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Abstract

This dissertation contains three essays investigating the modeling and use of

financial tick-by-tick data. High-frequency finance has become a very active field

of research over the last two decades. Research making use of irregularly time-

spaced transaction data has its roots in the seminal article of Engle and Russell

(1998) that introduced the Autoregressive Conditional Duration (ACD) model for

the analysis of arrival times between events based on all past information.

The first essay provides an up-to-date survey of the main theoretical

developments in ACD modeling and empirical studies using financial data. First,

we discuss the properties of the standard ACD specification and its extensions,

existing diagnostic tests, and joint models for the arrival times of events and some

market characteristics. Then, we present the empirical applications of ACD

models to different types of events, and identify possible directions for future

research.

The second essay proposes two classes of test statistics for duration clustering

and one class of test statistics for the adequacy of ACD models, using a spectral

approach. The tests for ACD effects of the first class are obtained by comparing

a kernel-based normalized spectral density estimator and the normalized spectral

density under the null hypothesis of no ACD effects, using a norm. The

second class of test statistics for ACD effects exploits the one-sided nature of

the alternative hypothesis. The class of tests for the adequacy of an ACD

model is obtained by comparing a kernel-based spectral density estimator of the

estimated standardized residuals and the null hypothesis of adequacy using a

norm. With the L2 norm and the truncated uniform kernel, we retrieve generalized

versions of the classical Box-Pierce/Ljung-Box test statistics. However, using

non-uniform kernels, we obtain more powerful test procedures in many situations.

The proposed test statistics possess a convenient asymptotic normal distribution

under the null hypothesis. We present a simulation experiment and an application
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on IBM transaction data.

The third essay investigates the use of tick-by-tick data for market risk

measurement. We propose an Intraday Value at Risk (IVaR) at different horizons

based on irregularly time-spaced high-frequency data by using an intraday Monte

Carlo simulation. An UHF-GARCH model extending the framework of Engle

(2000) is used to specify the joint density of the marked point process of durations

and high-frequency returns. We apply our methodology to transaction data for the

Royal Bank and the Placer Dome stocks traded on the Toronto Stock Exchange.

Results show that our approach constitutes reliable means of measuring intraday

risk for traders who are very active on the market. The UHF-GARCH model

performs well out-of-sample for almost all the time horizons and the confidence

levels considered even when normality is assumed for the distribution of the error

term, provided that intraday seasonality has been accounted for prior to the

estimation.

Keywords: tick-by-tick data, Autoregressive Conditional Duration model,

duration clustering, model adequacy, spectral density, marked point process,

Intraday Value at Risk, intraday market risk, UHF-GARCH models, intraday

Monte Carlo simulation.



Résumé

Cette thèse est constituée de trois essais qui portent sur la modélisation et

l’utilisation des données financières transaction par transaction. La finance

à haute fréquence est devenue un champ de recherche très actif au cours de

deux dernières décennies. Les recherches empiriques utilisant des données de

transaction irrégulièrement espacées trouvent leur origine dans le travail de Engle

et Russell (1998) introduisant le modèle de durée conditionnelle autorégressive

ACD pour l’analyse du temps entre deux événements qui surviennent sur le

marché.

Le premier essai propose une revue de la littérature théorique et empirique

concernant les modèles ACD. Nous présentons d’abord les propriétés du modèle

ACD de base et de ses extensions, les tests de diagnostic existants et les

modèles joints d’une durée et d’une caractéristique. Ensuite, nous considérons

les applications empiriques des modèles ACD à plusieurs types d’événements et

nous identifions des pistes de recherche future.

Le deuxième essai propose deux classes de statistiques de test pour les effets

ACD et une classe de statistiques de test pour l’ajustement des modèles ACD, en

utilisant une approche spectrale. Les tests d’effets ACD de la première classe sont

obtenus en comparant un estimateur à noyau de la densité spectrale normalisée et

la densité spectrale normalisée sous l’hypothèse nulle d’absence d’effets ACD, en

utilisant une métrique. La deuxième classe de tests d’effets ACD exploite la nature

unilatérale de l’hypothèse alternative. La classe de tests d’ajustement d’un modèle

ACD est obtenue en comparant un estimateur à noyau de la densité spectrale

des résidus estimés standardisés et l’hypothèse nulle d’ajustement en utilisant

une métrique. En utilisant le noyau uniforme tronqué et la métrique L2, nous

obtenons des versions généralisées des tests Box-Pierce/Ljung-Box. Cependant,

plusieurs noyaux permettent d’obtenir une meilleure puissance. Les statistiques de

test proposées possèdent une distribution asymptotique normale rigoureusement
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établie sous l’hypothèse nulle. Nous réalisons une étude par simulation ainsi

qu’une application avec des données de transaction sur l’action IBM.

Dans le troisième essai nous étudions l’utilisation des données transaction

par transaction pour mesurer le risque de marché. Nous proposons une Valeur

à Risque intrajournalière à horizons différents, basée sur des données à haute

fréquence irrégulièrement espacées dans le temps. Les résultats sont obtenus

en utilisant une simulation Monte Carlo intrajournalière. La densité jointe du

processus de points marqués des durées et des rendements à haute fréquence est

spécifiée au moyen d’une extension du modèle UHF-GARCH de Engle (2000).

Nous appliquons notre méthodologie à des données sur les actions de la Banque

Royale et de Placer Dome transigées à la Bourse de Toronto. Les résultats

montrent que notre approche propose une mesure robuste du risque intrajournalier

auquel sont confrontés les cambistes très actifs sur le marché. Le modèle UHF-

GARCH performe bien hors échantillon pour presque tous les horizons temporels

et les degrés de confiance considérés, même lorsque l’hypothèse de normalité est

supposée pour la distribution du terme d’erreur, à condition que la saisonnalité

intrajournalière ait été prise en compte avant l’estimation.

Mots clés : données transaction par transaction, modèle ACD, effets ACD,

ajustement d’un modèle, densité spectrale, processus de points marqués, Valeur à

Risque intrajournalière, risque de marché intrajournalier, modèles UHF-GARCH,

simulation Monte Carlo intrajournalière
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Chapter 1

Autoregressive Conditional Duration (ACD) models in
finance: A survey of the theoretical and empirical

literature

1.1 Introduction

Until two decades ago, most empirical studies in finance employed, as the finest

frequency, daily data obtained by retaining either the first or the last observation

of the day for the variable of interest (i.e., the closing price), thus neglecting

all intraday events. However, due to the increased automatization of financial

markets and the rapid developments in raising computer power, more and more

exchanges have set up intraday databases that record every single transaction

together with its characteristics (such as price, volume etc.). The availability of

these low-cost intraday datasets fueled the development of a new area of financial

research: high-frequency finance. Embracing finance, econometrics, and time

series statistics, the analysis of high-frequency data (HFD) rapidly appeared as

a promising avenue for research by facilitating a deeper understanding of market

activity.1 Interestingly, these developments have not been limited to academia,

but have also affected the current trading environment. Over the last several

years the speed of trading has been constantly increasing. Day-trading, once

the exclusive territory of floor-traders, is now available to all investors. "High

frequency finance hedge funds" have emerged as a new and successful category of

hedge funds.

The intrinsic limit of high-frequency data is represented by the transaction

1Econometrics and finance journals (see, for instance, Journal of Empirical Finance, 1997;
Journal of Business and Economic Statistics, 2000; Empirical Economics, 2006) have devoted
special issues to the examination of high-frequency data; international conferences have focused
on this field as well.
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or tick-by-tick data in which events are recorded one by one as they arise.2

Consequently, the distinctive feature of this data is that observations are

irregularly time-spaced. This feature challenges researchers as standard

econometric techniques, as refined over the years, are no longer directly

applicable.3 Moreover, recent models from the market microstructure literature

argue that time may convey information and should, therefore, be modeled as

well. Motivated by these considerations, Engle and Russell (1998) developed

the Autoregressive Conditional Duration (ACD) model whose explicit objective

is the modeling of times between events. Since its introduction, the ACD model

and its various extensions have become a leading tool in modeling the behavior

of irregularly time-spaced financial data, opening the door to both theoretical

and empirical developments. As illustrated by Engle and Russell (1998), Engle

(2000), and Engle (2002), the ACD model shares many features with the GARCH

model. A decade after its introduction, will it have the same success the GARCH

model had in theoretical and empirical studies?

The objective of this paper is to review both the theoretical and empirical work

that has been done on ACD models since their introduction a decade ago. ACD

models have been partly covered in books such as Bauwens and Giot (2001), Engle

and Russell (2002), Tsay (2002), and Hausch (2004), but none of them provides

an exhaustive and up-to-date review of the published work on this subject. To

our knowledge, this is the first survey-article on ACD models and it aims to offer

a good understanding of the scope of current theoretical and empirical research,

including recent findings.

The remainder of the paper is organized as follows. Section 1.2 is devoted to

the theoretical developments on ACD models. We discuss the properties of the

standard ACD specification and several of its extensions, existing diagnostic tests,

and joint models for the arrival times of events and some market characteristics.

2Engle (2000) denotes them as "ultra-high frequency data".
3Other problems are associated with the use of transaction data, such as the bid-ask bounce,

the discreteness of prices (see Gwilym and Sutcliffe, 2001, for a review).
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Section 1.3 describes the applications of ACD methodology to different types of

financial data, depending on the event of interest. Section 1.4 concludes the

article.

1.2 The ACD model: theoretical developments

As we have already discussed, the main characteristic of HFD is the fact that

they are irregularly time-spaced. Therefore, they are statistically viewed as point

processes. A point process is "a special kind of stochastic process, one which

generates a random collection of points on the time axis" (Bauwens and Giot,

2001, p.67)4. A high-frequency financial dataset contains a collection of financial

events such as trades, quotes, etc. and, consequently, the times of these events

represent the arrival times of the point process. When different characteristics are

associated with an event (such as, for example, the price and the volume associated

with a trade), they are called marks, and the double sequence of arrival times and

marks is called a marked point process. Point processes are widely used in fields

such as queueing theory and neuroscience but have attracted great interest in

high-frequency finance over the last few years after Engle (2000) used them as a

framework for the analysis of the trading process and of market behavior.

1.2.1 General setup

Let {t0, t1, ..., tn, ...} be a sequence of arrival times with 0 = t0 ≤ t1 ≤ ... ≤ tn ≤ ....

Thus, in this general setting simultaneous events are possible but, as discussed in

Section 1.3, most of the papers analyzed exclude them. Let N(t) be the number

of events that have occurred by time t ∈ [0, T ] and {z0, z1, ...zn, ..} the sequence of
marks associated with the arrival times {t0, t1, ..., tn, ...}. Then, tN(T ) = T is the

last observed point of the sequence and 0 = t0 ≤ t1 ≤ ... ≤ tN(T ) = T corresponds

to the observed point process.

4A popular point process is the Poisson process. See Hautsch (2004) for a useful review of
the different possibilities to classify point processes models.
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One common way of studying financial point processes (i.e., point processes

that consist of arrival times of events linked to the trading process) is by modeling

the process of durations between consecutive points.5 Let xi = ti − ti−1 denote

the ith duration between two events that occur at times ti−1 and ti. The sequence©
x1, x2, ..., xN(T )

ª
has non-negative elements and this impacts the choice of the

appropriate econometric models for durations.

In a very general setup and following Engle’s framework (2000), we shall refer

to the joint sequence of durations and marks:

{(xi, zi) , i = 1, ..., T} .

Denote the information set available at time ti−1 by Fi−1. It includes past

durations up to and including xi−1 but, as discussed in Section 1.3 it may also

contain some pre-determined variables suggested by the microstructure literature.

The ith observation has joint density, conditional on Fi−1, given by

(xi, zi) |Fi−1 ∼ f
³
xi, zi|`xi−1, `zi−1; θf

´
, (1.1)

where
`
xi−1 and

`
zi−1 denote the past of the variables X and Z, respectively, up to

the (i− 1)th transaction and θf ∈ Θ is the set of parameters.

The joint density in (1.1) can be written as the product of the marginal density

of the durations and the conditional density of the marks given the durations, all

conditioned upon the past of durations and marks:

f
³
xi, zi|`xi−1, `zi−1; θf

´
= g(xi|`xi−1, `zi−1; θx)q(zi|xi, `xi−1, `zi−1; θz), (1.2)

where g(xi|`xi−1, `zi−1; θx) is the marginal density of the duration xi with parameter
5Other ways consist of modeling the intensity process or the counting process, but they are

beyond the scope of our paper. For a thorough review of recent intensity models for financial
point processes, we refer the interested reader to the book by Hautsch (2004). Winkelmann
(1997) and Cameron and Trivedi (1998) provide comprehensive surveys of statistical and
econometric techniques for the analysis of count data.
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θx, conditional on past durations and marks, and q(zi|xi, `xi−1, `zi−1; θz) is the
conditional density of the mark zi with parameter θz, and conditional on past

durations and marks as well as the contemporaneous duration xi. The log-

likelihood is given by

L(θx, θz) =
nX
i=1

[log g(xi|exi−1, ezi−1; θx) + log q(zi|xi, exi−1, ezi−1; θz)] (1.3)

If the durations are considered weakly exogenous, cf. Engle, Hendry, and

Richard (1983), with respect to the processes for the marks, then the two parts

of the likelihood function could be maximized separately which simplifies the

estimation (see, for instance, Engle, 2000).6

1.2.2 Models for the durations

The ACD model introduced by Engle and Russell (1998) can be conceived as a

marginal model of durations xi . Let the conditional expected duration be

ψi ≡ E(xi|Fi−1) = ψi(
`
xi−1,

`
zi−1) (1.4)

The main assumption of the ACD model is that the standardized durations

εi =
xi
ψi

(1.5)

are independent and identically distributed, that is iid with E(εi) = 1.
7

This implies that g(xi|`xi−1, `zi−1; θx) = g(xi|ψi; θx). Thus, all the temporal

dependence of the duration process is captured by the conditional expected

duration.

Let p(ε, θε) be the density function for ε with parameters θε. The

6Whereas no tests for weak exogeneity in this context exist, Dolado, Rodriguez-Poo, and
Veredas (2004) recently derived a LM test-statistic useful to apply before separately estimating
each density of the joint process.

7This assumption is without loss of generality. If E(εi) 6= 1, one can define ε0i = εi/E(εi)
and ψ0i = ψiE(εi) so that E(ε

0
i) = 1 and xi = ψ0iε

0
i.
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multiplicative error structure of the model, together with the non-negativity of

the duration sequence, requires that p(ε, θε) has a non-negative support.8 Then,

g(xi|Fi−1; θ) = ψ−1i p(xi/ψi; θε), where θ = (θx, θε) is the vector of all the unknown

parameters. The log-likelihood function is given by

L(θ) =

N(T )X
i=1

log g(xi|Fi−1; θ) =
N(T )X
i=1

·
log p(

xi
ψi

; θε)− logψi

¸
. (1.6)

Once a parametric distribution of ε has been specified, maximum likelihood

estimates of θ can be obtained by using different numerical optimization

algorithms.

The setup in equations (1.4)-(1.5) is very general and allows for a variety of

models obtained by choosing different specifications for the expected duration, ψi

and different distributions for ε. In the following subsections, we shall review the

main types of ACD models that have been suggested in the financial econometrics

literature as more flexible alternatives to the standard form originally proposed

by Engle and Russell (1998).

1.2.2.1 The standard ACD model The basic ACD model as proposed by

Engle and Russell (1998) relies on a linear parameterization of (1.4) in which ψi

depends on m past durations and q past expected durations:

ψi = ω +
mX
j=1

αjxi−j +
qX

j=1

βjψi−j. (1.7)

This is referred to as the ACD(m, q) model. To ensure positive conditional

durations for all possible realizations, sufficient but not necessary conditions are

that ω > 0, α ≥ 0, β ≥ 0.
As it becomes apparent, the ACD model and the GARCH model of Bollerslev

8Another way of dealing with the non-negativity of durations is to specify a (ARMA-type)
model for log durations. However, this could pose some problems if some durations are exactly
zero.
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(1986) share several common features, the ACD model being commonly viewed

as the counterpart of the GARCH model for duration data. Both models rely on

a similar economic motivation following from the clustering of news and financial

events in the markets. The autoregressive form of (1.7) allows for capturing the

duration clustering observed in high-frequency data, i.e., small (large) durations

being followed by other small (large) durations in a way similar to the GARCH

model accounting for the volatility clustering. Just as a GARCH(1,1) is often

found to suffice for removing the dependence in squared returns, a low order ACD

model is often successful in removing the temporal dependence in durations.

The statistical properties of the ACD(1,1) model are well investigated: Engle

and Russell (1998) derive its first two moments while Bauwens and Giot (2000)

compute its autocorrelation function.

A very useful feature of the ACD model is that it can be formulated as an

ARMA(max(m, q), q) model for durations xi. Letting ηi ≡ xi − ψi, which is a

martingale difference by construction and rearranging terms, (1.7) becomes

xi = ω +

max(m,q)X
j=1

¡
αj + βj

¢
xi−j −

qX
j=1

βjηi−j + ηi. (1.8)

It also follows from this ARMA representation that to ensure a well-defined

process for durations, all the coefficients in the infinite-order AR representation

implied by inverting the MA component must be non-negative; see Nelson and

Cao (1992) for derivation of identical conditions to ensure non-negativity of

GARCHmodels. From (1.8), in order for xi to be covariance-stationary, sufficient

conditions are that
mX
j=1

αj +

qX
j=1

βj < 1. (1.9)

The stationarity and invertibility conditions require that the roots of

[1− α(L)− β(L)] and [1− β(L)], respectively, lie outside the unit circle where

α(L) and β(L) are the polynomials in terms of the lag operator L. Equation
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(1.8) can be used for computing forecasts of durations.

The conditional mean of xi is by definition (1.4) equal to ψi. The unconditional

mean of xi is given by

E(xi) =
ωÃ

1−
mP
j=1

αj −
qP

j=1

βj

! . (1.10)

The conditional variance of xi based on (1.5) is

V ar(xi|Fi−1) = ψ2iV ar(εi). (1.11)

Thus, the model allows both for conditional overdispersion (when V ar(εi) > 1)

and underdispersion (when V ar(εi) < 1).9 Carrasco and Chen (2002) establish

sufficient conditions to ensure β-mixing and finite higher-order moments for the

ACD(m, q) model. Fernandes (2004) derives lower and upper bounds for the

probability density function of stationary ACD(m, q) models.

1.2.2.2 Distributional assumptions and estimation Any distribution

defined on a positive support can be specified for p(ε, θε); see Lancaster (1997)

for several alternatives. A natural choice very convenient for estimation is the

exponential distribution. Engle and Russell (1998) use the standard exponential

distribution (that is, the shape parameter is equal to one) which leads to the so-

called EACD model. A main advantage of this distribution is that it provides

quasi-maximum likelihood (QML) estimators for the ACD parameters (Engle and

Russell, 1998; Engle, 2002). Drost and Werker (2004) show that consistent

estimates are obtained when the QML estimation is based on the standard gamma

family (hence including the exponential).10 The quasi-likelihood function takes

9Dispersion is defined as the ratio of standard deviation to the mean.
10Gouriéroux et al. (1984) originally proved that if the conditional mean is correctly specified,

even if the density is misspecified, consistent QML estimates can be obtained if and only if the
assumed density belongs to the linear exponential family.
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the form:

L(θ) = −
N(T )X
i=1

·
xi
ψi

+ logψi

¸
. (1.12)

Following the similarity between the ACD and the GARCH model, the results

of Lee and Hansen (1994) and Lumsdaine (1996) on the QMLE properties for the

GARCH(1,1) model are formalized for the EACD(1,1) model by Engle and Russell

(1998, Corollary, p.1135). Under the conditions of their theorem, consistent

and asymptotically normal estimates of θ are obtained by maximizing the quasi-

likelihood function given in (1.12), even if the distribution of ε, p(ε, θε), is not

exponential.11 The standard errors need to be adjusted as in Bollerslev and

Wooldridge (1992). The corollary also establishes that QML estimates of the

ACD parameters can be obtained using standard GARCH software, in particular

by considering the dependent variable equal to
√
xi and imposing a conditional

mean equal to zero. However, a crucial assumption for obtaining QML consistent

estimates of the ACD model is that the conditional expectation of durations, ψi

is correctly specified. We shall discuss this moment restriction later when several

types of specification tests for the ACD model are considered. Note also that

the corollary is derived for the linear EACD(1,1) model and cannot necessarily be

directly extended to more general ACD(m, q) models.

The QML estimation yields consistent estimates and the inference procedures

in this case are straightforward to implement, but this comes at the cost of

efficiency. In practice, fully efficient ML estimates might be preferred.12 On

the other hand, the choice of the distribution of the error term in (1.5) impacts

the conditional intensity or hazard function of the ACDmodel.13 The exponential

specification implies a flat conditional hazard function which is quite restrictive

11The results are also valid for ACD models with unit roots, e.g., integrated models.
12This is similar to the ARCH literature where the normal distribution is often rejected in

favor of some leptokurtic distribution for returns.
13Point processes are frequently formulated in terms of the intensity function. The hazard

function is an alternative formulation of the same concept used for cross-sectional data (see
Lancaster, 1997 for more information). In the ACD literature the two expressions are used
interchangeably.
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and easily rejected in empirical financial applications (see Engle and Russell,

1998; Dufour and Engle, 2000a; Feng, Jiang, and Song, 2004; Lin and Tamvakis,

2004, among others). For greater flexibility, Engle and Russell (1998) use the

standardized Weibull distribution with shape parameter equal to γ and scale

parameter equal to one, the resulting model being called WACD. The Weibull

distribution reduces to the exponential distribution if γ equals 1, but it allows for

a increasing (decreasing) hazard function if γ > 1 (γ < 1). However, Engle and

Russell (1998) find evidence of excess dispersion for the Weibull specification.

Motivated by a descriptive analysis of empirical volume and price durations,

Grammig and Maurer (2000) question the assumption of monotonicity of the

hazard function in Engle and Russell’s standard ACDmodels. They advocate the

use of a Burr distribution14 that contains the exponential, Weibull and log-logistic

as special cases. The model is then called the Burr-ACDmodel. It is noteworthy,

however, that not all the moments necessarily exist for the Burr distribution

unless some restrictions are imposed on the parameters. This, in turn, may

sometimes result in poor modeling of the higher (unconditional) moments of

durations (see Bauwens, Galli, and Giot, 2003), thus jeopardizing, for example,

its use in moment-matching based simulations.15 Lunde (1999) proposes the use

of the generalized gamma distribution which leads to the GACD model. Both

the Burr and the generalized gamma distributions allow for hump-shaped hazard

functions (they both depend on two parameters) to describe situations where,

for small durations, the hazard function is increasing and, for long durations,

the hazard function is decreasing. The exact form of the distribution of ε

has great importance in some applications of the ACD model, such as the

ACD-GARCH class of models in which expected durations enter the conditional

heteroskedasticity equation as explanatory variables. Monte Carlo evidence

presented by Grammig and Maurer (2000) shows that imposing monotonic

14The Burr distribution can be derived as a Gamma mixture of Weibull distributions; see
Lancaster (1997).
15We refer the reader to Hautsch (2004) for more details on the properties of different

distributions used in the ACD framework.
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conditional hazard functions when the true data generating process requires non-

monotonic hazard functions can have severe consequences for predicting expected

durations because the estimators of the parameters of the autoregressive equation

tend to be biased and inefficient. Hautsch (2002) specifies different ACD

models based on the Generalized F distribution that includes as special cases the

generalized gamma, Weibull and log-logistic distributions. Starting from a more

general distribution allows one to test if the data support reductions to simpler

distributions. It is common to estimate nonparametrically the unconditional

distribution of durations xi and use the shape of this distribution as an indication

for choosing the density of ε.16 More recently, De Luca and Gallo (2004) consider

the use of a mixture of two distributions (in particular exponential) justified by

the differences in information/behavior among different agents in the market.17

As an alternative to specifying a parametric distribution of ε, Engle (2000)

and Engle and Russell (1998) use a semiparametric density estimation technique

similar to the one used by Engle and Gonzalez-Rivera (1991) in the ARCH

context. The conditional mean function of durations is parametrically specified

and consistently estimated by QML, and then the baseline hazard is estimated

nonparametrically using the standardized durations
∧
ε and a k-nearest neighbor

estimator.

While crucial for the ACD model and its numerous extensions, the assumption

of iid innovations εi in (1.5) may be too strong and inappropriate for describing

the behavior of some financial durations. As discussed later, Zhang, Russell,

and Tsay (2001) relax the independence hypothesis via a regime-switching model.

Drost and Werker (2004) drop the iid assumption and consider that innovations

εi may have dependencies of unknown conditional form, which brings in the

question of efficiency in semiparametric estimation. Several semiparametric

16In practice, a Gamma kernel approach as proposed by Chen (2000), is frequently used to
avoid the boundary bias of fixed kernels; see Grammig and Maurer (2000).
17The mixing parameter then has a financial interpretation as the proportion of informed

(uninformed) agents but restrictively assumes that such a proportion is constant in a given time
interval; see De Luca and Gallo (2004) for further discussion.
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alternatives may be considered, such as Markov innovations and martingale

innovations. The iid case of innovations with unknown density is also obtained

under suitable restrictions. Using the concept of the efficient score function from

the literature on semiparametric estimation,18 the authors illustrate that even

small dependencies in the innovations can trigger considerable efficiency gains in

the efficient semiparametric procedures over the QML procedure.

The standard ACD model has been extended in several ways, directed mainly

to improving the fitting of the stylized facts of financial durations. The strong

similarity between the ACD and GARCH models nurtured the rapid expansion

of alternative specifications of conditional durations. In the next subsection we

review the most popular generalizations that have been proposed in the literature

as well as some of the more recent and promising models.

1.2.2.3 Extensions of the standard ACD model

Persistence in durations. As we shall discuss in Section 1.3, empirical

studies based on the linear model in (1.7) often reveal persistence in durations

as the estimated coefficients on lagged variables add up nearly to one.

Moreover, many financial duration series show a hyperbolic decay, i.e., significant

autocorrelations up to long lags. This suggests that a better fit might be

obtained by accounting for longer term dependence in durations. Indeed,

the specification given by (1.8) shows that the standard ACD model imposes an

exponential decay pattern on the autocorrelation function typical for stationary

and invertible ARMA processes. Or, this may be completely inappropriate in

the presence of long memory processes. While the long-memory phenomenon

has been extensively studied both in the theoretical and in the applied literature

for time series and volatility19, it has received considerably less attention in the

literature on ACD models. Jasiak (1998) proposes the Fractionally Integrated

18See, for instance, Drost et al. (1997).
19See Baillie (1996) for a review, or Banerjee and Urga (2005) for a survey of more recent

developments in the analysis of long-memory.
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ACD (FIACD) model, analogous to the FIGARCH model of Baillie, Bollerslev,

and Mikkelsen (1996). The FIACD(m, d, q) model is defined as:

[1− β(L)]ψi = ω +
£
1− β(L)− [1− φ(L)] (1− L)d

¤
xi, (1.13)

where φ(L) = α(L) + β(L) and the fractional differencing operator (1 − L)d is

given by (1 − L)d =
∞P
k=0

Γ(k − d)Γ(k + 1)−1Γ(−d)−1Lk, Γ denoting the gamma

function and 0 < d < 1.When d = 1, the model is called Integrated ACD (IACD)

by analogy with the IGARCH model of Engle and Bollerslev (1986). Building

on the stationarity and ergodicity conditions derived by Bougerol and Picard

(1992) for the IGARCH model, it can be shown that the FIACD model is strictly

stationary and ergodic (see Jasiak, 1998 for further details).

As is well known from the literature on time series, long-memory may also

occur because of the presence of structural breaks or regime-switching in the

series. We shall later discuss some of the regime-switching models that have been

proposed in the ACD literature.

Logarithmic-ACD models and asymmetric news impact curves. In

the ACD(m, q) model (1.7) sufficient conditions are required for the parameters

to ensure the positivity of durations. If one wants to add linearly in the

autoregressive equation some variables taken from the microstructure literature

and having expected negative coefficients, the durations might become negative.

To avoid this situation, Bauwens and Giot (2000) introduce the more flexible

logarithmic-ACD or Log-ACD(m, q) model in which the autoregressive equation

is specified on the logarithm of the conditional duration ψi. The model is defined

by (1.5) and one of the two proposed parameterizations of (1.4), referred as Log-
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ACD1 and Log-ACD2, respectively20:

lnψi = ω+
mX
j=1

αj lnxi−j+
qX

j=1

βj lnψi−j = ω+
mX
j=1

αj ln εi−j+
qX

j=1

(βj−αj) lnψi−j,

(1.14)

lnψi = ω +
mX
j=1

αjεi−j +
qX

j=1

βj lnψi−j = ω +
mX
j=1

αj(xi−j/ψi−j) +
qX

j=1

βj lnψi−j.

(1.15)

Unlike the standard ACD(m, q) model, no non-negativity restrictions on the

parameters of the autoregressive equation are needed to ensure the positivity

of conditional durations. Covariance stationarity conditions are necessary

(|α+ β| < 1 for the Log-ACD1 model and |β| < 1 for the Log-ACD2 model).

In practice, the Log-ACD2 model is often preferred as it seems to fit the data

better. Bauwens, Galli, and Giot (2003) derive analytical expressions for the

unconditional moments and the autocorrelation function of Log-ACD models.

Unlike the ACD model whose autocorrelation function decreases geometrically at

the rate α + β (see equation 1.8), the autocorrelation function of the Log-ACD

model decreases at a rate less than β for small lags (see Bauwens, Galli, and

Giot, 2003). The same probability distribution functions can be chosen for ε as

in the ACD model, and the estimation can be analogously carried by maximum

likelihood, considering the new definition of the conditional duration.

Tests for nonlinearity conducted by Engle and Russell (1998) on IBM trade

duration data suggest that the standard ACD model given by (1.5) and (1.7)

cannot fully capture nonlinear dependence between conditional duration and past

information set. In particular, the authors report that conditional durations are

overpredicted by the linear specification after very short or very long durations.

