Case B. All alternative cases of DCC were considered
against the CCC model, and they all yield qualitatively similar results.



156

due to stochastic changes of the state variables driving conditional correlation which in-
creases in down markets, volatile periods or bad states of the economy. An important
question is whether there would be a similar shift in portfolio composition when the uncon-
ditional dependence structure is changed, that is the same stylized fact is reproduced through
the stationary distribution of the process for the state variables X through a Gaussian cop-
ula (no tail dependence) or Gaussian-SJC copula (asymmetric tail dependence). On Figure
3.5.5, panel C we have reported the hedging demands of a Gaussian vs. a Gaussian-SJC
diffusion under a CCC assumption, and the hedging demands of a Gaussian vs. a Gaussian-
SJC diffusion under a DCC assumption for an investment horizon fixed at the end of the
20-year period. The presence of tail dependence changes the composition of the portfolio
by reducing the absolute value of the intertemporal hedging terms. The latter are gener-
ally positive for S&P 500 and generally negative for NASDAQ), so tail dependence reduces
in absolute value the holdings of both assets, driving them closer to zero. This result is
maintained throughout the investment horizon, regardless of the way conditional correla-
tion is modeled. Thus, for portfolio allocation, the impact of tail dependence through the
unconditional distribution cannot be swept away by allowing conditional correlation to vary
through time, rising in down markets.

The effect of tail dependence is somewhat subdued for the sum of the intertemporal
hedges for both assets for the first half of the sample period, while towards the end of
the period, mainly after 2000, the effect is more pronounced in the sense that the total
intertemporal hedging demands are reduced for the case where we allow for tail dependence.
It appears that for different subperiods of this relatively long sample hedging demands may
have qualitatively different behavior. In order to gather more insight into the reasons behind
differences in those demands, we concentrate our attention on two 8-year subperiods: one
relatively calm in the sense of diminishing volatility, economy on the rise, low conditional
correlation (1988-1996), and another period characterized by more hectic behavior in terms
of high volatility, declining economic indicators and increased conditional correlation (1996-

2004).
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Correlation hedging for the two subperiods

Comparing the intertemporal hedging demands on Figure 3.5.6 and 3.5.7 for each one of
the two subperiods, regardless of the assumptions we have made on the conditional corre-
lation or the unconditional distribution, we see that those demands are generally positive
throughout the first relatively calm period of economy on the rise and generally negative for
the second hectic period of slowing down economy. There is just one exception to this rule
that deserves attention - the hedging demands turn positive towards the second half of the
1996-2004 period for the Gaussian diffusion for both constant and dynamic specifications
for the conditional correlation. Thus, failing to account for tail dependence increases the
demand for the two risky funds and the fact that we allow for dynamically varying condi-
tional correlation does not change this. It appears, following this preliminary observation,
that unconditional dependence has a portfolio impact beyond the one induced by correlation
hedging.

We now turn to a more detailed analysis of the portfolio implications of modeling con-
ditional or unconditional dependence. The first comparison that we consider for the two
chosen subperiods is one that is aimed at bringing forward the importance of correlation
hedging through contrasting the intertemporal demands for the risky funds under a constant
vs. a dynamic conditional correlation specification (for any of the three cases considered).
To this end, we have plotted on Figure 3.5.6 the evolution of the hedges for a Gaussian,
Gaussian-SJC and a t-diffusion for a HARA investor with a coefficient of relative risk aver-
sion of 5.

For any of the unconditional distribution assumptions during the 1988-1996 period the
presence of dynamically varying conditional correlation brings about increased hedging de-
mands. When looking at the individual demands for any of the risky funds, we find that
under the DCC assumption those demands are larger in absolute value, generally positive
for S&P 500 and generally negative for NASDAQ. During the 1996-2004 period dynamic
conditional correlation also leads to higher demands in absolute value for both funds, but the
effect on the total hedging demands is more pronounced in the case when conditional corre-
lation depends both on observable factors F' and the level of the state variables X (Case B).
In this case dynamic correlation leads to an increase in the total hedging demands. Results

for conditional correlation specifications under Case A and C are qualitatively the same and
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are not reported for brevity.

Second, we consider the effect of the unconditional distribution on the hedging demands
by comparing the results under the assumption of Gaussianity with those under the two
alternatives of allowing for tail dependence - a Gaussian-SJC or a Student’s ¢ distribution.
With this we aim to determine whether there is any portfolio effect induced by different
assumptions on modeling tail dependence beyond the one incurred by dynamic conditional
correlation.