This opened the door for new models looking for more flexible functional forms

20Readers familiar with the GARCH literature will notice that the Log-ACD1 model is
analogous to the Log-GARCH model of Geweke (1986), while the Log-ACD2 model resembles
the EGARCH model proposed by Nelson (1991).
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that allow for distinctive responses to small and large shocks. As can be easily

seen in (1.14), the Log-ACD1 model also allows for nonlinear effects of short and

long durations (i.e. when εi < 1 or εi > 1) without including any additional

parameters. Dufour and Engle (2000a) argue that the Log-ACD model is likely

to produce an over-adjustment of the conditional mean after very short durations

because of the asymptotic convergence to minus infinity of log(0). Instead, they

propose to model the news impact function with a piece-wise linear specification.

The model is called the EXponential ACD or EXACD model due to its similarity

to the EGARCH specification proposed by Nelson (1991), and it specifies the

conditional duration as an asymmetric function of past durations:

lnψi = ω +
mX
j=1

[αjεi−j + δj |εi−j − 1|] +
qX

j=1

βj lnψi−j. (1.16)

Thus, the impact on the conditional duration is different, depending on the

durations being shorter or longer than the conditional mean, i.e., εi < 1 involves

a slope equal to α− δ while εi > 1 determines a slope equal to α+ δ.

Following the approach taken by Hentschel (1995) to developing a class

of asymmetric GARCH models, Fernandes and Grammig (2006) introduce an

interesting class of augmented ACD (AACD) models that encompass most of

the specifications mentioned before as well as some models that have not been

considered yet.21 The AACD models are obtained by applying a Box-Cox

transformation to the conditional duration process and a nonlinear function of

εi that allows asymmetric responses to small and large shocks. The lowest-order

parametrization is given by:

ψλ
i = ω + αψλ

i−1 [|εi−1 − b|+ c (εi−1 − b)]v + βψλ
i−1. (1.17)

In this specification, the asymmetric response to shocks and the shape of the

piecewise function depend on parameters b and c, respectively, while parameter v

21Note, however, that they do not nest the TACD and STACD models presented later.
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induces concavity (convexity) of the shock impact curve for v 6 1 (v > 1).
Building on the theoretical developments of Carrasco and Chen (2002),

Fernandes and Grammig (2006) derive sufficient conditions ensuring the existence

of higher-order moments, strict stationarity, geometric ergodicity and β-mixing.22

Under suitable restrictions several ACD models can be recovered: the standard

ACD model, the Log-ACD models, the EXACD model, as well as other

specifications inspired by the GARCH literature. Depending on the choice of

the distribution of εi, the models can be estimated by maximum likelihood.

Regime-switching ACD models. Despite the evidence of nonlinearity

reported by several studies (see Dufour and Engle, 2000a; Zhang, Russell, and

Tsay, 2001; Taylor, 2004; Fernandes and Grammig, 2006; Meitz and Teräsvirta,

2006) the question of the type of nonlinear ACD model that would be the most

appropriate needs further investigation. An alternative approach to dealing

with the nonlinearity aspect-behavior evidenced by Engle and Russell (1998)

involves considering the existence of different regimes with different dynamics

corresponding to heavier or thinner trading periods. For instance, Zhang, Russell,

and Tsay (2001) introduce a threshold ACD or TACD(m.q) model in which the

conditional duration depends nonlinearly on past information variables.23 A K -

regime TACD(m, q) model is given by
xi = ψiε

(k)
i

ψi = ω(k) +
mP
j=1

α
(k)
j xi−j +

qP
j=1

β
(k)
j ψi−j

if xi−1 ∈ Rk, (1.18)

where Rk = [rk−1, rk] , k = 1, 2, ...,K, with K ∈ Z+ being the number of regimes
and 0 = r0 < r1 < ... < rK =∞ are the threshold values. The regime-switching

ACD parameters are denoted by ω(k) > 0, α
(k)
j > 0 and β

(k)
j > 0. Moreover,

22Conditions for β-mixing and existence of moments for nonlinear ACD structures have been
investigated by Meitz and Saikkonen (2004) for the first order case.
23The TACD model can be viewed as a generalization of the threshold-GARCH model of

Rabemananjara and Zakoian (1993) and Zakoian (1994).
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for a fixed k, the error term ε
(k)
i is an iid sequence with positive distribution

that is regime-specific24. Consequently, the different regimes of a TACD model

have different duration persistence, conditional means and error distributions,

which allows for greater flexibility compared to the ACD model. Conditions for

geometric ergodicity and existence of moments are derived only for the TACD(1,1)

model but they are difficult to generalize for higher order models. Moreover, the

impact of the choice of the threshold variable still needs to be assessed. For a large

number of regimes K, the estimation of the model may become computationally

intensive25 since it is performed by using a grid search across the threshold values

r1 and r2 and by maximizing the likelihood function for each pair. An interesting

finding of the Zhang, Russell, and Tsay (2001) study concerns the identification in

the data analyzed of multiple structural breaks corresponding to some economic

events. Following location of these break points, separate models are to be

estimated for each subperiod.

The question of nonstationarity is addressed differently by Meitz and

Teräsvirta (2006) who propose using ACD models with parameters changing

smoothly over time. The logistic function is used as the transition function with

the time as transition variable. Depending on the definition of time considered,

time-varying ACD or TVACDmodels can be usefully applied either to test against

parameter changes or to detect unsatisfactory removal of the intraday seasonality.

The same authors also introduce an alternative to the TACD model. Building on

the literature on smooth transition GARCH models,26 they advocate the use of

a smooth transition version of the ACD model, the STACD model, in which the

transition between states is driven by a transition function. A logarithmic version

may also be specified.

24The authors use the generalized gamma distribution. Note also that the choice of the
threshold variable is not restricted to lag-1 duration.
25Zhang, Russell, and Tsay (2001) estimate a 3-regime TACD(1,1) model while Bauwens,

Giot, Grammig, and Veredas (2004) employ a logarithmic version of the same model.
26See, for example, Hagerud (1996), Gonzalez-Rivera (1998) or Lundbergh and Teräsvirta

(2002).
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Latent factor-based models. Over recent years an area garnering

substantial interest in the asset return literature has been that of stochastic

volatility (SV) models. Modeling volatility as an unobserved latent variable has

shown itself capable of capturing the dynamics of the financial series of returns

in a better way than the competing GARCH models.27 Given the similarity

between ACD and GARCH models, it is not surprising that recent research on

ACD models has taken this route. Bauwens and Veredas (2004) propose the

stochastic conditional duration (SCD) model in which the conditional duration

ψi is modeled as a latent variable (instead of being deterministic as in the ACD

model). Economically, the latent variable may be thought of as capturing the

unobservable information flow in the market. The SCD model as it was first

proposed is given by

xi = ψiεi, (1.19)

lnψi = ω + β lnψi−1 + ui, |β| < 1. (1.20)

While equation (1.19) is identical to equation (1.5), the conditional duration in

(1.20) is driven by a stationary first order autoregressive process AR(1).28 Thus,

the model has two sources of uncertainty, that is, εi for observed duration and ui

for conditional duration, which is expected to offer greater flexibility in describing

the dynamics of the duration process. The following distributional assumptions

are made:

εi | Fi−1 ∼ iid p(εi) and ui | Fi−1 ∼ iid N (0, σ2) with ui independent of εi.

(1.21)

27See, for example, Danielsson (1994); Kim, Shephard, and Chib (1998); Ghysels, Harvey, and
Renault (1996) on the advantages of using the SV framework relative to the GARCH framework.
28One may notice that no non-negativity constraints are imposed on the parameters to insure

the positivity of durations. Also, the model mixes features of both the standard ACD model
and the SV model introduced by Taylor (1982).
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The same distribution may be chosen for εi as in the ACD framework and a

different distribution for ui can also be assumed. The original specification uses

the Weibull and gamma distributions for εi but similar results are reported for

both. Compared to the ACD model, the SCD model can generate a wider variety

of hazard functions shapes (see Bauwens and Veredas, 2004 for further details).

It follows from the specification in (1.19)-(1.21) that the SCD model is a mixture

model. Therefore, its estimation is quite challenging because the exact likelihood

function cannot be derived in a closed form but involves a multidimensional

integral whose evaluation requires extensive simulations, especially for large

datasets (which is usually the case when working with high-frequency data).

Bauwens and Veredas (2004) propose use of the QMLmethod with the Kalman

filter after putting the model in a linear state space representation.29 The

procedure provides consistent and asymptotically normal estimators, but it is

inefficient as it does not rely on the true likelihood of durations xi. Strickland,

Forbes, and Martin (2005) employ the Monte Carlo Markov Chain (MCMC)

methodology which, like the QML is a complete method (i.e., permits estimation

of both parameters and latent variables) but its implementation is rather time

consuming.30 An alternative method for the estimation of the SCD model is

currently under investigation by Bauwens and Galli (2005) following the work

of Liesenfeld and Richard (2003) on the application of the efficient importance

sampling procedure to SV models. Ning (2004) investigates two other methods

proposed in the SV literature: the empirical characteristic function and the GMM

methods.

The leverage effect is well known in the volatility literature since Black (1976)

first noted a negative correlation between current returns and future volatility.

Feng, Jiang, and Song (2004) further develop the idea of asymmetric behavior of

29This procedure has been proposed independently by Nelson (1988) and Harvey, Ruiz, and
Shephard (1994) for SV models.
30The SV literature shows the MCMC to have been more efficient than the QML and the

generalized method of moments (GMM) techniques; see, for instance, Jacquier, Poison, and
Rossi (1994).
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the expected duration in a SCD framework. Their model is characterized by the

introduction of an intertemporal term (lnεi−1) in the latent function given in (1.20)

to account for a leverage effect. The empirical study finds evidence of a positive

relation between trade duration and conditional expected duration. The model is

estimated using the Monte Carlo maximum-likelihood (MCML) method proposed

by Durbin and Koopman (1997) in the general framework of non-gaussian state

space models, and applied by Sandmann and Koopman (1998) to the estimation

of SV models.

Given the rich potential of specifications and methods of estimation existing

in the literature on SV models (see Broto and Ruiz, 2004 for a recent survey),

we anticipate further developments on SCD models in the near future. Formal

comparisons of alternative estimation methods would be interesting.

As evidenced by (1.4) and (1.11), the ACD model does not allow for

independent variation of the conditional mean and variance as higher order

conditional moments are linked to specification of the conditional mean. Ghysels,

Gouriéroux, and Jasiak (2004), referred to as GGJ hereafter, argue that this is a

very restrictive assumption, especially when one is interested in analysis of market

liquidity. Intertrade durations are an indicator of market liquidity because they

measure the speed of the market but the variance of durations describes the risk

on time associated to the liquidity risk. Therefore, GGJ introduce the Stochastic

Volatility Duration (SVD) model in which the dynamics of the conditional mean

and variance are untied by using two time varying factors instead of one. The

SVD model extends the standard static exponential duration model with gamma

heterogeneity from the literature on cross-sectional and panel data and given

by xi = ui/avi, where ui and vi are two independent variables with distributions

standard exponential and gamma, respectively. This model can then be rewritten

in terms of Gaussian factors as

xi =
H(1, F1i)

aH(b, F2i)
(1.22)
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where a and b are positive parameters, F1i and F2i are iid standard normal

variables, and H(b, F ) = G(b, φ(F )) where G(b, .) is the quantile function of the

gamma(b, b) distribution and φ() the c.d.f. of the standard normal distribution.

GGJ propose to introduce dynamic patterns through the two underlying Gaussian

factors by considering a VAR representation for the process Fi = (F1i, F2i)
0. The

marginal distribution of Fi is constrained to be N(0, I)− I being the identity

matrix - to ensure that the marginal distribution of durations xi belongs to

the class of exponential distributions with gamma heterogeneity (i.e. Pareto

distributions). Thus, the SVD model is given by (1.22) and

Fi =

pX
j=1

ΛjFi−j + εi (1.23)

where Λj is the matrix of autoregressive VAR parameters and εi is a Gaussian

white noise with variance-covariance matrix
P
(Λ) such that V ar(Fi) = I.

While conceptually interesting, the use of the SVD model in applied research

has been limited, due to its rather complicated estimation procedure. Indeed,

the likelihood function is difficult to evaluate which is typical of the class of

nonlinear dynamic factor models. GGJ suggest a two-step procedure in which

parameters a and b are first estimated by QML, exploiting the fact that the

marginal distribution of xi is a Pareto distribution that depends only on the

parameters a and b, and then the method of simulated moments31 is used to

get the autoregressive parameters Λj (see GGJ, 2004 for more details). It

is noteworthy that the assumption of a Pareto distribution for the marginal

distribution of xi may be completely inappropriate for some duration processes,

as evidenced by Bauwens, Giot, Grammig, and Veredas (2004) and this makes

the first step of the estimation procedure unfeasible. Moreover, the same study

finds a poorer predictive performance of the SVD model compared to ACD and

Log-ACD models. More formal investigations of these alternative specifications

31See, for example, Gouriéroux and Monfort (1997).
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for nonlinearity would be interesting.

1.2.2.4 Tests of the ACD model A major issue when using ACD models

is how to assess the adequacy of the estimated model. Even though, as discussed

before, a variety of ACD specifications have been proposed in the literature, the

question of evaluating a particular model has attracted far less interest. Most of

the papers surveyed limit the testing to simple examinations of the standardized

residuals. Recent papers, however, have proposed useful procedures for testing

either the specification of the conditional mean function given in (1.4) or the

specification of the distribution of the standardized durations p(ε, θε) in (1.5). In

the following, we briefly review these different approaches.

Basic residual examinations. The common way of evaluating ACD

models consists of examining the dynamical and distributional properties of the

estimated standardized residuals of an ACD model

f
εi =

xi
f
ψi

, i = 1, ..., T.

If the estimated model for the durations series is adequate, it follows that
f
εi are iid.

The approach used by Engle and Russell (1998) and largely adopted by subsequent

authors consists of applying the Ljung-Box Q-statistic (see Ljung and Box, 1978)

to the estimated residuals
f
εi and to the squared estimated residuals

f
ε
2

i to check for

remaining serial dependence.32 Practically all the papers surveyed employed this

procedure. However, it is noteworthy that this approach is questionable. While

the Ljung-Box test statistic is assumed to have an asymptotic χ2 distribution

under the null hypothesis of adequacy, no formal analysis exists that rigorously

establishes this result in the context of ACD models. In fact, in a related context,

Li and Mak (1994) show that this test statistic does not have the usual asymptotic

32When the Ljung-Box statistic is applied to the squares of the estimated residuals, it is known
as the McLeod and Li (1983) test.



23

χ2 distribution under the null hypothesis when it is applied to standardized

residuals of an estimated GARCH model. In the ACD framework, Li and Yu

(2003) follow Li and Mak (1994) and propose a corrected statistic that results

in a portmanteau test for the goodness-of-fit when εi follows the exponential

distribution.33 Like in the time series literature, additional examinations of

residuals include visual check of the autocorrelation function of estimated residuals

(see, for instance, Jasiak, 1998; Bauwens and Giot, 2000; Ghysels, Gouriéroux,

and Jasiak, 2004; Bauwens, 2006). Furthermore, some papers (for example,

Bauwens and Veredas, 2004; Ghysels, Gouriéroux, and Jasiak, 2004) compare the

marginal density of durations derived from the model to the empirical marginal

density directly obtained from the observed durations.

Beside testing for serial dependence in the estimated residuals, a few papers

also test the moments conditions implied by the specified distribution of εi.

According to the ACD model, the estimated residuals should have a mean of

one. Engle and Russell (1998) propose a test for no excess dispersion of the

estimated residuals when an exponential or Weibull distribution are assumed.34

Bauwens and Veredas (2004) and De Luca and Gallo (2004) use QQ-plots to check

the distribution assumptions while Prigent, Renault, and Scaillet (2001) employ

Bartlett identity tests.

Testing the functional form of the conditional mean duration. As we

have already mentioned, the validity of the conditional mean function is essential

for the QML estimation of the ACD model. Sophisticated tests of no remaining

ACD effects with rigorously proven asymptotic distributions have been recently

developed in the literature. Following the work of Lundbergh and Teräsvirta

(2002) on GARCH models who propose a Lagrange multiplier test of no residual

33According to Li and Yu (2003) the case of a Weibull distribution can be analyzed in the
same way via the change of a variable.
34In a Monte Carlo exercise, Fernandes and Grammig (2005) find poor performance of this

overdispersion test compared to the nonparametric tests they propose.
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ARCH,35 Meitz and Teräsvirta (2006) propose a similar statistic of no residual

ACD which is shown to be asymptotically equivalent to the Li and Yu (2003)

test and also has a version robust to deviations from the assumed distribution.

Alternatively, under the null hypothesis of adequacy of an ACD model, the fact

that the estimated residuals
f
εi are iid implies that their normalized spectral

density equals the flat spectrum (that is, 1/2π). Consequently, adequacy test

statistics may be constructed by comparing an estimator of the spectral density

of the estimated residuals and the flat spectrum. Building on Hong (1996,

1997), Duchesne and Pacurar (2005) make use of a kernel-based estimator of the

normalized spectral density of the estimated residuals to construct such adequacy

tests. Interestingly, a generalized version of the classic Box-Pierce/Ljung-Box

test statistics is obtained as a special case (and therefore possesses a proven

asymptotical distribution) but is shown to be less powerful. In a similar way,

Duchesne and Hong (2001) use a wavelet-based estimator with a data-driven

smoothing parameter.

The model presented in (1.7) assumes a linear dependence of the conditional

duration on past information set. Engle and Russell (1998) propose a simple

test for detecting potential nonlinear dependencies that is also applied by Zhang,

Russell, and Tsay (2001) to motivate the introduction of their TACD model. The

idea is to divide the durations into bins ranging from 0 to∞ and then regress the

estimated residuals on indicators of the size of the previous duration. Under the

null hypothesis of the estimated residuals being iid, the coefficient of determination

of this regression should be zero while under the alternative hypothesis, one can

analyze the coefficients of indicators that are significant in order to identify sources

of misspecification.

Meitz and Teräsvirta (2006) develop a useful and very general battery of

tests of Lagrange multiplier type that allow extensive checks against different

forms of misspecification of the functional form of the conditional mean duration:

35They also show that this test is asymptotically equivalent to the Li and Mak (1994) test.
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tests against higher-order ACD models, tests of linearity, and tests of parameters

constancy. Finally, the omnibus procedure suggested by Hong and Lee (2003) for

a large class of time series models and based on the generalized spectral density

may also be used as a misspecification test of ACD models. As such, it is shown

to be consistent against any type of pairwise serial dependence in the standardized

durations.

Testing the distribution of the error term. Another possible source of

misspecification for ACD models is the distribution of the error term. While the

exponential distribution (or other member of the standard gamma family as shown

by Drost and Werker, 2004) leads to consistent QML estimates, this procedure

may be unsatisfactory in finite samples, as we have already mentioned. Only two

of the theoretical papers surveyed paid attention to the development of elaborate

tests against distributional misspecification. Fernandes and Grammig (2005)

introduce two tests for distribution of the error term (the so-called D-test and H-

test) based on comparison between parametric and nonparametric estimates of the

density and of the hazard rate function of the estimated residuals, respectively.

These tests inspect the whole distribution of the residuals, not only a limited

number of moment restrictions, and are shown to be nuisance parameter free.

It is noteworthy however, that the conditional mean function is assumed to be

correctly specified and, therefore, a rejection could follow also from a misspecified

conditional mean.

Another way to test ACD models consists of using the framework developed

by Diebold, Gunther, and Tay (1998) for the evaluation of density forecasts.

The main idea is that the sequence of probability integral transforms of the

one-step-ahead density forecast has a distribution iid uniform U(0, 1) under the

null hypothesis that the one-step-ahead prediction of the conditional density

of durations is the correct density forecast for the data-generating process of

durations. It follows that standard tests for uniformity and iid may then be



26

used, but they do not generally indicate potential causes of the rejection of the

null hypothesis. Therefore, the aforementioned authors recommend the use of

graphical procedures such as examinations of histograms and autocorrelograms.

This approach is adopted by Bauwens, Giot, Grammig, and Veredas (2004) for

comparing the predictive abilities of the most popular ACD specifications. In

the same context, Dufour and Engle (2000a) propose a new Lagrange Multiplier

type of test for the uniformity and iid assumptions. Both approaches, however,

assume the right conditional mean parameterization and, consequently, possible

rejections may be due either to violation of distributional assumptions or violation

of the conditional mean restriction.

Summing up, since existing misspecification tests of ACD models are

directed toward detecting either distributional misspecification or functional

misspecification, attention should be given in practice to the use of several

complementary tests so that different sources of problems might be recognized.

Unfortunately, none of these sophisticated procedures, to our knowledge has made

its way to empirical studies so far.

1.2.3 Models for durations and marks

The models discussed above have been proposed for describing the dynamics of

durations, xi with respect to past information. In this respect, they are marginal

models, following from the decomposition given by (3.2). But one may also be

interested in the behavior of some marks (e.g., price, volume) given the durations

and the past information, especially for testing some predictions from the market

microstructure literature, as we shall discuss in the next section. In this case, the

structure given by (3.2) provides a suitable framework for the joint modeling of

durations between events of interest, xi and some market characteristics, zi. In

most cases, only one mark is considered: the price.

The first joint model for durations and prices has been developed by Engle
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(2000).36 He introduces an ACD-GARCH model based on the decomposition

(3.2), the so-called Ultra-High-Frequency (UHF)-GARCH model. Durations

between transactions are described by an ACD-type model conditional on the

past while price changes are described by a GARCH model adapted to irregularly

time-spaced data conditional on contemporaneous durations and the past. The

adaptation consists of measuring the volatility per unit time. Under the

assumption of weakly exogenous durations, the ACD model can be estimated

first (cf. Engle, Hendry, and Richard; 1983), and then the contemporaneous

duration and expected duration enter the GARCH model for volatility together

with some other explanatory variables. As discussed later, the model can be used

to investigate the relationship between current durations and volatility.

However, insights from the market microstructure literature suggest that it is

possible that the volatility also impacts the duration process and ignoring this

issue neglects part of the complex relationship between durations and volatility.

Grammig and Wellner (2002) extend Engle (2000) approach by formulating a

model for the interdependence of intraday volatility and duration between trades:

the interdependent duration-volatility (IDV) model.

An alternative ACD-GARCH specification has been proposed by Ghysels and

Jasiak (1998) based on the results of Drost and Nijman (1993) and Drost and

Werker (1996) on the temporal aggregation of GARCH processes.37 The model

is formulated as a random coefficient GARCH where the parameters are driven

by an ACD model for the durations between transactions. A GMM procedure is

suggested for estimating the model but its application is rather computationally

complex, which could explain the limited interest this model has received in

empirical applications.

Whereas the models discussed above assume continuous distributions for price

changes, other models have been put forward in the literature to specify the joint

36The working paper version dates from 1996.
37For a formal comparison of the UHF-GARCH and ACD-GARCH models, together with

their advantages, we refer the interested reader to the work of Meddahi, Renault, and Werker
(2006).



28

distribution of durations and price changes represented as a discrete variable.

Bauwens and Giot (2003) and Russell and Engle (2005) propose competing

risk models or transition models from the previous price change to the next

one. The asymmetric Log-ACD model of Bauwens and Giot (2003) makes the

durations dependent upon the direction of the previous price change, hence the

asymmetric side. A Log-ACD model is used to describe the durations between

two bid/ask quotes posted by a market maker but the model takes into account

the direction of the mid bid/ask price change between the beginning and the end

of a duration through a binary variable. Intraday transaction prices often take

just a limited number of different values due to some institutional features with

regard to price restrictions.38 Therefore, Russell and Engle (2005) introduce

the Autoregressive Conditional Multinomial (ACM) model to account for the

discreteness of transaction prices. Building on (3.2) they propose using an

ACD model for durations and a dynamic multinomial model for distribution of

price changes conditional on past information and the contemporaneous duration.

However, depending on the number of state changes considered, a large number

of parameters might be needed, which complicates the estimation. A two-state

only ACM model has been subsequently applied by Prigent, Renault, and Scaillet

(2001) to option pricing.

Other approaches for studying causality relationships between durations and

different marks have been developed based on the vector autoregressive (VAR)

system used by Hasbrouck (1991). Hasbrouck (1991) analyzes the price impact

of a trade on future prices but without assuming any influence of the timing

of transactions on the distribution of marks, that is, q(zi|xi, `xi−1, `zi−1; θz) =
q(zi|`zi−1; θz) in (3.2). A simple bivariate model for changes in quotes and trade
dynamics (e.g., trade sign) can be specified in transaction time. Dufour and

Engle (2000b) extend Hasbrouck’s model to allow durations to have an impact

on price changes. An ACD model describes the dynamics of durations and

38It has been also reported (see, for instance, Tsay, 2002; Bertram, 2004; Dionne, Duchesne,
and Pacurar, 2005) that a large percentage of intraday transactions have no price change.
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the duration between transactions is then treated as a predetermined variable by

allowing coefficients in both price changes and trade equations to be time-varying,

depending on the duration. The model can easily be extended to include other

variables, such as volume and volatility (Spierdijk, 2004; Manganelli, 2005).

An important assumption typically made in these joint models of durations

and marks is that durations have some form of exogeneity (weak or strong, cf.

Engle, Hendry, and Richard, 1983) which greatly simplifies the estimation and

forecast procedures, respectively (see, for instance, Engle, 2000; Ghysels and

Jasiak, 1998; Dufour and Engle, 2000b; Manganelli, 2005). The empirical

consequences of removing the exogeneity assumption in VAR-type models are

still open to question.39

1.3 Applications of ACD models in finance

As already mentioned in Section 1.2, ACD models can be used for modeling

of arrival times of a variety of financial events. Most applications focus on

the analysis of the trading process based on trade and price durations (as first

initiated by Engle and Russell, 1997, 1998, and defined below) but other economic

events, such as firm defaults or interventions of the Central Bank have also been

considered. However, the importance of ACD models in finance so far stems

from the relatively recent market microstructure literature that provides a strong

economic motivation for use of these models besides the statistical justification

already discussed (i.e., data being irregularly time-spaced). In the following,

we present a review of the empirical applications of ACD methodology sorted

according to the type of the event of interest. But first, we shall discuss an

essential feature of all types of intraday durations.

39Moreover, Dufour and Engle (2000b, p. 2493) also state that "we do not have knowledge,
to this date, of any theoretical model that shapes the reciprocal interactions of price, trade, and
time...".
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1.3.1 Intraday seasonality

It is a well known fact that within a trading day financial markets are characterized

by a strong seasonality. Initial intraday studies reporting seasonality used data

resampled at regular time intervals (e.g., hourly, every half hour, every 5 minutes,

etc.) and focused mainly on the behavior of the intraday volatility (see, for

instance, Bollerslev and Domowitz, 1993; Andersen and Bollerslev, 1997, 1998;

Beltratti and Morana, 1999). In the context of irregularly time-spaced intraday

data, Engle and Russell (1998) report higher trading activity (hence, shorter

durations on average) at the beginning and close of the trading day, and slower

trading activity (longer durations) in the middle of the day. These patterns

are linked to exchange features and traders’ habits. Traders are very active at

the opening as they engage in transactions to benefit from the overnight news.

Similarly, at the closing, some traders want to close their positions before the

end of the session. Lunchtime is naturally associated with less trading activity.

Ignoring these intraday patterns would distort any estimation results. The

procedure used most often in this literature for taking into account intraday

seasonal effects is that originally employed by Engle and Russell (1998). It

consists of decomposing intraday durations into a deterministic part based on the

time of the day the duration arises, and a stochastic part modeling the durations’

dynamics:

xi =
∼
xis (ti−1) , (1.24)

where
∼
xi denotes the "diurnally adjusted" durations and s (ti) denotes the seasonal

factor at ti. Equation (1.4) for the conditional duration becomes

ψi = E(
∼
xi|Fi−1)s (ti−1) . (1.25)

The two set of parameters of the conditional mean and of the seasonal factor,

respectively, can be jointly estimated by maximum likelihood as in Engle and

Russell (1998). However, due to numerical problems arising when trying to
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achieve convergence, it is more common to apply a two-step procedure in which the

raw durations are first diurnally adjusted and then the ACD models are estimated

on the deseasonalized durations,
∼
xi. Engle and Russell (1998) argue that both

procedures give similar results due to the large size of intraday datasets.

With regard to the specification of the seasonal factor s(t), two similar

approaches are dominant in the empirical studies. The first is the one originated

by Engle and Russell (1997, 1998) in which durations xi are regressed on the time

of the day using a piecewise linear spline or cubic spline specification and then

diurnally adjusted durations
∼
xi are obtained by taking the ratios of durations

to fitted values. Second, Bauwens and Giot (2000) define the seasonal factor

as the expectation of duration conditioned on time-of-day. This expectation is

computed by averaging the raw durations over thirty-minute intervals for each

day of the week (thus, the intraday seasonal factor is different for each day of

the week). Cubic splines are then used to smooth the time-of-day function that

displays the well-known inverted-U shape.

Some alternative procedures have also been applied in the literature. Tsay

(2002) uses quadratic functions and indicator variables. Drost and Werker

(2004) only include an indicator variable for lunchtime in the conditional mean

duration because, for their data, trading intensity except for lunchtime seems

almost constant. Dufour and Engle (2000a) include diurnal dummy variables in

their vector autoregressive system but fail to identify any daily pattern, except for

the first 30 minutes of the trading day that appear to have significantly different

dynamics from the rest of the data.40 Veredas, Rodriguez-Poo, and Espasa (2001)

propose a joint estimation of the two components of durations, dynamics and

seasonality with the dynamics specified by (Log)-ACD models and the seasonality

left unspecified and therefore estimated nonparametrically.

Despite the need for some caution already expressed in the literature (see, for

example, Bauwens et al., 2004; Meitz and Teräsvirta, 2006, among others), the

40Note also that it is a current practice in studies on irregularly time-spaced data to remove
the transactions during the first minutes of the trading session (the opening trades).
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impact of the deseasonalisation procedure on the results has been insufficiently

investigated and should receive further consideration. It is noteworthy that

eliminating intraday seasonality does not affect the main properties of the

durations discussed below.

1.3.2 Applications to trade durations

The most common type of event considered for defining financial durations is a

trade. Thus, trade durations are simply the time intervals between consecutive

transactions. Applications of ACD models to trade durations have been reported

in numerous papers (see, among others, Engle and Russell, 1998; Jasiak, 1998;

Engle, 2000; Zhang, Russell, and Tsay, 2001; Bauwens and Veredas, 2004;

Manganelli, 2005; Bauwens, 2006). Generally, some authors were interested in

the model specification necessary to fit the dynamics of different data while others

focused on the testing of various market microstructure predictions.

1.3.2.1 Stylized facts of trade durations and model specification

Several stylized properties of trade durations that motivate the use of the ACD

methodology have been identified in the empirical literature. First, all the

papers report the phenomenon of clustering of trade durations, i.e., long (short)

durations tend to be followed by long (short) durations that may be due to new

information arising in clusters. This is also evidenced by the highly significant

(positive) autocorrelations that generally start at a low value (around 0.10). The

autocorrelation functions then decay slowly, indicating that persistence is an

important issue when analyzing trade durations. Ljung-BoxQ-statistics are often

used to formally test the null hypothesis that the first (15 or 20) autocorrelations

are 0. The statistics take very large values clearly indicating the presence of

ACD effects, that is, duration clustering, at any reasonable level.41 A slowly

decaying autocorrelation function may be associated with a long-memory process,

41An alternative test for ACD effects has been proposed by Duchesne and Pacurar (2005)
using a frequency domain approach.
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which motivated Jasiak (1998) to introduce the FIACD model. Evidence for long

memory has been constantly reported for IBM trade durations, for instance (see,

for example, Engle and Russell, 1998; Jasiak, 1998; Bauwens et al. 2004).

Second, the majority of papers report that trade durations are overdispersed,

i.e., the standard deviation is greater than the mean.42 This can be tested formally

using the dispersion test introduced by Engle and Russell (1998) or a Wald test

for the equality of the first two sample moments, as in Dufour and Engle (2000a).

Overdispersion is also apparent from the examination of the kernel densities of

different trade durations that have a hump at very small durations and a long right

tail (see, for instance, Bauwens et al., 2004; Bauwens and Giot, 2001; Engle and

Russell, 1998).43 This suggests that exponential distribution is not appropriate

for unconditional distribution of trade durations (which does not mean however

that conditional durations cannot be exponentially distributed).

Third, papers using transaction data reveal the existence of a large number of

zero trade durations in the samples used (i.e., about two thirds of the observations

for the IBM dataset originally used by Engle and Russell, 1998). Since the

smallest time increment is a second, orders executed within a single second

have the same time stamp. Following the original work of Engle and Russell

(1998), the most common approach for dealing with zero durations consists of

aggregating these simultaneous transactions. An average price weighted by

volume is generally computed (when the variable price is also of interest), and all

other transactions with the same time stamp are discarded. This procedure uses

the microstructure argument that simultaneous observations correspond to split-

transactions, that is, large orders broken into smaller orders to facilitate faster

execution. When transactions do not have identical time stamps, identification

42Bauwens (2006) finds underdispersion for two out of four stocks considered from the Tokyo
Stock Exchange. He eventually explains it by poor measurement of the very small durations of
these stocks. Ghysels and Jasiak (1998) also report underdispersion for IBM trade durations
computed with one month of data.
43One could argue that the hump close to the origin is an artifact of estimating the density

of a positive variable using the kernel method. Therefore, most authors use the gamma kernel
proposed by Chen (2000) and designed for this context.
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of split-transactions may be more challenging. Grammig and Wellner (2002)

consider as part of a large trade on the bid (ask) side of the order book only

those trades with durations between sub-transactions of less than one second and

whose prices are non-increasing (non-decreasing). Multiple transactions may,

however, be informative as they reflect a rapid pace of the market. Zhang,

Russell, and Tsay (2001) find that the exact number of multiple transactions

does not carry information about future transaction rates, but the occurrence of

multiple transactions does. Therefore, they incorporate this information into

their TACD model through a lagged indicator variable for multiple transactions

included as regressor in the conditional mean of durations. Bauwens (2006)

artificially sets the duration between simultaneous trades at one second but we

should mention the peculiar feature of his dataset from the Tokyo Stock Exchange

in which two orders executed within two seconds have the same time stamp. An

alternative explanation for zero durations is put forward by Veredas, Rodriguez-

Poo, and Espasa (2001) based on the empirical observation of zero durations being

clustered around round prices. Therefore, they argue that multiple transactions

may occur because of many traders posting limit orders to be executed at round

prices. Simply removing the simultaneous transactions certainly affects the

dynamical properties of the trade durations. For instance, Veredas, Rodriguez-

Poo, and Espasa (2001) and Bauwens (2006) report higher Q-statistics and

residual autocorrelation, respectively, when zero durations are removed from the

data. The parameters of the distribution of the innovation may also be altered.

We believe that the literature still needs to explore alternative ways for dealing

with zero durations as their impact is not sufficiently known.

It is noteworthy that a common practice when analyzing intraday durations

consists of eliminating all interday (overnight) durations because they would

distort the results. However, some alternative approaches have also been

proposed. Manganelli (2005) treats the overnight period as if it was non-existent

while Dufour and Engle (2000a) account for interday variations by including a
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dummy variable for the first observation of the trading day.

With regard to the model specification, most empirical applications of ACD

models to trade durations have adopted linear ACD or Log-ACD specifications

with low orders of lags, i.e., (1,1) or (2,2)-models, despite the findings discussed

in Section 1.2 pointing out the need for nonlinear models. Further empirical

evidence provided by Fernandes and Grammig (2006) shows that the problem of

overpredicting short durations first identified by Engle and Russell (1998) can be

palliated by allowing for a concave shocks impact curve.

Interestingly, several authors (Engle and Russell, 1998; Engle, 2000; Zhang,

Russell, and Tsay, 2001; Fernandes and Grammig, 2006 among others) reveal

substantial difficulties in completely removing dependence in the residual series,

which suggests that the question of the most appropriate model for trade durations

is far from being answered.44 Bauwens et al. (2004) also report that none

of the thirteen models considered (including ACD, log-ACD, TACD, SCD, and

SVD models with various distributions for the innovation) provides a suitable

specification for the conditional duration distribution. On the other hand, Dufour

and Engle (2000a) find that the choice of the conditional distribution of durations

apparently does not affect the out-of-sample predictions of the ACDmodel at short

or longer horizons (but it becomes crucial when forecasting the whole density).

Many studies found evidence of high persistence of trade durations, the sum

of the autoregressive coefficients (i.e., α + β) being close to one while still in

the stationary region (see, among others, Engle and Russell, 1998; Jasiak, 1998;

Engle, 2000; Dufour and Engle, 2000a; Bauwens and Veredas, 2004).

However, few formal comparisons of existing ACD models have been made to

date. Generally, studies limit to comparisons of a new proposed specification for

the ACD model to the original Engle and Russell (1998)’s model.

Further investigation is imperatively needed as to the choice of the best model

for different markets.
44A similar result is reported by Taylor (2004) for a sample of durations between non-zero

price impact trades on the FTSE 100 index futures market.
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1.3.2.2 Tests of market microstructure hypotheses As we have seen,

the setup presented in Section 1.2 is very general and encompasses a variety

of models. The autoregressive structure of the conditional duration function

allows description of the duration clustering observed in intraday data, but

this clustering phenomenon is not uniquely an empirical fact. The market

microstructure literature offers some explanations for the autocorrelation of the

duration process. However, the relationship between the literature on market

microstructure and ACD models is reciprocally beneficial, the former providing

theoretical explanations, the latter offering empirical support. An exhaustive

review of market microstructure models is well beyond the scope of our paper and

we, therefore, refer the interested reader to the excellent surveys of O’Hara (1995)

or Madhavan (2000). Here, we shall limit our discussion to those theoretical

models that provide insights on the use of the ACD framework and whose

predictions have been empirically tested using ACD models.

Market microstructure is concerned with the study of the trading process

and, as stated by O’Hara (1995, p.1), its research is "valuable for illuminating

the behavior of prices and markets." Traditionally, price formation has been

explained in the context of inventory models that focused on uncertainties in

the order flow and the market maker’s inventory position.45 However, over

the last several years, another branch of microstructure models has become

more popular: information-based models that bring into play elements from

asymmetric-information and adverse selection theory.46 These models recognize

the existence of different degrees of information in the market. Typically, two

categories of traders are considered: informed and uninformed traders. Informed

traders are assumed to possess private information and trade to take advantage

of their superior information. Non-informed traders or liquidity traders trade

for exogenous reasons, such as liquidity needs. The market maker or the

specialist loses when trading with informed traders and has to compensate for

45See, for instance, Garman (1976), Stoll (1978), Ho and Stoll (1981), among others.
46The basic ingredients of information-based models are attributed to Bagehot (1971).
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these losses when trading with the uninformed traders, which explains the bid-

ask spread. The critical aspect in these models is that uninformed traders may

learn by observing the actions of informed traders, or put differently, informed

traders disclose information through their trades. Thus, prices reflect all publicly

available information but private information is also progressively revealed by

observing the actions of the informed traders. Information may be conveyed

through various trade characteristics, such as timing, price, and volume. Several

information-based models try to explain the complex relationships between these

microstructure variables.

Among the key variables considered, the timing of trades plays an important

role. Whereas initial microstructure models ignored the role of the time in the

formation of prices, starting with the models of Diamond and Verrechia (1987)

and Easley and O’Hara (1992), traders may learn from the timing of trades, hence

the usefulness of ACD models for empirical investigations of trade durations.

Duration clustering is theoretically attributable to the presence of either

informed traders or liquidity traders. According to the Easley and O’Hara (1992)

model, informed traders only trade when new information enters the market while

liquidity traders are assumed to trade with constant intensity. Thus, duration

clustering occurs after information events because these increase the number of

informed traders. Admati and Pfleiderer (1988) provide a different explanation of

duration clustering. Their model distinguishes between two types of uninformed

traders in addition to informed traders. Non-discretionary traders are similar

to liquidity traders in the previous model whereas discretionary traders, while

uninformed, can choose the timing of their trades. The authors show that

the optimal behavior is a clumping behavior: discretionary traders select the

same period for transacting in order to minimize the adverse selection costs and

informed traders follow the pattern introduced by the discretionary traders.

In addition to providing theoretical explanations of the duration clustering

phenomenon, market microstructure models make several predictions about the
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relationships between trade durations and other variables of the trading process.

Testable hypotheses linked to trade durations and empirical results

From the papers we surveyed on trade durations, it appears that implications of

the following main information-based models have been repeatedly tested using

the ACD framework. These implications, sometimes contradictory, typically

refer to the informational content of trade durations and the relationship between

trading intensity and information-based trading.

Diamond and Verrechia (1987) use a rational expectation model with short-

sale constraints. The main implication for empirical purposes is that when bad

news enters the market, informed traders who do not own the stock cannot short-

sale it because of the existing constraints. Hence, long durations are associated

with bad news and should lead to declining prices.

In the Easley and O’Hara (1992) model, since informed traders trade only when

there are information events (whether good or bad) that influence the asset price,

short trade durations signify news arrival in the market and, hence, increased

information-based trading. Consequently, the market maker needs to adjust

his prices to reflect the increased uncertainty and risk of trading with informed

traders, which translates into higher volatility and wider bid-ask spreads.47

Opposite relations between duration and volatility follow from the Admati-

and-Pfleiderer model (1988) where frequent trading is associated with liquidity

traders. Low trading means that liquidity (discretionary) traders are inactive,

which leaves a higher proportion of informed traders on the market. This

translates into higher adverse selection cost and higher volatility. Because of the

lumping behavior of discretionary traders at equilibrium, we should also observe

a clustering in trading volumes. Similarly, in the Foster and Viswanathan (1990)

model the possibility of discretionary traders delaying trades creates patterns in

trading behavior.

47Glosten and Milgrom (1985) first noted that when the probability of informed trading
increases, the spreads become wider but time is not considered in their analysis.
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Empirical tests of these predictions have been reported by several authors.

Engle (2000) applies several specifications of the UHF-GARCH model to IBM

data. He finds a statistically significant negative relation between durations

(expected durations) and volatility as expected from Easley and O’Hara (1992).

Interestingly, the coefficient of the current duration in the mean equation is

negative and, hence, consistent with the Diamond and Verrechia (1987) model,

i.e., long durations will lead to declining prices. When a dummy variable for

large lagged spreads is included in the variance equation it has a positive sign: as

predicted by Easley and O’Hara (1992), wider spreads predict rising volatility.

Whereas in the Engle model (2000), volatility does not impact trading

intensity, Grammig and Wellner (2002) study the interaction of volatility and

trading intensity by specifically modeling the intraday interdependence between

them. They apply the IDV model to secondary market trading after the Deutsche

Telekom IPO in November 1996.48 Their result is consistent with the Admati-

and-Pfleiderer model (1988): lagged volatility which is conceived as an indicator

of informed trading49 has a significantly negative impact on transaction intensity.

When applying their TACD model to IBM data, Zhang, Russell, and Tsay

(2001) find that the fast trading regime is characterized by wider spreads, larger

volume, and higher volatility, all of which proxy for informed trading. Thus,

the results are consistent with Easley and O’Hara (1992) model but also with

Easley and O’Hara (1987) who suggest that the likelihood of informed trading

is positively correlated with trading volume. Even if their analysis is limited to

one stock, an interesting finding that deserves attention is the fact that fast and

slow trading regimes have different dynamics, which may suggest that the results

observed on frequently traded stocks are not necessarily valid for less frequently

traded stocks.

To examine the relationship between trading intensity and intraday volatility,

48Their interest in this event is motivated by the assertion made in the corporate finance
literature that there is a large asymmetry of information in the market in the case of an IPO.
49See French and Roll (1986).
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Feng, Jiang, and Song (2004) regress the realized volatility computed over 30-

second time intervals against the forecast of trade duration based on the SCD

models estimated with and without leverage (see Section 1.2). The models

are applied to data for IBM, Boeing, and Coca Cola stocks. The results of

the regression are consistent with the model of Easley and O’Hara (1992) as a

significantly negative relation between trade durations and volatility is found for

all three stocks.

Russell and Engle (2005) estimate a five-state ACM(3,3)-ACD(2,2) model on

data for the Airgas stock traded on NYSE. They find that long durations are

associated with falling prices, which is consistent with the predictions of Diamond

and Verrechia (1987), and that the volatility per unit time is highest for short

durations, as predicted by Easley and O’Hara (1992).

Another appealing approach for testing market microstructure hypotheses

consists of using a VAR model that integrates several of the economic variables

of interest. Dufour and Engle (2000b) analyze the price impact of trades in a

large sample of 18 NYSE frequently traded stocks, using a bivariate 5-lags VAR-

model for returns and trade sign in which the coefficients vary with the trading

frequency as measured by trade durations. Their results show that shorter trade

durations induce stronger positive autocorrelations of signed trades and larger

quote revisions. For example, when a buy order is executed right after a previous

order, its price impact is higher than that of a buy order arriving after a long

time interval and also it becomes more likely to be followed by another buy order.

When these results are associated with those of Hasbrouck (1991), it follows that

short durations are associated with large spreads, large volumes, and high price

impact of trades, consistent with Easley and O’Hara (1992) predictions.

More recently, other extensions of the Dufour and Engle VAR approach

(2000b) have been proposed in the literature to include other variables such as the

trade size and volatility. Spierdijk (2004) studies five frequently traded stocks

from NYSE and reports similar results to Dufour and Engle (2000b). Moreover,
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she finds that large trades increase the speed of trading, while large returns

decrease the trading intensity. Volatility is found to be higher when durations are

short. Some of these results are also reported by Manganelli (2005) for a sample of

10 stocks from the NYSE. In particular, high volume is associated with increased

volatility as predicted by Easley and O’Hara (1987): for example, larger trade sizes

are more likely to be executed by informed traders and, hence, have a greater price

impact. Also, durations have a negative impact on volatility that is consistent

with Easley and O’Hara model (1992). An important element of Manganelli’s

study is the separate analysis of two groups of stocks classified according to their

trading intensity. This is the first empirical study providing concrete evidence

of a significant difference in dynamics between frequently traded and infrequently

traded stocks. The usual relationships between duration, volume, and volatility

are not empirically confirmed for his sample of infrequently traded stocks. It

is also noteworthy that the empirically observed clustering in trading volumes

(which is motivated theoretically by authors such as Foster and Viswanathan,

1990) is modeled by Manganelli (2005) by an Autoregressive Conditional Volume

model similar to the ACD model.

Interestingly, all the papers mentioned above studied the equity market.

Recently, Holder, Qi, and Sinha (2004) investigated the price formation process

for the futures market. An approach similar to that of Dufour and Engle (2000b)

is applied to transaction data for Treasury Note futures contracts traded at the

Chicago Board of Trade. The analysis also includes the number of floor traders

and the trading volume as explanatory variables. The major findings illustrate

notable differences from the equity market. In particular, trade durations are

significantly positively related to subsequent returns and the sign of trades.

Summing up, some remarks are noteworthy here. First, while all studies agree

that trade durations have an informational content, the empirical results regarding

the relationship between different trade variables are partially contradictory, in

a way similar to theoretical microstructure models. Most of the papers seem
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to suggest that high trading periods are associated with high volumes and high

volatilities and are due to the increased presence of informed traders in the market.

Second, the majority of papers reviewed use transaction data for very liquid

blue chip stocks while a few studies suggest that the information dissemination

for less frequently traded stocks might be quite different.

Finally, most of the results presented are obtained for the NYSE, a market

that combines features of a price-driven market (presence of a market maker)

with those of an order-driven market (existence of an order book). However, the

learning process might be different in a pure order-driven market where no official

market maker exists. Examinations of more markets/stocks would be valuable

for a better understanding of the differences across market structures.

1.3.3 Applications to price durations

Instead of focusing the analysis on the arrival times of all transactions,

examination of the arrival of particular events, such as a certain change in the

price or the time necessary for trading a given amount of shares, may be needed.

In the point process literature, retaining only the arrival times that are thought

to carry some special information is called thinning the point process. Mostly

used examples include price durations and volume durations.

First introduced in Engle and Russell (1997), price durations represent the

times necessary for the price of a security to change by a given amount, C. The

first point of the new thinned process usually corresponds to the first point of

the original point process, τ 0 = t0. Then, if pi is the price associated with the

transaction time ti, the series of price durations is generated by retaining all

points i from the initial point process, i > 1, such that |pi − pi0| ≥ C where i0 < i

is the index of the most recently selected point. To avoid the problem of the bid-

ask bounce, Engle and Russell (1997, 1998) recommend defining price durations

on the midprice of the bid-ask quote process.

The importance of price durations comes from their close relationship with
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the instantaneous volatility of price. As formally shown by Engle and Russell

(1998), instantaneous intraday volatility is linked to the conditional hazard of

price durations:

σ2 (t|Fi−1) =
µ

C

P (t)

¶2
h (xi|Fi−1) (1.26)

where σ2 (t|Fi−1) is the conditional instantaneous volatility , P (t) is the the

midquote price, and h (xi|Fi−1) is the conditional hazard of price durations defined

for the threshold C. Consequently, if an EACD model is applied on price

durations h (xi|Fi−1) = 1/ψi.

1.3.3.1 Stylized facts of price durations and model specification

Studies investigating the empirical properties of price durations found the same

characteristics that motivated the use of ACDmodels for trade durations: positive

autocorrelations, overdispersion, a right-skewed shape, and strong intraday

seasonality (see Engle and Russell, 1998; Bauwens and Giot, 2000; Bauwens

and Veredas, 2004; Bauwens et al., 2004, Fernandes and Grammig, 2006, among

others). As price durations are inversely related to volatility, seasonal patters of

price durations may also be interpreted as intraday patterns of volatility.

Interestingly, price durations appear to be easier to model with regard to fully

eliminating the serial dependence of residuals through the use of an ACD model

(Bauwens et al., 2004; Fernandes and Grammig, 2006).

With regard to model specifications, a limited number of comprehensive

comparisons exist and their results are rather contradictory. Bauwens et al.,

(2004) report that less complex ACD models such as the ACD and the Log-

ACD outperform more complex models like the TACD, SVD and SCD, as long

as they are based on flexible innovation distributions, such as the generalized

gamma and the Burr distribution. The use of non-monotonic hazard functions

for price durations is also advocated by Grammig and Maurer (2000). On the

other hand, Fernandes and Grammig (2006) found evidence against standard

specifications and recommend the logarithmic class of their AACD family for
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increased flexibility. Again, more systematic investigations would be interesting.

1.3.3.2 Tests of market microstructure hypotheses and volatility

modeling The link of price durations to the volatility process makes the use

of ACD models very appealing for testing market microstructure predictions in a

very simple way. It is sufficient to add additional explanatory variables linked to

different market characteristics into equation (1.4) for the conditional expected

duration, and this also allows for a better model specification. In this respect,

Log-ACD models have become very popular for they avoid the non-negativity

constraints on parameters. Among the most relevant variables for investigating

market microstructure effects, the lags of the following are typically used in

analyses of stock markets (Engle and Russell, 1998; Bauwens and Giot, 2000;

Bauwens and Giot, 2003; Bauwens and Veredas, 2004):

- The trading intensity: It is defined as the number of transactions during a

price duration, divided by the value of this duration. According to Easley and

O’Hara (1992), an increase in the trading intensity following an information event

should be followed by shorter price durations as the market maker revises his

quotes more frequently. A negative coefficient is found in empirical applications

consistent with these predictions.

- The spread: In the Easley and O’Hara (1992) model, a high spread is

associated with short durations, which is confirmed in empirical results by the

negative coefficient of the lagged spread.

- The average volume per trade: Following implications of information-based

models, a similar negative relationship between traded volume and price durations

is typically found as a higher volume is indicator of informed trading and, hence,

higher volatility.

Investigations of various relationships between market microstructure variables

using ACD models for price durations have been also reported for derivatives

markets (see Taylor, 2004 and Eom and Hahn, 2005 for the futures and option
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markets, respectively.)

An interesting application of ACD models for price durations has been

proposed by Prigent, Renault, and Scaillet (2001). Building on a traditional

binomial option pricing model, they relax some of its rigid assumptions by means

of dynamic specifications. First, instead of considering fixed time intervals

between price variations (jumps) of constant size, they employ a Log-ACD model

for specifying the arrival times. Second, they model the probabilities of up

and down moves by an ACM model with two states (that is, an Autoregressive

Conditional Binomial model).

Starting from equation (1.26), ACD models for price durations can also

be used as an alternative to standard GARCH models. This idea has been

further explored by Giot (2000), Gerhard and Hautsch (2002), Kalimipalli and

Warga (2002), and Giot (2002). Giot (2000) uses the estimated coefficients

of an Log-ACD model applied to IBM durations for computing the intraday

volatility directly from (1.26). Interesting insights come from the analysis of

Gerhard and Hautsch (2002) on the LIFFE Bund future market. Their model,

however, is a non-dynamic proportional intensity model for categorized durations

including censoring effects due to market closure, and it does not belong to the

ACD family. Kalimipalli and Warga (2002) use ACD-based volatility estimates

as an explanatory variable in an ordered probit model for investigating the

relationship between spreads, volatility, and volume for the ten most actively

traded bonds on the Automated Bond System market maintained by NYSE.

A statistically significant positive relationship between volatility and spreads is

identified but, interestingly, a negative relationship between volume and spreads

is found. According to Harris and Raviv (1993), this may be due to a lack of

consensus among traders, therefore placing limit orders on both sides of the bid-

ask spread. It also suggests a weak adverse-selection component of the spreads.

Moreover, similar results are obtained when using GARCH-based volatilities,

which confirms the robustness of the results.
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Volatility is also an essential ingredient of risk management. Therefore, it

is not surprising that its estimation based on price durations has finally been

considered for constructing intraday Value at Risk (VaR) models. Giot (2002)

quantifies the market risk based on intraday returns in a conditional parametric

VaR framework. Three ARCH-type models are applied to the equidistantly time-

spaced observations re-sampled from the irregularly time-spaced data, and a Log-

ACD model serves to compute the volatility based on price durations. However,

the results from the Log-ACD model are not completely satisfactory, the price

durations based model failing most of the time for all the stocks considered50.

As the author notes, possible explanations of this result may be found in the

assumption of normality of intraday returns and the need of complicated time

transformations to switch to the regularly time-spaced. It is noteworthy, however,

that investigations of the benefits of using tick-by-tick data for risk management

have only just started. An alternative approach has been recently proposed by

Dionne, Duchesne, and Pacurar (2005) based on an ACD-GARCH model within

a Monte Carlo simulation framework.

1.3.4 Applications to volume durations and other economic events

Another way of thinning a point process generates volume durations defined as the

times until a given aggregated volume is traded on a market. Volume durations

were introduced by Gouriéroux, Jasiak, and Le Fol (1999) as reasonable measures

of liquidity that account simultaneously for the time and volume dimensions of the

trading process. According to the conventional definition of liquidity (Demsetz,

1968; Black, 1971; Glosten and Harris, 1988), an asset is liquid if it can be traded

as fast as possible, in large quantities, and with no significant impact on the price.

Consequently, while neglecting the price impact of volumes, volume durations may

still be interpreted as the (time) cost of liquidity.

50The performance of each model, including the Log-ACD based model, is assessed in a
regularly time-spaced framework by computing its failure rate as the number of times returns
are greater than the forecasted VaR.
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There are much fewer studies applying ACD models to volume durations than

to trade and price durations. Their main objective typically consists of finding

the appropriate ACD specifications (Bauwens et al., 2004; Bauwens and Veredas,

2004; Veredas, Rodriguez-Poo, and Espasa, 2005; Fernandes and Grammig, 2006).

These papers report very different statistical properties of volume durations

compared to trade and price durations. Initial autocorrelations are larger and

the density of volume durations appears as clearly hump-shaped. While trade

and price durations are overdispersed, volume durations exhibit underdispersion,

that is, the standard deviation is smaller than the mean.

With regard to model specification, Bauwens et al. (2004) find that ACD

and Log-ACD models based on the Burr or generalized gamma distribution are

useful for modeling not only price durations but volume durations as well. As

expected, the EACD and SVD models perform badly on volume durations as the

exponential and Pareto distribution, respectively, cannot describe the hump shape

of the unconditional distribution of volume durations.

In recent years, the ACD model has also been applied to other irregularly

time-spaced financial data that are not linked to the intraday trading process.

For example, Fischer and Zurlinden (2004) examine the time spacings between

interventions by central banks on foreign exchange markets. Using daily data on

spot transactions of the Federal Reserve, the Bundesbank, and the Swiss National

Bank on the dollar market, the authors conclude that traditional variables of

a central bank’s reaction function for interventions (for example, the volume

and direction of the intervention) do not improve the ACD specification in their

sample.

An interesting application of the ACD methodology has been suggested by

Christoffersen and Pelletier (2004) for backtesting a VaR model. The main idea

is very simple: if one defines the event where the ex-post portfolio loss exceeds the

ex-ante predicted VaR as a violation, the clustering of violations can be described

by an ACD model. Under the null hypothesis that the VaR model is correctly
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specified for a confidence level 1− p, the conditional expected duration until the

next violation should be a constant equal to 1/p days which can be tested in

several ways.

An attempt to apply ACD models to credit risk analysis can be found in

Focardi and Fabozzi (2005) where defaults in a credit portfolio follow a point

process. By using an ACD specification for the arrival times of defaults in

a portfolio, one may estimate the aggregate loss directly without the need for

modeling individual probabilities of defaults while accounting for the credit-

risk contagion phenomenon through the clustering of the defaults. While

conceptually interesting, this approach still has to be validated empirically, the

authors investigating it only through simulations.

Given the wealth of possible specifications of the ACD models, we expect

further applications of the ACD approach to other irregularly time-spaced events

in the near future.

1.4 Conclusion

In this paper we have reviewed the theoretical and empirical literature on ACD

models. Since its introduction by Engle and Russell (1998), several articles

applying this class of models have already appeared. The motivation behind the

use of ACD models is twofold. On the one hand, transaction data, increasingly

available at a low cost over the last years, are irregularly time-spaced so that new

econometric techniques are needed to deal with this feature. On the other hand,

recent market microstructure models based on asymmetric-information theory

argue for the role of time in the dissemination of information among different

participants in the trading process.

As our survey shows, much progress has been realized in understanding ACD

models. Initial research has been oriented towards proper modeling of the data

at hand and has focused naturally on palliating some of the inconveniencies of the

original model. Extensions have been undertaken simultaneously on two fronts:
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developing more flexible specifications of the conditional mean and looking for

more flexible distributions of the error term. Importantly, the expansion of ACD

models has been fueled by the strong similarity between the ACD and GARCH

models which impacted the search for new specifications and estimation methods.

Compared with the GARCH literature, however the current ACD literature can

be considered rather young and not as rich. We believe that ACD modeling could

nevertheless benefit by freeing itself from the GARCH influence.

Given the increasing variety of existing specifications, one would like to

know which model is the most appropriate under specific circumstances. Very

few studies compare different ACD models using the same data, and recent

specifications are barely included. Typically, when a new type of ACD model

has been proposed, its performance has been compared with that of the original

ACD form of Engle and Russell (1998). In our opinion, extensive comparisons

of several models using various evaluation criteria (both in-sample and out-of-

sample) on different datasets would greatly benefit the applied econometrician.

It is noteworthy that only the basic ACD and Log-ACD models are used in most

of the empirical studies surveyed. Despite the evidence of nonlinearity reported

by several authors, it is still not clear which type of nonlinear ACD model should

be recommended for specific conditions. This same discrepancy between the

theoretical and applied literature has been observed with regard to existing testing

procedures for the ACD models. Even though several tests have been developed,

their relative performance remains insufficiently investigated.

ACD models have been used for describing not only the durations between

different market events, but also as a building block for jointly modeling duration

and other market characteristics, such as duration and price. If initial interest

focused on marginal models for the arrival times of events, joint models have

quickly captured attention for the examination of several market microstructure

theories. Multivariate models (for trades and quotes, for instance) may improve

understanding of the complex relationships between several trade variables, such
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as price, volume, and volatility. As such, they may have implications for market

designers and policy makers. As many studies use transaction data from NYSE,

examination of data from other markets could help to evaluate the differences

between trading systems regarding the price discovery process.