On Panel A of Figure 3.5.7 we have plotted the hedging demands of a HARA investor
with a relative risk aversion coefficient of 5 who models the stock price process using a
Gaussian vs. a Gaussian-SJC diffusion (the effect of disregarding tail dependence) or alter-
natively a Student’s ¢ vs. a Gaussian-SJC diffusion (the effect of disregarding asymmetric
tail dependence). In all cases we have constant conditional correlation. Contrary to the
results on Figure 3.5.6 which tried to gauge the importance of modeling conditional cor-
relation, here we have the opposite impact of the presence of tail dependence: it leads to
smaller hedging demands in absolute value for both risky funds which reduces the total
intertemporal demands for the risky assets. Those differences are more pronounced during
the 1996-2004 period, and they are quite significant when the investor disregards tail depen-
dence by assuming a Gaussian diffusion (in this case hedging demands grow to be positive
in the second half of the period, whereas accounting for tail dependence both through the
Gaussian-SJC and the ¢-diffusions leads to negative hedges).

However, when we allow for dynamically varying correlation some interesting results
follow. Looking at Panel B on Figure 3.5.7, the large difference between the alternative
unconditional distribution assumptions seems to vanish for the first subperiod. Allowing
or not for tail dependence leads to virtually the same hedging demands. So, for this rel-
atively calm period of improving economic conditions towards its end the presence of tail
dependence does not lead to any significant change in the portfolio composition beyond
the impact of correlation hedging. Still, the picture for the second highly volatile period is
quite different. Accounting for tail dependence still leads to a decrease in absolute terms
of the hedging components for both risky funds which generally leads to a decrease in the
total hedging demand, especially for the Gaussian case. Thus, for a volatile period of de-

teriorating economic conditions tail dependence has a significant impact on the portfolio
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composition, even when dynamic conditional correlation has been accounted for.

3.5.2 Simulations

Having examined the distinct ways that dynamic conditional correlation or tail dependence
influence the optimal portfolio decisions for a particular period and for realized paths of the
state variables, we now turn to a simulations experiment that determines optimal portfolio
shares for varying investment horizons while simulating ahead all the state variables involved.
With this we aim to determine whether for the estimated parameters of the corresponding
processes the relative importance of conditional and unconditional dependence on portfolio
hedging demands will remain qualitatively the same as with the historical data considered.

Thus, we set up a first simulations exercise that aims at determining the importance
of correlation hedging demands for a HARA investor who already believes that the process
underlying stock prices has asymmetric tail dependence, incorporated through the Gaussian-
SJC diffusion. Then we alternate the way to model conditional correlation by letting it be
either constant or dynamic. In this way we can analyze the correlation hedging demands
that arise beyond those that could be attributed to tail dependence through the uncondi-
tional distribution. We use the parameters estimated from a Gaussian-SJC process with
DCC following Case B for the whole estimation period as a benchmark. Then, in order
to obtain a CCC model, we set all parameters, driving conditional correlation, to zero, ex-
cept for vy. We calibrate this parameter in order to reflect the same average correlation
throughout the estimation period as the one implied by the benchmark process. In order
to gauge the relative importance of adding each one of the observable factors to the dy-
namic correlation specification, we alternatively set either v, (the VIX coefficient) or 75
(the CFNALI coefficient) to its corresponding value from the benchmark process, while set-
ting all the other parameters to zero except 7, that is again calibrated in order to reflect the
same average correlation. We then simulate ahead all the state variables involved in each of
the four alternative processes, as well as their Malliavin derivatives, in order to obtain the
Monte Carlo estimates of their conditional expectations in (3.3.22) and thus the intertem-
poral hedging demands. Results for investment horizons of 1 and 5 years are reported in
Table 3.5.5, Panels A through C and Panel F.

The major conclusion that we may draw from those results is that for all investment
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horizons considered, as well as for all degrees of relative risk aversion, the market price of
risk hedge for the DCC model is the lowest. If we add only the macroeconomic factor to
render conditional correlation dynamic, we get results that are quite close to the benchmark
model. So for this application the macroeconomic factor seems to be the major driving
force to determine the optimal portfolio composition. However, adding only the VIX factor
does not change in any substantial way the portfolio holdings and they remain virtually
unchanged with respect to the CCC model. As in the portfolio allocation example along
realized paths of the state variables, here we also observe a larger spread between the
holdings of S&P 500 and NASDAQ for the DCC case with respect to CCC. These results
are confirmed for a CRRA as well as HARA investor and are valid for all investment horizons
considered, as well as levels of risk aversion. Increasing the level of risk aversion invariably
leads to a decrease in the intertemporal hedging demands in absolute terms. It also happens
for a HARA investor with a certain subsistence level b below which she is unwilling to fall
as compared to a CRRA investor.