A common assumption when working with joint models for durations and

marks is that of the exogeneity of durations, often considered without any formal

testing. We expect more work on this issue in the near future as warnings for

caution have already been made.

Examination of existing empirical studies on ACD models revealed other

problems that should be addressed in future research. Intraday deseasonalization

techniques seem to have a significant but not very well understood effect on any

model used. The treatment of zero-durations arising from observations with

the same time stamp does not reflect a consensus among researchers, even if

the dominant trend consists of simply eliminating them. A few studies have also

pointed out substantial differences between the dynamics of actively traded stocks

used mostly in empirical applications and those of infrequently traded stocks.

The class of ACD-GARCH models, as well as the link between price durations

and instantaneous volatility, could also serve in developing risk measures based on

transaction data and that are useful for agents very active on the market. While

some work has already been initiated, we think that this issue will receive further

consideration.

A promising line of research seems to be the application of ACD models to

irregularly time-spaced data other than intraday data on the trading process.

Finally, we think that the use of ACD models by applied researchers could

be encouraged by the integration of some of the existing models and testing

procedures in popular softwares.
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Chapter 2

On testing for duration clustering and diagnostic checking
of models for irregularly spaced transaction data

2.1 Introduction

Since Engle and Russell (1997, 1998) introduced the Autoregressive Conditional

Duration (ACD) model, there has been considerable interest in modelling high

frequency financial data that arrive at irregular time intervals. Examples of such

financial data include trade durations (quote durations), that is the times between

consecutive trades (quotes). Another important concept concerns price durations,

obtained by thinning the marked point process for the quotes with respect to

a minimum change in the price. In applications, market participants may be

interested by the time between quotes such that a given volume c, say c = 90000,

of shares is traded. This example is called volume durations and leads usually to

much smaller sample sizes than for trade durations. In practice, they are computed

by thinning the trade process or the quote process such that the retained durations

are characterized by a total traded volume of at least c. See Bauwens and Giot

(2001) for details.

The ACD model treats the arrival time intervals between events of interest

(e.g., trades, quotes, price or volume durations, among others), as a nonnegative

stochastic process. It provides a model for the conditional duration between

events; conditional durations may be expressed as a linear function of past

durations and past conditional durations. Various generalizations of ACD models

have been proposed in the literature. Nonlinear ACD models are discussed

in the seminal work of Engle and Russell (1998). Bauwens and Giot (2000,

2003) considered the log-ACD model and the asymmetric ACD model. The
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threshold ACD model has been proposed by Zhang, Russell and Tsay (2001) to

allow the expected duration to depend nonlinearly on past information variables.

Fractionally integrated ACD models have been studied in Ghysels and Jasiak

(1998a) and Jasiak (1999). Such models are useful in the presence of highly

persistent duration clustering. Ghysels and Jasiak (1998b) proposed the so-

called ACD-GARCH model, obtained by considering simultaneously the GARCH

models for the volatility and the ACD models for the durations. Grammig and

Maurer (2000) studied the ACD model based on the Burr distribution for the

innovation which includes the exponential and Weibull distribution as special

cases. Specification tests of the innovation distribution were proposed by Engle

and Russell (1998) who check the first and second moments of the residuals

with a particular attention to measure excess dispersion; Bartlett identity tests

were developed in Prigent, Renault and Scaillet (2001) and the QQ-plots were

considered in Bauwens and Veredas (2004). Recently, Fernandes and Grammig

(2005) developed another approach for testing the innovation distribution of ACD

specifications, by gauging the distance between the parametric density and hasard

rate functions implied by the duration process and their non-parametric estimates.

Another testing framework for financial duration models is the density forecast

evaluation technique used by Bauwens, Giot, Grammig and Veredas (2004).

Comprehensive introductions of ACD models are provided in Tsay (2002) and

Engle and Russell (2006).

A critical step before trying to estimate a particular model for the conditional

duration is to test for duration clustering, what we call ACD effects, which are

structurally similar to test for autoregressive conditional heteroscedastic (ARCH)

effects. To this end, we must verify if there is evidence of duration clustering in the

arrival times. This is a sound practice before trying to adjust a particular model.

Commonly used tests for ACD effects are the portmanteau test statistics of Box

and Pierce (BP) (1970) or Ljung and Box (LB) applied to the raw durations (see,

e.g., Engle and Russell (1997, 1998), Bauwens and Giot (2001), among others). Li
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and Yu (2003) derived the asymptotic distribution of the residual autocovariances

in ACD models. Hong and Lee (2003) suggested an omnibus procedure which

can be used as a misspecification test for ACD models, based on the generalized

spectral density. Meitz and Teräsvirta (2004) studied Lagrange multiplier tests for

adjusting ACDmodels. In this paper, we advocate the use of the classical spectral

density, which is capable of describing a signal at various frequencies. This tool

has been widely accepted and used in engineering and applied mathematics (see,

e.g., Priestley (1981)). By adapting the test statistics of Hong (1996, 1997) in

the ACD framework, we propose two classes of test statistics for ACD effects.

More precisely, Hong test statistics are constructed using regression residuals,

with known zero mean. Here, the procedures for ACD effects are based on raw

duration data, and we establish the asymptotic distributions of the test statistics

when the mean of the duration data needs to be estimated. The tests of the

first class rely on a comparison of a kernel-based normalized spectral density

estimator and the normalized spectral density under the null hypothesis of no ACD

effects, using a particular norm. Examples of norms include L2 norm, Hellinger

distance and the Kullback-Leibler information criterion. Using the truncated

uniform kernel and the L2 norm, one member of the class provides a generalized

BP test statistic. However, when the low order autocorrelations are large, and

if the autocorrelations decay quickly to zero as a function of the order of lag,

many kernels may give a higher power than the truncated uniform kernel. The

distribution of the tests is asymptotically normal and the tests based on the L2

norm, the Hellinger distance and the Kullback-Leibler information criterion are

asymptotically equivalent under the null hypothesis, given certain conditions. The

second class of test statistics for ACD effects exploits the one-sided nature of the

problem. The BP/LB test statistics do not exploit such an one-sided nature.

Our approach is similar in spirit to the spectral approach of Hong (1997) for

testing for ARCH. See also Lee and King (1993). The tests rely on a kernel-based

spectral density estimator evaluated at frequency zero. The resulting tests consist
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in a weighted sum of sample autocorrelations of the raw durations. As in the

first class of tests, the weighting function typically gives more (less) weight to

lower (higher) orders of lags. The asymptotic distribution of the test statistics

in the second class is N(0, 1) under the null hypothesis of no ACD effects. A

natural question concerns which class should be preferred. Asymptotic arguments

suggest that the tests in the first class might be more powerful than the tests in

the second class asymptotically. However, to exploit the one-sided nature of the

alternative hypothesis may be powerful in small samples. We explore this issue

in our simulation experiments.

The class of tests for the adequacy of an ACD model is obtained by comparing

a kernel-based spectral density estimator of the estimated standardized residuals

and the null hypothesis of adequacy using a norm. The proposed test statistics

in this class possess an asymptotic normal distribution. We establish rigorously

that parameter estimation has no impact on the distribution of the test statistics,

asymptotically. With the L2 norm and the truncated uniform kernel, we retrieve

a generalized BP test statistic applied to the estimated standardized residuals.

However, using a kernel different from the truncated uniform kernel, we may

obtain more powerful test procedures in many practical situations. A technical

merit of the paper is to establish, in the context of the adjustment of ACDmodels,

the asymptotic distributions of the studied test statistics.

The organization of the paper is as follows. In Section 2.2, after some

preliminaries, we describe the hypotheses of interest. In Sections 2.3 and 2.4 we

present two classes of test statistics for ACD effects and one class of test statistics

for the adequacy of an ACD model. We establish that the proposed test statistics

have an asymptotic normal distribution under their respective null hypothesis.

In a given class of tests, we give conditions under which the test statistics based

on the considered norms are asymptotically equivalent. The asymptotic results

in the ACD context represent the main technical achievements of the paper. In

Section 2.5, we present some simulation results, including a level and a power
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study of the tests for ACD effects, and for the adjustment test statistics of ACD

models. The proposed test statistics are compared with respect to levels and

powers with many kernels, including uniform and non uniform weighting, to the

BP/LB test statistics. The Section 2.6 contains an application with the IBM

data considered by Engle and Russell (1998) for trade and volume durations.

Finally, Section 2.7 concludes the paper. The proofs of the theorems are given in

the Appendix.

2.2 Preliminaries and framework

2.2.1 Preliminaries

Suppose that the duration process X = {Xt, t ∈ Z} is a nonnegative stationary
process such that

Xt = D0
t �t, (2.1)

where � = {�t, t ∈ Z} represents a nonnegative, independently and identically
distributed (iid) sequence with probability density p�(·). We assume that the
expectation of �t is one, that is E(�t) = 1. The conditional duration D0

t ≡
D0(Ft−1) = E(Xt|Ft−1) is supposed to be a nonnegative measurable function of

Ft−1, where Ft−1 denotes the information set generated by all past observations

up to and including the tth financial transaction.

Let Y = {Yt, t ∈ Z} be an arbitrary second order stationary process whose
mean is E(Yt) = µ. The autocovariance at lag j is given by γY (j) = E{(Yt −
µ)(Yt−j − µ)}, j ∈ Z and the autocorrelation at lag j is defined by ρY (j) =

γY (j)/γY (0). If
P∞

j=0 |γY (j)| <∞, the normalized spectral density of the process
Y is given by

fY (ω) =
1

2π

∞X
h=−∞

ρY (h)e
−iωh, ω ∈ [−π, π].

Let Y1, Y2, . . . , Yn be a realization of length n of the process Y . The sample
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autocovariance at lag j, 0 ≤ |j| ≤ n − 1 is defined by CY (j) = n−1
Pn

t=j+1(Yt −
Ȳ )(Yt−j − Ȳ ), 0 ≤ |j| ≤ n − 1, where Ȳ = n−1

Pn
t=1 Yt, and the corresponding

sample autocorrelation is

RY (j) = CY (j)/CY (0), 0 ≤ |j| ≤ n− 1. (2.2)

The classical nonparametric kernel-based estimator of the spectral density fY (ω)

of Y is given by

fY n(ω) =
1

2π

n−1X
j=−n+1

k(j/pn)RY (j)e
−iωj, (2.3)

where k(·) is a kernel or a lag window. The parameter pn corresponds to a

truncation point when the kernel is of compact support or a smoothing parameter

when the kernel is unbounded. The assumptions on the kernel are summarized

as follows.

Assumption A:

(1) The kernel k : R → [−1, 1] is a symmetric function, continuous at 0,
having at most a finite number of discontinuity points, such that k(0) = 1 andR∞
−∞ k2(z)dz <∞.
(2)

R π
−π |k(z)|dz <∞ and K(λ) = 1

2π

R∞
−∞ k(z)e−izλdz ≥ 0, λ ∈ (−∞,∞).

Most commonly used kernels satisfy Assumption A(1). An example is the

rectangular or truncated uniform kernel kT (z) = I[|z| ≤ 1], where I(A) denotes
the indicator function of the set A. When k = kTR, the estimator (2.3) reduces

to the truncated periodogram. In Assumption A(2), the condition
R π
−π |k(z)|dz <

∞ guaranties that the Fourier transform K(·) exists. This condition ensures

that the kernel-based spectral density estimator is nonnegative. Consequently,

Assumption A(2) rules out kTR. Examples of kernels satisfying Assumption A

include the Bartlett, Daniell, Parzen and Quadratic-Spectral kernels (see, e.g.,
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Priestley (1981)).

Formula (2.2) allows us to construct the sample autocorrelation function of

the raw durations, that we denote RX(j), |j| ≤ n − 1. Using formula (2.3), a
spectral density estimator of the raw durations, noted fXn(ω), ω ∈ [−π, π], can
be constructed. Once a particular model is estimated, the residuals r̂t (say),

t = 1, . . . , n are obtained. The sample autocorrelation function of the sample

residuals is given by Rr̂(j), |j| ≤ n − 1 and fr̂n(ω), ω ∈ [−π, π] corresponds
to the estimated spectral density of the estimated standardized duration residuals.

2.2.2 Autoregressive conditional duration models

Engle and Russell (1998) assumed that the durations admit the multiplicative

representation (2.1). They proposed different specifications for the conditional

duration Dt. A first functional form for Dt is the m-memory conditional duration

process

Dt = ω +
mX
h=1

αhXt−h, (2.4)

denoted ACD(m), which depends on the m most recent durations. The constant

m is a fixed integer. To ensure that Dt is strictly positive for all realizations of Xt,

t = 1, . . . , n, it is required that ω > 0 and αh ≥ 0, h = 1, . . . ,m. Another popular
functional form for Dt discussed in Engle and Russell (1998) is the ACD(m,q)

model given by

Dt = ω +
mX
h=1

αhXt−h +
qX

h=1

βhDt−h. (2.5)

To ensure thatDt is strictly positive for all realizations ofXt, a sufficient condition

is that ω > 0, αh ≥ 0, h = 1, . . . ,m and βh ≥ 0, h = 1, . . . , q. Noting the similarity
between ACD models and GARCH models and using the results of Nelson and

Cao (1992), it follows that these conditions are necessary and sufficient for an

ACD(1,1) but they can be weakened for higher order ACD models.

In our framework, we do not make any particular distributional assumption
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on the probability density p�(·) in (2.1). When p�(·) is the exponential or Weibull
distribution, Engle and Russell (1998) denote the resulting ACD model an EACD

or WACD model, respectively. Grammig and Maurer (2000) consider the Burr

distribution for p�(·), which includes the EACD and WACD models as special

cases. Tsay (2002) discusses the generalized gamma distribution as another

possible choice for the distribution of �t; the resulting model is called the GACD

model. When testing for the adequacy of ACD models, our main interest in this

paper will be the model specification for D0
t . By comparison, Fernandes and

Grammig (2005) focused on specification tests for the distribution of �t.

Models (2.4) and (2.5) are special cases of the following general linear process

for Dt:

Dt = ω +
∞X
h=1

αhXt−h, (2.6)

where to ensure that Dt is strictly positive, we must impose that ω > 0, αh ≥ 0,
for all h = 1, 2, . . . ,∞. See Nelson and Cao (1992) for more details in the ARCH
framework. This general linear process will appear useful for constructing test

statistics which should have power for a large class of alternatives. In the next

section, we use (2.6) to motivate test statistics for ACD effects.

2.3 Two classes of test statistics for testing for ACD effects

2.3.1 Tests based on a kernel-based spectral density estimator of the

raw durations and a norm

In this section we develop two classes of test statistics for the existence of ACD

effects. Under the general linear process (2.6), the null hypothesis of no ACD

effects is given by

H0,eff : αh = 0, for all h > 0. (2.7)

The alternative hypothesis that ACD effects are present is

H1,eff : αh ≥ 0, for all h > 0,with at least one strict inequality. (2.8)
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In terms of the normalized spectral density of the raw durations, under H0,eff , we

have that fX(ω) = fX0(ω) ≡ 1/(2π), that is fX is the flat spectrum under the null.
However, under the alternative, the spectrumwill not be equal to 1/(2π) in general

under the linear process given by (2.6). We now introduce a distance measure

d(f1; f2) for two spectral densities, satisfying d(f1; f2) ≥ 0 and d(f1; f2) = 0 if

and only if f1 = f2 (note that we do not need the triangular inequality in our

discussion). A test statistic for the null hypothesis of no ACD effects can be based

on d(fXn; fX0), where fXn(ω) corresponds to the normalized kernel-based spectral

density estimator of the unknown spectral density fX(ω). As a first example, the

L2 norm between fX and fX0 is given by

Q2(fX ; fX0) = π

Z π

−π
{fX(ω)− fX0(ω)}2dω.

Another possibility is the Hellinger distance defined by

H2(fX ; fX0) = 2

Z π

−π
{f1/2X (ω)− f

1/2
X0 (ω)}2dω.

The Kullback-Leibler information criterion, called sometimes the relative entropy,

provides another measure given by

I(fX ; fX0) = −
Z
Ω(fX)

log{fX(ω)/fX0(ω)}fX0(ω)dω,

where Ω(fX) = {ω ∈ [−π, π] | fX(ω) > 0} corresponds to the set where fX

is strictly positive. Each measure possesses its own merits. As we will show

below, the L2 norm delivers a computationally convenient test statistic. No

numerical integration is needed in practice, since the test statistic based on this

particular norm reduces to a weighted sum of squared sample autocorrelations.

The weights depend on the chosen kernel k(·). Using the particular kernel k = kTR

and considering Q2(fXn; fX0), we retrieve essentially the BP test statistic. The

Hellinger distance corresponds to the L2 norm between f
1/2
X and f1/2X0 . Contrary to
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Q2(fXn; fX0), the Hellinger distance does not give the same weight to the difference

between fX and fX0. When ACD effects are less persistent, the Hellinger distance

gives more weight to small differences and less to large differences between fX

and fX0; the resulting test statistic should be powerful in small samples. Finally,

the Kullback-Leibler information criterion has an appealing information-theoretic

interpretation.

We consider a class of test statistics for H0,eff , noted E(d; k; pn), depending on
a distance measure and a kernel function. A first member of the class based on

the L2 norm is given by

TE1n ≡ TEn(Q2; k; pn) =
nQ2(fXn; fX0)−K2n(k)

{2K4n(k)}1/2 ,

=
n
Pn

j=1 k
2(j/pn)R

2
X(j)−K2n(k)

{2K4n(k)}1/2 ,

where the last expression is obtained using the identity of Parseval and K2n(k) =Pn−1
j=1 (1−j/n)k2(j/pn) and K4n(k) =

Pn−2
j=1 (1−j/n)(1− (j+1)/n)k4(j/pn). The

quantities K2n(k) and 2K4n(k) correspond essentially to the mean and variance

of nQ2(fXn; fX0). A second member of the class based on the Hellinger’s distance

is given by

TE2n ≡ TEn(H2; k; pn) =
nH2(fXn; fX0)−K2n(k)

{2K4n(k)}1/2 ,

and the third member in the class E is based on the Kullback-Leibler information
criteria:

TE3n ≡ TEn(I; k; pn) =
nI(fXn; fX0)−K2n(k)

{2K4n(k)}1/2 .

Our first result establishes the asymptotic distribution of the test TE1n under

the null hypothesis. The second part of the Theorem establishes the asymptotic

equivalence between TEin, i = 1, 2, 3 under the null hypothesis. The symbol →L

stands for ‘convergence in distribution’.

Theorem 1 (a) Assume A(1), E(X4
t ) < ∞, pn → ∞ and pn/n → 0. Under
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H0,eff ,

TE1n →L N(0, 1).

(b) Assume the same hypotheses that in (a) with the more restrictive assumption

p3n/n→ 0. Furthermore, assume A(2). Under H0,eff , TE1n−TE2n = op(1); TE1n−
TE3n = op(1).

A simple application of Slutsky’s lemma allows us to conclude that under the

hypotheses of Theorem 1 (b), TE2n →L N(0, 1) and TE3n →L N(0, 1). Note that

in Theorem 1 (b) the conditions on the kernel k(·) and on pn are more restrictive
than for TE1n.

When the kernel k is the truncated uniform kernel k = kTR, we obtain

TE1n(Q2; kTR; pn) =
n
Ppn

j=1R
2
X(j)− pn

(2pn)1/2
.

Consequently, TE1n(Q2; kTR; pn) can be viewed as a generalized BP type test

statistic. However, with a kernel different from kTR, we expect more powerful

procedures, specially when the true autocorrelation function decays to zero quickly

as a function of the lag, with large autocorrelations when the orders of lags are

small. Recognizing the similarities between testing for ARCH effects and testing

for ACD effects (see Hong and Shehadeh (1999), among others), we expect more

powerful procedures in many situations, by choosing a kernel giving more (less)

weight to lower (higher) orders of lags. This is confirmed in our simulation results

of the Section 2.5, where we compare empirically the test statistics based on

different kernels and different distance measures.

2.3.2 Tests based on the spectral density evaluated at the zero

frequency

The alternative hypothesis H1,eff that ACD effects exist is one-sided. The test

statistics which exploit the one-sided nature are expected to yield better power

in small and moderate samples. However, it happens that the sample sizes of
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financial data can be quite large. For example, for the IBM data discussed in Engle

and Russell (1998) and Engle (2000), the initial sample size was approximately

n = 60000 observations. Each observation corresponded to a raw duration

between two successive transactions, such that the retained durations were strictly

positives. The power of the test statistics in such circumstances is probably

of second importance if the test is consistent under the hypotheses of interest.

However, the sample size was reduced to n = 1347 after thinning the data in

studying price movements, which represents quite a large sample size reduction.

Bauwens and Giot (2001) studied trade, price and volume durations for various

stocks, including AWK, Disney, IBM and SKS. When studying volume durations,

the sample size was in some cases less than n = 300. Consequently, to have

powerful tests exploiting the one-sided nature of the alternative hypothesis H1,eff
seems highly desirable, particularly in such situations.

We propose an one-sided test statistic for ACD effects using a frequency

domain approach. Like an ARCH process, an ACD process always possesses

nonnegative autocorrelations at any lag, resulting in a spectral mode at frequency

zero under, and only under, the alternative hypothesis H1,eff . This suggests

to examine more precisely fX(0). The general linear process (2.6) implies that

Xt = ω +
P∞

h=1 αhXt−h + vt, where vt = Xt − Dt is a martingale difference

sequence with respect to Ft−1 by construction. This means that E(vt|Ft−1) = 0,

a.s.. Under the null hypothesis H0,eff , Xt = ω + vt is a white noise process.

Thus, fX(0) = 1/(2π). Under the alternative hypothesis H1,eff , we have that

ρX(h) ≥ 0, ∀h 6= 0 and the inequality is strict for at least one h 6= 0. Consequently
fX(0) > 1/(2π). This suggests to construct a test statistic based on the difference

fXn(0)− 1

2π
. (2.9)

The presence of ACD effects is suggested if large differences are observed in (2.9).
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An appropriate standardized version of (2.9) is given by

TE4n(k; pn) = K
−1/2
2n (k)n1/2

n−1X
j=1

k(j/pn)RX(j).

The asymptotic distribution under the null hypothesis of TE4n(k; pn) is established

in Theorem 2.

Theorem 2 Assume A(1), E(X4
t ) <∞ and pn/n→ 0 as n→∞. Under H0,eff ,

TE4n(k; pn)→L N(0, 1).

Note that the asymptotic distribution is established when pn is fixed or if

pn →∞ such that pn/n→ 0. Our test statistic TE4n(k; pn) is similar to the one-

sided test of Hong (1997), which is a powerful one-sided test statistic for ARCH

effects. When the truncated kernel kTR is used, the test statistic TE4n(k; pn)

becomes TE4n(kTR; pn) = (pnn−1)
1/2Ppn

j=1RX(j), which takes the same structure

that the LBS test of Lee and King (1993) for ARCH effects. A natural question

concerns which class of test statistics is preferable in practice. Following Hong

and Shehadeh’s (1999) approach, it follows that the test statistics TEin(d; k; pn),

i ∈ {1, 2, 3} should be more powerful than TE4n(k; pn) asymptotically, since

asymptotic arguments demonstrate that TEin(d; k; pn), i ∈ {1, 2, 3} can detect
alternatives of order O(p1/4n /n1/2), while TE4n(k; pn) can only detect alternatives

of order O(p
1/2
n /n1/2). However, when the sample size is rather small, it is

expected that a test which exploits the one-sided nature of the alternative

hypothesis should have a better power under certain conditions. We will compare

empirically the power of the test statistics TEin, i ∈ {1, 2, 3, 4} in Section 2.5.
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2.4 Class of test statistics for the adequacy of ACDmodels

2.4.1 Tests based on a kernel-based spectral density estimator of the

estimated residuals and a norm

The first step in modelling financial durations is to test for ACD effects. If

evidence of duration clustering is found, the practitioner may decide to formulate

a certain ACD model to fit the data. A natural question concerns the adequacy

of that model. An approach advocated in Engle and Russell (1997, 1998)

and others, consists to examine whether the standardized duration residuals

r̂t = Xt/D(Ft−1, θ̂), t = 1, . . . , n contain any remaining dependence structure,

where D(Ft−1, θ̂) represents a model for the conditional duration. Engle and

Russell (1997, 1998), Tsay (2002), Bauwens and Giot (2001), applied BP/LB test

statistics based on the residuals {r̂t, t = 1, . . . , n}.
More formally, suppose that a particular ACD model is adequate for the

durations {Xt, t ∈ Z}. Denote this model D(Ft−1,θ0), where θ0 represents the

vector of unknown parameters. In such case, in the general model (2.1), we must

have that D0
t = D(Ft−1,θ0), a.s.. Consequently, �t = Xt/D(Ft−1,θ0) is an iid

white noise process. Denote rt = Xt/D(Ft−1,θ), where θ = plimθ̂ and θ̂ is a

certain estimator of θ0. When the ACD model is inadequate for Xt, we must

have that D0
t 6= D(Ft−1,θ) with strictly positive probability for all θ. When

ρr(j) 6= 0 for at least one j different of zero, the process r = {rt, t ∈ Z} will
contain dependence structure and will not be iid. Consequently, in terms of the

spectral density of the process r, the null hypothesis is given by

H0,adj : fr(ω) = fr0 ≡ 1/(2π), (2.10)

since rt = �t and {�t, t ∈ Z} is an iid process. On the other side, the alternative
hypothesis is

H1,adj : fr(ω) 6= 1/(2π), (2.11)
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since under the alternative hypothesis of inadequacy, if ρr(j) 6= 0 for at least one
j 6= 0, the spectral density of r will be different from 1/(2π).

Note that under H1,adj, the standardized duration residuals could exhibit any

departure from 1/(2π). Since positive and/or negative autocorrelations could

occur, the alternative hypothesis is not one-sided. In an unified way, to test for

model adequacy, we present a class of test statistics similar to the class presented

in Section 2.3.1, based on the choice of a norm and of a kernel-based spectral

density estimator of the standardized duration residuals. Consequently, we adapt

Hong test statistics for serial correlation in the ACD framework, and we justify

the asymptotic distributions of the resulting test statistics; these test statistics

are then valid for adjusting ACD models.

The class of test statistics for H0,adj, noted A(d; k; pn), depends on a distance
measure and a kernel function. Let fr̂n be the kernel-based spectral density

estimator of the standardized residuals. Proceeding as in Section 2.3.1 leads us

to three test statistics given by

TA1n ≡ TAn(Q2; k; pn) =
nQ2(fr̂n; fr0)−K2n(k)

{2K4n(k)}1/2 ,

=
n
Pn

j=1 k
2(j/pn)R

2
r̂(j)−K2n(k)

{2K4n(k)}1/2 ,

TA2n ≡ TAn(H2; k; pn) =
nH2(fr̂n; fr0)−K2n(k)

{2K4n(k)}1/2 ,

TA3n ≡ TAn(I; k; pn) =
nI(fr̂n; fr0)−K2n(k)

{2K4n(k)}1/2 ,

which are based on the L2 norm, the Hellinger’s distance and the Kullback-Leibler

information criterion, respectively. The next theorem establishes the asymptotic

distribution of the test statistics under the null hypothesis. We need regularity

conditions onD(·, ·) and on θ̂. Assumption B states the differentiability conditions
on D(Ft−1,θ), as a function of the vector parameter θ.

Assumption B:

(1) For each θ ∈ Θ, D(·,θ) is a measurable nonnegative function of Ft−1; (2)
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with probability one, D(Ft−1, ·) is twice continuously differentiable with respect
to θ in a neighborhood of Θ0 of θ0 = plim θ̂, with

lim
n→∞

n−1
nX
t=1

E sup
θ∈Θ0

|| ∂
∂θ

D(Ft−1,θ)||2 <∞,

and

lim
n→∞

n−1
nX
t=1

E sup
θ∈Θ0

|| ∂2

∂θ∂θ0
D(Ft−1,θ)|| <∞.

In Assumption B, the function D(Ft−1,θ) is a given, possibly nonlinear,

function such that D(·,θ) is measurable with respect to Ft−1 and D(Ft−1, ·) is
twice differentiable with respect to θ. This hypothesis includes ACD(m) and

ACD(m,q) specifications. In the next hypothesis, we suppose that the estimator

θ̂ of the true parameter θ0 is n1/2-consistent.

Assumption C: θ̂ − θ0 = OP (n
−1/2).

In Assumption C, any n1/2-consistent estimator is allowed. A popular

estimator considered in Engle and Russell (1998) is the quasi-maximum likelihood

estimator (QMLE), which satisfy Assumption C when the QMLE is based on

the exponential distribution. See also Meitz and Teräsvirta (2004). However,

the QMLE is often inefficient. An efficient estimator satisfying Assumption C

is developed in Drost and Werker (2004). We now state the main result of this

section.

Theorem 3 (a) Assume A(1), B, C, E(�4t ) <∞, pn →∞ and pn/n→ 0. Under

H0,adj,

TA1n →L N(0, 1).

(b) Assume the same hypotheses that in (a). Assume furthermore A(2). Under

H0,adj, TA1n − TA2n = op(1) and TA1n − TA3n = op(1).

When the truncated kernel kTR is used, the test statistic TA1n reduces to

TA1n(Q2; kTR; pn) =
n
Ppn

j=1R
2
r̂(j)− pn

(2pn)1/2
.
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Consequently, our approach provides a generalized BP test statistic, when

k = kTR, under the hypothesis that pn →∞ and pn/n→ 0 and Theorem 3 states

precise conditions under which the asymptotic distribution of TA1n(Q2; kTR; pn)

is normal. More precisely, Theorem 3 gives conditions under which parameter

estimation has no impact asymptotically. It suffices to use n1/2-consistent

estimators for θ0. Furthermore, we are not restricted to kTR and we have

flexibility for the choice of the kernel. Many kernels may have more power than

the truncated uniform kernel, by giving more weight to lower orders of lags and

less weight to higher orders of lags. The test statistics TAin, for i ∈ {1, 2, 3} are
compared for a variety of kernels to BP/LB test statistics in the next section.