A second simulations experiment that we consider aims at determining the importance
of the stationary distribution and hence tail dependence for an investor who has already
accounted for dynamically varying conditional correlation. We pick again the Gaussian-SJC
diffusion with DCC according to Case B as the benchmark case and compare its implied
hedging demands with those from a Gaussian or a Student’s ¢ alternative. Results are
presented on Panels D through F of Table 3.5.5. As in the portfolio example over realized
paths of the state variables, the stationary distribution still plays a role in determining the
hedging demands, rendering them smaller in the presence of tail dependence. For smaller
horizons its effect is smaller than the effect of disregarding conditional correlation, but at
the 5-year horizon the Gaussian diffusion renders the highest hedging demands, even higher
than the CCC case, which confirms our findings of the market timing exercise.

The above results may be sensitive to the level of conditional correlation that we im-
pose. Thus, we repeat the simulations experiment with a Gaussian-SJC diffusion and DCC
following Case B for varying values of the v, parameter for the conditional correlation. For
levels of «y, of 1, 2 and 3 obtain conditional correlation levels (averaged over the estimation
period) of 0.45, 0.75 and 0.90. For each one of those DCC cases we find the appropriate CCC

calibration for the conditional correlation parameters, keeping the same average correlation
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levels. Results are plotted on Figure 3.5.8.

Regardless of the investment horizon, for relatively low correlation levels (0.45) the
DCC model implies significantly lower intertemporal hedging demands, compared to a CCC
specification, even after tail dependence has been accounted for through the Gaussian-SJC
stationary distribution. For extremely high correlation levels (the case of 7, = 3) the roles
of DCC and CCC change and now it is the latter that implies lower hedging demands.
Depending on the investment horizon, we may have higher or lower hedge levels for a
mean conditional correlation of 0.75. This behavior can thus explain the higher hedging
demands implied by the DCC specification over a realized path of the state variables that

we encountered earlier.

3.5.3 Certainty equivalent cost of ignoring correlation hedging

We follow the common approach in literature on portfolio choice and study the effect of
ignoring correlation hedging on the wealth of the investor using the utility loss, or the
certainty equivalent cost (see Liu et al., 2003). The approach consists in computing the
additional amount of wealth that would be needed for an investor to consider a suboptimal
allocation strategy (that results from ignoring correlation hedging) instead of the optimal
one (that takes into account the dynamics of conditional correlation), in order to achieve
the same expected utility of terminal wealth. In other words, we are looking to determine

the amount ceq such that:

EU (wy |wog=1)] = E[U (wr | wog =1+ ceq)]

where w7 is the terminal wealth achieved under the optimal investment strategy and wr is
the terminal wealth under the suboptimal one.

The first question that we address, in accordance with the simulation exercise above,
is whether the investor would lose anything if she disregards the dynamics of conditional
correlation, modeled using observable factors, given the fact that tail dependence in the
unconditional distribution has already been accounted for. Thus, we choose as a benchmark
process the Gaussian-SJC diffusion with DCC according to Case B. Then we alternate be-

tween setting all conditional correlation parameters to zero except for v, (CCC alternative),
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Figure 3.5.8: Dynamic correlation-induced portfolio hedging terms through
simulation: the influence of correlation level

Intertemporal hedging demands for a benchmark Gaussian-SJC diffusion with DCC (Case B)
vs. a CCC specification with parameter calibrated to match the mean conditional correlation
of the corresponding DCC model. Varying average values of conditional correlation through
the parameter v,. HARA investor with b = —0.2 and varying degrees of relative risk
aversion, and investment horizon of 1, 3 and 5 years.
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letting only 5 be zero (conditional correlation being driven by the VIX factor), or letting
~; be nonzero (conditional correlation being driven by the macroeconomic factor). In those
alternative models the v, parameter is calibrated in order to reflect the same average cor-
relation as the DCC benchmark over the estimation horizon. We consider again a HARA
investor with varying degrees of relative risk aversion and a parameter b in the utility func-
tion equal to —0.2, 0 or 0.2. The case of b = 0 corresponds to a CRRA investor, while if
b < 0 relative risk aversion is decreasing and convex in wealth, in which case the investor
is intolerant towards wealth falling below a certain subsistence level —b, and alternatively,
if b > 0, then relative risk aversion is increasing and concave. Table 3.5.6 summarizes the
results on the certainty equivalent cost in each case, calculated in cents per dollar.

The cost of disregarding the dynamics of conditional correlation is comparable to the
cost of disregarding the presence of the macroeconomic factor driving its dynamics, so we
may conclude that the CFNAI factor is the major player in the present setting in terms
of utility loss. The cost decreases with rising levels of the risk aversion coefficient, and is
highest for a HARA investor with relative risk aversion that is increasing and concave in
wealth. However, the impact of disregarding the VIX factor is almost insignificant.

We next address the alternative problem of finding the utility cost for an investor who
disregards the fact that extreme realizations of the assets in her portfolio may be dependent,
as modeled through the stationary distribution of X. Results are summarized in Table 3.5.7,
where we take as a benchmark process either the DCC Gaussian-SJC diffusion (left column),
or the CCC one (right column) against the two Elliptic counterparts. In order to isolate
only the impact of the tail dependence through the stationary distribution, conditional
correlation parameters for all processes are taken from the Gaussian-SJC type with DCC
(Case B).

The main conclusion that we can draw from comparing the wealth loss across the al-
ternative specifications is that the investor loses more from disregarding tail dependence if
she has not taken into account the dynamics in conditional correlation. It is an anticipated
result, as both ways of modeling dependence through the dynamics of the conditional cor-
relation or through the stationary distribution aim at reproducing the same stylized fact of
increased dependence in down markets. Thus if at least one of them is taken into account

when making portfolio decisions, the impact of disregarding the other in terms of wealth
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Table 3.5.6: Certainty equivalent cost of ignoring dynamic conditional cor-

relation, modeled with observable factors
The benchmark process is a Gaussian-SJC diffusion with DCC according to Case B. All of the
alternative processes have a Gaussian-SJC stationary distribution, but their conditional correlation
specifications vary from CCC to DCC with no VIX (y; = 0), and DCC with no CFNAI factor
(79 = 0).All parameters of the stationary distribution are from the Gaussian-SJC type with DCC
(Case B), the conditional correlation parameters of the alternative processes were calibrated in order
to reflect the same mean conditional correlation as the benchmark process. The Certainty Equivalent

Cost is given in cents per dollar. Investment horizon is 5 years.

Panel A. The cost of disregarding DCC
(CCC alternative)
HARA, b= —0.2 CRRA HARA,b=0.2

vy=2 23054 2.4039  2.5024
vy=4  1.8987 1.9369  1.9751
vy=06  1.7983 1.8216  1.8449
vy=28  1.7538 1.7706  1.7873
v=10 1.7289 1.7419  1.7549

Panel B. The cost of disregarding the CFNAT factor
(DCC with 9 = 0 alternative)
HARA, b= —0.2 CRRA HARA,b=0.2

vy=2 24273 2.5533  2.6792
vy=4  1.9309 1.9832  2.0355
vy=06  1.7988 1.8315  1.8643
vy=28  1.7384 1.7622  1.7860
v=10 1.7039 1.7226  1.7413

Panel C. The cost of disregarding the VIX factor
(DCC with v; = 0 alternative)
HARA, b= —0.2 CRRA HARA,b=0.2

=2 0.0000 0.0000  0.0000
vy=4  0.0000 0.0000  0.0000
vy=6  0.0000 0.0000  0.0000
vy=28  0.0000 0.0000  0.0000
v =10  0.0000 0.0000  0.0000
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Table 3.5.7: Certainty equivalent cost of ignoring tail dependence
The benchmark process is a Gaussian-SJC diffusion with DCC according to Case B. The alternative
processes have either a DCC specification (left figures) or a CCC specification (right column), and
their unconditional distribution varies from Gaussian to Student’s . All parameters of the conditional
correlation specification are from the Gaussian-SJC type with DCC (Case B) (left column) and from
Gaussian-SJC type with CCC (right column). The Certainty Equivalent Cost is given in cents per
dollar. Investment horizon is 5 years.

Panel A. The cost of disregarding tail dependence

(Gaussian alternative, DCC) (Gaussian alternative, CCC)

HARA CRRA HARA HARA CRRA HARA

b=-0.2 b=0 b=0.2 b=-0.2 b=0 b=0.2
Y= 2 1.3153 1.5158 1.7162 3.2467 3.8692 4.4916
Y= 4 0.6384  0.7438  0.8492 1.1366 1.4361 1.7357
Y= 0.3912  0.4619  0.5326 0.4602  0.6562  0.8523
Y= 0.2658  0.3189  0.3719 0.1301 0.2757  0.4212
v=10 0.1902 0.2327 02751 0.0000  0.0507  0.1664

Panel B. The cost of disregarding asymmetric tail dependence

(Student’s ¢ alternative, DCC) (Student’s ¢ alternative, CCC)

HARA CRRA HARA HARA CRRA HARA

b=-0.2 b=0 b=0.2 b=-0.2 b=0 b=0.2
Yy=2 0188 0.1696 0.1506 0.5891  0.6486  0.7081
y=4 04271 04416  0.4561 0.4755  0.5176  0.5597
Y=06 04259 0.4403 0.4546 0.3960  0.4260  0.4559
Y=8 04121 04245 0.4369 0.3509  0.3740  0.3970
=10 0.3999 0.4106 0.4213 0.3224  0.3411  0.3598
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loss will be subdued.

As we saw in the above simulations exercise, the portfolio composition changes consider-
ably for varying levels of the mean conditional correlation, modeled through the parameter
vo- In order to determine the economic significance of this finding, we determine the cer-
tainty equivalent cost for disregarding correlation dynamics for any of the three cases that
we considered at the end of the previous section. Results are summarized on Panel A of
Figure 3.5.9.