2.5 Simulation results

2.5.1 Description of the experiment when testing for ACD effects

We study the finite sample performances of the proposed test statistics for ACD

effects TEin, i ∈ {1, 2, 3, 4}, and we compare them to BP/LB test statistics. Under
H0,eff , X = {Xt, t ∈ Z} is an iid stochastic process. In order to study the level,
we consider the process defined by (2.1) where we set D0

t ≡ 1. We consider an
exponential distribution for the innovation process � = {�t, t ∈ Z}. The power of
the test statistics is investigated under the following alternatives:

ACD(1): Dt = 0.8 + 0.2Xt−1,

ACD(4): Dt = 0.8 + 0.1
P4

j=1(1− j/5)Xt−j,

ACD(12): Dt = 0.4 + 0.05
P12

j=1Xt−j,

ACD(1,1): Dt = 0.6 + 0.15Xt−1 + 0.25Dt−1.

The alternatives are chosen according to their autocorrelation functions and

spectral densities. Since the test statistics TEin, i ∈ {1, 2, 3} are function of the
estimated spectral density for ω ∈ [−π, π] and TE4n relies on a spectral density
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estimator evaluated at frequency ω = 0 only, it seems that the performance of

the test statistics will depend in part on the behavior of the spectral density

at ω = 0 and the persistence of ACD effects. The ACD(1) alternative has

an autocorrelation function which decreases to zero quickly; the shape of the

spectral density appears to be regular and it is dominated by low frequencies.

The autocorrelation function of the ACD(4) alternative, and more particularly

that of the ACD(12) alternative, decrease more slowly. The spectral density of the

ACD(12) alternative is dominated by low frequencies with a large spectral density

at frequency ω = 0. The ACD(1,1), similarly to the classical ARMA(1,1), appears

to be parsimonious in several practical situations. For the chosen alternative,

the autocorrelation function decreases rapidly to zero and the spectral density

exhibits a regular general behavior, with a moderate spectral peak at ω = 0. We

generate time series of length n = 250, 500, 1000, which are realistic time series

length in several important situations. For example, Bauwens and Giot (2001,

p. 54) report sample sizes smaller than 1000 observations for price and volume

durations of certain stocks. In the simulations of the ACD processes, the initial

values for Dt are set equal to the unconditional mean ofXt. In order to reduce the

impact of the initial values, we generate time series of length 2n+1 and we retain

the last n observations. In the level study, B = 5000 independent realizations are

generated; in the power study the number of realizations is limited to B = 1000,

for each alternative.

Recall that the BP/LB test statistics for duration clustering are defined by

BP(m) = n
mX
j=1

R2X(j),

LB(m) = n2
mX
j=1

(n− j)−1R2X(j).

They rely on the choice of m. For fixed m, the test statistics BP(m) and LB(m)

admit well established asymptotic χ2m distributions under the null hypothesis,
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because they are based on the raw durations. We considered the test statistics

TEin, i ∈ {1, 2, 3, 4}, based on the truncated uniform (TR), Bartlett (BAR),

Daniell (DAN), Parzen (PAR) and Quadratic Spectral (QS) kernels. We let

m = 6, 10, 16 when n = 250; m = 7, 11, 20 when the sample size is n = 500, and

m = 7, 12, 24 when the sample size is n = 1000. To facilitate the comparisons, we

specify pn = m for the kernel-based test statistics.

2.5.2 Discussion of the level study (ACD effects)

Table 2.1 reports the simulation results of the level study. Based on B = 5000

replications, empirical levels should be in the interval (4.4%, 5.6%). Usually,

for the considered rates, the test statistics TEin, i ∈ {1, 2, 3} seem to overreject

slightly. Generally, a large value of pn gives slightly better empirical levels. The

test statistic TE4n has very reasonable levels, but seems to underreject slightly if

pn is large, specially for the truncated uniform and Parzen kernel. The BP/LB

test statistics have reasonable levels, particularly LB test statistic, which is a

hardly surprising result.

(Insert Table 2.1 here)

2.5.3 Discussion of the power study (ACD effects)

In Tables 2.2-2.5, the power results are given for the alternatives considered. From

all these tables, we observe that there is usually little difference in power among

Parzen, Daniell and QS kernels. The Bartlett kernel usually gives a more powerful

test statistic than these particular kernels. Except for the ACD(12) alternative,

the test statistic TE1n based on kTR is the less powerful. Note that based on

the empirical critical values, for a given pn, TE1n and BP test statistic have the

same adjusted-power, as expected. For most of the alternatives considered, to

choose a kernel different from the truncated uniform kernel gives more powerful
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test statistics. Naturally, the power increases as a function of the sample size. We

now discuss specific results under each considered alternative.

Table 2.2 gives the power results under the ACD(1) alternative. The ACD

effects are not persistent. As a result, we notice that TEin, i ∈ {1, 2, 3} are more
powerful than TE4n. We observe that TE2n and TE3n are slightly more powerful

than TE1n in most cases, for this alternative. The test statistic TE1n is more

powerful than BP/LB test statistics for a given order of lag, when the kernel

is different from kTR. The power of TE4n is similar to the power of BP/LB test

statistics, for small and moderate pn and/or a small sample size. Under the

ACD(4) alternative reported in Table 2.3, the test statistic TE4n appears more

powerful than TEin, i ∈ {1, 2, 3} and BP/LB test statistics. Accounting for the
one-sided alternative seemed to be appropriate in this situation. For n = 500 and

large pn, the differences in power are smaller. For n = 1000 all the test statistics

have comparable power, supporting the asymptotic theory results. The highest

power seems for small and moderate pn for the test statistics TEin, i ∈ {1, 2, 3}.
However, the test statistic TE4n has the largest power for small pn. The ACD(12)

alternative described in Table 2.4 generates a spectral peak at frequency zero

in the spectral density of the raw duration process; large autocorrelations are

present for low and moderate orders of lags. The test statistic TE4n is more

powerful than all the others for sample sizes n = 250, 500. For n = 1000 the

differences in power are smaller, particularly for large pn. The test statistic

TE1n based on kTR and BP/LB test statistics are more powerful than TE1n (with

k 6= kTR), TE2n and TE3n. The differences are smaller for large pn when n = 250,

and the power results are similar when n = 500, 1000, specially for large pn.

Finally, Table 2.5 reports the results under the ACD(1,1) alternative. For this

alternative, the ACD effects are moderate. Again, the test statistics TE1n (with

k 6= kTR), TE2n and TE3n are more powerful than BP/LB test statistics for a given

pn. The test TE4n is the most powerful for small pn and small n; however, for

large pn, TEin, i ∈ {1, 2, 3} give more powerful test procedures.
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(Insert Tables 2.2 - 2.5 here)

2.5.4 Description of the experiment when testing for the adequacy of

ACD models

We examine the finite sample performances of the proposed test statistics for the

adequacy of ACD models. We compare the new test statistics TAin, i ∈ {1, 2, 3}
with the BP/LB test statistics. The proposed test statistics are asymptotically

one-sided N(0, 1) under H0,adj. The BP(m)/LB(m) test statistics were intensively

used in the literature (e.g., Bauwens and Giot (2001), Engle and Russell (1997,

1998), Tsay (2002)). Their asymptotic distributions are assumed χ2m under

H0,adj, although no formal analysis, to our knowledge, establishes rigorously the

asymptotic distribution of these test statistics. In fact, in view of the results

of Li and Yu (2003), the asymptotic distributions of BP/LB test statistics are

not χ2m under the null hypothesis of adequacy. By comparison, the test statistic

TAn(Q2; kTR, pn) provides a generalized BP test statistic and we can investigate

empirically if a kernel different from kTR may deliver a higher power in finite

samples. We also included BP(m)/LB(m) in our simulations, and we will compare

the relative power of these tests to the new test statistics. Since the power of the

tests is calculated using the empirical critical values, the power comparison of

uniform and non-uniform weighting is valid.

In order to study the level, we considered the process defined by (2.1) where

we set Dt = 0.02 + 0.18Xt−1 + 0.8Dt−1. We specified an exponential distribution

for the innovation process � = {�t, t ∈ Z}. The power of the test statistics has
been investigated under the following alternatives:
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ACD(2,1): Dt = 0.2 + 0.3Xt−1 + 0.4Xt−2 + 0.1Dt−1,

ACD(2,2)a: Dt = 0.2 + 0.1Xt−1 + 0.3Xt−2 + 0.1Dt−1 + 0.3Dt−2,

ACD(2,2)b: Dt = 0.2 + 0.1Xt−1 + 0.2Xt−2 + 0.1Dt−2,

ACD(4,4): Dt = 0.7 + 0.2Xt−4 + 0.1Dt−4.

As in Section 2.5.1, we generated time series of length n = 250, 500, 1000; the

test statistics are based on m ≡ pn = 6, 10, 16 when n = 250, m ≡ pn = 7, 11, 20

when n = 500 and m ≡ pn = 7, 12, 24 when n = 1000. We estimated all

these data generating processes by an ACD(1,1) model. We calculated the

adjusted-power under these alternatives, using the empirical critical values

obtained from the level study. When we fit an ACD(1,1) model, the estimated

standardized residuals show the remaining dependence in the residuals. For the

first three alternatives, the dependence is present in the autocorrelations with

low orders of lags. In such situations, it is expected that the kernel-based test

statistics will be particularly powerful, since they usually attribute more (less)

weight to low (high) orders of lags. The last alternative contains some higher

autocorrelations. It is expected that the truncated uniform kernel or the BP/LB

test statistics will be powerful, or a kernel-based test statistic with a large pn.

As in Section 2.5.1, we simulated B = 5000 replications in the level study, and

B = 1000 replications for each alternative.

2.5.5 Discussion of the level study (adequacy of ACD models)

Table 2.6 reports the simulation results of the level study for the adjustment test

statistics. The test statistics TAin, i ∈ {1, 2, 3} with small pn and the BP/LB
test statistics underreject for n = 250. For the kernel-based test statistics, large

pn are generally associated with better empirical levels, since the results are

closer of the lower bound of the interval (4.4%, 5.6%). The test statistics BP/LB
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underreject for all pn. In general, for the considered sample sizes, the kernel-based

test statistics have reasonable levels, with most of the empirical levels very close

to the interval (4.4%, 5.6%). This suggests that large sample sizes are necessary,

with appropriate rates for pn, to obtain empirical critical values close to the

asymptotic ones. Interestingly, the generalized BP test statistic, that is TA1n

based on the truncated uniform kernel, has generally better empirical levels than

BP/LB test statistics.

(Insert Table 2.6 here)

2.5.6 Discussion of the power study (adequacy of ACD models)

The power results for the adjustment test statistics are given in Tables 2.7-

2.10. Similarly to the kernel-based test statistics for ACD effects, there is little

difference in power among the considered kernels, if the kernel is chosen different

from the truncated uniform kernel. However, for many alternatives, to choose a

kernel different from kTR gives more powerful testing procedures than BP/LB test

statistics. This is particularly true when the dependence in the residuals happens

for autocorrelations with small orders of lags.

More specifically, for the ACD(2,1) alternative and the two ACD(2,2)

alternatives under consideration, we find that using a kernel different from kTR

gives a more powerful procedure. Usually, TA1n seems slightly more powerful

than TA2n or TA3n. The power decreases as pn increases, since a large pn appears

inefficient in the presence of low order dependence.

For the ACD(4,4) alternative, the residuals contain higher order dependence.

As a result, to choose a low pn is inefficient for the kernel-based test statistics,

since the test statistics TA1n based on kTR or the BP/LB test statistics with

pn = 6 (n = 250) or pn = 7 (n = 500, 1000), are more powerful than TAin,

i ∈ {1, 2, 3} with k 6= kTR. However, for a moderate or high value of pn, we

obtain more powerful procedures with the kernel-based test statistics based on a
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non-uniform weighting scheme. This happens because for a given order of lag,

say j0, a larger pn attributes a larger weight to the autocorrelation of lag j0 (more

formally, for a fixed j0, k(j0/pn)→ 1 as n→∞). More simulation results can be
found in the working paper Duchesne and Pacurar (2003).

(Insert Tables 2.7 - 2.10 here)

2.6 Application with IBM data

In this section we analyze the IBM transaction data taken from the TORQ

(Trades, Orders, Reports, and Quotes) data set compiled by Hasbrouck (1991)

and the New York Stock Exchange (NYSE). The same database was used by

Engle and Russell (1998) to implement the ACD models. The NYSE is the

world’s largest equities market with a $17.8 trillion global market capitalization

as of September, 2004 (Source: NYSE Fact Book). The market combines the

features of a price-driven market (presence of a market maker) with those of an

order-driven market (existence of an order book), which makes it an explicitly

hybrid mechanism. Specifically, each stock is allocated to a single market maker,

named specialist, who must ensure an orderly market in that stock and therefore

commit his own capital while taking position against the trend of the market until

stability is achieved. However, the specialist must also monitor the order book for

the stock in which limit orders are transmitted electronically or via a floor trader

(see Hasbrouck et al. (1993) for a description of the operations of the NYSE).

The NYSE opens with a call auction implemented to find the opening price and

then trading occurs continuously from 9h30 to 16h.

In our study, we focus on two duration data sets: a large one consisting

of trade durations (i.e. time intervals between successive trades) and a small

one consisting of volume durations (i.e. the times between trades until a given

cumulated volume is traded on the market). Trade durations are indicators

for the trading activity and they have received much attention in the financial
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literature on market microstructure. For example, several studies were concerned

with how the timing of trades affects market behavior and the formation of

prices. The asymmetric information models, developed in more recent research on

market microstructure assume that trades convey information. If some traders are

better informed than others, it seems plausible in such circumstances that their

trades could reveal some information. Glosten and Milgrom (1985), Easley and

O’Hara (1992), Diamond and Verrecchia (1987) and Admati and Pfleiderer (1988),

among others, emphasized this notion of time as signal and the role of intertrade

durations for explaining how the information is processed in financial markets.

O’Hara (1995) provides an excellent review of the market microstructure theory.

Volume durations were introduced by Gouriéroux, Jasiak, and Le Fol (1999) as

reasonable measures of liquidity that account simultaneously for the time and

volume dimension of the trading process. According to the conventional definition

of liquidity (Demsetz, 1968; Black, 1971; Glosten and Harris, 1988), an asset is

liquid if it can be traded as fast as possible, in large quantities, and with no

significant impact on the price. Consequently, while neglecting the price impact of

volumes, volume durations may still be interpreted as the (time) cost of liquidity.

For a more detailed analysis of different types of volume durations, see Hautsch

(2001).

Our sample period runs over three months, from November 1, 1990 through

January 31, 1991. The initial sample contains 60328 transactions for a total of 63

trading days. For each transaction, the information recorded contains the calendar

date, a time stamp measured in seconds after midnight at which the transaction

took place, the volume of shares traded, the bid and ask price at the time of trade

and finally the transaction price. We follow the lines of the work of Engle and

Russell (1998) and Engle (2000) for cleaning the data. The interdaily durations

as well as transactions occurring outside regular trading hours were removed.

Moreover, transactions on Thanksgiving Friday and the day before Christmas

and New Year were deleted. Trades occurring simultaneously (thus leading to zero
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durations) were also discarded. This uses the microstructure argument that zero

durations correspond to ’split-transactions’ (i.e. one big order which is matched

against several smaller opposite orders). Veredas, Rodriguez-Poo, and Espasa

(2001) propose another way for dealing with zero durations but for simplicity, we

proceeded as in Engle and Russell (1998) and Engle (2000). The sample thus

reduced to 52146 observations resulting in 52145 trade durations. We compute

volume durations based on an aggregated volume of 90000 shares. This leads to

a reduced sample of 1025 volume durations which is comparable to the largest

sample size used in our simulations.

Table 2.11 reports some descriptive statistics for each type of duration process.

During the period analyzed, the IBM stock was traded on average every 26.64

seconds with a standard deviation of 36.62. The minimum trade duration is

1 second and the maximum duration is 561 seconds. It took on average 22

minutes for trading 90 000 IBM shares. Consistent with what has been extensively

documented in the literature, trade durations are overdispersed while volume

durations are underdispersed.

As evidenced in previous empirical work, both types of durations exhibit a

strong intra-day seasonality, being shortest near the open and prior to the close

of the market. Therefore, as in Engle (2000), prior to the estimation of any ACD

model we compute the diurnally adjusted durations by regressing the durations

on the time of the day using piecewise linear splines and then taking the ratios of

durations to fitted values. This procedure and other approaches are discussed in

Bauwens and Giot (2001). See also Tsay (2002) for a slightly different approach

using quadratic functions and indicator variables. The coefficient of variation

of the seasonally adjusted trade (volume) durations series is less pronounced

than in the raw durations series but it is still greater (smaller) than 1. As we

can see from Table 2.12, the test statistics for ACD effects based on adjusted

trade durations are generally reduced but they are all highly significant, revealing

persistence in trade durations. For volume durations (see Table 2.13), the test
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statistics for ACD effects actually increased after deseasonalization suggesting

that a more refined deseasonalization technique could be worth investigating.

The test statistics in Tables 2.12 and 2.13 indicate a stronger persistence for

trade durations than for volume durations. Large positive autocorrelations,

overdispersion (underdispersion) and the fact that large (small) durations tend to

be followed by large (small) durations (which is similar to a GARCH mechanism,

see Bollerslev, Engle and Nelson (1994)), seem to be the main features documented

in the literature for trade (volume) durations that justify the introduction of ACD

models.

Since the test statistics from Tables 2.12 and 2.13 suggest the presence of ACD

effects at any reasonable significance level, we now proceed to the estimation

of ACD models on IBM data. We consider ACD(1,1) and ACD(2,2) models

with several specifications for the distribution of the innovation �t in (2.1). We

specify for the distribution p�(·) the exponential, Weibull and generalized gamma
distribution, giving us the EACD, WACD and GACD models, respectively. We

wrote the log-likelihood for all these cases and we performed the optimization via

the Nelder-Mead simplex method, using MATLAB software. We applied our test

procedures TA1n with the Daniell (kDAN), Bartlett (kBAR) and truncated uniform

(kTR) kernels.

Tables 2.14, 2.15 and 2.16 report the test statistics with the corresponding

p-values for trade durations. The ACD(1,1) seems inappropriate since all the p-

values are highly significant. The ACD(2,2) provides an improvement over the

ACD(1,1) model, since the p-values of the test statistics are generally higher.

Since the truncated uniform kernel attributes equal weighting for each considered

lag, it seems plausible that high residual autocorrelations are still present in the

EACD(2,2) and WACD(2,2) models, since for pn = 16 the test statistic TA1n(kTR)

rejects the null hypothesis of adequacy, and for pn = 24 the same can be said for

TA1n(kBAR) and TA1n(kDAN). It seems that the GACD(2,2) gives the best fit for

these data, since the p-values of the test statistics TA1n(kBAR) and TA1n(kDAN) are
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larger than 5% or very close to it. The test statistic TA1n(kTR) seems to suggest

that some large autocorrelations are still present, since TA1n(kTR) with pn = 16 is

still significant. However, with more that 50000 observations, that test statistic

is very close to the 1% significance level. Furthermore, the test statistics with

Bartlett and Daniell kernels, which have been shown to be more powerful than

TA1n(kTR) in many situations (see the simulations of the Section 2.5), seem to

indicate the adequacy of the GACD(2,2) model. Overall, we conclude that the

GACD(2,2) provides a rather satisfactory adjustment for trade durations over the

GACD(1,1) model since with this sample size, the test statistics from Table 2.16

do not clearly indicate an inadequate model.

Tables 2.17, 2.18 and 2.19 report the test statistics with the corresponding

p-values for volume durations. Like for the trade durations, the ACD(1,1) models

are largely rejected, yet some of the p-values, especially for a large pn are superior

to 5%. The adjustments of the EACD(2,2) and WACD(2,2) models capture

adequately the duration dependence since all the p-values of the test statistics

are highly insignificant. Consequently, these models seem to provide the most

parsimonious models for our sample of volume durations. Interestingly, the

overall performance of the GACD(2,2) model for volume durations is not satisfying

since rejection of the null hypothesis of adequacy is indicated by TA1n(kBAR) and

TA1n(kDAN) for pn = 7. Given the argument pointed out in the literature that

the observed hump-shaped density of volume durations requires a more flexible

innovation distribution, we would have expected a better performance of the

GACD model. We have also estimated ACD models based on a Burr distribution

but the results were not improved.

2.7 Conclusion

In this paper, we have proposed two classes of test statistics for duration

clustering and a new class of diagnostic test statistics for ACD models, using

a spectral approach. When testing for ACD effects, the test statistics in the
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first class are based on a distance measure and a kernel-based spectral density

estimator of the raw durations. On the other side, the test statistics in the

second class exploit the one-sided nature of duration clustering. Asymptotic

arguments suggest that the test statistics in the first class should be more powerful

asymptotically, but to exploit the one-sided nature of the alternative hypothesis

may be particularly powerful in small samples. A small sample size could occur

when the market participants are interested in volume durations, among others.

When testing for adequacy, we proposed a class of test statistics using a kernel-

based spectral density estimator of the estimated standardized duration residuals.

We established the asymptotic distributions of the test statistics for duration

clustering and for the adequacy of ACD models, which are normal under their

respective null hypothesis. We also discussed when the tests in a given class are

asymptotically equivalent under the null hypothesis.

Empirical experiments have been conducted to evaluate the proposed

procedures. We found that all the proposed test statistics had reasonable levels.

Typically, the weighting scheme of the kernel-based test statistics attributes more

(less) weight to low (high) orders of lags. We found that in many circumstances

such weighting contributes to powerful procedures. In many situations, the

proposed test statistics were more powerful than BP/LB test statistics. When

ACD effects were particularly persistent, the test statistics in the second class were

usually more powerful. Similarly, when testing for the adequacy of ACD models,

the proposed test statistics had reasonable levels. Interestingly, our generalized BP

test statistic appeared to have better empirical levels than BP/LB test statistics,

at least in our experiments. Concerning the power, usually a kernel different

from the truncated uniform kernel led to more powerful procedures, since the

kernel-based test statistics (with k 6= kTR), were more powerful than BP/LB test

statistics, for the chosen models.

We illustrated our test procedures on the IBM dataset considered in Engle

and Russell (1998). We found that the GACD(2,2) provided a rather satisfactory
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adjustment for trade durations, since with a sample size of more that 50000

observations, the test statistics based on the truncated uniform, Bartlett and

Daniell kernels, did not clearly indicate an inadequate model. For volume

durations, EACD(2,2) and WACD(2,2) provided parsimonious models.
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2.9 Appendix

Proof of the theorem 1

Let T̃E1n = {nPn−1
j=1 k

2(j/pn)R̃
2
X(j) − K2n(k)}/{2K4n(k)}1/2, where R̃X(j) =

C̃X(j)/C̃X(0) and C̃X(j) = n−1
Pn

t=j+1(Xt − µX)(Xt−j − µX), µX = EXt.

According to the Theorem A.1 of Hong (1996), we deduce that T̃E1n →L N(0, 1)

under the null hypothesis. Let kjn = k(j/pn). To establish the Theorem 1 it

suffices to show that
Pn−1

j=1 k
2
jn{R̃2X(j) − R2X(j)} = oP (p

1/2
n /n). We can writePn−1

j=1 k
2
jn{R̃2X(j) − R2X(j)} = C̃−2X (0)

Pn−1
j=1 k

2
jn{C̃2

X(j) − C2
X(j)} + {C̃−2X (0) −

C−2X (0)}
Pn−1

j=1 k
2
jnC

2
X(j). Note that

Pn−1
j=1 k

2
jnC

2
X(j) = Op(pn/n) (see Hong(1996,

p. 854)). Since C̃X(0) − CX(0) = (X̄ − µX)
2, we deduce that C̃X(0) − CX(0) =

OP (n
−1). This shows that (C̃−2X (0)−C−2X (0))

Pn−1
j=1 k

2
jnC

2
X(j) = OP (pn/n

2). Write

n−1X
j=1

k2jn{C̃2
X(j)−C2

X(j)} =
n−1X
j=1

k2jn{C̃X(j)−CX(j)}2+2
n−1X
j=1

k2jnC̃X(j){C̃X(j)−CX(j)}.

We decompose CX(j)− C̃X(j) = (X̄ − µX){−X̄+ − X̄− + n−j
n
(X̄ + µX)}, where

X̄+ = n−1
Pn

t=j+1Xt and X̄− = n−1
Pn

t=j+1Xt−j. We deduce that CX(j) −
C̃X(j) = OP (n

−1), uniformly in j, and
Pn−1

j=1 k
2
jn{CX(j)− C̃X(j)}2 = OP (pn/n

2).

Using Cauchy-Schwartz inequality, we can show that

n−1X
j=1

k2jnC̃X(j){CX(j)− C̃X(j)} = OP (pn/n
3/2).

This concludes the proof for TE1n. We now prove the result for TE2n and TE3n. We

now introduce f̃X(ω) = 1
2π

Pn−1
h=−n+1 kjnR̃X(h)e

−ihω. We have that

||f̂X−f̃X ||∞ ≡ sup
ω∈[−π,π]

|f̂X(ω)−f̃X(ω)| ≤ 1

2π

n−1X
j=−n+1

|kjn||RX(j)−R̃X(j)| = OP (pn/n),

and also ||f̃X − fX0||∞ = Op(pn/n
1/2) (see Hong (1996, p. 860)). Consequently,

||f̂X − fX0||∞ = OP (pn/n
1/2), which is the key step. Following Hong (1996,
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Theorem 3), under the assumption p3n/n→ 0, it follows that TE1n − TE2n = oP (1)

and TE1n − TE3n = oP (1) and the result follows.

Proof of the theorem 2

We prove the result when pn →∞. The proof for fixed pn is similar and simpler.

Let Yt = Xt/µX . Note that we can write R̃X(j) = C̃Y (j)/C̃Y (0), where C̃Y (j) =

n−1
Pn

t=j+1(Yt−1)(Yt−j−1). Using the Lemma A.2 of Hong (1997), we deduce that
K
−1/2
2n (k)n1/2

Pn−1
j=1 kjnC̃Y (j)/E{C̃Y (0)} →L N(0, 1) under the null hypothesis.

We have to show that K−1/2
2n (k)n1/2

Pn−1
j=1 kjn{C̃X(j) − CX(j)} = oP (1), that isPn−1

j=1 kjn{C̃X(j)−CX(j)} = oP (p
1/2
n /n1/2). We already established that C̃X(j)−

CX(j) = OP (n
−1) uniformly in j. This shows that

n−1X
j=1

kjn{C̃X(j)− CX(j)} = OP (pn/n) = oP (p
1/2
n /n1/2),

since pn/n→ 0. This concludes the proof.

Proof of the theorem 3

We begin to establish the asymptotic distribution of TA1n. Let T̃A1n =

{nPn−1
j=1 k

2
jnR

2
Z(j) − K2n(k)}/{2K4n(k)}1/2, where RZ(j) = CZ(j)/CZ(0),

CZ(j) = n−1
Pn

t=j+1 ZtZt−j, Zt = rt − 1. Under the null hypothesis, we have
that rt = �t, a.s., and E(Zt) = E(�t − 1) = 0. Since the process {rt, t ∈ Z} is
iid under the null, it follows using the same kind of arguments that in Theorem 1

that TA1n →L N(0, 1) under the null hypothesis. We have to establish that

T̃A1n − TA1n = oP (1). In order to show that
Pn−1

j=1 k
2
jn{R2r̂(j) − R2Z(j)} =

oP (p
1/2
n /n), we will show that

n−1X
j=1

k2jn{CẐ(j)− CZ(j)}2 = OP (pn/n
2 + n−1), (2.12)
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n−1X
j=1

k2jnCZ(j){CẐ(j)− CZ(j)} = OP (pn/n
3/2 + n−1). (2.13)

We first show (2.12). A Taylor’s expansion of the function D−1
t (θ̂) gives

D−1
t (θ̂) = D−1

t (θ0)+
∂

∂θ
D−1

t (θ0)(θ̂−θ0)+
1

2
(θ̂−θ0)0 ∂2

∂θ∂θ0
D−1

t (θ̄)(θ̂−θ0), (2.14)

where θ̄ lies between θ̂ and θ0. We decompose the difference CẐ(j)− CZ(j) as

CẐ(j)− CZ(j) = n−1
nX

t=j+1

(Ẑt − Zt)(Ẑt−j − Zt−j) + n−1
nX

t=j+1

Zt(Ẑt−j − Zt−j)

+n−1
nX

t=j+1

(Ẑt − Zt)Zt−j,

= Â1j + Â2j + Â3j.

Noting that (Â1j+Â2j+Â3j)2 ≤ 4{Â21j+Â22j+Â23j}, we can write
Pn−1

j=1 k
2
jn{CẐ(j)−

CZ(j)}2 ≤ 4(B̂1n+B̂2n+B̂3n), where B̂1n =
Pn−1

j=1 k
2
jnÂ

2
1j, B̂2n =

Pn−1
j=1 k

2
jnÂ

2
2j and

B̂3n =
Pn−1

j=1 k
2
jnÂ

2
3j. We study individually each term. We have that Ẑt − Zt =

Xt{D−1
t (θ̂) − D−1

t (θ0)}. Replacing in Â1j, using Assumption C, we can show

easily that
Pn−1

j=1 k
2
jnÂ

2
1j = OP (pn/n

2). We now turn to B̂2n. We can decompose

Â2j = Â21j + Â22j, Â21j = â21j(θ̂ − θ0), Â22j = (θ̂ − θ0)
0â22j(θ̂ − θ0), where

â21j = n−1
Pn

t=j+1 ZtXt−j ∂

∂θ
D−1

t−j(θ0), â22j =
1
2
n−1

Pn
t=j+1 ZtXt−j ∂2

∂θ∂θ0
D−1

t−j(θ̄).

It is easy to show that â21j = OP (n
−1/2) since E(Zt|Ft−1) = E(Zt) = 0.

Using Â22j ≤ 2(Â221j + Â222j), we deduce that
Pn−1

j=1 k
2
jnÂ

2
2j = OP (pn/n

2). We

now study the term B̂3n. We write Â3j = Â31j + Â32j, Â31j = â31j(θ̂ − θ0),

Â32j = (θ̂ − θ0)
0â32j(θ̂ − θ0), where â31j = n−1

Pn
t=j+1XtZt−j ∂

∂θ
D−1

t (θ0),

â32j =
1
2
n−1

Pn
t=j+1 Zt−jXt

∂2

∂θ∂θ0
D−1

t (θ̄). We now study separately â31j and â32j.

Using Â23j ≤ 2(Â231j + Â232j), we have that

B̂3n ≤ 2
Ã

n−1X
j=1

k2jnÂ
2
31j +

n−1X
j=1

k2jnÂ
2
32j

!
.
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We show easily that
Pn−1

j=1 k
2
jnÂ

2
32j = OP (pn/n

2). Since |Â231j| ≤ ||â31j||2||θ̂−θ0||2,
we have that

n−1X
j=1

k2jnÂ
2
31j ≤ ||θ̂ − θ0||2

n−1X
j=1

k2jn||â31j||2.

We write â31j = â31j − E(â31j) + E(â31j). Note that we can interpret E(â31j)

as a cross-correlation, since E(â31j) = cov(Xt
∂

∂θD
−1
t (θ0), Zt−j). Consequently,Pn−1

j=1 k
2
jn||E(â31j)||2 = O(1). We show easily that

Pn−1
j=1 k

2
jn||â31j − E(â31j)||2 =

OP (pn/n). This shows the first part (2.12). We now work the second part (2.13).

We have that

n−1X
j=1

k2jnCZ(j){CẐ(j)− CZ(j)} =
n−1X
j=1

k2jnCZ(j){Â1j + Â2j + Â3j},

= D̂1n + D̂2n + D̂3n.

We begin with D̂1n. Using Cauchy-Schwartz inequality,

¯̄̄̄
¯
n−1X
j=1

k2jnCZ(j)Â1j

¯̄̄̄
¯ ≤

(
n−1X
j=1

k2jnC
2
Z(j)

)1/2(n−1X
j=1

k2jnÂ
2
1j

)1/2
.

Since
Pn−1

j=1 k
2
jnC

2
Z(j) = OP (pn/n) and

Pn−1
j=1 k

2
jnÂ

2
1j = OP (pn/n

2), this shows thatPn−1
j=1 k

2
jnCZ(j)Â1j = OP (pn/n

3/2). Similarly,
Pn−1

j=1 k
2
jnCZ(j)Â2j = OP (pn/n

3/2).

For the term involving Â3j, we have that

n−1X
j=1

k2jnCZ(j)Â3j =
n−1X
j=1

k2jnCZ(j)Â31j +
n−1X
j=1

k2jnCZ(j)Â32j.

We show easily that
Pn−1

j=1 k
2
jnCZ(j)Â32j = OP (pn/n

3/2). Since

n−1X
j=1

k2jnCZ(j)Â31j =
n−1X
j=1

k2jnCZ(j)â31j(θ̂ − θ0),

we show that
Pn−1

j=1 k
2
jnCZ(j)Â32j = OP (pn/n

3/2 + n−1). This shows (2.13).

We now prove the result for TA2n and TA3n. We recall that f̂Z(ω) =



100

1
2π

Pn−1
h=−n+1 kjnRZ(h)e

−ihω and we introduce f̃Z(ω) = 1
2π

Pn−1
h=−n+1 kjnR̃Z(h)e

−ihω.

We have that

||f̂Z − f̃Z ||∞ ≡ sup
ω∈[−π,π]

|f̂Z(ω)− f̃Z(ω)|,

≤ 1

2π

n−1X
j=−n+1

|kjn||RZ(j)− R̃Z(j)|,

= OP (pn/n
1/2).

As in the proof of Theorem 1, we have that ||f̃Z − fZ0||∞ = Op(pn/n
1/2).

Consequently, ||f̂Z − fZ0||∞ = OP (pn/n
1/2), as in the proof of Theorem 1.

Consequently, under the assumption p3n/n→ 0, it follows that TA1n−TA2n = oP (1)

and TA1n − TA3n = oP (1) and the result follows.
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Table 2.1: Empirical levels at the 5% level for tests of ACD effects

n = 250 n = 500 n = 1000

pn = 6 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n
TR 0.0618 0.0430 TR 0.0670 0.0476 TR 0.0666 0.0498
BAR 0.0616 0.0636 0.0628 0.0454 BAR 0.0634 0.0640 0.0638 0.0466 BAR 0.0708 0.0708 0.0702 0.0478
DAN 0.0616 0.0632 0.0648 0.0492 DAN 0.0610 0.0630 0.0638 0.0516 DAN 0.0712 0.0712 0.0742 0.0490
PAR 0.0656 0.0658 0.0664 0.0432 PAR 0.0626 0.0626 0.0616 0.0480 PAR 0.0694 0.0704 0.0700 0.0478
QS 0.0638 0.0652 0.0652 0.0448 QS 0.0624 0.0630 0.0632 0.0478 QS 0.0708 0.0710 0.0718 0.0482

LB(pn) 0.0388 LB(pn) 0.0456 LB(pn) 0.0478
BP(pn) 0.0414 BP(pn) 0.0468 BP(pn) 0.0480
pn = 10 TE1n TE2n TE3n TE4n pn = 11 TE1n TE2n TE3n TE4n pn = 12 TE1n TE2n TE3n TE4n

TR 0.0556 0.0450 TR 0.0656 0.0474 TR 0.0668 0.0480
BAR 0.0632 0.0644 0.0656 0.0442 BAR 0.0632 0.0612 0.0622 0.0484 BAR 0.0696 0.0700 0.0710 0.0498
DAN 0.0628 0.0656 0.0720 0.0478 DAN 0.0640 0.0644 0.0672 0.0524 DAN 0.0668 0.0696 0.0726 0.0508
PAR 0.0628 0.0636 0.0692 0.0436 PAR 0.0642 0.0642 0.0664 0.0498 PAR 0.0672 0.0676 0.0714 0.0514
QS 0.0638 0.0664 0.0708 0.0444 QS 0.0642 0.0648 0.0662 0.0482 QS 0.0670 0.0696 0.0712 0.0498

LB(pn) 0.0334 LB(pn) 0.0442 LB(pn) 0.0456
BP(pn) 0.0378 BP(pn) 0.0470 BP(pn) 0.0472
pn = 16 TE1n TE2n TE3n TE4n pn = 20 TE1n TE2n TE3n TE4n pn = 24 TE1n TE2n TE3n TE4n

TR 0.0574 0.0410 TR 0.0638 0.0410 TR 0.0626 0.0460
BAR 0.0618 0.0588 0.0626 0.0432 BAR 0.0610 0.0606 0.0626 0.0476 BAR 0.0690 0.0682 0.0688 0.0504
DAN 0.0598 0.0592 0.0680 0.0468 DAN 0.0648 0.0630 0.0682 0.0494 DAN 0.0674 0.0690 0.0744 0.0510
PAR 0.0590 0.0552 0.0624 0.0426 PAR 0.0632 0.0594 0.0646 0.0458 PAR 0.0690 0.0664 0.0712 0.0506
QS 0.0606 0.0572 0.0658 0.0438 QS 0.0630 0.0620 0.0674 0.0468 QS 0.0674 0.0676 0.0726 0.0506

LB(pn) 0.0278 LB(pn) 0.0344 LB(pn) 0.0428
BP(pn) 0.0340 BP(pn) 0.0422 BP(pn) 0.0456

1) DGP:Xt = �t, �t ∼ EXP (1) 2) 5000 iterations.
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Table 2.2: Level-adjusted powers against ACD(1) at 5% level for tests of ACD effects

n = 250 n = 500 n = 1000

pn = 6 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n
TR 0.547 0.405 TR 0.840 0.552 TR 0.987 0.766
BAR 0.717 0.724 0.732 0.632 BAR 0.935 0.936 0.939 0.844 BAR 1.000 1.000 1.000 0.972
DAN 0.697 0.704 0.719 0.575 DAN 0.928 0.934 0.935 0.784 DAN 0.998 0.998 0.998 0.946
PAR 0.684 0.683 0.690 0.582 PAR 0.925 0.921 0.927 0.769 PAR 0.998 0.997 0.999 0.950
QS 0.694 0.699 0.718 0.609 QS 0.928 0.931 0.935 0.811 QS 0.998 0.998 0.999 0.958

LB(pn) 0.549 LB(pn) 0.841 LB(pn) 0.987
BP(pn) 0.547 BP(pn) 0.840 BP(pn) 0.987
pn = 10 TE1n TE2n TE3n TE4n pn = 11 TE1n TE2n TE3n TE4n pn = 12 TE1n TE2n TE3n TE4n

TR 0.491 0.313 TR 0.796 0.407 TR 0.980 0.599
BAR 0.672 0.675 0.681 0.513 BAR 0.919 0.918 0.921 0.720 BAR 0.998 0.998 0.998 0.898
DAN 0.635 0.633 0.638 0.472 DAN 0.903 0.902 0.906 0.628 DAN 0.996 0.997 0.997 0.828
PAR 0.623 0.621 0.627 0.440 PAR 0.899 0.898 0.903 0.614 PAR 0.996 0.997 0.997 0.819
QS 0.636 0.636 0.638 0.477 QS 0.900 0.903 0.905 0.654 QS 0.996 0.997 0.997 0.852

LB(pn) 0.498 LB(pn) 0.803 LB(pn) 0.981
BP(pn) 0.491 BP(pn) 0.796 BP(pn) 0.980
pn = 16 TE1n TE2n TE3n TE4n pn = 20 TE1n TE2n TE3n TE4n pn = 24 TE1n TE2n TE3n TE4n

TR 0.429 0.239 TR 0.718 0.320 TR 0.945 0.399
BAR 0.624 0.625 0.629 0.392 BAR 0.888 0.893 0.896 0.524 BAR 0.994 0.996 0.996 0.708
DAN 0.581 0.583 0.583 0.357 DAN 0.853 0.862 0.864 0.458 DAN 0.989 0.988 0.988 0.597
PAR 0.565 0.573 0.569 0.328 PAR 0.850 0.854 0.859 0.427 PAR 0.987 0.987 0.988 0.548
QS 0.579 0.584 0.585 0.359 QS 0.853 0.863 0.867 0.470 QS 0.989 0.988 0.988 0.614

LB(pn) 0.436 LB(pn) 0.728 LB(pn) 0.947
BP(pn) 0.429 BP(pn) 0.718 BP(pn) 0.945

1) DGP: Xt = Dt�t, �t ∼ EXP (1),Dt = β0 + αXt−1, β0 = 1− α. α = 0.2 2) 1000 iterations.
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Table 2.3: Level-adjusted powers against ACD(4) at 5% level for tests of ACD effects

n = 250 n = 500 n = 1000

pn = 6 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n
TR 0.294 0.446 TR 0.494 0.598 TR 0.759 0.816
BAR 0.349 0.335 0.334 0.536 BAR 0.607 0.591 0.591 0.768 BAR 0.839 0.832 0.828 0.944
DAN 0.346 0.328 0.335 0.492 DAN 0.608 0.596 0.593 0.722 DAN 0.840 0.826 0.825 0.915
PAR 0.345 0.329 0.330 0.525 PAR 0.609 0.591 0.591 0.725 PAR 0.836 0.823 0.822 0.924
QS 0.346 0.334 0.335 0.526 QS 0.606 0.597 0.593 0.751 QS 0.839 0.826 0.824 0.936

LB(pn) 0.296 LB(pn) 0.496 LB(pn) 0.760
BP(pn) 0.294 BP(pn) 0.494 BP(pn) 0.759
pn = 10 TE1n TE2n TE3n TE4n pn = 11 TE1n TE2n TE3n TE4n pn = 12 TE1n TE2n TE3n TE4n

TR 0.256 0.336 TR 0.427 0.454 TR 0.691 0.652
BAR 0.334 0.324 0.321 0.477 BAR 0.607 0.588 0.584 0.679 BAR 0.827 0.814 0.812 0.882
DAN 0.336 0.308 0.305 0.454 DAN 0.596 0.575 0.570 0.631 DAN 0.817 0.794 0.792 0.833
PAR 0.325 0.305 0.300 0.438 PAR 0.579 0.555 0.554 0.628 PAR 0.806 0.791 0.789 0.830
QS 0.335 0.309 0.306 0.469 QS 0.596 0.574 0.569 0.662 QS 0.816 0.792 0.791 0.860

LB(pn) 0.259 LB(pn) 0.428 LB(pn) 0.692
BP(pn) 0.256 BP(pn) 0.427 BP(pn) 0.691
pn = 16 TE1n TE2n TE3n TE4n pn = 20 TE1n TE2n TE3n TE4n pn = 24 TE1n TE2n TE3n TE4n

TR 0.229 0.259 TR 0.369 0.334 TR 0.567 0.432
BAR 0.322 0.308 0.300 0.398 BAR 0.546 0.527 0.519 0.538 BAR 0.783 0.766 0.760 0.723
DAN 0.308 0.290 0.283 0.371 DAN 0.504 0.489 0.474 0.489 DAN 0.737 0.716 0.706 0.639
PAR 0.304 0.283 0.269 0.342 PAR 0.506 0.481 0.470 0.462 PAR 0.727 0.704 0.695 0.607
QS 0.306 0.294 0.285 0.374 QS 0.508 0.491 0.470 0.505 QS 0.734 0.717 0.714 0.650

LB(pn) 0.231 LB(pn) 0.371 LB(pn) 0.574
BP(pn) 0.229 BP(pn) 0.369 BP(pn) 0.567

1) DGP: Xt = Dt�t, Dt = β0 +
P4

i=1 αiXt−i, β0 = 1−
P4

i=1 αi, αi = α(1− i
5), α =

0.2P4
i=1(1− i

5)
, �t ∼ EXP (1). 2) 1000 iterations.
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Table 2.4: Level-adjusted powers against ACD(12) at 5% level for tests of ACD effects

n = 250 n = 500 n = 1000

pn = 6 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n
TR 0.558 0.764 TR 0.867 0.961 TR 0.988 0.997
BAR 0.445 0.422 0.414 0.666 BAR 0.789 0.766 0.755 0.929 BAR 0.954 0.947 0.945 0.993
DAN 0.472 0.445 0.450 0.541 DAN 0.808 0.800 0.794 0.837 DAN 0.972 0.967 0.965 0.973
PAR 0.487 0.455 0.448 0.738 PAR 0.826 0.801 0.787 0.952 PAR 0.973 0.967 0.966 0.997
QS 0.463 0.437 0.431 0.658 QS 0.802 0.784 0.776 0.919 QS 0.967 0.959 0.955 0.992

LB(pn) 0.559 LB(pn) 0.867 LB(pn) 0.988
BP(pn) 0.558 BP(pn) 0.867 BP(pn) 0.988
pn = 10 TE1n TE2n TE3n TE4n pn = 11 TE1n TE2n TE3n TE4n pn = 12 TE1n TE2n TE3n TE4n

TR 0.644 0.849 TR 0.914 0.981 TR 0.999 1.000
BAR 0.539 0.496 0.485 0.788 BAR 0.862 0.830 0.823 0.966 BAR 0.985 0.979 0.978 0.999
DAN 0.551 0.512 0.500 0.732 DAN 0.869 0.844 0.836 0.945 DAN 0.988 0.985 0.981 0.999
PAR 0.574 0.525 0.504 0.826 PAR 0.884 0.857 0.852 0.979 PAR 0.994 0.990 0.990 0.999
QS 0.552 0.509 0.497 0.795 QS 0.875 0.849 0.834 0.973 QS 0.990 0.985 0.981 0.999

LB(pn) 0.644 LB(pn) 0.914 LB(pn) 0.999
BP(pn) 0.644 BP(pn) 0.914 BP(pn) 0.999
pn = 16 TE1n TE2n TE3n TE4n pn = 20 TE1n TE2n TE3n TE4n pn = 24 TE1n TE2n TE3n TE4n

TR 0.642 0.848 TR 0.908 0.976 TR 0.996 0.999
BAR 0.600 0.554 0.532 0.850 BAR 0.902 0.888 0.880 0.987 BAR 0.998 0.995 0.995 0.999
DAN 0.616 0.567 0.541 0.841 DAN 0.910 0.887 0.877 0.984 DAN 0.998 0.995 0.994 0.999
PAR 0.632 0.575 0.544 0.865 PAR 0.917 0.897 0.882 0.985 PAR 0.998 0.995 0.995 0.999
QS 0.620 0.565 0.541 0.858 QS 0.912 0.889 0.879 0.989 QS 0.998 0.995 0.995 0.999

LB(pn) 0.640 LB(pn) 0.908 LB(pn) 0.996
BP(pn) 0.642 BP(pn) 0.908 BP(pn) 0.996

1) DGP: Xt = Dt�t, Dt = β0 +
P12

i=1 αiXt−i, β0 = 1−
P12

i=1 αi, αi = 0.05, �t ∼ EXP (1). 2) 1000 iterations.
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Table 2.5: Level-adjusted powers against ACD(1,1) at 5% level for tests of ACD effects

n = 250 n = 500 n = 1000

pn = 6 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n pn = 7 TE1n TE2n TE3n TE4n
TR 0.424 0.438 TR 0.705 0.583 TR 0.930 0.796
BAR 0.566 0.562 0.561 0.610 BAR 0.850 0.845 0.847 0.829 BAR 0.981 0.981 0.984 0.964
DAN 0.546 0.532 0.548 0.564 DAN 0.842 0.841 0.840 0.775 DAN 0.980 0.976 0.978 0.947
PAR 0.530 0.524 0.531 0.573 PAR 0.832 0.827 0.828 0.769 PAR 0.973 0.972 0.974 0.950
QS 0.542 0.535 0.551 0.587 QS 0.841 0.840 0.840 0.805 QS 0.977 0.975 0.977 0.955

LB(pn) 0.430 LB(pn) 0.706 LB(pn) 0.930
BP(pn) 0.424 BP(pn) 0.705 BP(pn) 0.930
pn = 10 TE1n TE2n TE3n TE4n pn = 11 TE1n TE2n TE3n TE4n pn = 12 TE1n TE2n TE3n TE4n

TR 0.372 0.324 TR 0.640 0.426 TR 0.896 0.629
BAR 0.522 0.512 0.515 0.511 BAR 0.826 0.819 0.824 0.708 BAR 0.969 0.970 0.971 0.899
DAN 0.506 0.484 0.485 0.479 DAN 0.798 0.789 0.793 0.639 DAN 0.963 0.961 0.963 0.837
PAR 0.501 0.475 0.477 0.455 PAR 0.786 0.778 0.780 0.627 PAR 0.962 0.960 0.962 0.833
QS 0.504 0.488 0.486 0.491 QS 0.798 0.787 0.788 0.671 QS 0.964 0.961 0.963 0.862

LB(pn) 0.377 LB(pn) 0.645 LB(pn) 0.896
BP(pn) 0.372 BP(pn) 0.640 BP(pn) 0.896
pn = 16 TE1n TE2n TE3n TE4n pn = 20 TE1n TE2n TE3n TE4n pn = 24 TE1n TE2n TE3n TE4n

TR 0.313 0.251 TR 0.559 0.326 TR 0.819 0.417
BAR 0.497 0.481 0.479 0.405 BAR 0.773 0.772 0.775 0.534 BAR 0.952 0.948 0.950 0.721
DAN 0.455 0.435 0.425 0.366 DAN 0.728 0.727 0.722 0.482 DAN 0.933 0.924 0.919 0.633
PAR 0.439 0.423 0.416 0.345 PAR 0.724 0.718 0.716 0.448 PAR 0.930 0.918 0.913 0.581
QS 0.453 0.434 0.425 0.369 QS 0.729 0.728 0.722 0.493 QS 0.933 0.923 0.925 0.638

LB(pn) 0.322 LB(pn) 0.563 LB(pn) 0.821
BP(pn) 0.313 BP(pn) 0.559 BP(pn) 0.819

1) DGP: Xt = Dt�t, Dt = β0 + αXt−1 + βDt−1,β0 = 1− α− β, �t ∼ EXP (1) α = 0.15, β = 0.25. 2) 1000 iterations.
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Table 2.6: Empirical levels at the 5% level for tests of adjustment when the model is ACD(1,1)

n = 250 n = 500 n = 1000

pn = 6 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n
TR 0.0470 TR 0.0410 TR 0.0406
BAR 0.0296 0.0288 0.0278 BAR 0.0272 0.0268 0.0236 BAR 0.0312 0.0318 0.0310
DAN 0.0312 0.0306 0.0310 DAN 0.0292 0.0284 0.0268 DAN 0.0326 0.0330 0.0336
PAR 0.0332 0.0342 0.0332 PAR 0.0294 0.0298 0.0266 PAR 0.0334 0.0338 0.0340
QS 0.0322 0.0318 0.0314 QS 0.0286 0.0292 0.0272 QS 0.0328 0.0340 0.0328

LB(pn) 0.0306 LB(pn) 0.0282 LB(pn) 0.0260
BP(pn) 0.0334 BP(pn) 0.0292 BP(pn) 0.0268
pn = 10 TA1n TA2n TA3n pn = 11 TA1n TA2n TA3n pn = 12 TA1n TA2n TA3n

TR 0.0548 TR 0.0468 TR 0.0464
BAR 0.0376 0.0364 0.0372 BAR 0.0336 0.0286 0.0280 BAR 0.0340 0.0336 0.0354
DAN 0.0418 0.0436 0.0468 DAN 0.0356 0.0328 0.0344 DAN 0.0370 0.0360 0.0376
PAR 0.0436 0.0426 0.0440 PAR 0.0378 0.0334 0.0346 PAR 0.0364 0.0356 0.0400
QS 0.0418 0.0428 0.0458 QS 0.0368 0.0324 0.0334 QS 0.0366 0.0358 0.0386

LB(pn) 0.0272 LB(pn) 0.0304 LB(pn) 0.0294
BP(pn) 0.0326 BP(pn) 0.0338 BP(pn) 0.0310
pn = 16 TA1n TA2n TA3n pn = 20 TA1n TA2n TA3n pn = 24 TA1n TA2n TA3n

TR 0.0588 TR 0.0496 TR 0.0438
BAR 0.0434 0.0384 0.0402 BAR 0.0380 0.0338 0.0334 BAR 0.0390 0.0368 0.0384
DAN 0.0466 0.0442 0.0482 DAN 0.0408 0.0384 0.0406 DAN 0.0420 0.0398 0.0428
PAR 0.0474 0.0430 0.0460 PAR 0.0416 0.0368 0.0396 PAR 0.0416 0.0392 0.0422
QS 0.0476 0.0428 0.0470 QS 0.0408 0.0368 0.0414 QS 0.0426 0.0394 0.0420

LB(pn) 0.0296 LB(pn) 0.0284 LB(pn) 0.0276
BP(pn) 0.0378 BP(pn) 0.0322 BP(pn) 0.0306

1) DGP: Xt = Dt�t, Dt = β0 + αXt−1 + βDt−1, β0 = 1− α− β, α = 0.18, β = 0.80,where �t is EXP (1). 2) 5000 iterations.
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Table 2.7: Level-adjusted powers against ACD(2,1) at 5% level for tests of
adjustment when the model is ACD(1,1)

n = 250 n = 500 n = 1000

pn = 6 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n
TR 0.433 TR 0.764 TR 0.976
BAR 0.610 0.599 0.580 BAR 0.884 0.885 0.870 BAR 0.994 0.994 0.992
DAN 0.611 0.607 0.588 DAN 0.886 0.888 0.873 DAN 0.995 0.995 0.993
PAR 0.602 0.593 0.564 PAR 0.880 0.880 0.872 PAR 0.995 0.994 0.992
QS 0.615 0.611 0.585 QS 0.886 0.888 0.875 QS 0.995 0.995 0.992

LB(pn) 0.437 LB(pn) 0.765 LB(pn) 0.976
BP(pn) 0.433 BP(pn) 0.764 BP(pn) 0.976
pn = 10 TA1n TA2n TA3n pn = 11 TA1n TA2n TA3n pn = 12 TA1n TA2n TA3n

TR 0.322 TR 0.657 TR 0.935
BAR 0.565 0.542 0.511 BAR 0.845 0.847 0.831 BAR 0.991 0.990 0.988
DAN 0.529 0.511 0.484 DAN 0.828 0.822 0.811 DAN 0.989 0.988 0.983
PAR 0.506 0.495 0.465 PAR 0.815 0.814 0.802 PAR 0.985 0.985 0.980
QS 0.529 0.512 0.480 QS 0.822 0.821 0.812 QS 0.987 0.988 0.983

LB(pn) 0.326 LB(pn) 0.660 LB(pn) 0.937
BP(pn) 0.322 BP(pn) 0.657 BP(pn) 0.935
pn = 16 TA1n TA2n TA3n pn = 20 TA1n TA2n TA3n pn = 24 TA1n TA2n TA3n

TR 0.281 TR 0.571 TR 0.882
BAR 0.509 0.488 0.464 BAR 0.816 0.812 0.798 BAR 0.980 0.979 0.973
DAN 0.444 0.438 0.415 DAN 0.785 0.780 0.756 DAN 0.966 0.966 0.959
PAR 0.430 0.438 0.405 PAR 0.770 0.771 0.749 PAR 0.961 0.958 0.955
QS 0.447 0.446 0.417 QS 0.784 0.776 0.760 QS 0.963 0.966 0.957

LB(pn) 0.285 LB(pn) 0.579 LB(pn) 0.883
BP(pn) 0.281 BP(pn) 0.571 BP(pn) 0.882

1) DGP: Xt = Dt�t, �t ∼ EXP (1),Dt = β0+α1Xt−1+α2Xt−2+β1Dt−1, β0 = 1−α1−
α2 − β1, α1 = 0.3, α2 = 0.4, β1 = 0.1. 2) 1000 iterations.
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Table 2.8: Level-adjusted powers against ACD(2,2)a at 5% level for tests of
adjustment when the model is ACD(1,1)

n = 250 n = 500 n = 1000

pn = 6 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n
TR 0.487 TR 0.754 TR 0.962
BAR 0.637 0.617 0.583 BAR 0.866 0.859 0.836 BAR 0.993 0.993 0.988
DAN 0.629 0.611 0.580 DAN 0.868 0.857 0.833 DAN 0.994 0.993 0.985
PAR 0.625 0.601 0.563 PAR 0.863 0.851 0.825 PAR 0.992 0.991 0.984
QS 0.633 0.609 0.584 QS 0.869 0.855 0.830 QS 0.994 0.993 0.987

LB(pn) 0.489 LB(pn) 0.754 LB(pn) 0.962
BP(pn) 0.487 BP(pn) 0.754 BP(pn) 0.962
pn = 10 TA1n TA2n TA3n pn = 11 TA1n TA2n TA3n pn = 12 TA1n TA2n TA3n

TR 0.377 TR 0.657 TR 0.919
BAR 0.606 0.560 0.521 BAR 0.843 0.826 0.793 BAR 0.987 0.982 0.974
DAN 0.564 0.533 0.490 DAN 0.819 0.801 0.775 DAN 0.977 0.975 0.967
PAR 0.547 0.527 0.470 PAR 0.803 0.792 0.755 PAR 0.975 0.971 0.964
QS 0.573 0.534 0.485 QS 0.815 0.793 0.775 QS 0.978 0.974 0.966

LB(pn) 0.379 LB(pn) 0.662 LB(pn) 0.920
BP(pn) 0.377 BP(pn) 0.657 BP(pn) 0.919
pn = 16 TA1n TA2n TA3n pn = 20 TA1n TA2n TA3n pn = 24 TA1n TA2n TA3n

TR 0.327 TR 0.576 TR 0.869
BAR 0.544 0.519 0.476 BAR 0.798 0.786 0.755 BAR 0.969 0.967 0.954
DAN 0.491 0.466 0.422 DAN 0.767 0.744 0.711 DAN 0.956 0.953 0.936
PAR 0.480 0.455 0.416 PAR 0.760 0.740 0.706 PAR 0.953 0.948 0.934
QS 0.490 0.470 0.427 QS 0.767 0.746 0.714 QS 0.955 0.949 0.940

LB(pn) 0.331 LB(pn) 0.583 LB(pn) 0.872
BP(pn) 0.327 BP(pn) 0.576 BP(pn) 0.869

1) DGP: Xt = Dt�t, �t ∼ EXP (1),Dt = β0 + α1Xt−1 + α2Xt−2 + β1Dt−1 + β2Dt−2,
β0 = 1− α1 − α2 − β1 − β2, α1 = 0.1, α2 = 0.3, β1 = 0.1, β2 = 0.3. 2) 1000 iterations.
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Table 2.9: Level-adjusted powers against ACD(2,2)b at 5% level for tests of
adjustment when the model is ACD(1,1)

n = 250 n = 500 n = 1000

pn = 6 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n
TR 0.222 TR 0.423 TR 0.699
BAR 0.332 0.315 0.292 BAR 0.563 0.559 0.530 BAR 0.833 0.824 0.783
DAN 0.340 0.327 0.311 DAN 0.570 0.563 0.535 DAN 0.833 0.829 0.795
PAR 0.329 0.318 0.297 PAR 0.557 0.552 0.529 PAR 0.832 0.821 0.784
QS 0.339 0.328 0.313 QS 0.574 0.564 0.536 QS 0.834 0.827 0.797

LB(pn) 0.224 LB(pn) 0.422 LB(pn) 0.699
BP(pn) 0.222 BP(pn) 0.423 BP(pn) 0.699
pn = 10 TA1n TA2n TA3n pn = 11 TA1n TA2n TA3n pn = 12 TA1n TA2n TA3n

TR 0.168 TR 0.331 TR 0.566
BAR 0.292 0.276 0.260 BAR 0.525 0.516 0.486 BAR 0.796 0.781 0.757
DAN 0.275 0.265 0.238 DAN 0.496 0.492 0.461 DAN 0.774 0.767 0.719
PAR 0.259 0.255 0.227 PAR 0.483 0.474 0.445 PAR 0.754 0.746 0.697
QS 0.275 0.267 0.235 QS 0.494 0.485 0.459 QS 0.772 0.767 0.716

LB(pn) 0.166 LB(pn) 0.336 LB(pn) 0.568
BP(pn) 0.168 BP(pn) 0.331 BP(pn) 0.566
pn = 16 TA1n TA2n TA3n pn = 20 TA1n TA2n TA3n pn = 24 TA1n TA2n TA3n

TR 0.138 TR 0.280 TR 0.473
BAR 0.259 0.245 0.227 BAR 0.470 0.471 0.437 BAR 0.722 0.715 0.669
DAN 0.234 0.229 0.209 DAN 0.441 0.430 0.401 DAN 0.667 0.660 0.614
PAR 0.228 0.225 0.209 PAR 0.439 0.422 0.393 PAR 0.647 0.630 0.599
QS 0.236 0.230 0.210 QS 0.444 0.424 0.396 QS 0.657 0.661 0.611

LB(pn) 0.138 LB(pn) 0.285 LB(pn) 0.476
BP(pn) 0.138 BP(pn) 0.280 BP(pn) 0.473

1) DGP: Xt = Dt�t, �t ∼ EXP (1),Dt = β0 + α1Xt−1 + α2Xt−2 + β1Dt−1 + β2Dt−2,
β0 = 1− α1 − α2 − β1 − β2, α1 = 0.1, α2 = 0.2, β1 = 0, β2 = 0.1. 2) 1000 iterations.
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Table 2.10: Level-adjusted powers against ACD(4,4) at 5% level for tests of
adjustment when the model is ACD(1,1)

n = 250 n = 500 n = 1000

pn = 6 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n pn = 7 TA1n TA2n TA3n
TR 0.544 TR 0.825 TR 0.989
BAR 0.262 0.254 0.236 BAR 0.681 0.682 0.648 BAR 0.962 0.960 0.946
DAN 0.276 0.280 0.270 DAN 0.728 0.727 0.711 DAN 0.969 0.969 0.960
PAR 0.371 0.368 0.334 PAR 0.775 0.774 0.757 PAR 0.984 0.984 0.977
QS 0.292 0.288 0.272 QS 0.738 0.740 0.717 QS 0.976 0.975 0.964

LB(pn) 0.543 LB(pn) 0.824 LB(pn) 0.989
BP(pn) 0.544 BP(pn) 0.825 BP(pn) 0.989
pn = 10 TA1n TA2n TA3n pn = 11 TA1n TA2n TA3n pn = 12 TA1n TA2n TA3n

TR 0.436 TR 0.757 TR 0.975
BAR 0.483 0.468 0.449 BAR 0.809 0.813 0.793 BAR 0.988 0.988 0.986
DAN 0.513 0.508 0.486 DAN 0.828 0.832 0.816 DAN 0.990 0.990 0.988
PAR 0.522 0.514 0.486 PAR 0.830 0.834 0.813 PAR 0.990 0.989 0.987
QS 0.520 0.516 0.485 QS 0.830 0.833 0.815 QS 0.990 0.990 0.987

LB(pn) 0.436 LB(pn) 0.759 LB(pn) 0.975
BP(pn) 0.436 BP(pn) 0.757 BP(pn) 0.975
pn = 16 TA1n TA2n TA3n pn = 20 TA1n TA2n TA3n pn = 24 TA1n TA2n TA3n

TR 0.396 TR 0.661 TR 0.935
BAR 0.503 0.495 0.478 BAR 0.819 0.821 0.805 BAR 0.987 0.987 0.984
DAN 0.518 0.521 0.497 DAN 0.819 0.823 0.806 DAN 0.987 0.985 0.983
PAR 0.516 0.508 0.488 PAR 0.816 0.818 0.800 PAR 0.987 0.984 0.982
QS 0.516 0.517 0.492 QS 0.821 0.821 0.805 QS 0.987 0.985 0.983

LB(pn) 0.399 LB(pn) 0.671 LB(pn) 0.936
BP(pn) 0.396 BP(pn) 0.661 BP(pn) 0.935

1) DGP: Xt = Dt�t, �t ∼ EXP (1),Dt = β0 +
P4

i=1 αiXt−i +
P4

i=1 βiDt−i, β0 = 1 −P4
i=1(αi+βi), α1 = α2 = α3 = β1 = β2 = β3 = 0, α4 = 0.2, β4 = 0.1 2) 1000 iterations.