The certainty equivalent cost is lower for the lowest levels of correlation considered
(7o = 1 or average correlation of 0.45 over the estimation horizon) and increases significantly
for higher correlation levels. It also increases with the investment horizon. Results are
consistent over the utility specifications considered (CRRA and 2 types of HARA utility).

For the above cases we have considered the Case B DCC specification as a benchmark,
that is the case when dynamic conditional correlation is driven by both the observable factors
F and the state variables X. In order to gauge the economic importance of any of the other
DCC specifications, we calculate the wealth loss of an investor who believes that conditional
correlation is either driven exclusively by observed factors (Case C) or they do not enter
correlation dynamics (Case A), instead of the benchmark Case B. Results for an investment
horizon of 5 years are summarized on Panel B on Figure 3.5.9. We find that the difference
in terms of wealth loss between cases B and C is negligible, that is the investor does not lose
much by just considering the observed factors for the dynamics of conditional correlation.
The loss for an investor who totally disregards observed factors is higher, especially for low
levels of risk aversion. But for extremely risk averse investors there is virtually no cost for
considering any of the alternative DCC models instead of the benchmark one.

Being consistent with the simulations experiment, we consider also the economic loss
for disregarding tail dependence, given that the dynamics of conditional correlation have
been accounted for. We compute it by comparing the benchmark Gaussian-SJC diffusion
with DCC according to Case B with a corresponding Gaussian diffusion with the same
correlation dynamics. We do so for varying weights w of the mixture copula C¢%=57¢ =
wC37¢ + (1 —w)C%. Parameters are taken from the benchmark model over the whole
estimation horizon, and the Gaussian correlation parameter is set so that the Kendall’s tau

implied by the Gaussian copula is equal to the one implied by the SJC copula, so varying
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Figure 3.5.9: Certainty Equivalent Cost

Panel. A. Certainty Equivalent Cost of ignoring dynamic conditional correlation, modeled
with observable factors for varying mean levels of conditional correlation

The certainty equivalent cost of disregarding dynamic conditional correlation for a benchmark
Gaussian-SJC diffusion with DCC (Case B) vs. a Gaussian diffusion with CCC with parameter
calibrated to match the mean conditional correlation of the corresponding DCC model. Varying
average values of conditional correlation through the parameter v,. HARA investor with b = —0.2
and varying degrees of relative risk aversion, and investment horizon of 1, 3 and 5 years.
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Table 3.5.9. Panel. B. Certainty Equivalent Cost of using alternative DCC specifications
The certainty equivalent cost of modeling DCC following Case A or C vs. the benchmark case B for
a Gaussian-SJC diffusion. 5-year investment horizon. Parameters for cases A and C are calibrated
so as to reflect the same average conditional correlation over the estimation period as that implied
by the benchmark case.

Certainty equivalent cast Certainty equivalent cost Certainty equivalent cast
HARA b=-0.2 CRRA HARA b=0.2
2 2 2
= CaseA\s. Case B = CaseA\s. CaseB = CaseA. CxeB

5-year wealth loss

the composition of the Gaussian-SJC copula will not change the Kendall’s tau, but only
the relative importance of tail dependence. Results are presented on Panel C on Figure
3.5.9. Even if dynamic conditional correlation has already been accounted for, there are
substantial economic costs for disregarding tail dependence, reaching over ten cents per
dollar for a 5-year investment horizon. They increase with increasing the weight of the SJC
copula in the benchmark model (and hence the importance of tail dependence in the data

generating process), and are higher for investors with lower levels of risk aversion.
3.6 Conclusion

In this chapter we address the issue of determining the impact of dynamic correlation mod-
eled through observable factors on the portfolio hedging demands. The solution method-
ology that we apply allows us to disentangle the intertemporal demands due to the need
to hedge against stochastic changes in those factors from the rest of the market price of
risk hedging terms. We also account for tail dependence that manifests itself through in-
creased co-movements between risky stocks during sharp market downfalls. We find that
demands for correlation hedging and intertemporal demands due to high tail dependence
have a distinct impact on the optimal portfolio behavior both in terms of optimal portfolio
composition and of loss of wealth criterion.

There are a number of ways in which the present study could be extended. First, we
could test the sensitivity of the results to an increased number of assets in the portfolio,

as we would expect that hedging demands should increase as a result of the higher level of
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Table 3.5.9. Panel. C. Certainty Equivalent Cost of disregarding tail dependence
The certainty equivalent cost of disregarding tail dependence by considering a Gaussian DCC diffu-

sion instead of the benchmark data generating process of a Gaussian-SJC DCC diffusion for varying

levels of the w3/¢

parameter determining the weight of the SJC copula in the mixture distribution.