111

Table 2.11: Descriptive statistics of IBM durations (in seconds)

Obs Mean Minimum Maximum Coef. of variation
Raw trade durations 52145 26.64 1 561 1.374

Seasonally adj. trade durations 52145 0.9994 0.0271 23.86 1.325
Raw volume durations 1025 1313 2 9312 0.743

Seasonally adj. volume durations 1025 0.9925 0.0001 5.06 0.621

Table 2.12: Test statistics for ACD effects for IBM trade durations

pn TE1n(kBAR) TE1n(kDAN) LB

Raw durations Adj. durations Raw durations Adj. durations Raw durations Adj. durations
6 1463.973 1012.807 1590.516 1095.242 5966.923 4010.247

(0+) (0+) (0+) (0+) (0+) (0+)
10 1750.530 1193.901 1878.026 1272.329 9193.600 6095.899

(0+) (0+) (0+) (0+) (0+) (0+)
16 2047.776 1375.893 2186.136 1458.629 12929.797 8409.842

(0+) (0+) (0+) (0+) (0+) (0+)
24 2309.805 1532.195 2438.914 1607.834 17639.104 11375.798

(0+) (0+) (0+) (0+) (0+) (0+)
Note: The notation 0+ means a number smaller than 10−4.

Table 2.13: Test statistics for ACD effects for IBM volume durations

pn TE1n(kBAR) TE1n(kDAN) LB

Raw durations Adj. durations Raw durations Adj. durations Raw durations Adj. durations
7 208.518 231.741 204.882 237.708 553.079 860.026

(0+) (0+) (0+) (0+) (0+) (0+)
14 190.186 259.167 178.597 259.342 792.689 1297.077

(0+) (0+) (0+) (0+) (0+) (0+)
24 180.657 272.808 167.926 268.966 989.484 1597.511

(0+) (0+) (0+) (0+) (0+) (0+)
Note: The notation 0+ means a number smaller than 10−4.
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Table 2.14: Test statistics for adjustment of EACD(1,1) and EACD(2,2) models
for IBM trade durations

EACD(1,1) EACD(2,2)
pn TA1n(kTR) TA1n(kBAR) TA1n(kDAN ) TA1n(kTR) TA1n(kBAR) TA1n(kDAN )

6 4.094 6.610 6.447 2.587 0.341 0.380
(0+) (0+) (0+) (0.005) (0.366) (0.352)

10 2.756 5.577 5.484 1.516 1.197 1.566
(0.003) (0+) (0+) (0.065) (0.116) (0.059)

16 6.303 4.780 4.305 2.748 1.606 1.756
(0+) (0+) (0+) (0.003) (0.054) (0.039)

24 6.041 5.213 5.218 1.432 2.012 2.219
(0+) (0+) (0+) (0.076) (0.022) (0.013)

Note: The notation 0+ means a number smaller than 10−4.

Table 2.15: Test statistics for adjustment of WACD(1,1) and WACD(2,2) models
for IBM trade durations

WACD(1,1) WACD(2,2)
pn TA1n(kTR) TA1n(kBAR) TA1n(kDAN ) TA1n(kTR) TA1n(kBAR) TA1n(kDAN )

6 3.970 6.282 6.127 2.716 0.343 0.394
(0+) (0+) (0+) (0.003) (0.366) (0.347)

10 2.679 5.320 5.250 1.648 1.257 1.651
(0.004) (0+) (0+) (0.050) (0.104) (0.049)

16 6.243 4.593 4.148 2.970 1.714 1.881
(0+) (0+) (0+) (0.001) (0.043) (0.030)

24 5.929 5.070 5.097 1.615 2.166 2.393
(0+) (0+) (0+) (0.053) (0.015) (0.008)

Note: The notation 0+ means a number smaller than 10−4.

Table 2.16: Test statistics for adjustment of GACD(1,1) and GACD(2,2) models
for IBM trade durations

GACD(1,1) GACD(2,2)
pn TA1n(kTR) TA1n(kBAR) TA1n(kDAN ) TA1n(kTR) TA1n(kBAR) TA1n(kDAN )

6 3.871 6.507 6.275 2.157 0.719 0.692
(0+) (0+) (0+) (0.015) (0.236) (0.244)

10 2.481 5.424 5.170 1.147 1.201 1.432
(0.006) (0+) (0+) (0.126) (0.115) (0.076)

16 4.978 4.508 3.900 2.384 1.396 1.431
(0+) (0+) (0+) (0.008) (0.081) (0.076)

24 4.002 4.549 4.310 1.133 1.708 1.834
(0+) (0+) (0+) (0.128) (0.044) (0.033)

Note: The notation 0+ means a number smaller than 10−4.
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Table 2.17: Test statistics for adjustment of EACD(1,1) and EACD(2,2) models
for IBM volume durations

EACD(1,1) EACD(2,2)
pn TA1n(kTR) TA1n(kBAR) TA1n(kDAN ) TA1n(kTR) TA1n(kBAR) TA1n(kDAN )

7 1.520 2.643 2.501 -1.420 -0.963 -1.060
(0.064) (0.004) (0.006) (0.922) (0.832) (0.855)

14 0.573 2.130 1.889 -1.590 -1.390 -1.470
(0.283) (0.016) (0.029) (0.944) (0.918) (0.930)

24 -0.022 1.437 1.121 -1.794 -1.693 -1.745
(0.509) (0.075) (0.131) (0.963) (0.955) (0.960)

Note: The notation 0+ means a number smaller than 10−4.

Table 2.18: Test statistics for adjustment of WACD(1,1) and WACD(2,2) models
for IBM volume durations

WACD(1,1) WACD(2,2)
pn TA1n(kTR) TA1n(kBAR) TA1n(kDAN ) TA1n(kTR) TA1n(kBAR) TA1n(kDAN )

7 2.539 5.708 5.139 -0.423 1.056 0.789
(0.005) (0+) (0+) (0.664) (0.145) (0.215)

14 1.313 4.084 3.387 -0.739 0.175 -0.131
(0.094) (0+) (0.0003) (0.770) (0.431) (0.552)

24 0.465 2.825 2.167 -1.206 -0.407 -0.643
(0.321) (0.002) (0.015) (0.886) (0.658) (0.740)

Note: The notation 0+ means a number smaller than 10−4.

Table 2.19: Test statistics for adjustment of GACD(1,1) and GACD(2,2) models
for IBM volume durations

GACD(1,1) GACD(2,2)
pn TA1n(kTR) TA1n(kBAR) TA1n(kDAN ) TA1n(kTR) TA1n(kBAR) TA1n(kDAN )

7 3.354 7.725 6.948 0.419 2.585 2.217
(0.0004) (0+) (0+) (0.337) (0.005) (0.013)

14 1.917 5.476 4.518 -0.044 1.409 0.953
(0.028) (0+) (0+) (0.518) (0.079) (0.170)

24 0.886 3.865 2.991 -0.692 0.624 0.252
(0.188) (0+) (0.001) (0.756) (0.266) (0.400)

Note: The notation 0+ means a number smaller than 10−4.



Chapter 3

Intraday Value at Risk (IVaR) using tick-by-tick data

with application to the Toronto Stock Exchange

3.1 Introduction

Our objective is to propose an Intraday Value at Risk (IVaR) based on tick-by-

tick data by extending the VaR techniques to intraday data. VaR refers to the

maximum expected loss that will not be exceeded under normal market conditions

over a predetermined period at a given confidence level (Jorion, 2001, p.xxii). In

other words, VaR corresponds to the quantile of the conditional distribution of

price changes over a target horizon and for a certain confidence level. Financial

institutions generally produce their market VaR at the end of the business day to

measure their total risk exposure over the next day. For regulated capital adequacy

purposes, banks usually compute the market VaR daily and then re-scale it to a

10-day horizon. Today, VaR has been largely adopted by financial institutions as

a foundation of day-to-day risk measurement.

However, the traditional way of measuring and managing risk has been

challenged by the current trading environment. Over the last several years the

speed of trading has been constantly increasing. Day-trading, once the exclusive

territory of floor-traders is now available to all investors. "High frequency finance

hedge funds" have emerged as a new and successful category of hedge funds.

Consequently, risk management is now obliged to keep pace with the market.

For day traders, market makers or other very active agents on the market, risk

should be evaluated on shorter than daily time intervals since the horizon of their

investments is generally less than a day. For example, day-traders liquidate

any open positions at closing, in order to pre-empt any adverse overnight moves

resulting in large gap openings. Brokers must also be able to calculate trading
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limits as fast as the clients place their orders. Significant intraday variations in

asset prices affect the margins a client has to deposit with a clearing firm and this

should be taken into account in the design of any margining engine. Moreover,

as noted by Gourieroux and Jasiak (1997), banks also use intraday risk analysis

for internal control of their trading desk. For example, a trader could be asked at

11 a.m. to give his IVaR for the rest of the day.

Over recent years, most exchanges have set up low-cost intraday databases,

thus facilitating access to a new type of financial information where all transactions

are recorded according to their time-stamp and market characteristics (price,

volume, etc.). Denoted ultra-high-frequency data in the literature (Engle, 2000),

these transaction or tick-by-tick data represent the limit case for recording events

(transactions, quotes, etc.): one by one and as they occur. Since the time between

consecutive events (defined as duration) is no longer constant, standard time series

analysis techniques are inadequate when applied directly to these transaction data.

Research on high-frequency data has progressed rapidly since Engle and

Russell (1998) introduced the Autoregressive Conditional Duration (ACD) model

to take into account the irregular spacing of such data. Despite a greater interest

in searching for appropriate econometric models, in testing market microstructure

theories, and in estimating volatility more precisely,51 very few contributions

link high-frequency data to risk management. Much effort has been spent on

developing more and more sophisticated Value at Risk (VaR) models for daily

data and/or longer horizons but, to the best of our knowledge, the benefit of using

tick-by-tick data for market risk measures has not been sufficiently explored.

With increased access to intraday financial databases and advanced computing

power, an important question arises concerning the utility of high frequency data

for market risk measurement: How is one to define practical IVaR measures

for investors or market makers operating on an intraday basis? The irregular

51Research initiated by Andersen et al. (2000, 2001a,b,c) on realized volatility measures
(defined as the summation of high-frequency intraday squared returns) has shown dramatic
improvements in both measuring and forecasting volatility.
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feature of high-frequency data also makes it hard to asses the results obtained

from models based on such data. The problem is further complicated by certain

microstructure effects at the intraday level, effects such as the bid-ask bounce

or the discreteness of prices. Giot (2002) estimates a conditional parametric

VaR using ARCH models with equidistantly time-spaced returns re-sampled from

irregularly time-spaced data. He also applies high-frequency duration models

(log-ACD) to price durations,52 but the results from the models for irregularly

time-spaced data are not completely satisfactory.

In this paper we investigate the use of high-frequency data in risk management

and we introduce an IVaR at different horizons based on tick-by-tick data. We

use the Monte Carlo simulation approach for estimating and evaluating the

IVaR.53 We also propose an extension of GARCH models for tick-by-tick data (in

particular, the ultra-high-frequency (UHF) GARCH model introduced by Engle,

2000) to specify the joint density of the marked-point process of durations and

high-frequency returns. The advantage of this model is that it explicitly accounts

for the irregular time-spacing of the data by considering durations when modelling

returns. Our specification of the UHF-GARCH model is, however, more flexible

than that of Engle (2000). Instead of considering returns per square root of time,

we model returns divided by a nonlinear function of durations, thus endogenizing

the definition of time units and letting the data speak for themselves.

A by-product of this study is represented by the out-of-sample evaluation of the

predictive abilities of the UHF—GARCH model in a risk management framework.

Up to now the approach taken for computing VaRwith intraday data has consisted

in aggregating the irregularly time-spaced data, in order to retrieve a regular

sample to which traditional methods are applied.54 This approach not only

52As first noted by Engle and Russell (1998), price durations (the minimum amount of time
needed for the price of an asset to change by a certain amount) are closely linked to the
instantaneous volatility of the price process.
53See Christoffersen (2003) and Burns (2002) for computing VaR using GARCH models and

daily data.
54See for example Beltratti and Morana (1999).
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requires finding the optimal aggregating scheme, but also inevitably leads to the

loss of important information contained in the intervals between transactions. We

propose an alternative approach which is more closely related to the literature on

market microstructure and which deals directly with irregularly time-spaced data

by using models adapted to the particularities of such data. From a statistical

point of view, the use of more data (all the available observations in this case)

and of their specific dynamics would be expected to improve the estimation of a

model.

Our results show that the UHF-GARCH model performs well out-of-sample

when evaluated in a VaR framework for almost all the time horizons and the

confidence levels considered, even in the case when normality is assumed for the

distribution of the error term, at least in our application.

The rest of the paper is organized as follows. In Section 3.2, we introduce the

general econometric model used to describe the dynamics of durations and returns.

In Section 3.3, we discuss the concept of IVaR and present the intraday Monte

Carlo simulation approach to estimate it. An extension of Engle’s (2000) UHF-

GARCH model is proposed for modelling the tick-by-tick returns. In Section 3.4,

we apply our methodology to transaction data on two Canadian stocks traded

on the Toronto Stock Exchange (TSE): the Royal Bank of Canada (RY) stock

and the Placer Dome (PDG) stock. Finally, Section 3.5 concludes and gives some

possible research directions.

3.2 The general econometric model

Asymmetric-information models from the market microstructure literature

suggest that both time between trades and price dynamics are related to the

existence of new information on the market and that time is not exogenous to the

price process. In Easley and O’Hara (1992), informed traders trade only when

there are information events that influence the asset price. Therefore, in this

model, long intertrade durations are associated with no news and, consequently,
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with low volatility. Opposite relations between duration and volatility follow from

the Admati-and-Pfleiderer model (1988) where frequent trading is associated with

liquidity traders. Hence, low trading means that liquidity traders are inactive,

leaving a high proportion of informed traders on the market, which translates

into higher volatility.

Predictions from theoretical models are relatively ambiguous. As pointed out

by O’Hara, “the importance of time is ultimately an empirical question ...” (1995,

p. 177). In the end, the common viewpoint is that durations and volatility are

closely linked. Consequently, to estimate an IVaR that draws on insights from

this microstructure literature, we use a joint modelling of arrival times and price

changes.

To account for the irregularity of durations between consecutive trades, the

data is statistically viewed as a marked-point process. The arrival times form the

points, and random variables such as price, volume, and the bid-ask spread form

the marks.

Consider two consecutive trades that happened at times ti−1 and ti, at prices

pi−1 and pi, respectively. Let xi = ti− ti−1 be the duration between these trades,

and ri = log (pi/pi−1) be the corresponding continuously compounded return.

Following Engle’s framework (2000), a realization of the process of interest is

fully described by the sequence:

{(xi, ri) , i = 1, ..., n} .

The ith observation has joint density, conditional on the past filtration Fi−1 given

by

(xi, ri) |Fi−1 ∼ f
³
xi, ri|`xi−1, `ri−1; θ

´
, (3.1)

where θ is a d-vector of parameters (d < n), finite and invariant over events, and
`
xi−1 and

`
ri−1 denote the past of the variables X and R, respectively, up to the
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(i− 1)th transaction. The information set available at time ti−1 is represented

by Fi−1.

The joint density in (3.1) can be written as the product of the marginal density

of the durations and the conditional density of the returns given the durations,

all conditioned upon the past of durations and returns:

f
³
xi, ri|`xi−1, `ri−1; θ

´
= g(xi|`xi−1, `ri−1; θ1)q(ri|xi, `xi−1, `ri−1; θ2), (3.2)

where g(xi|`xi−1, `ri−1; θ1) is the marginal density of the duration xi with parameter
θ1, conditional on past durations and returns, and q(ri|xi, `xi−1, `ri−1; θ2) is the
conditional density of the return ri with parameter θ2, and conditional on past

durations and returns as well as the contemporaneous duration xi. Using (3.2),

the log likelihood can be written as

L(θ1, θ2) =
nX
i=1

h
log g(xi|`xi−1, `ri−1; θ1) + log q(ri|xi, `xi−1, `ri−1; θ2)

i
. (3.3)

Assuming that θ1 and θ2 are variation free in the sense of Engle, Hendry, and

Richard (1983),55 durations could be treated as being weakly exogenous and the

two parts of the likelihood function could be maximized separately. However,

the evidence suggests that this assumption is not always valid. In fact, Dolado,

Rodriguez-Poo, and Veredas (2004) reject the null hypothesis of weak exogeneity

for seven out of the ten models considered when analyzing high-frequency data

for five stocks traded on the NYSE. Here, we estimate the two parts of the

log-likelihood function simultaneously.

We model the dynamics of trade durations using the log-ACD model proposed

by Bauwens and Giot (2000) (presented in the next subsection) and the price

dynamics by extending Engle’s UHF-GARCH framework (2000) as shown in

Section 3.3.
55That is, if θ1 ∈ Θ1 and θ2 ∈ Θ2, then (θ1, θ2) ∈ Θ1 ×Θ2.
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3.2.1 The ACD and the log-ACD models

Engle and Russell (1998) introduced the ACD model as a counterpart of the

GARCH model to describe the duration clustering observed in high-frequency

financial data. Since then, a plethora of models has emerged,56 strongly supported

theoretically by the recent market microstructure literature’s emphasis on the

information contained in the time between market events.57

Let ψi be the conditional duration given by

ψi = E(xi|Fi−1) (3.4)

and supposed to be a nonnegative measurable function of Fi−1.

The ACD model is based on the assumption that all the temporal dependence

between durations is captured by the conditional duration mean function, such

that xi/ψi is independent and identically (i.i.d.) distributed,

xi = ψiεi, (3.5)

where the process ε = { εi, i ∈ Z} is a strong white noise, that is ε is an i.i.d.

process. We assume εi to be non-negative with probability one and admit a

density p (ε) such that E(εi) = 1.

By choosing different specifications for the conditional durations in (3.4) and

the density p (ε) , several forms of the ACD model can be obtained. A popular

one is the ACD (m, q) which is based on a linear parameterization of (3.4):

ψi = ω +
mX
j=1

αjxi−j +
qX

j=1

βjψi−j, (3.6)

where ω > 0, αj ≥ 0, j = 1, ...,m and βj ≥ 0, j = 1, ..., q, which are sufficient

56See Bauwens and Giot (2001), and Hautsch (2004) for extensive surveys of the existing
models.
57See Diamond and Verrecchia (1987), Admati and Pfleiderer (1988), Easley, and O’Hara

(1992) among others.
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conditions to ensure the positivity of the conditional durations.

Several choices can be made for the density p (ε). Engle and Russell (1998)

used the standard exponential distribution (that is the shape parameter is equal to

one) and the standardized Weibull distribution with shape parameter equal to γ

and scale parameter equal to one. The resulting models are called the Exponential

ACD (EACD) and the Weibull ACD (WACD), respectively. The choice of the

distribution for the error term affects the conditional intensity function. The

exponential specification implies a flat conditional hazard function which is quite

restrictive and easily rejected in empirical financial applications (see e.g. Engle

and Russell, 1998). The Weibull distribution (that reduces to the exponential

distribution if γ equals 1) allows for a monotonic hazard function (which is either

increasing if γ > 1, or decreasing if γ < 1). For greater flexibility, Grammig and

Maurer (2000) advocate the use of a Burr distribution leading to the Burr ACD

model, while Lunde (1999) proposes the generalized gamma distribution. Both

distributions allow for hump-shaped hazard functions to describe situations where,

for small durations, the hazard function is increasing and, for long durations,

the hazard function is decreasing. Once the density function p(ε) is specified,

the parameters of the ACD model are estimated using the maximum likelihood

estimation technique. In this paper we make use of the generalized gamma

distribution with unit expectation which leads to the so-called GACD model.

In order to avoid the necessity of imposing non-negativity constraints on the

parameters of the conditional mean function, Bauwens and Giot (2000) introduce

a logarithmic version of the ACD model, called the log-ACD model, that specifies

the autoregressive equation on the logarithm of ψi:

ψi = exp

Ã
ω +

mX
j=1

αjεi−j +
qX

j=1

βj lnψi−j

!
. (3.7)

Equation (3.7) is sometimes referred to as a Nelson type ACDmodel because of its

similarity with Nelson’s EGARCH model (1991). The same hypotheses are made
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about ε as in the ACD model and the same probability distribution functions can

be chosen. If εi follows a generalized gamma distribution with parameters γ1,

γ2 (γ1 > 0 and γ2 > 0), its density function is given by

p(ε|γ1, γ2) =


γ1ε
γ1γ2−1

γ
γ1γ2
3 Γ(γ2)

exp
h
−
³

ε
γ3

´γ1i
, ε > 0,

0 , elsewhere.

where Γ(·) denotes the gamma function and γ3 = Γ (γ2) /Γ
³
γ2 +

1
γ1

´
. The

generalized gamma distribution nests the Weibull distribution when γ2 = 1.

Estimation is performed in the same way as for the ACD model by considering

the new specification of ψi.

3.2.2 The UHF-GARCH model

Once we model the durations between trades conditional on past information, we

need to specify a model for price changes, conditional on the current duration and

past information. Since high-frequency data are irregularly time-spaced, Engle

(2000) proposes a GARCH model that takes into consideration this feature of

tick-by-tick data. Let the conditional variance per transaction be

hi = Vi−1(ri|xi), (3.8)

where the conditioning information set contains the current durations as well as

the past returns and durations. However, as argued by Engle (2000) andMeddahi,

Renault and Werker (2003), the variance of interest is not the "traditional"

variance but the variance per unit of time, naturally defined as:

Vi−1

µ
ri√
xi
|xi
¶
= σ2i , (3.9)

which naturally implies that hi = xiσ
2
i .

Under the assumption Ei−1 (ri|xi) = 0, the volatility per unit of time is then
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modeled as a simple GARCH(1,1) process:

σ2i = eω + eαµ ri−1√
xi−1

¶2
+ eβσ2i−1, (3.10)

where eω > 0, eα > 0 and eβ > 0.
Although it seems natural to model the variance as a function of time when

using irregularly time-spaced data, the above modelling for the unit of time

appears as quite restrictive, since the conditional heteroskedasticity in the returns

could depend on time in a more complicated way. In the next section, we shall

propose a useful extension of the above UHF-GARCH model that is more flexible

and seems to provide a better adjustment of the data, at least in our empirical

applications.

3.3 Monte Carlo IVaR

3.3.1 IVaR: definition

To define our IVaR, let Y = {yk, k ∈ Z} be the process of the asset return
re-sampled at regular time intervals equal to T units of time. We consider a

realization of length n0 of the process Y {yk; k = 1, ...n0} with yk obtained at

times t0k such that t
0
k − t0k−1 = T. Thus, yk denotes the T -period return which is

simply the sum of correspondent tick-by-tick returns

yk =

τ(k)−1X
i=1

ri, (3.11)

where τ(k) is such that the cumulative duration exceeds T for the first time. This

means that
τ−1X
i=1

xi ≤ T and
τX
i=1

xi > T.

Thus, by modelling the durations specifically with the ACD model, we are able

to determine every τ(k) and keep track of the time step.
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The IVaR with confidence level 1− α, is formally defined as

Pr(yk < −IV aRk(α) | Gk) = α. (3.12)

where Gk denotes the information set that includes all the tick-by-tick data
(durations and returns) up to time t0k . Common confidence levels used in the

applications are 1 − α = 95%, 97.5%, 99% and 99.5%; we shall consider these

values in the empirical study. It follows from (3.12) that the IVaR is such that

−IV aRk(α) = Qk(α | Gk) where Qk(α | Gk) is the quantile of the conditional
distribution of yk.

Various methods exist for computing a VaR: parametric or variance-covariance

methods (e.g. RiskMetrics, GARCH), nonparametric (e.g. Historical Simulation),

and semi-parametric (e.g. CAViar, extreme value theory). We propose a

GARCH-type model, as presented in the next subsection, to specify the time-

varying volatility of the tick-by-tick returns ri and a Monte Carlo simulation

approach to simulate the future regularly spaced returns yk from which the IVaR

is computed.

3.3.2 The extended UHF-GARCH model

In this subsection, we propose a more flexible specification of the UHF-GARCH

model presented in Section 3.2.2 in which the time weighting is determined

endogenously. We model the volatility of returns as the product of a function of

duration and a GARCH component. More precisely, let

Vi−1 (ri|xi)
xγi

= σ2i , (3.13)

which implies that

hi = xγi σ
2
i . (3.14)
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The parameter γ that specifies the duration weighting for the volatility of a

particular stock has to be estimated. This formulation allows us to specify a

more general form of heteroskedasticity in the conditional variance of the returns.

In Section 3.4, we use transaction prices instead of mid-quotes for forecasting

volatility in an order-driven market. Transaction prices may be affected by

various market microstructure effects, such as nonsynchronous trading and the

bid-ask bounce (Tsay, 2002), that may induce serial correlation in high-frequency

returns. Therefore, to remove microstructure effects, we follow Grammig and

Wellner (2002) and Ghysels and Jasiak (1998) and use an ARMA(1,1) model on

the tick-by-tick returns:

ri = c+ ϕ1ri−1 + ei + θ1ei−1. (3.15)

We model the GARCH component as

log σ2i = eω + PX
j=1

eβj log σ2i−j + QX
j=1

aj

(
|ei−j|
h
1/2
i−j
−E

Ã
|ei−j|
h
1/2
i−j

!)
+

QX
j=1

eαj

Ã
ei−j
h
1/2
i−j

!
,

(3.16)

where ei = zi
√
hi and z = {zi, i ∈ Z} denotes a strong white noise, that is the zi’s

are i.i.d. with a zero mean and unit variance. The unknown parameters are c, ϕ1,

θ1, eω, eβj, aj, eαj and γ. When γ = 1 the model is similar, though not equivalent,

to Engle’s UHF-GARCH model (2000) represented by equations (3.8), (3.9) and

(3.10). We specify the mean equation (3.15) on the returns ri rather than on

the returns weighted by a function of durations, because we want to simulate

the future distribution of returns from which the IVaR could be extracted. As

shown in the empirical part of the article, the estimate of parameter γ is far below

unity and is statistically significant, at least in our empirical application. When

γ = 0, the model becomes a standard GARCH applied to the high-frequency

data by ignoring the irregular spacing of returns when modelling the volatility.

The use of an EGARCH(p,q) model is justified by the advantage of keeping the
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volatility component positive during simulations regardless of the variables added

to the autoregressive equation. The absence of non-negativity constraints on the

parameters also simplifies numerical optimization.

3.3.3 Intraday Monte Carlo simulation

In this subsection, we describe the Monte Carlo simulation approach used for

computing the IVaR based on tick-by-tick data. As the time intervals between

consecutive observations are irregular, the question about how to assess the results

needs to be considered. Since the model we use fully specifies the distribution of

returns in event time, one-step forecasts can be computed analytically. However,

we need to run simulations in order to obtain forecasts of returns in any arbitrary

length of calendar time, T . More specifically, the ACD model will define the

time step of our simulations and the extended UHF-GARCH model introduced

in the previous subsection will generate the corresponding tick-by-tick returns.

We compute the forecasted returns for regular calendar-time intervals as the sum

of irregular (tick-by-tick) intraday returns. Using the simulated distribution of

returns over the chosen time interval T , we calculate the IVaR by extracting the

desired percentile. The IVaR obtained is thus an IVaR for regular time intervals

(therefore, comfortably comparable to regular real returns), but computed using

tick-by-tick data and adapted to the non-regularity of time intervals.

More precisely, we proceed as follows:

(1) The original sample is divided into two parts, one for estimation and one

for forecast/validation. The estimation sub-sample serves to calibrate a log-ACD-

GARCH model for durations and tick-by-tick returns as presented in the previous

sections.

(2) We draw random numbers from the standard normal distribution and

the standard generalized gamma distribution, respectively, to compute the

innovations which will serve to generate scenarios for future durations, returns,

and volatilities.



127

(3) In order to obtain the simulated durations within the first fixed interval, we

forecast the durations in an iterative way using equations (3.5) and (3.7) as long

as the sum of forecasted tick-by-tick durations does not exceed the time interval

of interest.

(4) Using equations (3.14), (3.15), and (3.16), we forecast, conditional on the

simulated durations, the tick-by-tick returns corresponding to this first regular

interval. By summing up all these returns we obtain the (regular) return for the

first interval.

(5) We continue the procedure until the desired number of fixed intervals or

regular returns is obtained. This corresponds to the first path.

(6) We repeat steps (1) to (5) for the desired number of paths.

(7) For each time-fixed interval, the IVaR corresponds to the quantile of the

simulated distribution of returns for that interval.

(Insert Figure 3.1 here)

Figure (3.1) resumes the main steps of the simulation. As one can see, the

algorithm displays similarities with the traditional Monte Carlo simulation used

for computing a multi-period (generally 10-day) VaR. The main difference is at

step (3) where we make use of the ACD model to keep trace of the time step.

While, in the standard Monte Carlo approach the time unit is not very important

because all observations are equally spaced, here we relax this constraint and are

able to proceed tick-by-tick by using models adapted to the irregularity of time

intervals, such as the ACD and the UHF-GARCH models. We illustrate this

procedure using real data in the next section.

3.4 Empirical study

3.4.1 Data

In this section we compute the IVaR according to the methodology previously

described using high-frequency data from the "Market Data Equity Trades and
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Quotes Files" CD-ROM of the Toronto Stock Exchange (TSE). To our knowledge,

this is the first econometric study analyzing (irregular) high-frequency data from

the Canadian stock market. Previous studies used data from the NYSE (e.g.,

Engle and Russell 1998; Giot 2002), or from the Paris Bourse (e.g., Jasiak 1998;

Gouriéroux, Jasiak and Le Fol, 1999), the German Stock Exchange (e.g., Grammig

andWellner 2002), and the Moscow Interbank Currency Exchange (Anatolyev and

Shakin 2004). Thus, this study adds another dimension to previous work. We

focus on the Royal Bank of Canada stock (RY) and the Placer Dome stock (PDG)

for the period from April 1st to June 30, 2001 which contains 63 trading days.

The Royal Bank is Canada’s largest bank as measured by market capitalization

(about US$ 33.4 billion) and assets. Placer Dome is Canada’s second largest gold

miner with a market capitalization of US$ 8.2 billion at the end of 2004. Both

stocks belong to the Toronto 35 Index. The Toronto 35 Index was developed by

the TSE in 1987 and consists of the 35 largest and most liquid stocks in Canada.

As of April 30, 2001 the relative weights of the RY stock and PDG stock in the

Toronto 35 Index were 4.44% and 1.15%, respectively.

In 1999, the Toronto Stock Exchange (TSE) became Canada’s sole exchange

for the trading of senior equities. The TSE is the seventh largest equities market

in the world as measured by domestic market capitalization, with US$ 1,178 billion

at the end of 2004 (source: World Federation of Exchanges Annual Report 2004).

The TSE currently trades equities for approximately 1,485 listed firms, with a

daily trading volume averaging CAD$ 3,3 billion in 2004. The TSE operates as

an automated, continuous auction market. Limit orders enter the queues of the

order book and are matched according to a price-time priority rule. There is a pre-

opening session from 7:00 to 9:30 am during which market participants can submit

orders for possible execution at the beginning of the regular session. The pre-

opening session involves the determination of a Calculated Opening Price (COP)

that equals the price at which the greatest volume of trades can trade or, if it is not

unique, the price at which there is the least imbalance or the price closest to the
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previous closing price (see Davies, 2003 for details about the pre-opening session at

the TSE and the role of the registered trader at the pre-opening). Regular trading

starts at 9:30 and ends at 16:00. Opening trades are at the COP and, as they

have a different dynamic we eliminate them from the empirical analysis . Each

stock is assigned to a Registered Trader (RT) who is required to act as a market

maker and to maintain a fair, orderly, and continuous two-sided market for that

stock. The RT contributes to market liquidity and depth and reduces volatility

by buying or selling against the market. He must also guarantee all oddlot trades

and trade all orders of a certain size, known as the Minimum Guaranteed Fill

(MGF) orders, within a set price difference between buy and sell orders. The RT

resembles the specialist at the NYSE but he does not act as an agent for client

order flow and does not have exclusive knowledge of the limit order book. Unlike

the NYSE, trading on the TSE is completely electronic, without any floor trading.

An order book open to subscribers insures a highly transparent market.58

The TSE intraday database contains date-and-time stamped bid-and-ask

quotes, transaction prices, and volume for all firms. Special codes identify special

trading conditions. Prior to the analysis, a couple of operations need to be

conducted on the data. Following the literature, we removed all non-valid trades

and interdaily durations and kept only those transactions made during regular

trading hours. As already mentioned, open trades are also deleted in order to

avoid effects induced by the opening auction. For simultaneous transactions, we

consider a weighted average price and remove all remaining observations with this

time stamp, thus considering these observations as split transactions.

Previous studies dealing with high-frequency data commonly used mid-quotes

instead of transaction prices (e.g., Engle 2000, Engle and Lange 2001, Manganelli

2002). While this may be appropriate for the NYSE which is a quote-driven

market, working with transaction prices appears a better choice in our case

since we are interested in VaR estimation and want to forecast returns for real
58The future of traditional floor trading at the NYSE was questioned after the merger on

April 20, 2005 of the NYSE with the electronic trading network Archipelago.
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transactions. To liquidate positions in an order-driven market one has to transact

either on the ask or the bid and therefore using the midquote-change quantiles

may understate the true VaR.59

Extremely large durations and returns between two successive trades are very

unlikely, therefore we filter out all the observations with absolute returns larger

than 10 standard deviations and durations larger than 25 standard deviations,

resulting in 2 outliers for the RY stock and 9 outliers for the PDG stock.

These leaves us with a total of 51,660 observations for the RY stock and 27,956

observations for the PDG stock.

(Insert Figure 3.2 here)

Figure (3.2) displays the histograms of the transaction returns for the two

stocks considered. The price increment for the two stocks RY and PDG for

the period analyzed was one penny (C$0.01)60 We observe a disproportionately

large number of zero returns (almost 60%) which seems rather typical for high-

frequency data, especially for single stocks. For the IBM dataset used by Engle

and Russell (1998), Tsay (2002, p.182) reported that about two-thirds of the

intraday transactions were without price change. Gorski, Drozdz and Speht

(2002) report the same phenomenon for DAX61 returns and call it the zero return

enhancement. Bertram (2004) also finds a large number of zero price changes

for equity data from the Australian Stock Exchange and argues that zero returns

follow from the absence of significant new information on the market. According

to the efficient market hypothesis, a price changes when new information arrives

on the market and, consequently, traders simply continue to trade at the previous

price when the amount of information is insufficient to move the price.

59We are grateful to Joachim Grammig for shedding light on this issue.
60Starting on January 29, 2001 the TSE introduced the penny tick size for stocks selling at

over $0.50.
61Deutsche Aktienindex (DAX) represents the index for the 30 largest German companies

quoted on the Frankfurt Stock Exchange.
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Information about the raw data is given in Table (3.1). Of the two stocks,

RY with an average duration of almost 29 seconds is traded almost twice as

frequently as PDG, while PDG is traded on average every minute. We also note

overdispersion of durations, i.e., the standard deviation is higher than the mean.

This is typically found in the literature for the trade duration process and it may

suggest that the exponential distribution cannot properly describe the durations.

The transaction returns have a sample mean equal to zero for both stocks and a

standard deviation equal to 0.001 and 0.002, respectively. RY exhibits positive

sample skewness while PDG has a negative skewness. Both stocks’ returns display

a kurtosis higher than that of a normal distribution.

(Insert Table 3.1 here)

3.4.2 Seasonal adjustment

As noted by Engle and Russell (1998), high-frequency data exhibits a strong

intraday seasonality explained by the fact that markets tend to be more active

at the beginning and towards the end of the day. While most of the studies

on high-frequency data ignore interday variations in variables, Anatolyev and

Shakin (2004) found that durations and return volatilities of the Russian stocks

considered fluctuate throughout different trading days. To prevent the distortion

of results, these interday and intraday seasonalities must be taken out prior to

the estimation of any model . We inspected our data for such evidence. We

noted for example that durations are higher on Mondays and Fridays than during

the rest of the week. A Wald test in a regression of average RY durations

on five day-of-the-week dummies rejects the null hypothesis of equality of all

coefficients, thus providing evidence of interday seasonal effects. No interday

effects are identified for PDG durations and returns. When found, we remove

interday seasonality under a multiplicative form, following the approach taken by
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Anatolyev and Shakin (2004):

xt,inter =
xt
xs
, (3.17)

rt,inter =
rtp
r2s

, (3.18)

where xs corresponds to the average duration for day s if observation t belongs

to day s, and r2s is the average of squared returns for day s.

To take out the time-of-day effect, Engle and Russell (1998) suggest computing

"diurnally adjusted" durations by dividing the raw durations by a seasonal

deterministic factor related to the time at which the duration was recorded. We

obtain intraday seasonally adjusted (isa) durations and returns in the following

way:

xt,intra =
xt,inter

E(xt,inter|Ft−1)
,

rt,intra =
rt,interq

E(r2t,inter|Ft−1)
.

where the expectation is computed by averaging the variables over thirty-minute

intervals for each day of the week and then using cubic splines on the thirty-

minute intervals to smooth the seasonal factor. Thus, intraday patterns are

different for different days of the week. Figures (3.3) and (3.4) show, respectively,

the estimated intraday factor for durations and squared returns for the RY stock.

Similar seasonal-factors patterns are found for the PDG stock and therefore they

are not reported. The patterns are analogous to what has been found in previous

studies. Durations are shorter at the beginning and at the end of the day and

longer in the middle. The return volatility is lower in the middle of the day than

at the beginning and at the end. This reflects the behavior of traders who are

very active at the beginning of the trading session and adjust their positions to

incorporate the overnight change in information. Towards the end of the day,
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traders are changing their positions in anticipation of the close and to pre-empt

the risk posed by any information that could arrive during the night. We also

notice a difference between the patterns for different days.

(Insert Figures 3.3 and 3.4 here)

Descriptive statistics for deseasonalised data are given in Table (3.2). We

notice the salient features of high-frequency data, such as overdispersion in trade

durations and high autocorrelations. The Ljung-Box statistics for fifteen lags

Q(15) tests the null hypothesis that the first 15 autocorrelations are zero. The

large values of these statistics greatly exceed the 5% critical value of 25, indicating

strong autocorrelation of both durations and returns. The skewness is close to

zero for both stocks. There is still excess kurtosis for both stocks even if at a

lesser degree compared to the raw data. We chose the normal distribution when

estimating the GARCH model and we obtained satisfactory simulation results.

It is well known that the conditional normality assumption in ARCH models

generates some degree of unconditional excess kurtosis (see, e.g., Bollerslev et al.,

1992).

(Insert Table 3.2 here)

3.4.3 Estimation results

In this section we apply the model presented in Sections 3.2 and 3.3 to the

deseasonalised data for the two stocks. Observations of the first month are used

for estimation and those of the last two months serve for forecast and validation.

The likelihood function is maximized using Matlab v. 7 with the Optimization

toolbox v. 3.0 and numerical derivatives are used for computing the standard

errors of the estimates.

We first tested our durations for the clustering phenomenon using the

test of Ljung-Box with 15 lags, Q(15). The high coefficients (reported in

Table 3.2) suggest the presence of ACD effects in our durations data at any
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reasonable significance level. The high positive serial dependence of the squared

returns greatly exceeding the critical values, as illustrated by the Ljung-Box test

statistics, noted Q2(15), represents evidence of volatility clustering and justifies

the application of a GARCH-type model.

Estimation results are presented in Table 3.3 together with the p-values for

the adequacy tests applied to the standardized residuals. We tried to find the

best fit for our data and reestimated the model chosen without the variables that

were statistically insignificant. We tested the adequacy of the log-GACD model

using the Ljung-Box test applied to the standardized residuals.62 We judged the

quality of the GARCH fit using the Ljung-Box tests for standardized residuals

and their squares.

(Insert Table 3.3 here)

We retain a log-GACD(2,2)-ARMA(1,1)-UHF-EGARCH(1,1) model for our

data. We find that a log-GACD(2,2) specification is successful in removing the

autocorrelation in durations. For both stocks the p-values of the Ljung-Box

test with 15 lags are superior to 0.05. The parameters of the generalized gamma

distribution are all significant. For each stock, the sum of the autoregressive

parameters β1 + β2 is close to one, revealing high persistence in durations.

With regard to the high-frequency returns, the ARMA(1,1)-UHF-

EGARCH(1,1) specification accounts satisfactorily for the dependence of both

the returns and squared returns of the PDG stock, as evidenced by the p-values

of the order-15 Ljung-Box test statistics that are all greater than 0.05. For the RY

stock, the Ljung-Box test statistics indicate that some serial dependence is still

present in the data, which is inconsistent with the model’s adequacy. However,

the dependence is dramatically reduced compared to the original data. The

Ljung-Box statistic with 15 lags Q(15) for autocorrelation of returns was reduced

from 8195 to 62 (the associated 95% critical value being 24.99). Similarly, the

62We have also applied the test statistics for ACD adequacy introduced by Duchesne and
Pacurar (2005) using the Bartlett kernel. The results are similar and therefore not reported.
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Ljung-Box statistic Q2(15) for autocorrelation of squared returns was reduced

from 15417 to 36. Similar results have been found by Engle (2000) using Ljung-

Box test statistics. The problem of passing tests of model adequacy seems to

remain an issue when using irregular high-frequency data. We have tried higher-

order models both for the mean and the variance equations but we have not

been able to gain any considerable improvement. We keep the ARMA(1,1) -

UHF- EGARCH(1,1) specification of the model for its parsimony and because we

are rather interested in assessing its forecasting ability under a risk management

framework. As in Engle (2000), the MA(1) coefficient represented by θ1 is

negative and highly significant for both stocks. The AR(1) term represented

by ϕ1 is positive. This can be explained by the fact that traders split large orders

into smaller orders to obtain a better price overall and therefore make prices

move in the same direction and thus induce a positive autocorrelation of returns

(Engle and Russell, 2005). The positive autocorrelation can also be related to

negative feedback trading (Sentana and Wadhwani, 1992). Engle (2000) has

also found evidence of positive autocorrelation in high-frequency returns. The

autoregressive parameter fβ1 for the EGARCH(1,1) model is close to one for the
RY stock, indicating a higher persistence in volatility than for the PDG stock.

The parameterfα1 is statistically insignificant (not reported in the table) for both
stocks, so no leverage effect is supported. The parameter γ is approximately

equal to 0.05 for both stocks and it is statistically different from zero.

Now that we have calibrated the model to our data, we may proceed to the

simulation of future durations and returns.

3.4.4 IVaR backtesting

In this section we simulate tick-by-tick durations and returns using the estimated

coefficients of our model and the observations of the last day as starting values.

We sum up the irregular simulated returns over a fixed-time interval. Five

different interval lengths are used: 15, 25, 35, 45 and 90. Since all models are
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applied on deseasonalised data, the time unit of the interval does not represent

a calendar unit (e.g. seconds, minutes). A correspondence can nevertheless be

established for each stock given the number of resampled intervals generated,

depending on the trading intensity of that stock for the 44 days of the validation

period. For example, a length = 15 for the RY stock results in 2470 intervals for

44 trading days, which is equivalent to an average interval of 7 minutes. Assessing

the results in a regularly spaced framework allows us to evaluate the performance

of the model in a traditional way, thus circumventing the problem of finding an

appropriate benchmark. We have generated 5000 independent paths and we have

extracted the IVaR as a percentile from the simulated distribution of returns.

We first analyze the performance of the model by using Kupiec’s test (1995) for

the percentage of failures, which is also embedded in the regulatory requirements

on the backtesting of VaR models. Using a standard procedure in the literature,

we compute the empirical failure rate (bα) as the percentage of times actual returns
(yk) are greater than the estimated IVaR. If the IVaR estimates are accurate, the

failure rate should equal α. Kupiec’s test checks whether the observed failure

rate is consistent with the frequency of exceptions predicted by the IVaR model.

Under the null hypothesis that the model is correct we have bα = α and Kupiec’s

likelihood ratio statistic takes the form:

LR = 2
£
ln(bαm(1− bα)n−m)− ln(αm(1− α)n−m)

¤
where m is the number of exceptions and n is the sample size. This likelihood

ratio is asymptotically distributed as a χ2(1) under the null hypothesis. The left

panels of Tables (3.4) and (3.5) show the p-values for the Kupiec test for the two

stocks with a 5%, 2.5%, 1% and 0.5% IVaR level. Bold entries denote a failure of

the model at the 95% confidence level, since the p-value is inferior to 0.05. The

results show that the model performs well for both stocks. For almost all the

intervals and the tails considered the p-values are superior to 0.05. The only

exception is for smallest interval (T = 15) and higher VaR levels (α = 5%, 2.5%)
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which could be explained by the fact that the interval length is too small for

obtaining non-zero returns when resampling the tick-by-tick real returns and,

therefore, the theoretical number of IVaR violations cannot be achieved. For an

interval equal to 25 and a 5% IVaR level, the model is rejected at a 95% confidence

level but not at a 97.5% confidence level.

We also apply the dynamic quantile (DQ) test of Engle and Manganelli (2004)

to check for another property a VaR measure should display: the hits (IVaR

violations) should not be serially correlated. According to Engle and Manganelli

(2004), this can be tested by defining a sequence:

Hitk ≡ I (yk < −IV aRk)− α.

The expected value of Hitk is 0 and the DQ test is computed using the

regression of the variable Hitk on its past, on current IVaR, and any other

variables:

Hitk = XB + �k

Then, DQ = bB0X 0X bB/(α(1− α)) ∼ χ2(l), where l is the number of explanatory

variables and bB is the OLS estimate of B. We perform the test using 5 lags of

the hits and the current IVaR as explanatory variables. Results are given in the

right panels of Tables (3.4) and (3.5) which report the p-values of the DQ test.

The results are satisfactory for the RY stock and coherent with the results from

Kupiec’s test. In most cases the p-values are larger than 0.05. For the PDG

stock, some estimates still show some predictability, especially for the smallest

interval. Overall, it seems that the model performs best for the two stocks when

a 1% IVaR level is considered.

(Insert Tables 3.4 and 3.5 here)

Figure (3.5) illustrates the typical IVaR profile obtained from the model. One

might argue that the Monte Carlo simulation is very time-consuming. While
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this may be true for backtesting purposes that generally require a sufficiently

large number of validation intervals, computing the next forecasted IVaR (which

is normally required for practical purposes) is reasonably fast. For example,

producing the next IVaR with a Pentium 4, one CPU 3.06 GHz and 5000 simulated

paths for an interval equal to 90, takes us approximately 3.5 minutes for each of

the two stocks considered. For our samples, an interval equal to 90 corresponds

on average to 41 minutes for RY and 79 minutes for PDG. The computing time

can easily be reduced to less than one minute by using more than one CPU.

(Insert Figure 3.5 here)

3.5 Conclusion

In this paper, we have proposed a way of computing intraday Value at Risk

using tick-by-tick data within the UHF-GARCH framework introduced by Engle

(2000). Our specification of the UHF-GARCHmodel is more flexible than that of

Engle (2000) since it endogenizes the definition of the time unit and lets the data

speak for themselves. We applied our methodology to two actively traded stocks

from the TSE (RY and PDG). While the literature is full of efforts to develop

sophisticated VaR models for daily data, here we investigate the use of irregularly

time-spaced intraday data for risk management. This is particularly useful for

defining an IVaR appropriate for agents who are very active in the market. As a

by-product of our study, we provide an out-of-sample evaluation of the predictive

abilities of an UHF-GARCH model in a risk management framework, a question

that has not yet been addressed in the literature.

We developed an intraday Monte Carlo simulation approach which enabled us

to forecast high-frequency returns for any arbitrary interval length, thus avoiding

complicated time manipulations in order to return to a convenient regularly spaced

framework. In our setup the ACDmodel yields the consecutive steps in time while

the UHF-GARCH model allows us to simulate the corresponding conditional tick-

by-tick returns. Regularly spaced intraday returns are simply the sum of tick-
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by-tick returns simulated conditional on the forecasted duration. We considered

using a normal distribution to estimate the UHF-GARCH model but, instead of

using the predicted volatility given by that model and computing the VaR in a

parametric way, we preferred to simulate the distribution of returns and extract

the IVaR from it. Therefore, the approach is not totally model dependent.

Our results for the RY and PDG stocks indicate that the UHF-GARCH model

performs well out-of-sample even when normality is assumed for the distribution

of the error term, provided that the intraday seasonality has been accounted

for prior to the estimation. This may be explained by the fact that we use a

semiparametric method for computing the VaR as an empirical quantile from the

simulated distribution of returns. In this way, it becomes possible to define

an IVaR for any horizon of interest based on tick-by-tick data. Thus, our

methodology for computing VaR with tick-by-tick data may constitute a reliable

approach for measuring intraday risk.

Potential users of our approach would be traders who need intraday measures

of risk; brokers and clearing firms looking for more accurate computations of

margins; or any other entity interested in computing the VaR during a trading

day in order to improve risk control. To compute the next IVaR using the

method we propose, one has to monitor the time using the starting time (i.e. 11

a.m.) and the simulated durations for each path and, consequently, to apply the

appropriate seasonal factors to re-introduce both interday and intraday seasonality

in returns. The IVaR extracted from the simulated raw returns then has the usual

interpretation.

Several extensions follow naturally from this study. First, a comparison of

the VaR based on tick-by-tick data with predictions obtained from volatility

models of the ARCH type (on regularly spaced observations) and realized

volatility models in the spirit of Giot and Laurent (2004) would help clarifying

the advantage of each approach. Second, one may wonder whether banks

could benefit from incorporating tick-by-tick information into their VaR models.
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Financial institutions and particularly banks currently compute the 1-day VaR

based on end-of-day positions, taking into account only daily closing prices and

thus ignoring possibly wide intraday fluctuations and, consequently, the risks

associated with them. Therefore, one could use our approach to see whether

better results can be obtained by using all the trade information available in

intraday databases rather than extracting a single observation to characterize the

activity of a whole day. Third, the impact of using more sophisticated UHF-

GARCH models together with distributions that account for fat tails and the

excessive number of zero returns could also be investigated. Fourth, given that

several methods for dealing with the intraday seasonality have been proposed

in recent literature, one may study the impact of different deseasonalization

procedures on the IVaR estimates. Finally, a challenging but rewarding extension

would be the development of a portfolio IVaR based on irregularly time-spaced

high-frequency data.

One may argue that the true VaR is underestimated by using transaction data

since transactions are observed only if the spread is favorable to the trader. In this

respect, since transaction events are certainly timed liquidity risk is not taken into

account 63. A VaR based on knowledge of the order book such as that proposed

by Giot and Grammig (2005) could provide an upper bound of the estimate.

63We thank Joachim Grammig for pointing it out.
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Figure 3.1: Illustration of the intraday Monte Carlo simulation approach

Path 1: x111+ x112+… = T   =>  r11,  r12, …, r1P

Path 2: x211+ x212+… = T   =>  r21,  r22, …, r2P

.

.

.

Path B: xB11+ xB12+… = T  =>  rB1,  rB2, …, rBP
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B is the number of independently simulated paths. T is the length of the chosen
time interval. P is the number of regular intervals used for validation. xijk is the k
trade duration corresponding to the path i for the interval j. r ij is the regular return
corresponding to the interval j for the path i. i = 1,...,B. j = 1,...,P. k = 1, ..., t such
that

Pt
k=1 xijk 6 T and

Pt+1
k=1 xijk > T.
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Figure 3.2: Histograms of intraday returns for Royal Bank (RY) and Placer Dome
(PDG)
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Figure 3.3: Estimated intraday factors for RY durations
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Figure 3.4: Estimated intraday factors for RY squared returns
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Figure 3.5: Intraday returns vs IVaR for RY (interval = 45 or 22 minutes)
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Table 3.1: Descriptive statistics of raw data for Royal Bank (RY) and Placer
Dome (PDG) Stocks

Mean Std. dev Skew Kurt Max Min
Durations
RY 28.44 35.19 2.98 17.54 526 1
PDG 52.59 82.11 5.04 59.87 2248 1
Returns
RY 0.000 0.001 0.024 9.890 0.011 -0.011
PDG 0.000 0.002 -0.169 11.195 0.018 -0.020

Note: The sample period runs from April 1st to June 30, 2001. It consists of 51,660
observations for the RY stock and 27,956 observations for the PDG stock. Mean is
the sample mean, Std. dev is the sample standard deviation, Skew is the sample
skewness coefficient, Kurt is the sample kurtosis, Max is the sample maximum, Min
is the sample minimum.

Table 3.2: Descriptive statistics of deseasonalised data for Royal Bank (RY) and
Placer Dome (PDG) stocks

Mean Std. dev Skew Kurt Max Min Q(15) Q2(15)
Durations
RY 0.99 1.14 2.50 12.36 16.68 0.01 1325 387
PDG 0.93 1.50 7.68 170.59 63.33 0.01 5015 185
Returns
RY 0.000 0.815 0.005 7.560 5.960 -6.422 8196 15417
PDG 0.001 0.890 -0.009 6.735 6.404 -6.421 2355 3118

Note: The sample period runs from April 1st to June 30, 2001. It consists of 51,660
observations for the RY stock and 27,956 observations for the PDG stock. Mean is
the sample mean, Std. dev is the sample standard deviation, Skew is the sample
skewness coefficient, Kurt is the sample kurtosis, Max is the sample maximum, Min
is the sample minimum. Q(15) is the Ljung-Box test statistics with 15 lags, Q2(15) is
the Ljung-Box test statistics applied to squared returns using 15 lags. The associated
95% critical value is 24.996.
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Table 3.3: Estimates of ACD-GARCH models

RY PDG
Parameter Estimate t-Student Estimate t-Student

β0 -0.017 -30.46 -0.030 -19.26
α1 0.075 129.13 0.137 86.58
α2 -0.057 -99.32 -0.105 -67.24
β1 1.391 265.93 1.421 313.17
β2 -0.408 -77.41 -0.434 -95.49
γ1 0.425 95.04 0.391 55.36
γ2 4.444 50.26 3.772 29.42
φ1 0.069 4.11 0.078 2.58
θ1 -0.605 -48.50 -0.369 -13.34
ω -0.032 -9.27
a1 0.242 22.58 0.221 8.25fβ1 0.921 232.00 0.778 19.59
γ 0.055 3.15 0.057 2.33

p-value Qd(15) 0.182 0.611
p-value Q(15) 0.000 0.208
p-value Q2(15) 0.002 0.833

Note: This table contains the parameters estimates of the ACD-GARCH models for
RY and PDG. t-Student are the t-statistics associated with the parameters estimates.
p-value Qd(15) represents the p-value associated with the Ljung-Box test statistic
computed with 15 lags applied to the ACD standardized residuals. p-value Q(15)
and p-value Q2(15) represent, respectively, the p-values of the Ljung-Box test statistic
computed with 15 lags for serial correlation in the standardized EGARCH residuals
and in their squares.
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Table 3.4: IVaR results for RY

Kupiec test DQ test
Level
T

5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5% N

15 0.000 0.000 0.154 0.694 0.000 0.021 0.879 0.672 2470
25 0.036 0.231 0.928 0.317 0.365 0.344 0.360 0.003 1434
35 0.153 0.792 0.969 0.624 0.208 0.444 0.999 0.329 1012
45 0.862 0.914 0.676 0.632 0.974 0.881 0.999 0.982 781
90 0.592 0.903 0.651 0.957 0.220 0.847 0.992 0.999 385

Note: This table contains the p-values for Kupiec’s test and the DQ test of Engle and
Manganelli (2004) using 5 lags and the current VaR as explicative variable. T is the
length of the interval used for simulation. N represents the number of intervals used
for validation. Bold entries denote a failure of the model at the 95% confidence level
since the p-values are inferior to 0.05.

Table 3.5: IVaR results for PDG

Kupiec test DQ test
Level
T

5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5% N

15 0.000 0.018 0.577 0.560 0.009 0.304 0.041 0.000 1294
25 0.642 0.837 0.837 0.678 0.387 0.251 0.063 0.000 755
35 0.762 0.944 0.274 0.675 0.136 0.001 0.991 0.992 530
45 0.121 0.692 0.662 0.531 0.038 0.670 0.568 0.711 409
90 0.762 0.215 0.994 0.381 0.544 0.590 0.934 0.645 201

Note: This table contains the p-values for Kupiec’s test and the DQ test of Engle and
Manganelli (2004) using 5 lags and the current VaR as explicative variable. T is the
length of the interval used for simulation. N represents the number of intervals used
for validation. Bold entries denote a failure of the model at the 95% confidence level
since the p-values are inferior to 0.05.