DCC specification follows Case B. Parameters are taken from estimating the benchmark case over

the whole estimation horizon, while the correlation parameter of the Gaussian copula is calibrated

so that to reflect the same Kendall’s tau as the one implied by the SJC copula with the estimated

parameters.
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uncertainty linked to both the conditional correlation structure and the dependence through
the stationary distribution. Second, it would be of interest to extend the dynamic treatment
to the dependence structure modeled by the copula, assumed to be fixed in the present
setup, in the spirit of dynamic copula models as in Patton (2004) . By letting observable
factors affect the evolution of tail dependence we may find similar hedging demands as those
implied by dynamic correlation. As well, we have seen that the dependence structure changes
dramatically from relatively calm periods of low volatility and rising economic conditions,
when it is not far from Gaussian to highly volatile periods marked with recessionary states,
when dependence exhibits asymmetries and high tail coefficients. This could motivate us
to consider a specification where the copula composition changes from normal to extreme
value dependent one through varying weights of the copula.

Finally, for the sake of simplicity, we have assumed so far that the bond and stock
dynamics are independent from each other. As there is compelling evidence of co-movement
between bond and stock returns that could be linked to common exposure to macroeconomic
factors (e.g. Li, 2002), it would be of interest to incorporate this finding in the present

portfolio solution setup.
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Appendix A

For Chapter 2

A.1 Copula functions
In this chapter we have used he following d-dimensional copula functions.

e Gaussian copula

CY% (uy, ug, ..., uq | Raa)
2t (u1) @' (ua) .
W exp {—2$TR&3L/2$} d.’L'l...d.Td

where Rg, denotes the correlation matrix, and ®~! (u;) is the inverse of the univariate
standard normal CDF.

e Student’s t copula

Ct (Ul,UQ, -~y Uqg | Rt,l/)
tr () oty (ug)

T (vtd) R, |1/2 —ugd
= M 1+leRt_1x ’ dxy...dzq
- P(5) em™ A

where R; denotes the correlation matrix, v is the degrees of freedom parameter, and ¢! (u;)
is the inverse CDF of the univariate Student’s ¢ distribution with v degrees of freedom.

e Archimedean copulas

Copulas in this family are constructed using a continuous and strictly decreasing gener-
ator function ¢ (u) : [0,1] — [0, 00):

C (u1,ug, ..y un) = @ ' (¢ (u1) + ¢ (u2) + .. + ¢ (un))

The generator for the Gumbel copula is given by ¢ (z) = (—log (a:))é ,a € (0,1], and
consequently its form is as follows:

Co(f (u1,ug, ..., Up) = €Xp (— (Z (—logu,;)flx> ) , a€(0,1]

i=1
for a dependence parameter o, common across all random variables. The survival counter-
part of the Gumbel copula for the bivariate case is given by:
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Qfl=

)

for a dependence parameter @. See Theorem 4.7 in Cherubini et al. (2004) for dimensions
bigger than 2.

ég(u,v) = u+v1+exp<{(log(1u));+(log(1v))
a € (0,1]

The nested copula construction that we consider consists in consequently nesting bivari-
ate copulas within each other. Thus, for the tri-variate case the copula has the form:

C (u1,u,u3) = 3" (02 (1" (1 (u1) + @1 (u2))) + @ (us))

where each generating function ¢; (u;) has its own dependence parameter c;. With this
construction we achieve (n — 1) different pairs of variables that have distinct dependence,
which are still below the general case, but is a considerable improvement compared to the
case of homogenous dependence above. The parameters «; should satisfy certain conditions
in order for the above function to be indeed a copula (see Embrechts et al. (2002) for
a discussion). For the Gumbel copula this condition amounts to verifying the following:
a1 < ag, i.e. dependence should be higher in the more deeply nested copulas (note that
for the above parameterization of the Gumbel copula dependence increases for decreasing
values of the parameter o).

A.2 Form, properties and subclasses of the univariate Generalized Hy-
perbolic family of distributions

The family of GH distributions is constructed as normal mean-variance mixtures with the
Generalized Inverse Gaussian (GIG) as the mixing distribution. Its probability density
function is given by:

A—1/2

fon (w:0,8,6,1) = c(ha8,0) (6 + (@ —pw?) * x

Koy (Vo= ) 2o
(a2 — 52)%
V2rar 15 Ky (5@)

z € R

where ¢(\, o, 3,0) =

where ¢ (A, «, 3,0) is the normalizing constant and K is the modified Bessel function of the
third kind with index A, defined as :

o

/yA_le_g(y"'yl)dy, x>0
0

Ky (z) =

| =

The parameters have the following interpretations in terms of the shape of the distribu-
tion: « determines the shape, 3 - the skewness, u is a location parameter and § is a scaling
parameter. The parameter domain is:
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0, > |B| for A >0
0, > |B| for A\ =0
0,a>|8| for A <0
R

T oo >
m Vv V IV

The GH family of distributions has the normal distribution as a limiting case for § — oo,
§/a — o2, and the Student’s ¢ distribution as a limit for A < 0, a = 8 = u = 0 (Barndorff-
Nielsen, 1978; Prause, 1999).

Various special cases can be obtained for different parameterization of the GH distri-
bution. For A\ = —1/2 we obtain the Normal Inverse Gaussian (NIG) distribution, whose
density is given by:

N

Inig (50, 8,0,1) = c(,9) (52+(a:—u)2> X

K (a, [ 1 (o — u)2> SV =B +B(a—)

where ¢ (a,0) = a9
T
r € R

where § > 0, a > |8 > 0, p € R. TIts tail behavior is given by

lim i (25,8, p) ~ | 22 lFrO

and it has the interesting property of being closed under convolution, so that the sum of two
independent random variables that have a NIG distribution X; ~ NIG (z; o, 8,04, 11;) y0 =
1,2 is also NIG-distributed: X; + X ~ NIG (x; «, 8,1 + d2, b + pig)-

In the portfolio application we use several properties of the modified Bessel function that
we summarize bellow (following Bibby and Sorensen, 2003):

K_o\(z) = Ki(z)

Koy (0) = \/3om(-0

A.3 The Sequential Markov Chain Monte Carlo estimation algorithm

n .

(n +9)! —i

1+ (o —1,2,3,...
T w20

The algorithm for carrying out the Metropolis-Hastings scheme for sampling from the con-
ditional posterior of parameters and latent data following Golightly and Wilkinson (2006a)
can be summarized as follows:

Consider a d-dimensional It6 diffusion given by:

dY; = u(Y;) dt + o (Y;) dW,

Let data be observed at times tg < t1 < ... < tp,—1 < t, with A7 =¢;41 — ;. We divide
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each subinterval between observations in equidistant points, so that the augmented data
matrix looks like:

youg — [ ?tO,O YtoJ Y;fo,m ?tho ?tnflyo }/;nflym ?tn71 ]’
Y}, ; is a d-dimensional vector of latent data points at time ¢; + jA7T and ?tznO is the vector

of observations at time ¢;.

Initialization. Set j = 0. Initialize the augmented data points for each of the s =
1,..., MC iterations by linearly interpolating between observations for the first interval.
Initialize the parameter set for all s by sampling from a prior density 7 (6).

1. For each s =1,..., MC:

e Propose the parameters 6* using a kernel density estimate of the marginal parameter
posterior (6? | Ytj) with the kernel shrinkage correction of Liu and West (2001):

0* ~ ¢ (aby+(1—a)f,h’V)
o> = 1-h?
A2 = 1-((36—1)/2)

for a discount factor J, where ¢ denotes the Gaussian density, and v is an integer that has
been drawn uniformly from {1, ..., MC}.

e Propose the latent data Y for the interval (¢;,¢;4,,) for each i = j+1,..., M —1 using
a Brownian bridge proposal:

q (}/ti+1 ’ Y;fw?tM; 0) = ¢ (Y;fz‘+17Y%i + /jiv 51)
~ 1 —
where p1;, = Ui (Vi — Vi)
Fio= At (M—i—1)o (V)

M —i
where ¢ denotes the Gaussian density and o (Y%,) is the volatility term of the process for Y.

e Accept the parameter and latent data proposal with probability & = min (1, A) and
set (Vs,05) = (Y*,6%), or else set (Y5, 05) = (Ys—1,05-1). A is given by:

M—1 M—2 -

H T <Ytj+1 | Ytj;e*) H q (Yti+1 ’ Y;:“Yt“YtM;e)
A— i=j =7

M—-1 M—-2 L

T 7 (s 192:0) TT 0 (Vi 120,350, Vs 07)

i=j =3

where 7 (Y}Z Rk 9) is the Euler transition density.

2. Set j = j 4+ m and go to (1).
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The resulting draws of latent data and parameters form a Markov chain, whose stationary
distribution after an initial burn-in period is the joint posterior of the data and the model
parameters:

th—1 m
m(Y,0) o< (0) [T § [] 7 (Veyur | Y25 0)
t=to 7j=1

The number of imputed data points that are needed could be determined by running
the sampler for m = 1 and consequently increasing the discretization points until there is
no significant change in the posterior parameter samples.
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Appendix B

For Chapter 3

B.1 Copula Functions
The following d-dimensional copula functions are used in the chapter.

e Gaussian copula

cce (u1,ug, ..., uq | Raq)

ot (ur) @7 (uq) ) .
= / / W exp {—2$TR52/2$} dxl...dmd

where R, denotes the correlation matrix, and ®~! (u;) is the inverse of the univariate
standard normal CDF.

e Student’s t copula

C" (uy,uz, ..., uq | Re,v) (B.1.1)
ty ()t (ug) vtd
() IR 1/2 1 -
= / (1,2)|tc|1/2 (1 + xTRt_lx> dxy...dzgq
Joo o T(E) ) v

where R; denotes the correlation matrix, v is the degrees of freedom parameter, and
t~1 (u;) is the inverse CDF of the univariate Student’s ¢ distribution with v degrees of
freedom.

e Symmetrized Joe-Clayton copula

This copula function was introduced by Patton (2004) and is based on the bivariate
Joe-Clayton copula, that is a two-parameter copula function with parameters 77, € (0,1)
and 7y € (0, 1) that are a measure of the lower and upper tail dependence. The Joe-Clayton
copula has the following form:
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CJC (’LLl,UQ ‘ TL7TU>

2=

H—/
==

- 1- {1 - [(1 S —w)) T (= (1 —ug)®) T - 1}
1

logy (2 — 1)
1

_Iog2 (2—7r1)

where Kk =
"}/ =

The symmetrized version of the copula, designed to render it completely symmetric for
equal values of the lower and upper tail dependence parameters has the following form:

CSJC (

1
= 5[C'Jc(ul,uz’7'L,7'U)—i—CJC(l—ul,l—ug’7'U,7'L)—i-ul—i-u2—1]

Uy, u2 ! TL,TU)

B.2 Malliavin Derivatives of the State Variables

Recall that the Malliavin derivatives of the state variables Y = (X 1, Xo, FV, FM, YT) can
be represented as the solutions to a linear stochastic differential equation':

S
DY, = oY (t,Y;)exp /dLU
t

where oY (t,Y}) is the 5 x 5 matrix of diffusion terms of the state variables, and dL; is
defined by:

5 5
1
dLy = | oo (1, ;) — 5 D 0x0Y (Y1) 00 (L) | dt + > 9z07; (£, Y1) AWy
j:l j:l

where douY (¢,Y;) and 820}/ (t,Y;) denote the derivatives of u¥ (t,Y;) and 03; (t,Y;) with
respect to Y;, and 0,1; (t,Y;) denotes the j*" column of the matrix o¥ (¢,Y;). The particular
forms of the drift 4 (¢,Y;) and the diffusion term oY (¢,Y;) of the state variables are given
by:

py (¢, Xe, PV, FM)

1y (¢, Xe, FV, FM)
p (t,Y) = u(t, FV)
ut™ (8, FV)
p (YT

where p2X (t, Xt,FV,FM) ,i = 1,2 are given by (3.3.13), MFV (t, FV) =rY (9V — FV),
WP (5 M) = M 0V — FM), 0 (Y7 = ey (07— 7).

'See Theorem 1 in Detemple et al. (2003)
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a?{l (t, X) 0?(2 (t, X) 0
0%/1 (t, X) 0%2 (t, X) 0
oV (t,Y)=| of (t,FY) of (t,FV) 0
oM (4, FM) oY (1, FM) 0
0 0 oV (t,YT)

where o (t,X) is given by (?7), o (t,FV) = ¢"VFV, oM (t, FM) = oM and
oV (t,Y") = JT\/)T;.

Given the chosen specifications for the state variables, we can solve separately for the
Malliavin derivatives of state variable driving the short rate, as well as for the Malliavin
derivatives of the two factors. The processes that we have assumed for the observable factors
(FV for the VIX and FM for CFNAI), as well as for the state variable Y, allow for either
closed form solutions for the Malliavin derivatives (in the case of a Vasicek process) or for
significant variance reduction in their simulation following the Doss transformation® that
eliminates the stochastic term in the Malliavin derivative (for a CIR process).

In the Vasicek case, the Malliavin derivative of F'™ simplifies significantly to:

D FM = O'MeXp{—liM (s—t)},i=1,2

For the other two state variables, Y” and FV, we have assumed a CIR process, that can
be reduced to have constant diffusion term through a suitable change of variable technique,
which then eliminates the stochastic terms for the simulation of the corresponding Malliavin
derivatives. For a univariate diffusion, this variance stabilizing transformation is described in
detail in Proposition 2 of Detemple et al. (2003) and we reproduce it here for completeness.

Consider a state variable Y satisfying a stochastic differential equation

dY; = u(t,Yy) dt + o (1Y) dW,

We can replace it with a new state variable Z; = F' (t,Y;) where the function F': [0, T] xR —
R is such that 0o F = (%Y Then for a continuously differentiable drift u, twice continuously
differentiable diffusion term o, that also satisfy the growth conditions that p (¢,0) and o (¢, 0)
are bounded for all ¢ € [0, 7], then we have for ¢ < s:

DYy = o(t,Y:) DiZs

S
where DiZs = exp /32m(U,Zv)dv
t

m(t, 2)

[M — 1(920 + (91F] (t,Y)
o 2

?See Detemple et al. (2003)
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